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Absence of the absolutely continuous spectrum
of a first-order non-selfadjoint Dirac-like system

for slowly decaying perturbations

Marco Marletta and Roman Romanov

Abstract. We prove that the absolutely continuous subspace of the completely non-self-

adjoint part of a first-order dissipative Dirac-like system is trivial when the imaginary part of the

potential is non-integrable.

Introduction

In this article we analyze the structure of the essential spectrum of dissipative
operator realizations of the ordinary differential expression

lQ := J
d

dx
+Q(x), x∈ [0,∞),(1)

where

J =
(

0 i

i 0

)
and Q(x)=

(
q1(x) 0

0 q2(x)

)
,(2)

in which Q(x) is a bounded function such that Im q1(x) and Im q2(x) are non-
negative a.e. We shall prove the following result.

Theorem 1. Let L be the operator in L2(R+,C2) given by the expression
(1) and with domain determined by a selfadjoint boundary condition at 0. If the
absolutely continuous subspace of L is non-trivial, then Im q1 and Im q2 both lie in
L1(R+).
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This assertion is an analogue of the following theorem in the paper of Romanov
[12] for Schrödinger operators on the half-line: if a bounded potential q on the
half-line x≥0 such that Im q(x)≥0, Im q(x)!0 as x!∞, satisfies Im q /∈L1, then
the dissipative operator l, lu=−u′′+qu, corresponding to a selfadjoint boundary
condition at zero has trivial absolutely continuous subspace.

Together with the latter theorem, the result of the present paper suggests
that the existence of an absolutely continuous spectrum for dissipative ordinary
differential operators is equivalent to having a scattering theory. Let us mention here
that the abstract local nuclear scattering theory developed in [6], [7] shows that for
any pair of operators B and B0 such that B0 is selfadjoint and B−B0 is of (relative)
trace class, the absolutely continuous parts of B and B0 are quasi-similar by means
of wave operators and their spectra coincide. In the situation under consideration
this implies that the absolutely continuous spectrum of L coincides with that of the
selfadjoint Dirac operator ReL when ImQ∈L1. This is to be compared with the
situation of the selfadjoint theory, where the existence of modified wave operators
for the Schrödinger operator in dimension 1 has only been established for specific
classes of slowly decaying potentials q (see, e.g. [1]), while the absolutely continuous
spectrum is known to coincide with the positive real line for any real q∈L2 [2].

The strategy of the proof of the main result follows that in the paper [12]
with one notable exception. We start with an abstract re-formulation of triviality
of the absolutely continuous subspace of a dissipative operator, given in Proposi-
tion 1.3, and then obtain in Corollary 3.2 a convenient sufficient condition in the
situation under consideration which is expressed in terms of the asymptotics of
solutions of the equation lQ∗y=ky with real k. Specifically, it says that the ab-
solutely continuous subspace of the completely non-selfadjoint part of L is trivial
if

∫ ∞(Im q1|y1|2+Im q2|y2|2) dx is infinite for a.e. real k. Here y=(y1, y2)T is the
solution of the Cauchy problem for lQ∗y=ky with the initial data y(0)=(1, 0)T (or
any other k-independent non-zero initial data satisfying a selfadjoint boundary con-
dition). In the case of a Schrödinger operator [12], the next step in the argument
used spectral averaging [4] for the selfadjoint problem with the potential Re q. The
spectral averaging method, as developed by Last–Simon, seems to be only applic-
able to operators semi-bounded below, while a selfadjoint operator corresponding to
a differential expression of the form (1) is never semi-bounded. To circumvent this
difficulty, we first establish the result for potentials with “spread” ImQ (see Propo-
sition 3.4 and the comments after it), and then show that an arbitrary potential
can be represented as a sum of a potential with spread ImQ and an L1-potential.
An appropriate variant of the trace class method, which we develop in the abstract
part of the paper in Lemma 1.4, allows us to handle the L1-perturbation. This
argument is similar to that used in [12] for proving a discrete variant of the main
result.
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Throughout the paper S1 stands for the trace class of operators. Given an
operator B we write B′ for the completely non-selfadjoint part of B. For any vector
v let vT stand for its transpose.

1. Preliminaries: Absolutely continuous subspace

Let H be a Hilbert space and L be a maximal dissipative operator in H of
the form L=A+iV where A=A∗ and V ≥0 is bounded. We shall assume that(1)
σess(L)⊂R. Define H0 to be the maximal reducing subspace of L on which it induces
a selfadjoint operator, which will be denoted by L0. Let L′ be the completely
non-selfadjoint part of L, L′=L|H′ , H ′=H�H0 [6]. Define the Hardy classes of
vector functions H2

± to be the collections of H-valued analytic functions f on C±=
{z∈C | ±Im z>0}, which satisfy supε>0

∫
R ‖f(k±iε)‖2 dk<∞, respectively.

Definition 1.1. The absolutely continuous (a.c.) subspace, Hac(L′), of the com-
pletely non-selfadjoint operator L′ is defined as follows [6], [13]

Hac(L′)= clos{u∈H ′ : (L−z)−1u is analytic in C+ and V 1/2(L−z)−1u∈H2
+}.

(3)

By the a.c. subspace of the operator L we mean the subspace

Hac(L)= Hac(L′)⊕Hac(L0),

where Hac(L0) is the a.c. subspace of the selfadjoint operator L0 defined in the
standard way.

The a.c. subspace of L is known [6] to be regular invariant, that is, (L−z)−1Hac

=Hac for all z∈ρ(L).
Various motivations of this definition and its relation to scattering theory are

given in [6], [7], [8], [9] and [13]. We only mention here(2) the following “weak”
characterization of the subspace Hac(L).

Theorem 1.2. ([11])

Hac(L)= clos
{

u∈H :
(L−z)−1u is analytic in C+,

〈(L−z)−1u, v〉|C±∈H2
± for all v∈H

}
.

(1) By σess(L) we mean the union of the set of all non-isolated points of σ(L) and the set of
all isolated points of σ(L) of infinite multiplicity.

(2) Theorem 1.2 is not used in this paper.
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This theorem shows, in particular, that (3) can be considered as a generalization
of the definition of the a.c. subspace in the selfadjoint theory.

The triviality of the subspace Hac(L′) in the example studied in this paper will
be established on the basis of the following criterion which is implicit in [9].

Proposition 1.3. Hac(L′)={0} if and only if for a.e. k∈R we have (z=k+iε)

D(z)≡√
ε(L∗−z)−1

√
V

s−! 0,(4)

as ε&0.

Different elementary proofs of the “if” part of the criterion can be found in
[12] and [11]. The “only if” part is not used in this paper.

Remark. ([9]) The function D(z) satisfies ‖D(z)‖≤ 1
2 for all z∈C+.

The proof of this fact is by direct calculation. A similar calculation is contained
in (6) in Lemma 1.4 below.

As is well known, if two selfadjoint operators L1,2 satisfy L1−L2∈S1, then
their a.c. spectra coincide. In the non-selfadjoint case, the question whether
L1−L2∈S1 for a pair of dissipative operators L1 and L2 implies σ(L1|Hac(L1))=
σ(L2|Hac(L2)) appears to be open if Im L1,2 are not of S1 separately. We shall need
a result of this type in a special situation.

Lemma 1.4. Let L and L̃ be two dissipative operators such that

(L−z)−1−(L̃−z)−1 ∈S1, z ∈ ρ(L)∩ρ(L̃).(5)

Write L̃−L=iΓ, and assume that Γ≥0 and that there exists a bounded operator
Π≥0 such that Γ=Ṽ Π, Ṽ =Im L̃. If Hac(L̃′)={0}, then Hac(L′)={0}.

This lemma is a variant of Lemma 2.3 from [12], where Γ was assumed to be
trace class.

Proof. We shall actually prove that if D̃(k+iε)≡√
ε(L̃∗−z)−1

√
Ṽ

s−!0 as ε!0
for a.e. k∈R, then D(k+iε)

s−!0 for a.e. k∈R as well. Taking into account the
assumed factorization of Γ we find that

√
ε(L̃∗−z)−1

√
Γ

s−! 0

for a.e. k∈R. Let us show that
√

ε(L∗−z)−1
√

Γ
s−!0 for a.e. k. We have,

√
ε(L∗−z)−1

√
ΓG(z)=

√
ε(L̃∗−z)−1

√
Γ,
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where

G(z)= I+i
√

Γ(L̃∗−z)−1
√

Γ.

Let V =ImL. Then the following calculation shows that G(z) is a contraction for
all z∈C+,

I−G∗(z)G(z)= I−(
I−i

√
Γ(L̃−z̄)−1

√
Γ
)(

I+i
√

Γ(L̃∗−z)−1
√

Γ
)

= i
√

Γ(L̃−z̄)−1((L̃∗−z)−(L̃−z̄)+iΓ)(L̃∗−z)−1
√

Γ

=
√

Γ(L̃−z̄)−1(2ε+2V +Γ)(L̃∗−z)−1
√

Γ.(6)

Since the right-hand side is obviously non-negative, we conclude that G(z) is a con-
tractive analytic operator-function in C+. We shall now show that this function
admits a scalar multiple, that is, there exists a scalar contractive analytic func-
tion, g �≡0, such that G(z)Ω(z)=g(z)I for a certain bounded analytic function Ω.
Let {XN}∞N=1 be an arbitrary family of finite-dimensional subspaces in H such
that XN−1⊂XN and

∨
N XN =H . We shall use the subscript N with operators to

denote their truncation to XN , BN :=PNB|XN , where PN is the orthogonal pro-
jection on XN . Define gN(z)=detGN (z). Our aim is to show that there exists
a subsequence of N such that gN (z) converges when N!∞ along the subsequence
for all z∈C+ and g(z)=limgN (z) is the scalar multiple. Notice that the operator
G(z) is boundedly invertible for Im z large enough, for G(z)!I in the operator
norm when Im z!+∞ since L̃ has a bounded imaginary part. Fix an arbitrary
z0∈C+ such that ‖I−G(z0)‖≤ 1

2 , so that T =G(z0) is boundedly invertible. Obvi-
ously, |detTN |≤1 since T is a contraction, and TN is boundedly invertible for all N .
Fix arbitrarily a subsequence of N such that detTN converges. To keep notation
to a minimum, we do not introduce the corresponding subscript and will always
assume that N!∞ along this subsequence. Then, g(z)=limgN (z) is the scalar
multiple. Indeed, the limit exists for all z∈C+: we have

gN = detGN = detTN ·det (IN +T−1
N (GN −TN));

then,

G(z)−T = i
√

Γ((L̃∗−z)−1−(L̃∗−z0)−1)
√

Γ

= i(z−z0)
√

Γ(L̃∗−z)−1 ·(L̃∗−z0)−1
√

Γ∈S1

since
√

Γ(L̃∗−z)−1 is Hilbert–Schmidt, which is easily seen to be equivalent to the
assumption (5); hence, GN −TN!G−T in the S1-norm, and therefore

det (IN +T−1
N (GN −TN))! det (I+T−1(G−T )).



Absence of the absolutely continuous spectrum of a first-order Dirac-like system 137

Since detTN converges by construction, we obtain that the limit g(z) exists. Obvi-
ously, the limit is a bounded function of z in C+ because |gN (z)|≤1 for all N . An
application of the Montel theorem shows that g(z) is an analytic function.

Let us check that g �≡0. If det (I+T−1(G(z)−T ))=0, then kerG(z) is non-
trivial which is only possible for a discrete set of values of z∈C+ since G(z) is
a compact operator. It remains to show that lim detTN �=0. Indeed, consider
|detTN |2=det (T ∗

NTN ). It follows from (6) that I−T ∗T∈S1, and a calculation
similar to (6) gives

IN −T ∗
NTN = PN

√
Γ(L̃−z̄0)−1

(
2ε+2Ṽ −

√
ΓPN

√
Γ
)
(L̃∗−z0)−1

√
Γ|XN .

This shows that the right-hand side (extended to X⊥
N by zero) converges in the

trace norm to I−T ∗T . Therefore, lim det (T ∗
NTN )=detT ∗T �=0 since kerT is trivial

by the choice of z0.
Now, Ω(z)=g(z)G−1(z) satisfies ‖Ω(z)‖≤1 since |gN (z)|‖G−1

N (z)‖≤1 for each
N and all z such that gN(z) �=0, and thus g(z) is a scalar multiple.

It follows from the existence of a scalar multiple and the Fatou theorem that
the strong boundary values, G−1(k)=s−limε&0 G−1(k+iε), of the function G−1

exist for a.e. k∈R. We infer that for a.e. k∈R,

√
ε(L∗−z)−1

√
Γ =

√
ε(L̃∗−z)−1

√
ΓG−1(z)

s−! 0, as ε& 0.

One can now verify the condition (4) for the operator L. We have,

√
ε(L∗−z)−1

√
V =

√
ε(L̃∗−z)−1

√
V −i

√
ε(L∗−z)−1

√
ΓQ(z),(7)

where Q(z)=
√

Γ(L̃∗−z)−1
√

V is a bounded analytic function in C+. The latter
follows from a calculation similar to (6) giving that I−G(z)G∗(z) equals the right-
hand side of (6) with (L̃−z̄)−1 and (L̃∗−z)−1 swapped, and therefore Q(z)Q∗(z)≤
I−G(z)G∗(z)≤I. The first term on the right-hand side of (7) converges strongly
to zero by the assumption, and an application of the Fatou theorem to the function
Q(z) shows that the second term converges strongly to zero as well. �

In the next section we establish triviality of the absolutely continuous sub-
space for an operator L by verifying the condition (4) for an operator L̃ obeying the
assumptions of this lemma. Since the proof of the lemma consists of demonstrating
that the condition (4) for the operator L is satisfied if it is satisfied for the opera-
tor L̃, the final result then does not depend on the “only if” part of the criterion of
Proposition 1.3.
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2. The operator corresponding to lQ

Let Θ( · , z) and Φ( · , z) be the solutions of the initial value problems

lQ∗Θ = zΘ, Θ(0, z)=
(

1
0

)
,

lQ∗Φ = zΦ, Φ(0, z)=
(

0
1

)
.

We also let for h∈C,

Ψh(x, z)= Θ(x, z)+hΦ(x, z).

It is standard results that the functions Θ(x, z) and Φ(x, z) are entire functions
of z for all x and are continuous in z uniformly in x∈I for any compact interval I.

Lemma 2.1. For each z in the upper half-plane C+, there exists a unique
(up to scalar multiples) solution of the differential equation lQ∗Ψ=zΨ which lies in
L2(R+,C2), and which can be chosen to be of the form

Ψ(x, z)= Θ(x, z)+m(z)Φ(x, z).(8)

Proof. Multiplying the equation lQ∗y=zy by J we obtain an equation of the
form y′=Ay in which A has zero diagonal. The fundamental matrix of this equation
therefore has a constant determinant; it follows that any two linearly independent
solutions, say

u =
(

u1

u2

)
and v =

(
v1

v2

)

satisfy
W [u, v]≡ u1(x)v2(x)−u2(x)v1(x)= const. �= 0.

Integrating this identity in x and applying the Schwarz inequality shows that at most
one of the solutions lies in L2(R+,C2). This is a version of a standard argument:
see, e.g., Levitan and Sargsjan [5, Chapter 13, §7].

Let Lmin be the closure of the operator defined by the differential expres-
sion lQ on C∞

0 (R+,C2) in the space L2(R+,C2). Integration by parts shows that
Lmin is a dissipative operator. Since Lmin is obviously not maximal dissipative,
dim ker(L∗

min−zI) is either 1 or 2 for all z∈C+. By the argument of the previous
paragraph, dimension 2 is impossible. Thus there exists exactly one solution Ψ of
the equation lQ∗y=zy in L2.

To show that Ψ can be chosen of the form (8) it remains to note that Φ( · , z) �∈
L2(R+,C2) for all z∈C+: if it were, for some z, then −z would be an eigenvalue
in the lower half-plane of a dissipative operator corresponding to the differential
expression −lQ∗ . �
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Definition 2.2. Let h∈iR be fixed. By L we denote the operator in the Hilbert
space H=L2(R+,C2) given by the differential expression lQ with domain

D(L)=
{

y =
(

y1

y2

)
∈H

∣∣∣∣ y ∈ACloc(R+), lQy∈H and y2(0)= hy1(0)
}

.

Using Lemma 2.1 it is easy to see that L is a maximal dissipative operator,
and so σ(L)⊂C+. As the following example shows, this operator is not completely
non-selfadjoint in general.

Example. We construct a potential Q with Im Q �=0, such that L has a real
eigenvalue. The boundary condition will be y1(0)=0, corresponding to h=∞.

Let X>0 be fixed and let y be given on [0, X ] by

y(x)=
(

0
1

)
, 0≤ x≤X.

Fix a real non-zero k and choose q2=k on [0, X ]; let q1 satisfy Im q1 �≡0 and be
otherwise arbitrary on [0, X ]. Clearly y satisfies the differential equation lQy=ky

on [0, X ] together with the boundary condition.
For x>X , let y2(x)=1/cosh(x−X) and q1(x)≡0. Define y1(x) for x>X by

y1(x)=
iy′

2(x)
k

=− i sinh(x−X)
k cosh2(x−X)

.

Obviously, y1 and y2 are continuous at x=X and decay exponentially for large x;
therefore y∈D(L). The equation iy′

2=(k−q1)y1 is satisfied for all x by construction.
If we now choose q2 for x>X so that the equation iy′

1=(k−q2)y2 holds, then y will
be an eigenfunction of L. We thus let

q2 = k+k−1 y′′
2

y2
.

The function q2 is asymptotically a real constant at infinity and so Q satisfies all
our hypotheses.

The following assertion shows that the selfadjoint part of L is irrelevant in
proving Theorem 1.

Proposition 2.3. If Im Q �≡0 then the a.c. subspace of the operator L0, the
selfadjoint part of L, is trivial.
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Proof. Suppose that Hac(L0) �={0}. By the abstract theory [6], H0 is a re-
ducing subspace of Re L, and L0 coincides with the restriction of Re L to it. Since
Re L has simple spectrum, it follows that there exists a compact set Ω, |Ω|>0,
such that {0}�=RanPΩ⊂H0, where PΩ is the spectral projection of the a.c. part
of Re L for the set Ω. Let us denote with the superscript r the m-function and
the Cauchy problem solution Ψh corresponding to the potential ReQ. Without
loss of generality, one can assume that mr(k) is bounded on Ω. It follows from
the spectral theorem for the operator L0 (see, e.g., [5, Chapter 11]) that any vec-
tor of the form

∫
Ω Ψr

h(x, k)g(k)Re mr(k) dk with a bounded g is in RanPΩ. Ar-
guing in the contrapositive form, assume that Im q1 �≡0. Since H0⊥RanV , then
there exists an X∈R such that for any f∈D(L0) the first component f1(X)=0, in
particular,

∫
Ω Ψr

h,1(X, k)g(k)Re mr(k) dk=0 for any bounded g. Now, choosing g to
be a properly normalized indicator (characteristic) function of the interval (k0−ε,

k0+ε), sending ε to 0 and taking into account the analyticity of Ψ, we infer that
Ψr

h,1(X, k0)=0 for any Lebesgue point of the set Ω∩{k:Remr(k) �=0}. Since the set
of such points has positive measure, this means that a selfadjoint operator generated
by the differential expression lRe Q on the interval (0, X) by the same boundary con-
dition at zero and the condition y1(X)=0 has uncountably many eigenvalues – a con-
tradiction implying that Im q1≡0. In a similar way, we show that Im q2 vanishes. �

We shall require an expression for the action of the resolvent (L∗−z)−1 on com-
pactly supported vectors. Notice that m(z) �=h for any z∈C+, for otherwise Ψ(x, z)
would be an eigenfunction of L∗, and z would be an eigenvalue. Let E=diag(1,−1).
Then a straightforward calculation taking into account that det (Ψh, Ψ)=m(z)−h

shows that for any compactly supported u∈H

(L∗−z)−1u =

i

m(z)−h

(
Ψh(x, z)

∫ ∞

x

ΨT (s, z)Eu(s) ds+Ψ(x, z)
∫ x

0

ΨT
h (s, z)Eu(s) ds

)
.(9)

Lemma 2.4. The function m(z) defined in Lemma 2.1 is analytic in C+. For
all z∈C+ it satisfies Re m(z)<0. Moreover, for all z with ε=Im z>0,

−Re m(z)= ε

∫ ∞

0

(|Ψ1(x, z)|2+|Ψ2(x, z)|2) dx

+
∫ ∞

0

(Im q1(x)|Ψ1(x, z)|2+Im q2(x)|Ψ2(x, z)|2) dx,(10)

and therefore

lim sup
ε&0

ε‖Ψ( · , k+iε)‖2
H ≤−Rem(k)

whenever the limit m(k)=limε&0 m(k+iε) exists.
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Proof. It follows from (9) that for any compactly supported u, v∈H ,

F (z)≡〈(L∗−z)−1u, v〉=
Am(z)+B

m(z)−h
,

where A and B are complex constants depending on u and v. Then, B �=−hA for
a suitable choice of u and v, since otherwise the fact that F (z)!0 when Im z!∞
would imply that F (z)≡0 for any compactly supported u, v∈H , and therefore (L∗−
z)−1=0. We now infer that m(z) is analytic in C+ from the analyticity of F (z).
Alternatively, the analyticity of m can be proved through the nesting circles analysis
in the same way as in the case of a dissipative second order Schrödinger operator [14].

We shall now establish (10). The differential equations satisfied by Ψ1(x, k+iε)
and Ψ2(x, k+iε) are

iΨ′
2+(Re q1(x)−iIm q1(x)−k−iε)Ψ1 = 0,

iΨ′
1+(Re q2(x)−iIm q2(x)−k−iε)Ψ2 = 0.

Multiply the first equation by Ψ1 and the complex conjugate of the second equation
by Ψ2, subtract and obtain

−i(Im q1+ε)|Ψ1|2−i(Im q2+ε)|Ψ2|2+(Re q1−k)|Ψ1|2
−(Re q2−k)|Ψ2|2+i(Ψ1Ψ2)′ = 0.

Now on taking imaginary parts and integrating over [0, X ],

Re (Ψ1(X)Ψ2(X))=
∫ X

0

((Im q1+ε)|Ψ1|2+(Im q2+ε)|Ψ2|2) dx+Re m(k+iε).

This shows that the left-hand side has a limit, finite or infinite, when X!∞. This
limit must be zero, because Ψ∈L2, and therefore, Ψ1Ψ2∈L1. The result follows. �

In order to use Proposition 1.3 we shall need an asymptotic of (L∗−z)−1u

when ε&0 for compactly supported u, given by the following lemma.

Lemma 2.5. For any u∈L2(R+,C2) having compact support and z=k+iε,
ε>0,

(L∗−z)−1u= βz[u]Ψ(x, z)+r(x, z),
(11)

βz[u]=
i

m(z)−h

∫ ∞

0

ΨT
h (s, z)Eu(s) ds,

where r(x, z) satisfies lim supε&0 ‖r( · , z)‖H <∞ for all k such that the finite bound-
ary value m(k)=limε&0 m(k+iε) exists and m(k) �=h.
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Proof. Let X<∞ be such that u is supported on [0, X ], and consider the
expression (9) for (L∗−z)−1u. Notice that the first term in the brackets van-
ishes for x>X , and therefore r=(L∗−z)−1u−βzΨ is supported on [0, X ] for any
z∈C+. Then, the standard perturbation theory for initial value problems implies
that Ψh(x, z) and Ψ(x, z) converge to Ψh(x, k) and Ψ(x, k) when ε&0 uniformly in
x<X for all k such that the finite boundary value m(k) exists. Combining these
facts, we obtain that r(x, z) converges when ε&0 uniformly in x<X , provided that
the common factor in the right-hand side of (9) converges to a finite limit. The
result follows. �

3. Proof of the main result

Define the non-negative functions r1 and r2 by

r1(x)2 := Im q1(x) and r2(x)2 := Im q2(x).

Then the operator (Im L)1/2 is given by multiplication by the matrix

R(x)=
(

r1(x) 0
0 r2(x)

)
.(12)

Lemma 3.1. Let k∈R be such that m(k) exists finitely and is not equal to h.
If RΨh( · , k) /∈L2(R+,C2), then D(k+iε)

s−!0 as ε&0.

Proof. Observe that the linear set

D=
{

u∈L2(R+,C2)
∣∣∣∣ u is compactly supported and∫ ∞

0
ΨT

h (s, k)ER(s)u(s) ds=0

}

is dense in L2(R+,C2) if R( · )Ψh( · , k) /∈L2(R+,C2). Since the function D(z) is
bounded in C+ by the remark after Proposition 1.3, it suffices to prove

lim
ε!0

D(k+iε)u = 0(13)

for u∈D. From Lemma 2.5, we have for any u∈D, with z=k+iε,

D(k+iε)u = ε1/2βz[Ru]Ψ( · , z)+o(1), as ε& 0,

where the o-symbol refers to the L2-norm. Now, Lemma 2.4 shows that
ε1/2‖Ψ(k+iε)‖H is bounded above when ε&0. Since m(k) �=h, one can pass to
the limit ε&0 in the expression (11) for βz to find that βk+iε converges to a multi-
ple of

∫ ∞
0

ΨT
h (s, k)ER(s)u(s) ds which is zero because u∈D. Combining these, we

obtain (13). �
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Note that the complement of the set of all k∈R for which m(k) exists and
is not equal to h is a set of (Lebesgue) measure 0, by the uniqueness theorem for
Nevanlinna functions. Taking into account the criterion of Proposition 1.3, we arrive
at the following result.

Corollary 3.2. If RΨh( · , k) /∈L2(R+,C2) for Lebesgue almost all k∈R,
then(3) Hac(L′)={0}.

Thus, our main result will be established if we prove that

R( · )Ψh( · , k) /∈L2(R+,C2) for a.a. k ∈R

if Im Q /∈L1. Before doing this, we would like to indicate a simple argument showing
that Hac is trivial when Im Q /∈L1 for a class of potentials Q. Notice first that
if m(k) exists finitely, then the solution Ψ(x, k)=limε&0 Ψ(x, k+iε) to lQ∗Ψ=kΨ
exists. As is shown in the asymptotic theory of linear differential systems [3], if
the potential Q decays at infinity in a sufficiently regular way the asymptotics of
the solutions of the equation lQ∗Ψ=kΨ can be calculated explicitly. In particular,
an application of the general theory in the situation under consideration gives the
following.

Proposition 3.3. ([14, Theorem 1.8.3]) Let Re Q=0, and suppose that Q!0,
Q′∈L1 and Q∈L2. Then for any k∈R there exist two solutions, Ψ±, of the equa-
tion lQ∗Ψ=kΨ with the asymptotics of the form (the Wentzel–Kramers–Brillouin
(WKB) asymptotic)

Ψ± ∼ exp
[
±i

(
kx+

1
2

∫ x

trQ(ξ) dξ

)](
1
∓1

)
, as x!∞.(14)

Assume that the asymptotics (14) holds for a.e. k∈R, and that ImQ/∈L1.
Then, obviously, the solution Ψ− is growing, |Ψ−|∼exp

(
1
2

∫ x tr(Im Q) dξ
)
, while

Ψ+ decays. Notice that if the asymptotics holds for a given k, and a solution v to
lQ∗Ψ=kΨ satisfies Rv∈L2, then v must be a multiple of Ψ+, for

∫ ∞
‖RΨ−‖2 dx∼

∫ ∞
tr(Im Q(x)) exp

(
C

∫ x

tr(Im Q(ξ)) dξ

)
dx

= exp
(

C

∫ ∞
tr(Im Q(x)) dx

)
=∞.

It follows that if (14) holds for a k∈R such that m(k) exists and RΨh( · , k)∈L2, then
the solutions Ψh( · , k) and Ψ( · , k) must coincide. This is, however, only possible on

(3) Recall that L′ denotes the completely non-selfadjoint part of the operator L.
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the set of k such that m(k)=h, which has zero measure. Therefore RΨh( · , k) /∈L2

for a.e. k. Applying Corollary 3.2, we thus obtain the main result for potentials
Q such that the asymptotics (14) holds for a.e. k∈R. Notice that although the
conditions of Proposition 3.3 can be sharpened, the WKB asymptotics cannot be
justified for generic potentials, and the argument above has nothing to do with the
actual proof of Theorem 1. Moreover, even in the case of Schrödinger operators it
is well known [10] that the WKB asymptotic may fail for a.e. positive value of the
spectral parameter.

We shall establish Theorem 1 by successively reducing it to a partial case which
we now proceed to prove.

Proposition 3.4. If r1r2 /∈L1(R+) then RΨh( · , k) /∈L2 for a.e. k∈R.

Proof. We prove the result in the contrapositive form. Assume that RΨh( · , k)∈
L2 for a certain real k such that m(k) �=h. Multiply the Wronskian identity
det (Ψh(x, k), Ψ(x, k))=m(k)−h �=0 by r1r2 and integrate in x to obtain

const.
∫ N

r1(x)r2(x) dx≤
∫ N

|r1Ψh,1| |r2Ψ2| dx+
∫ N

|r2Ψh,2| |r1Ψ1| dx.

Now r1Ψh,1∈L2(R+) and r2Ψh,2∈L2(R+) by the choice of k, while r1Ψ1∈L2(R+)
and r2Ψ2∈L2(R+) by Lemma 2.4. By the Schwarz inequality it follows that r1r2∈
L1(R+). �

In particular, this proposition shows that if r1r2 /∈L1(R+), then Hac(L′)={0}
in view of Corollary 3.2.

We would now like to reduce the problem under consideration to a problem
where only one of the entries of ImQ is non-zero. We start with a Gronwall-type
lemma comparing the solutions Ψ and Ψh corresponding to different ImQ at large x.

Lemma 3.5. Let k∈R be such that m(k) exists finitely, and m(k) �=h. Let the
function

Q̂(x)=
(

q̂1(x) 0
0 q̂2(x)

)

satisfy 0≤Im Q̂(x)≤ImQ(x) and Re Q̂(x)=ReQ(x) for a.e. x. If R( · )Ψh( · , k)∈
L2(R+,C2), then the equation lQ̂∗y=ky has solutions Ψ̂(1) and Ψ̂(2) such that

Ψ̂(1)(x, k) = Ψh(x, k)+o(|Ψh(x, k)|+|Ψ(x, k)|), as x!∞,

Ψ̂(2)(x, k) = Ψ(x, k)+o(|Ψh(x, k)|+|Ψ(x, k)|), as x!∞.
(15)
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Proof. Let the function B(x)≥0 be defined by B2=Im(Q−Q̂), and Y denote
the 2×2-matrix (Ψh, Ψ). Write (Ψ̂(1), Ψ̂(2))=YZ. Elementary manipulations show
that the matrix Z must satisfy the differential equation

JYZ ′ =−iB2YZ.(16)

As the argument from the beginning of the proof of Lemma 2.1 shows(4),
the determinant of the matrix Y is constant in x, det Y =m(k)−h �=0. Now, let

J0=
( 0 −1

1 0

)
. A straightforward calculation shows that

Y T J0Y = (detY )J0.

Thus, (JY )−1=J−1
0 Y T J0J

−1/detY and hence from (16), together with the fact
that J0J

−1=iE=i diag(1,−1),

Z ′ =− i

detY
J−1

0 Y T J0J
−1B2YZ=− 1

detY
J0(BY )T E(BY )Z.(17)

It follows from Lemma 2.4 that

lim sup
ε&0

∫ ∞

0

‖R(x)Ψ(x, z)‖2 dx

is finite when m(k) exists finitely. Hence, by the Fatou lemma RΨ( · , k)∈L2(R+,C2).
Together with the hypothesis of the current lemma this implies that RY ∈L2, and,
moreover, BY ∈L2, since B(x)≤R(x) a.e. Thus, (BY )T E(BY ) is summable, and
by the Levinson theorem (see, e.g., [3, Theorem 1.3]) it follows that (17) possesses
a solution Z satisfying

Z(x)= I+o(1), as x!∞,(18)

and (15) is proved. �

Let R̂=(Im Q̂)1/2. The asymptotic (15) shows, in particular, that in the situ-
ation of the lemma, R̂Ψ̂∈L2 for any solution Ψ̂ to lQ̂∗y=ky. Applying Corollary 3.2,
we now obtain the following assertion.

Corollary 3.6. Let Lj, j=1, 2, denote the operators defined by the same
boundary conditions as L but given by

Ljy = lQj y,

(4) This is the first time that we in an essential way use the fact that we deal with diagonal
Im Q.
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where

Q1(x)=
(

q1(x) 0
0 Re q2(x)

)
and Q2(x)=

(
Re q1(x) 0

0 q2(x)

)
.

Let Rj=(Im Qj)1/2 and Ψh,j(x, k) be the solutions to lQ∗
j
y=ky with the Cauchy

data y(0)=(1, h)T . If at least one of the operators Lj satisfies the condition

RjΨh,j( · , k) /∈L2 for a.e. k ∈R

(and so the corresponding subspace Hac(L′
j) is trivial), then Hac(L′) is trivial.

Proof of Theorem 1. In view of Corollary 3.6 it is sufficient to show that
RΨh( · , k) /∈L2 for a.e. k∈R for the operator L corresponding to a potential Q such
that Im q1≡0 and Im q2 /∈L1. Since Im q2 /∈L1 we have r2 /∈L2 and so by the uniform
boundedness principle there exists a function d∈L2 such that r2d /∈L1. Obviously
we can choose d to be non-negative. Let Ld denote the operator with the potential

Qd =
(

Re q1+id2 0
0 q2(x)

)
,

and let Rd=(ImQd)1/2, and Ψd
h(x, k) be the solution of the differential equation

lQ∗
d
Ψh=zΨh with the initial condition

Ψd
h(0, z)=

(
1
h

)
.

Since r2d /∈L1, we have RdΨd
h( · , k) /∈L2 for a.e. k∈R by Proposition 3.4, and there-

fore Hac(L′
d)={0}. We now wish to apply Lemma 1.4 with L̃=Ld so that Γ is given

by multiplication by diag(d2, 0). We only have to check that (L−z)−1−(Ld−z)−1∈
S1, since all the other assumptions of the lemma are satisfied trivially. Let A0 be
the operator corresponding to the potential Q≡0. The fact that d∈L2 and the
assumption that Re Q is bounded imply that, in the notation of Lemma 1.4, the op-
erator

√
Γ(A0−z)−1 is Hilbert–Schmidt for any non-real z since the integral matrix

kernel K(x, s) of this operator satisfies

‖K(x, s)‖Mat2(C) ≤Cd(x) exp(−ε|x−s|), ε = |Im z|> 0,

for all x and s, where C is a constant depending on z only. Applying the resolvent
identity repeatedly, we now have (for any non-real z∈ρ(Ld)∩ρ(L))

(L−z)−1−(Ld−z)−1 = Ξ1(z)(A0−z)−1
√

Γ·
√

Γ(A0−z)−1Ξ2(z),

where Ξ1,2(z) are bounded operators. This formula shows that its left-hand side is
of the trace class. The result follows. �
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Apparently, Theorem 1 cannot be obtained in this way without a condition on
the behavior of Re Q at infinity, which guarantees that (ReL−z)−1−(A0−z)−1 is
a bounded operator and makes it possible to apply the resolvent identity to show
that the difference of the resolvents of L and Ld is trace class.

Concluding remarks

Notice that the general matrix differential operator L corresponding to the
differential expression

lV := J
d

dx
+V (x)

with the same boundary conditions as above and arbitrary bounded matrix potential

V =
(

v11 v12
v21 v22

)

is unitarily equivalent to an operator with a diagonal potential Q if v12=v21 and
is real. The equivalence is given by a unitary gauge transformation U (see [5, pp.
48–49]) defined by

Uy = exp
(

i

∫ x

0

v12(t) dt

)
y.

Then U∗LU =LQ, where LQ is the operator corresponding to the differential ex-
pression lQ with

Q(x)=
(

v11(x) 0
0 v22(x)

)
.

Since the operator U transforms the absolutely continuous subspaces of LQ into
that of L, we have Hac(L)=UHac(LQ).
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