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Extremal discs and holomorphic extension from
convex hypersurfaces

Luca Baracco, Alexander Tumanov and Giuseppe Zampieri

Abstract. Let D be a convex domain with smooth boundary in complex space and let f

be a continuous function on the boundary of D. Suppose that f holomorphically extends to the

extremal discs tangent to a convex subdomain of D. We prove that f holomorphically extends

to D. The result partially answers a conjecture by Globevnik and Stout of 1991.

1. Introduction

Let D⊂Cn be a bounded domain with smooth boundary ∂D and let f be
a continuous function on ∂D. Suppose that for every complex line L the restriction
f |L∩∂D holomorphically extends into L∩D. Then f extends to D as a holomorphic
function of n variables (Stout [11]). The conclusion is still true if instead of the
holomorphic extendibility of f into the sections L∩D, we assume the weaker Morera
condition ∫

L∩∂D

fα= 0(1.1)

for every (1, 0)-form α with constant coefficients and every complex line L (Globev-
nik and Stout [7]).

The condition of holomorphic extendibility into sections L∩D and even the
Morera condition (1.1) for all lines L seem excessive, because it suffices to use
only the lines close to the tangent lines to ∂D. Indeed, for simplicity assume
f∈C1(∂D). Then the Morera condition for L as L approaches a tangent line L0

at z0∈∂D implies that the ∂̄ derivative of f at z0 along L0 equals zero. Then f

holomorphically extends toD by the classical Hartogs–Bochner theorem. Therefore,
of great interest are “small” families of lines, for which the result is still true. In
particular, the family of lines should not contain the lines close to the tangent lines
to ∂D.



2 Luca Baracco, Alexander Tumanov and Giuseppe Zampieri

Reducing the family of lines, Agranovsky and Semenov [1] show that if D2⊂D1

are bounded domains in Cn and f∈C(∂D1) holomorphically extends into sections
L∩D1 by the lines that meet D2, then f holomorphically extends to D1. In the
case of two concentric balls D2⊂D1, Rudin [10] proves that the same conclusion
is valid if one only assumes the extendibility into sections by the lines tangent to
∂D2. Globevnik [5] observes that in Rudin’s result one only needs the lines tangent
to a sufficiently large open set in ∂D2.

Globevnik and Stout [7] conjecture that Rudin’s result is valid for every pair
of bounded convex domains D2�D1, that is if f∈C(∂D1) holomorphically extends
into sections L∩D1 by the lines tangent to ∂D2, then f holomorphically extends to
D1. They also observe in [7] (see also [2]) that for n=2 in Rudin’s result one gener-
ally cannot replace the extendibility into the sections L∩D1 by the Morera condition
(1.1), that is the latter suffices unless the ratio r1/r2 of the radii of the balls belongs
to an exceptional countable set. For a counterexample in C2, take r1=1, r2=

√
1/3,

and f=z1z̄2
2 . However if n>2, then Berenstein, Chang, Pascuas, and Zalcman [2]

show that for the concentric balls the Morera condition for the tangent lines suf-
fices without exceptions. Dinh [4] proves the conjecture of Globevnik and Stout
assuming that the boundary ∂D1 in some sense is very far from being real-analytic.

Further reduction of the family of lines is possible. Globevnik [6] shows that
for the unit ball D⊂C2, the holomorphic extension property into sections by lines
of certain two-parameter families suffices for the holomorphic extendibility into
D. The set of lines in his result consists of two disjoint tori. The second author
shows [13] that for every generating CR manifold M⊂Cn of dimension d there
exists a (d−1)-parameter family of analytic discs attached to M so that if f∈C(M)
holomorphically extends to those discs, then f is a CR function on M .

Despite the large amount of work done on the subject, the conjecture of
Globevnik and Stout has been open so far. In this paper we prove a version of
the conjecture in which the complex lines are replaced by the complex geodesics
of the Kobayashi metric for D1 also known as extremal or stationary discs, whose
theory was developed by Lempert [9]. We believe that the extremal discs for a gen-
eral convex domain D1 are more appropriate in the problem than the lines because
they are intrinsically defined, invariant under biholomorphisms, and coincide with
the lines for the ball. Hence, if D1 is the ball and D2 is an arbitrary strictly con-
vex subdomain, then our result proves the conjecture of Globevnik and Stout for
the lines as stated. As in Globevnik’s result [5] cited above, we only need the ex-
tendibility into the extremal discs tangent to a sufficiently large open set in ∂D2

(cf. Remark 3.6).
The authors of the results for the concentric balls use Fourier analysis and

decomposition into spherical harmonics. This method does not seem to work for
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general convex domains. We employ the method of [14] according to which we
add an extra variable, the fiber coordinate in the projectivized cotangent bundle.
Then using the lifts of the extremal discs we lift the given function f to a CR
function on the boundary of a wedge W whose edge is the projectivized conormal
bundle of ∂D1. Then using the theory of CR functions we extend it to a bounded
holomorphic function in W . Finally since W contains “large” discs, we prove that
the lifted function actually does not depend on the extra variable, which proves the
result.

We feel that the method developed here has a wide scope, and we hope to use
it in other occasions.

2. Extremal discs

We will collect here, and develop in some details, the main results of [9] which
are needed for our discussion. LetD be a bounded domain of Cn with Ck-boundary;
according to [9] we assume k≥6. We also assume that D is strongly convex in the
sense that D has a global defining function with positive real Hessian. An analytic
disc in Cn is a holomorphic mapping ∆!Cn, smooth up to ∂∆, where ∆ is the
standard disc in C. We denote by A the image set under φ. The disc A is said to
be “attached” to ∂D when ∂A⊂∂D.

Definition 2.1. An analytic disc φ in D is said to be stationary when it is
attached to ∂D and endowed with a meromorphic lift φ∗(τ)∈(T ∗Cn)φ(τ) for all
τ∈∆ with one simple pole in ∆ such that φ∗(τ)∈(T ∗

∂DCn)φ(τ) when |τ |=1. In
other words, (φ, φ∗) is attached to the conormal bundle T ∗

∂DCn.

Definition 2.2. An analytic disc φ in D is said to be extremal when for any
other disc ψ in D with ψ(0)=φ(0) and ψ′(0)=λφ′(0), λ∈C, we have |λ|<1.

It is shown in [9] that extremal and stationary discs coincide. Also, it is shown
that they are stable under reparametrization. In particular, in Definition 2.2 we
can replace 0 by any other value of τ∈∆ which does not affect the stationarity
or extremality of φ. It follows that the extremal discs are the geodesics of the
Kobayashi metric in D; in particular they are embeddings of ∆̄ into Cn. We recall
some basic facts about the existence, uniqueness, and smooth dependence of the
extremal discs on parameters (see [9], Proposition 11′):

(2.0) For any z∈D and v∈Ċn :=Cn\{0}, there exists a unique extremal disc φ=φz,v

such that φ(0)=z and φ′(0)=rv for r∈R+. Also, the mapping

D×Ċn −!C2,1/2(∆̄), (z, v) �−!φz,v
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is of class Ck−4, where C2,1/2 is the space of functions whose derivatives up
to order 2 are 1

2 -Hölder-continuous.

If φ∗ has its pole at τ0, we multiply it by

(τ−τ0)(1−τ̄0τ)
τ

, τ ∈∆,

so that the pole is moved to 0. Next, we multiply φ∗ by a real constant �=0 so
that φ∗(1) is the outward unit conormal to D at φ(1). We will assume that φ∗ is
normalized by the two above conditions. It is essential for our discussion also to
clarify the dependence of φ∗z,v on the parameters z and v which is not explicitly
stated in [9].

Proposition 2.3. The mapping

D×Ċn −!C2,1/2(∆̄), (z, v) �−!φ∗z,v,(2.1)

is Ck−4.

Proof. Our starting remark is that φ∗z,v is explicitly described only over ∂∆
where it is in the form g(τ)∂ρ(φz,v(τ)) for a suitable function g, real on ∂∆. We can
also assume that g(1)=1 and ∂z1ρ(φz,v(1))=1. On the other hand, when evaluating
φ∗z,v at points τ∈∆, we can use the Cauchy integral over ∂∆. Thus, if we are able to
show that (z, v) �!φ∗z,v with values in C2, 1

2 (∂∆) is Ck−4, the same will be true with
values in C2, 1

2 (∆̄) since the Cauchy integral preserves fractional regularity. Now,
∂ρ(φz,v) depends smoothly on z, v because of (2.0) and so what is needed is to prove
that the same is true for gz,v. Recall that ∂ρ(φz,v(τ)) extends meromorphically from
∂∆ to ∆ with a simple pole. Thus, for one of the components of ∂ρ, e.g. for ∂z1ρ, we
have that the index of the curve {∂z1ρ(φz,v(τ)):τ∈∂∆} around 0 is −1. It follows
that the function f(τ)=log(τ∂z1ρ(φz,v(τ))) is well defined. We now need a function
G=Gz,v holomorphic in ∆ such that

ImGz,v(τ)= Im(f(τ)), τ ∈ ∂∆.(2.2)

We put G=−T1(Im(f))+i Im(f), where T1 is the Hilbert transform normalized
by the condition T1f(1)=0. As T1 preserves fractional regularity, (z, v) �!Gz,v∈
C2,1/2(∂∆) is also Ck−4. We finally put

νz,v(τ) :=
eG(τ)

τ∂z1ρ(φz,v)
.
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We have

νz,v = exp(ReG+i Im log(τ∂z1ρ(φz,v))−log(τ∂z1ρ(φz,v)))

= exp(ReG−Re log(τ∂z1ρ)) is real,
(2.3)

νz,vτ∂z1ρ(φz,v) extends holomorphically from ∂∆ to ∆̄.(2.4)

Finally, since

g

ν

∣∣∣∣
∂∆

∈R,
g

ν
extends holomorphically and

g

ν
(1)= 1,

we have g≡ν. It follows that g, and hence ϕ∗, depends in Ck−4 fashion on z

and v. �

The following statement is similar to (2.0) above: for any z∈D and ζ∈Ċn

there is a unique stationary disc with lift (φ, φ∗)=(φz,ζ , φ
∗
z,ζ) such that φ(0)=z and

φ∗(0)=ζ, where φ∗(0) stands for the residue Resφ∗(0).
We recall now some basics about the Lempert Riemann mapping. For any

pair of points (z, w) in D, let φz,w be the (unique) stationary disc through z and w
normalized by the condition z=φz,w(0), w=φz,w(ξ) for some ξ∈(0, 1); we define

Ψz(w) := ξ
φ′z,w(0)
|φ′z,w(0)| .

Let Bn denote the unit ball of Cn and put Ḃn=Bn\{0}. Consider the correspon-
dence

(D×D)\Diag−!D×Ḃn, (z, w) �−! (z,Ψz(w)),(2.5)

where Diag denotes the diagonal. We have
• For fixed z, Ψz is a diffeomorphism of class Ck−4 which extends as a diffeo-

morphism between the boundaries ∂D and ∂Bn.
• (2.5) is differentiable of class Ck−4.
Write v=v(z, w) for Ψz(w). By the above statements, the smoothness of (2.0)

and (2.1) are equivalent to those of

(z, w) �−!φz,w and (z, w) �−!φ∗z,w.(2.6)

Remark 2.4. Let zν and wν be sequences converging to z0, and put vν :=
φ′zν ,wν

(0). If we define v :=limν!∞(wν−zν)/|wν−zν|, then v=limν!∞ vν/|vν |. Hence
we have convergence (in the C2,1/2(∆̄) space):

φzν ,wν (=φzν ,vν )−!φz0,v, φ∗zν ,wν
(=φ∗zν ,vν

)−!φ∗z0,v.(2.7)
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For our further needs it is convenient to state the following uniqueness theorem
which is largely contained in former literature.

Theorem 2.5. Let two stationary discs φj, j=1, 2, be given in a strongly
convex domain D and assume that for τj∈∆, j=1, 2, we have

{
φ1(τ1)=φ2(τ2),

φ∗1(τ1)=λφ
∗
2(τ2) for some λ∈C.

(2.8)

Then, after reparametrization of ∆, we have for a complex scalar function µ=µ(τ),

φ1 =φ2 and φ∗1 =µφ∗2.

As before, if τj is a pole of φ∗j , then φ∗j (τj) stands for Resφ∗j (τj).

Proof. We compose each (φj , φ
∗
j ) with an automorphism of ∆ which brings τj

to 0. We are therefore reduced to{
φ1(0)=φ2(0),

Resφ∗1(0)=λResφ∗2(0),
(2.9)

for a new constant λ. We put λ=reiθ and replace (φ2(τ), φ∗2(τ)) by (φ2(e−iθτ),
rφ∗2(e

−iθτ)). This transformation reduces (2.9) to λ=1. At this point we can prove
that φ1=φ2. We reason by contradiction and suppose φ1 �=φ2. It follows that

∫ 2π

0

Re 〈φ∗1(τ)−φ∗2(τ), φ2(τ)−φ1(τ)〉 dθ > 0,(2.10)

since the integrand is almost everywhere >0 on ∂∆ due to the strong convexity of
the domain. On the other hand dθ=−i dτ/τ ; also, (φ2−φ1)/τ and φ∗1−φ∗2 are holo-
morphic. Hence the integrand in (2.10) is a (1, 0)-form whose coefficient is the real
part of a holomorphic function. Hence the integral (2.10) is 0, a contradiction. �

In particular in the situation of Theorem 2.5 we have coincidence of the image
sets φ1(∆)=φ2(∆).

Remark 2.6. Let Ṫ ∗Cn be the cotangent bundle to Cn with the 0-section re-
moved, and let Ṫ ∗Cn/Ċ
Cn×Pn−1

C be the projectivization of its fibers. We denote
by (z, [ζ]) the variable in Ṫ ∗Cn/Ċ. We can rephrase Theorem 2.5 by saying that
if two discs (φj , [φ∗j ]), j=1, 2, have a common point, then, after reparametriza-
tion, they need to coincide. Also, it is useful to point out that, given a stationary
disc φ(∆), its lift [φ∗(∆)] is unique. In fact, the different choices of φ obtained
by reparametrization do not affect the class of φ∗ in the projectivization of the
cotangent bundle.
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3. The main result

Let D1 and D2 be bounded domains of Cn with D2�D1. We assume that D1

is strongly convex and with Ck boundary for k≥6 as is the setting of [9]. Let D2

be defined by ρ<0 for a real function ρ of class C2 with ∂ρ(z) �=0 when ρ(z)=0.

Definition 3.1. The domain D2 is said to be strongly convex with respect to
the extremal discs of D1, if every such disc φ tangent to D2 at z0=φ(0)∈∂D2 has
tangency of order 2, that is for some c>0 we have ρ(φ(τ))≥c|τ |2 for all τ∈∆, in
particular �D2∩φ(∆)={z0}.

Here is the main result of our paper.

Theorem 3.2. Let D2�D1 be bounded domains of Cn with D1 strongly con-
vex and of class Ck for k≥6, and D2 strongly convex with respect to the extremal
discs of D1 and of class C2. Let f be a continuous function which extends holo-
morphically along each extremal disc φ(∆) of D1 which is tangent to ∂D2. Then f

extends holomorphically to D1, continuous up to ∂D1.

Remark 3.3. We do not think that the assumption that D2 is strongly convex
with respect to the extremal discs is essential. We add it for the sake of simplicity
and convenience of the proof.

Proof. We consider the cotangent (respectively tangent) bundle Ṫ ∗Cn/Ċ, resp.
ṪCn/Ċ, with projectivized fibers Pn−1

C and with coordinates (z, [ζ]) and (z, [v]),
respectively. The prefix TC will be used to denote the complex tangent bundle. We
fix a rule for selecting a “distinguished” representative v of [v] and define a mapping

(ṪC∂D2/Ċ)×∆ Φ−! (Ṫ ∗Cn/Ċ)|D1\D2 ,(3.1)

(z, [v], τ)
Φ�−! (φz,v(τ), [φ∗z,v(τ)]),(3.2)

where φz,v is the unique stationary disc such that φ(0)=z and φ′(0)=rv for some
r∈R+ and φ∗z,v is its “lift” according to Section 2, (2.0). Note that by multiplying
φ∗z,v by ν(τ), which is real on ∂∆, we can move the pole to τ=0.

We denote by S the image-set of Φ. We show that Φ is an injective smooth local
parametrization of S. First, it is injective: in fact, if (z1, [v1], τ1) and (z2, [v2], τ2)
maps to the same image, then by Theorem 2.5 in Section 2, φz1,v1 and φz2,v2 coincide
up to reparametrization. On the other hand, by the strong convexity of D2 with
respect to the stationary discs of D1, we must have z2=z1. Then we also have v1=v2
by our rule of taking representatives and therefore the discs coincide (without need of
reparametrization). Finally τ2=τ1 because they are injective (cf. Section 2). As for
the smoothness, we make a choice of our representative v smoothly depending on z,
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and point our attention to (2.0) and (2.1) of Section 2. If we then take evaluation of
the discs and their lifts at τ∈∆ we get the Ck−4-smoothness of (3.2). In the lines of
what was remarked after Proposition 2.3, for any (z, [ζ])∈(Ṫ ∗Cn/Ċ)|D1\D2 there is
a unique (φ, φ∗), up to reparametrization, such that φ(τ)=z, [φ∗(τ)]=[ζ] for some
τ∈∆. On the other hand, the class of stationary discs which are tangent to ∂D2

divides the set of all stationary discs into two sets, the ones which are transversal to
(resp. disjoint to) D2. Accordingly, S divides (Ṫ ∗Cn/Ċ)|D1\�D2

into two sets. We
denote by W the first set and refer to it as to the “finite” side of S the complement
being called a neighborhood of the “plane at infinity”. The set W is a wedge type
domain with boundary S and edge E :=Ṫ ∗

∂D1
Cn/Ċ.

We now describe the fibers Sz0 =π−1(z0)∩S where π :Ṫ ∗Cn/Ċ!Cn is the pro-
jection π(z, [ζ])=z. Our plan is to use Ψz0 , interchange D1 with Bn and z0 with 0,
analyze the situation in this new setting, and then bring back the conclusions to the
former by Ψ−1

z0
. Recall that Ψz0 interchanges the stationary discs through z0 with

the complex lines (the stationary discs of the ball) through 0. We first describe the
set

γ0 = {z∈ ∂(Ψz0(D2)) : for some v ∈TC
z ∂(Ψz0(D2)) with φz,v passing through 0}.

(3.3)

If ρ=0 is an equation for ∂(Ψz0(D2)), γ0 is defined by

ρ(z)= 0 and ∂ρ(z)·z= 0.

This is a system of three real equations that we denote by r=0. We normalize our
coordinates so that

∂ρ(z)= (1, 0, ...) and z= (0, c, 0, ...).

We then have for the partial Jacobian

Jz1,z̄1,z2,z̄2r(z)=

⎡
⎢⎣
1 1 0 0
∗ ∗ c∂2

z2,z2
ρ c∂2

z̄2,z2
ρ

∗ ∗ c∂2
z2,z̄2

ρ c∂2
z̄2,z̄2

ρ

⎤
⎥⎦ ,(3.4)

where the asterisks denote unimportant matrix coefficients. Let A be the 3×3 minor
obtained by discarding the first column. We have

detA= c2 det

[
∂2

z2,z2
ρ ∂2

z2,z̄2
ρ

∂2
z̄2,z2

ρ ∂2
z̄2,z̄2

ρ

]
=−c2 det(Hess(ρ)|Cz2)< 0,(3.5)

where the real Hessian of ρ at z along the z2-plane is positive because Ψz0(D2) is
strongly convex with respect to Ψz0(φz0,z(∆)). In conclusion, rankJ(r)=3 and
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hence γ0 is a regular real manifold of dimension 2n−3, compact and without
boundary. We now use the fact that Ψz0 is a diffeomorphism and conclude that
γz0 :=Ψ−1

z0
(γ0) is also a regular manifold of dimension 2n−3 in ∂D2, which enjoys

the same properties as γ0. It represents the set of points where the geodesics of D1

through z0 are tangent to ∂D2. Let γ̃z0 be the section (z, [v(z)]) of (ṪC∂D2/Ċ)|γz0

where [v(z)] is the direction tangent at z to the stationary disc connecting z0 and z.
We can parametrize the fiber Sz0 over γ̃z0×∆ by the same parametrization Φ as in
(3.1). This being bijective, we conclude that Sz0 is a finite family of regular closed
manifolds of dimension 2n−3 without boundary, which do not intersect. We move
now z from the fixed z0 and describe the behavior of the fibers Sz ; they depend in a
(Ck−4) fashion on z since the mapping in (2.5) is also Ck−4. As for their behavior
at z0∈∂D2, we consider the set Πz0 defined by the diagram

ṪC
z0

Cn/Ċ −−−−!∼ Ṫ ∗
z0

Cn/Ċ
Pn−1
C

∪ ∪
ṪC

z0
∂D2/Ċ −−−−!∼ Πz0 ,

where the two horizontal arrows are given by the smooth injective mapping v �!
[φ∗z0,v(0)]. Thus Πz0 :={[φ∗(0)]: φ is tangent to ∂D2 at z0} is a 2-codimensional
real submanifold of Pn−1

C which reduces to a single point when n=2.

Lemma 3.4. The sets Szν shrink to Πz0 as zν!z0∈∂D2; in particular, Szν

consists of just one component when zν is close to z0.

Proof. By the strong convexity of ∂D2, the manifolds γzν shrink to {z0} as
zν!z0. If we pick up any sequence wν∈γzν , we have

wν−z0
|wν−z0|! v ∈TC

z0
∂D2.

Let φzν ,wν (resp. φz0,v) be the geodesic through zν and wν (resp. through z0 with
tangent v), normalized by the condition, zν =φzν ,wν (0) and wν =φzν ,wν (ξwν ) for
ξwν ∈(0, 1), (resp. zν=φz0,v(0) and rv=φ′z0,v(0) for r∈R+). Then

φzν ,wν !φz0,v and φ∗zν ,wν
−!φ∗z0,v,

with convergence in the C2,1/2(∆̄) norm. In particular, since

Szν =
⋃

wν∈γzν

[φ∗zν ,wν
(ξwν )],

we have

Szν !
⋃

v∈ṪC
z0

∂D2

[φ∗z0,v(0)]. �
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It follows that for the fibers Wzν , which are open domains of Pn−1
C with bound-

ary Szν , we have merely by definition:

Wzν !Pn−1
C \Πz0 , as zν! z0 ∈ ∂D2.

If, instead, we move zν towards z0∈∂D1, then each Szν as well as their “finite”
sides Wzν , shrink to the single point (Ṫ ∗

∂D1
Cn/Ċ)|z0 .

Now we move z0 all over D1\�D2. If we take a closer look on (3.4) and (3.5),
we see that the set Ψz0(D2) as well as its equation ρz0=0, moves smoothly with
respect to z0 by the regularity properties of Ψ. It follows that the set defined by
{(z0, z):z0∈D1\�D2 and z∈γz0} is a (4n−3)-dimensional manifold. In particular,
the set γz0 is a (2n−3)-dimensional manifold and it cannot turn from one to several
components without passing through a singular point z0. It follows that the set Sz0

also consists of one component.
By the preceding discussion and Sard’s theorem, we can also say that S is

a smooth regular manifold except possibly a closed subset of measure zero. Along
with its natural foliation by the discs (φz,v, [φ∗z,v]), we need to endow S with another
foliation, locally on a neighborhood of each of its points, by CR manifolds M of
dimension 2n and CR dimension 1 each one being still a union of discs. For this,
we fix z0∈�D1\�D2, consider the submanifold γz0 of ∂D2 with dimension 2n−3 of
points of tangency for the stationary discs through z0, and denote by z the point
which moves in γz0 . As above, we denote by φz,z0 the stationary disc through z and
z0, normalized by φz,z0(0)=z and φz,z0(ξ)=z0 for ξ∈(0, 1); we also write ξ=ξ(z, z0)
and define v(z, z0):=φ′z,z0

(0). We set Γz0 :={(z, [v(z, z0)], ξ(z, z0)):z∈γz0}; then
dim Γz0 =dimγz0 =2n−3. Since Φ1 :=π�Φ sends all points of Γz0 to the fixed z0,
then we have an inclusion TΓz0⊂KerΦ′

1|Γz0
. But since the dimensions are the same,

TΓz0=KerΦ′
1|Γz0

. In particular, if p is the projection (z, [v], τ) �!z, then

p′(KerΦ′
1|Γz0

)⊂Tγz0.(3.6)

We define M locally at a point (z0, [ζ])∈S∪E ; if (z0, [ζ])∈E , M will in fact be
a manifold with boundary E . Let (z, [v], τ) be the value of the parameter in
(TC∂D2)×∆ which corresponds to (z0, [ζ]) via Φ1. Choose a germ of submani-
fold δz0⊂∂D2 transversal to γz0 at z with complementary dimension 2. By (3.6),
we have

Ker(Φ′
1(z, [v], τ)

∣∣
Tzδz0×Pn−1

C ×Tτ ∆
)= {0}.(3.7)

Thus Φ1 induces a diffeomorphism between a neighborhood Σ=Σ1×Σ2 of (z, [v], τ)
in (TC∂D2/Ċ)|δz0

×∆ and a neighborhood of z0 in �D1. We define M=Φ(Σ) that
is

M=
⋃

(φ,φ∗)

(φ, [φ∗])(Σ2)(3.8)
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for (φ(0), [φ′(0)])∈Σ1. The map Φ is a diffeomorphic parametrization of M over
Σ and hence M is a smooth manifold, in fact a graph over a neighborhood of z0
in �D1. This was not necessarily the case of S since Φ is a smooth and bijective
parametrization of S but it might occur that Φ′ is degenerate at some point. We
define a function F on S by collecting all extensions fφ(∆̄) of the given f from φ(∂∆)
to φ(∆̄). For (z, [ζ])∈S we put

F (z, [ζ])= fφ(∆̄)(z) if (φ(τ), [φ∗(τ)])= (z, [ζ]) for some τ.(3.9)

According to Theorem 2.5, F is well defined. We have the following result.

Proposition 3.5. At every point of S\E, the function F holomorphically ex-
tends to a one-sided neighborhood on the W-side of S.

Proof. The ingredients of the proof are the foliation of S by manifolds with
boundary M, which are themselves union of discs, and the additional transversal
foliation of W by the fibers Wz. The starting remark is that F is holomorphic along
each disc and therefore it is CR on each M since dimCR M=1.

(a) We approximate F |E by a sequence of entire functions Fν (cf. e.g. [3]). To
this end it is important to notice, as was first pointed out by Webster, that since
∂D1 is strongly convex, E is totally real. Then, in an identification E
R2n−1, these
are defined by

F̂ν(ξ)=
(ν
π

)(2n−1)/2
∫
R2n−1

F (η)e−ν(η−ξ)2 dV,(3.10)

(dV being the volume element in R2n−1). It is well known that F̂ν!F uniformly
on compact subsets of E . Also, F being CR on each M, it is possible to deform the
integration chain from E to another chain entering inside M and reaching any point
of M in a neighborhood of E . In other terms, the function F is approximated, over
each M near E , by the same sequence (3.10) of entire functions. Since the M’s give
a foliation of S, it follows that the uniform approximation of F by the Fν ’s holds
on the whole S in a neighborhood of E .

(b) By now using the foliation of W by the fibers Wz, we can bring the ap-
proximation by entire functions from S to W in a neighborhood of E : in fact, by
the maximum principle, the sequence F̂ν which is Cauchy over Sz will be Cauchy
on the whole Wz.

(c) We now use the theory of propagation of wedge extendibility along discs for
each CR function F |M by [12] which develops [8]. We put a suffix s in the notation
of the disc ∆s to specify its radius, and define

I =
{
r∈ (0, 1) :F extends to the side W of S in

⋃
(φ,φ∗)

(φ, [φ∗])(∆1\∆̄1−r)
}
,(3.11)
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for all stationary discs φ tangent to ∂D2 at τ=0. (The last requirement is just
a choice of the parametrization.) We have I �=∅ due to (b) above. We show now
that we have indeed I=(0, 1) from which the proposition follows. We reason by con-
tradiction, suppose I �=(0, 1), and denote by r0 the supremum of I; thus r0<1. By
propagation of wedge extendibility of F |M for each M, and since the wedge evolves
continuously with the base point, then, on account also of a compactness argument,
F would extend to the side W for a value of r bigger than r0, a contradiction. �

End of proof of Theorem 3.2.
• First, recall that for z moving from ∂D1 to z0∈∂D2, the fibers Wz grow from

a single point to Wz0 =Pn−1
C \Πz0. Also, recall that by approximation, F extends

holomorphically from Sz to Wz when z is close to ∂D1, and, by propagation, to
a neighborhood of Sz in W when z is no longer close to ∂D1. Then F extends to
the whole set W by the Hartogs continuity principle. For n>2 the same conclusion
also follows by the Hartogs extension theorem.

• The boundary values of F on π−1(∂D2)∩�W⊂∂W are constant on the fibers
Wz0 , z0∈∂D2. Indeed, F |Wz0

holomorphically extends to the whole projective space
Pn−1

C because the set Πz0 of codimension 2 is removable, hence it is constant. Now
since F is constant on the fibers of�W on an open set of the boundary of W , then F
is constant on the fibers of W everywhere in W . Then f̃(z):=F (z, [ζ]), (z, [ζ])∈W ,
is a well-defined holomorphic extension of the original function f to D1\�D2. Then
f further extends to D2 by the Hartogs theorem. The proof is now complete. �

Remark 3.6. Take a line segment I connecting a pair of points z1 and z2 of
∂D1 and ∂D2, resp., fix a neighborhood U⊃I in Cn, denote by I the family of
discs tangent to ∂D2 and passing through U∩D1 and denote by J the family of the
discs tangent to ∂D2 which have some common boundary point with those of I. Set
V1 :=

⋃
φ∈I φ(∂∆) and V2 :=

⋃
φ∈J φ(∂∆). Assume that f is defined and continuous

in V2 and extends holomorphically to the discs which belong to J ; then f extends
holomorphically to a one-sided neighborhood of V1 in D1. In fact, by moving z from
z1 to z2 along I we will have the same conclusions for the fibers Sz and Wz as in
the proof of Theorem 3.2. In particular we will conclude that F is independent of
[ζ] in a neighborhood of z1. But then F is independent of [ζ] wherever it is defined,
in particular in a one-sided neighborhood of V1.
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