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1. Introduction

The Brunn–Minkowski theory (or the theory of mixed volumes) of convex bodies, devel-
oped by Minkowski, Aleksandrov, Fenchel, et al., centers around the study of geometric
functionals of convex bodies as well as the differentials of these functionals. The theory
depends heavily on analytic tools such as the cosine transform on the unit sphere (a
variant of the Fourier transform) and Monge–Ampère type equations. The fundamental
geometric functionals in the Brunn–Minkowski theory are the quermassintegrals (which
include volume and surface area as special cases). The differentials of volume, surface
area and the other quermassintegrals are geometric measures called the area measures
and (Federer’s) curvature measures. These geometric measures are fundamental concepts
in the Brunn–Minkowski theory.

A Minkowski problem is a characterization problem for a geometric measure gen-
erated by convex bodies: It asks for necessary and sufficient conditions in order that
a given measure arises as the measure generated by a convex body. The solution of a
Minkowski problem, in general, amounts to solving a degenerate fully non-linear partial
differential equation. The study of Minkowski problems has a long history and strong
influence on both the Brunn–Minkowski theory and fully non-linear partial differential
equations, see [78] and [75]. Among the important Minkowski problems in the classical
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Brunn–Minkowski theory are the classical Minkowski problem itself, the Aleksandrov
problem, the Christoffel problem, and the Minkowski–Christoffel problem.

There are two extensions of the Brunn–Minkowski theory: the dual Brunn–Minkowski
theory, which emerged in the mid-1970s, and the Lp Brunn–Minkowski theory actively
investigated since the 1990s but dating back to the 1950s. The important Lp surface
area measure and its associated Minkowski problem in the Lp Brunn–Minkowski the-
ory were introduced in [54]. The logarithmic Minkowski problem and the centro-affine
Minkowski problem are unsolved singular cases, see [14] and [20]. The book [75] of Schnei-
der presents a comprehensive account of the classical Brunn–Minkowski theory and its
recent developments, see Chapters 8 and 9 for Minkowski problems.

For the dual Brunn–Minkowski theory, the situation is quite different. While, over
the years, the “duals” of many concepts and problems of the classical Brunn–Minkowski
theory have been discovered and studied, the duals of Federer’s curvature measures and
their associated Minkowski problems within the dual Brunn–Minkowski theory have re-
mained elusive. Behind this lay our inability to calculate the differentials of the dual quer-
massintegrals. Since the revolutionary work of Aleksandrov in the 1930s, the non-linear
partial differential equations that arise within the classical Brunn–Minkowski theory and
within the Lp Brunn–Minkowski theory have done much to advance both theories. How-
ever, the intrinsic partial differential equations of the dual Brunn–Minkowski theory have
had to wait a full 40 years after the birth of the dual theory to emerge. It was the elusive
nature of the duals of Federer’s curvature measures that kept these partial differential
equations well hidden. As will be seen, the duals of Federer’s curvature measures contain
a number of surprises. Perhaps the biggest is that they connect known measures that
were never imagined to be related. All this will be unveiled in the current work.

In the following, we first recall the important geometric measures and their associ-
ated Minkowski problems in the classical Brunn–Minkowski theory and the Lp Brunn–
Minkowski theory. Then we explain how the missing geometric measures in the dual
Brunn–Minkowski theory can be naturally discovered and how their associated Minkowski
problems will be investigated.

As will be shown, the notion of dual curvature measures arises naturally from
the fundamental geometric functionals (the dual quermassintegrals) in the dual Brunn–
Minkowski theory. Their associated Minkowski problem will be called the dual Minkowski
problem. Amazingly, both the logarithmic Minkowski problem as well as the Aleksan-
drov problem turn out to be special cases of the new dual Minkowski problem. Existence
conditions for the solution of the dual Minkowski problem in the symmetric case will be
given.



geometric measures and minkowski problems 327

1.1. Geometric measures and their associated Minkowski problems in the
Brunn–Minkowski theory

The fundamental geometric functional for convex bodies in Euclidean n-space, Rn, is
volume (Lebesgue measure), denoted by V . The support function hK :Sn−1!R of a
compact convex set K⊂Rn, is defined, for v in the unit sphere Sn−1, by

hK(v) =max{v ·x :x∈K},

where v ·x is the inner product of v and x in Rn. For a continuous f :Sn−1!R, some
small δ=δK >0, and t∈(−δ, δ), define the t-perturbation of K by f by

[[[K, f]]]t = {x∈Rn :x·v 6hK(v)+tf(v) for all v ∈Sn−1}.

This convex body is called the Wulff shape of (K, f) with parameter t.

Surface area measure, area measures, and curvature measures. Aleksandrov
established the following variational formula,

d

dt
V ([[[K, f]]]t)

∣∣∣∣
t=0

=
∫

Sn−1
f(v) dS(K, v), (1.1)

where S(K, ·) is the Borel measure on Sn−1 known as the surface area measure of K.
This formula suggests that the surface area measure can be viewed as the differential of
the volume functional. The total measure S(K)=|S(K, ·)| of the surface area measure
is the ordinary surface area of K. Aleksandrov’s proof of (1.1) makes critical use of the
Minkowski mixed-volume inequality—an inequality that is an extension of the classical
isoperimetric inequality, see Schneider [75, Lemma 7.5.3]. In this paper, we shall present
the first proof of (1.1) that makes no use of mixed-volume inequalities.

The surface area measure of a convex body can be defined directly, for each Borel
set η⊂Sn−1, by

S(K, η) =Hn−1(ν−1
K (η)), (1.2)

where Hn−1 is the (n−1)-dimensional Hausdorff measure. Here the Gauss map

νK : ∂′K −!Sn−1

is defined on the subset ∂′K of those points of ∂K that have a unique outer unit normal
and is hence defined Hn−1-a.e. on ∂K (see (2.11) for a precise definition). If one views
the reciprocal Gauss curvature of a smooth convex body as a function of the outer unit
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normals of the body, then surface area measure is the extension to arbitrary convex
bodies (that are not necessarily smooth) of the reciprocal Gauss curvature. In fact, if
∂K is of class C2 and has everywhere positive curvature, then the surface area measure
has a positive density,

dS(K, v)
dv

=det(hij(v)+hK(v)δij), (1.3)

where (hij)i,j is the Hessian matrix of hK with respect to an orthonormal frame on Sn−1,
δij is the Kronecker delta, the determinant is precisely the reciprocal Gauss curvature of
∂K at the point of ∂K whose outer unit normal is v, and where the Radon–Nikodym
derivative is with respect to spherical Lebesgue measure.

We recall that the quermassintegrals are the principal geometric functionals in the
Brunn–Minkowski theory. These are the elementary mixed volumes which include vol-
ume, surface area, and mean width. In differential geometry, the quermassintegrals are
the integrals of intermediate mean curvatures of closed smooth convex hypersurfaces. In
integral geometry, the quermassintegrals are the means of the projection areas of convex
bodies:

Wn−i(K) =
ωn

ωi

∫
G(n,i)

voli(K|ξ) dξ, i =1, ..., n, (1.4)

where G(n, i) is the Grassmann manifold of i-dimensional subspaces in Rn, K|ξ is the
image of the orthogonal projection of K onto ξ, where voli is just Hi (or Lebesgue
measure in ξ), and ωi is the i-dimensional volume of the i-dimensional unit ball. The
integration here is with respect to the rotation-invariant probability measure on G(n, i).

Since V =W0 and with S(K, ·)=Sn−1(K, ·), it would be desirable if Aleksandrov’s
variational formula (1.1) could be extended to quermassintegrals; i.e., if it were the case
that

d

dt
Wn−j−1([[[K, f]]]t)

∣∣∣∣
t=0

=
∫

Sn−1
f(v) dSj(K, v), j =0, ..., n−1, (1.5)

for each continuous f :Sn−1!R. In the special case where K is sufficiently smooth and
has positive curvature everywhere, formula (1.5) can be easily verified. Unfortunately,
in general (1.5) is only known for the very special case where f is a support function
and where the derivative is a right derivative. The measures defined by (1.5) (for the
case where f is a support function and the derivative is a right derivative) are called the
area measures and were introduced by Fenchel–Jessen and Aleksandrov (see Schneider
[75, p. 214]). The proof of the variational formula (1.5), for the case where f is a support
function and the derivative is a right derivative, depends on the Steiner formula for mixed
volumes. But the special cases in which (1.5) are known to hold are of little use in the
study of the “Minkowski problems” for area measures. The lack of knowledge concerning
the left derivative for the quermassintegrals in (1.5) is one of the obstacles to tackling
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the partial differential equations associated with the area measures. That (1.5) does not
hold for arbitrary convex bodies was already known by the middle of the last century;
see e.g [42] for recent work.

In addition to the area measures of Aleksandrov and Fenchel–Jessen, there exists
another set of measures C0(K, ·), ..., Cn−1(K, ·) called curvature measures, which were
introduced by Federer [23] for sets of positive reach, and are also closely related to the
quermassintegrals. A direct treatment of curvature measures for convex bodies was given
by Schneider [73], [74]; see also [75, p. 214]. If K is a convex body in Rn that contains the
origin in its interior, then each ray emanating from the origin intersects a unique point
on ∂K and a unique point on the unit sphere Sn−1. This fact induces a bi-Lipschitz map
rK :Sn−1!∂K. The pull-back of the curvature measure Cj(K, ·) on ∂K via rK is the
measure Cj(K, ·) on the unit sphere Sn−1, which is called the j-th curvature measure of
K. The measure C0(K, ·) was first defined by Aleksandrov, who called it the integral
curvature of K; see [3]. The total measures of both area measures and curvature measures
give the quermassintegrals:

Sj(K, Sn−1) =Cj(K, Sn−1) =nWn−j(K),

for j=0, 1, ..., n−1; see Schneider [75, p. 213].

Minkowski problems in the Brunn–Minkowski theory. One of the main prob-
lems in the Brunn–Minkowski theory is characterizing the area and curvature measures.
The well-known classical Minkowski problem is: given a finite Borel measure µ on Sn−1,
what are the necessary and sufficient conditions on µ so that µ is the surface area mea-
sure S(K, ·) of a convex body K in Rn? The Minkowski problem was first studied by
Minkowski [63], [64], who demonstrated both existence and uniqueness of solutions for
the problem when the given measure is either discrete or has a continuous density. Alek-
sandrov [1], [2] and Fenchel–Jessen [24] independently solved the problem in 1938 for
arbitrary measures. Their methods are variational and (1.1) is crucial for transform-
ing the Minkowski problem into an optimization problem. Analytically, the Minkowski
problem is equivalent to solving a degenerate Monge–Ampère equation. Establishing the
regularity of the solution to the Minkowski problem is difficult and has led to a long
series of influential works (see, for example, Nirenberg [67], Cheng–Yau [19], Pogorelov
[71], Caffarelli [17]).

After solving the Minkowski problem, Aleksandrov went on to characterize his inte-
gral curvature C0(K, ·), which is called the Aleksandrov problem. He was able to solve
it completely by using his mapping lemma; see [3]. Further work on the Aleksandrov
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problem from the partial differential equation and the mass transport viewpoints is due
to Guan–Li [34] and Oliker [68].

Finding necessary and sufficient conditions so that a given measure is the area mea-
sure S1(K, ·) of a convex body K is the Christoffel problem. Firey [25] and Berg [11]
solved the problem independently. See Pogorelov [70] for a partial result in the smooth
case, Schneider [72] for a more explicit solution in the polytope case, Grinberg–Zhang
[30] for an abbreviated approach to Firey’s and Berg’s solution, Goodey–Yaskin–Yaskina
[29], and Schneider [75, §8.3.2], for a Fourier transform approach. In general, character-
izing the area measure Sj(K, ·) is called the Minkowski–Christoffel problem: given an
integer 16j6n−1 and a finite Borel measure µ on Sn−1, what are the necessary and
sufficient conditions so that µ is the area measure Sj(K, ·) of a convex body K in Rn.
The case where j=1 is the Christoffel problem, and the case where j=n−1 is the classical
Minkowski problem. For 1<j<n−1, it has been a long-standing open problem. Impor-
tant progress was made recently by Guan–Ma [36]. See Guan–Guan [32] for a variant of
this problem.

Extending Aleksandrov’s work on the integral curvature and characterizing other
curvature measures is also a major unsolved problem: given an integer 16j6n−1 and a
finite Borel measure µ on Sn−1, what are the necessary and sufficient conditions so that
µ is the curvature measure Cj(K, ·) of a convex body K in Rn. This is the Minkowski
problem for curvature measures which can also be called the general Aleksandrov problem.
See Guan–Lin–Ma [35] and the recent work of Guan–Li–Li [33] on this problem.

Cone-volume measure and logarithmic Minkowski problem. In addition to the
surface area measure of a convex body, another fundamental measure associated with a
convex body K in Rn that contains the origin in its interior is the cone-volume measure
VK , also denoted by V (K, ·), defined for Borel sets η⊂Sn−1 by

VK(η) =
1
n

∫
x∈ν−1

K (η)

x·νK(x) dHn−1(x) =V (K∩c(η)), (1.6)

which is the volume of the cone K∩c(η), where c(η) is the cone of rays eminating from
the origin such that ∂K∩c(η)=ν−1

K (η) for the Borel set η⊂Sn−1.
A very important property of the cone-volume measure is its SL(n) invariance, or

simply called affine invariance. The area and curvature measures are all SO(n) invariant.
The SL(n) invariance of the cone-volume measure makes the measure a useful notion
in the geometry of normed spaces; see [10], [60], [61], [65], [66], [69]. The Minkowski
problem for the cone-volume measure is called the logarithmic Minkowski problem. It
asks for necessary and sufficient conditions for a given measure on the unit sphere to
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be the cone-volume measure of a convex body. The existence part of the logarithmic
Minkowski problem has been solved recently for the case of even measures within the
class of origin-symmetric convex bodies, see [14]. A sufficient condition for discrete (not-
necessarily even) measures was given by Zhu [82]. It was shown in [13] that the solution
to both the existence and uniqueness questions for the logarithmic Minkowski problem
for even measures would lead to a stronger Brunn–Minkowski inequality. It was shown
in [15] that the necessary and sufficient conditions for the existence of a solution to the
logarithmic Minkowski problem for even measures are identical to the necessary and
sufficient conditions for the existence of an affine transformation that maps the given
measure into one that is isotropic. The problem has strong connections with curvature
flows; see Andrews [8], [9].

Lp surface area measure and Lp Minkowski problem. The Lp Brunn–Minkowski
theory is an extension of the classical Brunn–Minkowski theory; see [41], [47], [51], [54],
[56], [57], [59], [62], [75]. The Lp surface area measure, introduced in [54], is a fundamental
notion in the Lp-theory. For fixed p∈R, and a convex body K in Rn that contains the
origin in its interior, the Lp surface area measure S(p)(K, ·) of K is a Borel measure on
Sn−1 defined, for a Borel set η⊂Sn−1, by

S(p)(K, η) =
∫

x∈ν−1
K (η)

(x·νK(x))1−p dHn−1(x). (1.7)

The surface area measure and the cone-volume measure are the special cases p=1 and
p=0, respectively, of Lp surface area measure. The Lp Minkowski problem, posed by
Lutwak (see, e.g., [54]), asks for necessary and sufficient conditions that would guarantee
that a given measure on the unit sphere would be the Lp surface area measure of a convex
body; see, e.g., [18], [20], [43], [44], [54], [55], and [84]. The case of p=1 is the classical
Minkowski problem, the case of p=0 is the logarithmic Minkowski problem (see [14]),
and the case of p=−n is the centro-affine Minkowski problem (see Chou–Wang [20], Lu–
Wang [46], and Zhu [83]). The solution to the Lp Minkowski problem has been proven to
be a critical tool in establishing sharp affine Sobolev inequalities via affine isoperimetric
inequalities; see [21], [40], [56], [58], [79].

1.2. Geometric measures and their associated Minkowski problems in the
dual Brunn–Minkowski theory

A theory analogous to the theory of mixed volumes was introduced in 1970s in [52].
It demonstrates a remarkable duality in convex geometry, and thus is called the theory
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of dual mixed volumes, or the dual Brunn–Minkowski theory. The duality, as a guiding
principle, is conceptual in a heuristic sense and has motivated much investigation. A good
explanation of this conceptual duality is given in Schneider [75, p. 507]. The aspect of the
duality between projections and cross-sections of convex bodies is thoroughly discussed
in Gardner [27]. The duality will be called the conceptual duality in convex geometry.

The main geometric functionals in the dual Brunn–Minkowski theory are the dual
quermassintegrals. The following integral geometric definition of the dual quermassinte-
grals, via the volume of the central sections of the body, shows their amazing dual nature
to the quermassintegrals defined in (1.4):

W̃n−i(K) =
ωn

ωi

∫
G(n,i)

voli(K∩ξ) dξ, i =1, ..., n. (1.8)

The volume functional V is both the quermassintegral W0 and the dual quermassintegral
W̃0. Earlier investigations in the dual Brunn–Minkowski theory centered around finding
isoperimetric inequalities involving dual mixed volumes that mirrored those for mixed
volumes, see Schneider [75, §9.3 and §9.4] and Gardner [27]. It was shown in [80] that
the fundamental kinematic formula for quermassintegrals in integral geometry has a dual
version for dual quermassintegrals.

Exciting developments in the dual Brunn–Minkowski theory began in the late 1980s
because of the duality between projection bodies and intersection bodies exhibited in [53].
The study of central sections of convex bodies by way of intersection bodies and the
Busemann–Petty problem has attracted extensive attention in convex geometry; see, for
example, [16], [26], [28], [53], [81], and see [27], [45] for additional references. Some of
these works bring techniques from harmonic analysis, in particular, Radon transforms
and the Fourier transform, into the dual Brunn–Minkowski theory, see [27], [45]. This
is similar to the applications of cosine transform to the study of projection bodies and
the Shephard problem in the Brunn–Minkowski theory (see [75, §10.11] and [27, §4.2]).
However, the Busemann–Petty problem is far more interesting and is a problem whose
isomorphic version is still a major open problem in asymptotic convex geometric analysis.

There were important areas where progress in the dual theory lagged behind that of
the classical theory. Extending Aleksandrov’s variational formula (1.1) from W̃0 to the
dual quermassintegrals W̃i is one of the main such challenges. This is critically needed
in order to discover the duals of Federer’s curvature measures of the classical theory.
One purpose of this work is to establish this extension and thus to add key elements to
the conceptual duality of the Brunn–Minkowski theory and the dual Brunn–Minkowski
theory. The main concepts that will be introduced are the dual curvature measures.
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Dual curvature measures. For each convex body K in Rn that contains the origin
in its interior, we construct explicitly a set of geometric measures C̃0(K, ·), ..., C̃n(K, ·),
on Sn−1 associated with the dual quermassintegrals, with

C̃j(K, Sn−1) = W̃n−j(K),

for j=0, ..., n. These geometric measures can be viewed as the differentials of the dual
quermassintegrals.

Our construction will show how these geometric measures, via conceptual duality,
are the duals of the curvature measures, and thus warrant being called the dual curvature
measures of K. While the curvature measures of a convex body depend closely on the
body’s boundary, its dual curvature measures depend more on the body’s interior, but yet
have deep connections with their classical counterparts. When j=n, the dual curvature
measure C̃n(K, ·) turns out to be the cone-volume measure of K. When j=0, the dual
curvature measure C̃0(K, ·) turns out to be Aleksandrov’s integral curvature of the polar
body of K (divided by n). When K is a polytope, C̃j(K, ·) is discrete and concentrated
on the outer unit normals of the facets of K with weights depending on the cones that are
the convex hulls of the facets and the origin. Dual area measures are also defined. The
new geometric measures we shall develop demonstrate yet again the amazing conceptual
duality between the dual Brunn–Minkowski theory and the Brunn–Minkowski theory.

We establish dual generalizations of Aleksandrov’s variational formula (1.1). Let K

be a convex body in Rn that contains the origin in its interior, and let f :Sn−1!R be
continuous. For a sufficiently small δ>0, define a family of logarithmic Wulff shapes,

[[[K, f]]]t = {x∈Rn :x·v 6ht(v) for all v ∈Sn−1},

for each t∈(−δ, δ), where ht(v), for v∈Sn−1, is given by

log ht(v) = log hK(v)+tf(v)+o(t, v),

and limt!0 o(t, v)/t=0 uniformly in v. The main formula to be presented is the following.

Variational formula for dual quermassintegrals. For 16j6n, and each convex
body K that contains the origin in the interior, there exists a Borel measure C̃j(K, ·) on
Sn−1 such that

d

dt
W̃n−j([[[K, f]]]t)

∣∣∣∣
t=0

= j

∫
Sn−1

f(v) dC̃j(K, v), (1.9)

for each continuous f :Sn−1!R.
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Obviously (1.9) demonstrates that the dual curvature measures are differentials of
the dual quermassintegrals. Clearly (1.9) is the dual of the variational formula (1.5),
which is only known to hold in special cases. Aleksandrov’s variational formula (1.1) is
the special case j=n of (1.9). Thus, our formula is a direct extension of Aleksandrov’s
variational formula for volume to dual quermassintegrals. Our approach and method of
proof are very different from both Aleksandrov’s proof of (1.1) and the proof of (1.5) for
the case where the function involved is a support function.

The main problem to be solved is the following characterization problem for the dual
curvature measures.

Dual Minkowski problem for dual curvature measures. Let k be an integer,
16k6n. If µ is a finite Borel measure on Sn−1, find necessary and sufficient conditions
on µ so that it is the k-th dual curvature measure C̃k(K, ·) of a convex body K in Rn.

This will be called the dual Minkowski problem. For k=n, the dual Minkowski
problem is just the logarithmic Minkowski problem. As will be shown, when the measure
µ has a density function g:Sn−1!R, the partial differential equation that is the dual
Minkowski problem is a Monge–Ampère type equation on Sn−1:

1
n

h(v)|
∇h(v)+h(v)v|k−n det(
∇2h(v)+h(v)I) = g(v), (1.10)

where h is the unknown function on Sn−1 to be found, 
∇h and 
∇2h denote the gradient
vector and the Hessian matrix of h with respect to an orthonormal frame on Sn−1, and
I is the identity matrix.

If the factor
1
n

h(v)|
∇h(v)+h(v)v|k−n

were omitted in (1.10), then (1.10) would become the partial differential equation of
the classical Minkowski problem. If only the factor |
∇h(v)+h(v)v|k−n was omitted,
then equation (1.10) would become the partial differential equation associated with the
logarithmic Minkowski problem. The gradient component in (1.10) significantly increases
the difficulty of the problem when compared to the classical Minkowski problem or the
logarithmic Minkowski problem.

In this paper we treat the important symmetric case when the measure µ is even
and the solution is within the class of origin-symmetric bodies. As will be shown, the
existence of solutions depends on how much of the measure’s mass can be concentrated
on great subspheres.
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Let µ be a finite Borel measure on Sn−1, and 16k6n. We will say that the measure
µ satisfies the k-subspace mass inequality if

µ(Sn−1∩ξi)
µ(Sn−1)

< 1− k−1
k

n−i

n−1
,

for each ξi∈G(n, i) and each i=1, ..., n−1.
The main theorem of the paper is the following.

Existence for the dual Minkowski problem. Let µ be a finite even Borel measure
on Sn−1, and 16k6n. If the measure µ satisfies the k-subspace mass inequality, then
there exists an origin-symmetric convex body K in Rn such that C̃k(K, ·)=µ.

The case of k=n was proved in [14]. New ideas and more delicate estimates are
needed to prove the intermediate cases. We remark that existence for the dual Minkowski
problem is far easier to prove for the special case where the given measure µ has a posi-
tive continuous density (in which case the subspace mass inequality is trivially satisfied).
The singular general case for measures is substantially more delicate. It involves mea-
sure concentration and requires far more powerful techniques to solve. The sufficient
1-subspace mass inequality is obviously necessary for the case of k=1. The sufficient
n-subspace mass inequality is also necessary for the case k=n, except that certain equal-
ity conditions must be satisfied as well (see [14] for details). Discovering the necessary
conditions for other cases would be of considerable interest.

2. Preliminaries

2.1. Basic concepts regarding convex bodies

Schneider’s book [75] is our standard reference for the basics regarding convex bodies.
The books [27] and [31] are also good references.

Let Rn denote n-dimensional Euclidean space. For x∈Rn, let |x|=
√

x·x be the
Euclidean norm of x. For x∈Rn\{0}, define x̄∈Sn−1 by x̄=x/|x|. For a subset E in
Rn\{0} we let Ē={x̄:x∈E}. The origin-centered unit ball {x∈Rn :|x|61} is always
denoted by B, and its boundary by Sn−1. Write ωn for the volume of B and recall that
its surface area is nωn.

For the set of continuous functions defined on the unit sphere Sn−1 write C(Sn−1),
and for f∈C(Sn−1) write ‖f‖=maxv∈Sn−1 |f(v)|. We shall view C(Sn−1) as endowed
with the topology induced by this max-norm. We write C+(Sn−1) for the set of strictly



336 y. huang, e. lutwak, d. yang and g. zhang

positive functions in C(Sn−1), and C+
e (Sn−1) for the set of functions in C+(Sn−1) that

are even.
Let ∇ be the gradient operator in Rn with respect to the Euclidean metric and 
∇ be

the gradient operator on Sn−1 with respect to the induced metric. Then for a function
h: Rn!R which is differentiable at v∈Rn, with |v|=1, we have

∇h(v) =
∇h(v)+h(v)v.

If K⊂Rn is compact and convex, the support function hK , previously defined on
Sn−1, can be extended to Rn naturally, hK : Rn!R, by setting hK(x)=max{x·y :y∈K}
for x∈Rn. This extended support function is convex and homogeneous of degree 1. A
compact convex subset of Rn is uniquely determined by its support function.

Denote by Kn the space of compact convex sets in Rn endowed with the Hausdorff
metric; i.e., the distance between K, L∈Kn is ‖hK−hL‖. By a convex body in Rn we
will always mean a compact convex set with non-empty interior. Denote by Kn

o the class
of convex bodies in Rn that contain the origin in their interiors, and denote by Kn

e the
class of origin-symmetric convex bodies in Rn.

Let K⊂Rn be compact and star-shaped with respect to the origin. The radial
function %K : Rn\{0}!R is defined by

%K(x) =max{λ :λx∈K},

for x 6=0. A compact star-shaped (about the origin) set is uniquely determined by its
radial function on Sn−1. Denote by Sn the set of compact star-shaped sets. A star
body is a compact star-shaped set with respect to the origin whose radial function is
continuous and positive. If K is a star body, then obviously

∂K = {%K(u)u :u∈Sn−1}.

Denote by Sn
o the space of star bodies in Rn endowed with the radial metric; i.e., the

distance between K, L∈Sn
o is ‖%K−%L‖. Note that Kn

o ⊂Sn
o and that on the space Kn

o

the Hausdorff metric and radial metric are equivalent, and thus Kn
o is a subspace of Sn

o .
If K∈Kn

o , then it is easily seen that the radial function and the support function of
K are related by

hK(v) = max
u∈Sn−1

(u·v) %K(u) for v ∈Sn−1, (2.1)

1
%K(u)

= max
v∈Sn−1

u·v
hK(v)

for u∈Sn−1. (2.2)
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For a convex body K∈Kn
o , the polar body K∗ of K is the convex body in Rn defined

by
K∗ = {x∈Rn :x·y 6 1 for all y ∈K}.

From the definition of the polar body, we see that on Rn\{0},

%K =
1

hK∗
and hK =

1
%K∗

. (2.3)

For K, L⊂Rn that are compact and convex, and real a, b>0, the Minkowski combi-
nation, aK+bL⊂Rn, is the compact, convex set defined by

aK+bL= {ax+by :x∈K and y ∈L},

and its support function is given by

haK+bL = ahK +bhL. (2.4)

For real t>0, and a convex body K, let Kt=K+tB denote the parallel body of K.
The volume of the parallel body Kt is a polynomial in t, called the Steiner polynomial,

V (Kt) =
n∑

i=0

(
n

i

)
Wn−i(K)tn−i.

The coefficient Wn−i(K) is called the (n−i)-th quermassintegral of K which is precisely
the geometric invariant defined in (1.4).

For K, L⊂Rn that are compact and star-shaped (with respect to the origin), and
real a, b>0, the radial combination, aK+̃bL⊂Rn, is the compact star-shaped set defined
by

aK+̃bL= {ax+by :x∈K, y ∈L and x·y = |x| |y|}.

Note that the condition x·y=|x| |y| means that either y=αx or x=αy for some α>0.
The radial function of the radial combination of two star-shaped sets is the combination
of their radial functions; i.e.,

%
aK

∼
+bL

= a%K +b%L.

For real t>0, and star body K, let K̃t=K+̃tB denote the dual parallel body of K.
The volume of the dual parallel body K̃t is a polynomial in t, called the dual Steiner
polynomial,

V (K̃t) =
n∑

i=0

(
n

i

)
W̃n−i(K)tn−i.
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The coefficient W̃n−i(K) is the (n−i)-th dual quermassintegral of K which is precisely
the geometric invariant defined in (1.8). For the (n−i)-th dual quermassintegral of K

we have the easily established integral representation

W̃n−i(K) =
1
n

∫
Sn−1

%i
K(u) du, (2.5)

where such integrals should always be interpreted as being with respect to spherical
Lebesgue measure.

In view of the integral representation (2.5), the dual quermassintegrals can be ex-
tended in an obvious manner: For q∈R, and a star body K, the (n−q)-th dual quer-
massintegral W̃n−q(K) is defined by

W̃n−q(K) =
1
n

∫
Sn−1

%q
K(u) du. (2.6)

For real q 6=0, define the normalized dual quermassintegral �Wn−q(K) by

�Wn−q(K) =
(

1
nωn

∫
Sn−1

%q
K(u) du

)1/q

, (2.7)

and, for q=0, by

�Wn(K) = exp
(

1
nωn

∫
Sn−1

log %K(u) du

)
. (2.8)

It will also be helpful to adopt the following notation:

Ṽq(K) = W̃n−q(K) and 
Vq(K) =�Wn−q(K), (2.9)

called the q-th dual volume of K and the normalized q-th dual volume of K, respectively.
Note, in particular, the fact that


Vn(K) =
(

V (K)
ωn

)1/n

. (2.10)

2.2. The radial Gauss map of a convex body

Let K be a convex body in Rn. For each v∈Sn−1, the hyperplane

HK(v) = {x∈Rn :x·v =hK(v)}

is called the supporting hyperplane to K with unit normal v.
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For σ⊂∂K, the spherical image of σ is defined by

νννK(σ) = {v ∈Sn−1 :x∈HK(v) for some x∈σ}⊂Sn−1.

For η⊂Sn−1, the reverse spherical image of η is defined by

xxxK(η) = {x∈ ∂K :x∈HK(v) for some v ∈ η}⊂ ∂K.

Let σK⊂∂K be the set consisting of all x∈∂K for which the set νννK({x}), which we
frequently abbreviate as νννK(x), contains more than a single element. It is well known
that Hn−1(σK)=0 (see Schneider [75, p. 84]). The function

νK : ∂K\σK −!Sn−1, (2.11)

defined by letting νK(x) be the unique element in νννK(x) for each x∈∂K\σK , is called
the spherical image map of K and is known to be continuous (see Lemma 2.2.12 in
Schneider [75]). In the introduction, ∂K\σK was abbreviated as ∂′K, something we will
often do. Note that from definition (1.2) and the Riesz representation theorem, it follows
immediately that, for each continuous g:Sn−1!R, one has∫

∂′K

g(νK(x)) dHn−1(x) =
∫

Sn−1
g(v) dS(K, v). (2.12)

Also, from definitions (1.2) and (1.6), it follows that, for the cone-volume measure
V (K, ·), we have

dV (K, ·) =
1
n

hK dS(K, ·). (2.13)

The set ηK⊂Sn−1 consisting of all v∈Sn−1 for which the set xxxK(v) contains more
than a single element, is of Hn−1-measure zero (see Theorem 2.2.11 in Schneider [75]).
The function

xK :Sn−1\ηK −! ∂K, (2.14)

defined for each v∈Sn−1\ηK by letting xK(v) be the unique element in xxxK(v), is called
the reverse spherical image map. The vectors in Sn−1\ηK are called the regular normal
vectors of K. Thus, v∈Sn−1 is a regular normal vector of K if and only if the intersection
∂K∩HK(v) consists of a single point. The function xK is well known to be continuous
(see Lemma 2.2.12 in Schneider [75]).

For K∈Kn
o , define the radial map of K,

rK :Sn−1 −! ∂K, by rK(u) = %K(u)u∈ ∂K for u∈Sn−1.

Note that r−1
K : ∂K!Sn−1 is just the restriction to ∂K of the map x 7!x̄.
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For ω⊂Sn−1, define the radial Gauss image of ω by

αααK(ω) =νννK(rK(ω))⊂Sn−1.

Thus, for u∈Sn−1, one has

αααK(u) = {v ∈Sn−1 : rK(u)∈HK(v)}. (2.15)

Define the radial Gauss map of the convex body K∈Kn
o ,

αK :Sn−1\ωK −!Sn−1, by αK = νK �rK ,

where ωK =r−1
K (σK). Since r−1

K is a bi-Lipschitz map between the spaces ∂K and Sn−1,
it follows that ωK has spherical Lebesgue measure 0. Observe that if u∈Sn−1\ωK , then
αααK(u) contains only the element αK(u). Note that since both νK and rK are continuous,
αK is continuous.

For η⊂Sn−1, define the reverse radial Gauss image of η by

ααα∗
K(η) = r−1

K (xxxK(η))=xxxK(η). (2.16)

Thus,

ααα∗
K(η) = {x̄ :x∈ ∂K where x∈HK(v) for some v ∈ η}.

Define the reverse radial Gauss map of the convex body K∈Kn
o ,

α∗
K :Sn−1\ηK −!Sn−1, by α∗

K = r−1
K �xK . (2.17)

Note that since both r−1
K and xK are continuous, α∗

K is continuous.
Note that, for a subset η⊂Sn−1,

ααα∗
K(η) = {u∈Sn−1 : rK(u)∈HK(v) for some v ∈ η}. (2.18)

For u∈Sn−1 and η⊂Sn−1, it is easily seen that

u∈ααα∗
K(η) if and only if αααK(u)∩η 6= ∅. (2.19)

Thus, ααα∗
K is monotone non-decreasing with respect to set inclusion.

If we abbreviate ααα∗
K({v}) by ααα∗

K(v), then (2.19) yields

u∈ααα∗
K(v) if and only if v ∈αααK(u). (2.20)
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If u /∈ωK , then αααK(u)={αK(u)} and (2.19) becomes

u∈ααα∗
K(η) if and only if αK(u)∈ η, (2.21)

and hence (2.21) holds for almost all u∈Sn−1 with respect to spherical Lebesgue measure.
It similarly follows that, if v /∈ηK and ω⊂Sn−1, then

v ∈αααK(ω) if and only if α∗
K(v)∈ω, (2.22)

and hence (2.22) holds for almost all v∈Sn−1 with respect to spherical Lebesgue measure.

The following lemma consists of a basic fact regarding the reverse radial Gauss map.
This fact is Lemma 2.2.14 in Schneider [75], an alternate proof of which is presented
below.

Lemma 2.1. If η⊂Sn−1 is a Borel set, then ααα∗
K(η)=xxxK(η)⊂Sn−1 is spherical

Lebesgue measurable.

Proof. The continuity of αK assures that the inverse image α−1
K (η), of the Borel set

η in Sn−1, is a Borel set in the space Sn−1\ωK with relative topology. Since each Borel
set in Sn−1\ωK is just the restriction of a Borel set in Sn−1, it follows that α−1

K (η) is the
restriction of a Borel set in Sn−1 to Sn−1\ωK , and is thus Lebesgue measurable in Sn−1

(as ωK has Lebesgue measure zero). Since ααα∗
K(η) and α−1

K (η) differ by a set of Lebesgue
measure zero, the set ααα∗

K(η) must be Lebesgue measurable in Sn−1 as well.

If g:Sn−1!R is a Borel function, then g�αK is spherical Lebesgue measurable be-
cause it is just the composition of a Borel function g and a continuous function αK in
Sn−1\ωK with ωK having Lebesgue measure zero. Moreover, if g is a bounded Borel
function, then g�αK is spherical Lebesgue integrable. In particular, g�αK is spherical
Lebesgue integrable, for each continuous function g:Sn−1!R.

Lemma 2.2. Let Ki∈Kn
o be such that limi!∞ Ki=K0∈Kn

o . Let ω=
⋃∞

i=0 ωKi be the
set (of Hn−1-measure zero) off of which all of the αKi are defined. If ui∈Sn−1\ω are
such that limi!∞ ui=u0∈Sn−1\ω, then limi!∞ αKi(ui)=αK0(u0).

Proof. Since the sequence of radial maps rKi
converges to rK0 , uniformly, we have

that rKi(ui)!rK0(u0). Let xi=rKi(ui) and vi=νKi(rKi(ui))=αKi(ui).

Since xi∈∂Ki and ui /∈ωKi
, the vector vi is the unique outer unit normal to the

support hyperplane of Ki at xi. Thus, we have

xi ·vi =hKi(vi).
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Suppose that a subsequence of the unit vectors vi (which we again call vi) converges to
v′∈Sn−1. Since hKi converges to hK0 , uniformly, hKi(vi)!hK0(v

′). This, together with
xi!x0 and vi!v′ gives

x0 ·v′ =hK0(v
′). (2.23)

But x0=rK0(u0) is a boundary point of K0, and since u0 /∈ωK0 , we conclude from (2.23)
that v′ must be the unique outer unit normal of K0 at x0=rK0(u0). And hence, v′=
νK0(rK0(u0))=αK0(u0). Thus, all convergent subsequences of vi=αKi(ui) converge to
αK0(u0).

Consider a subsequence of αKi(ui). Since Sn−1 is compact, the subsequence has
a subsequence that converges, and by the above it converges to αK0(u0). Thus, every
subsequence of αKi(ui) has a subsequence that converges to αK0(u0).

Lemma 2.3. If {ηj}∞j=1 is a sequence of subsets of Sn−1, then

ααα∗
K

( ∞⋃
j=1

ηj

)
=

∞⋃
j=1

ααα∗
K(ηj).

Proof. If v∈
⋃∞

j=1 ηj , then v∈ηj1 for some j1, and, by the monotonicity of ααα∗
K with

respect to set inclusion,

ααα∗
K(v)⊆ααα∗

K(ηj1)⊆
∞⋃

j=1

ααα∗
K(ηj).

Thus, ααα∗
K

(⋃∞
j=1 ηj

)
⊆

⋃∞
j=1 ααα∗

K(ηj). Moreover, if u∈
⋃∞

j=1 ααα∗
K(ηj), then for some j2 we

have that u∈ααα∗
K(ηj2)⊆ααα∗

K

(⋃∞
j=1 ηj

)
. Thus, ααα∗

K

(⋃∞
j=1 ηj

)
⊇

⋃∞
j=1 ααα∗

K(ηj).

Lemma 2.4. If {ηj}∞j=1 is a sequence of pairwise disjoint sets in Sn−1, then

{ααα∗
K(ηj)\ωK}∞j=1

is pairwise disjoint as well.

Proof. Suppose that there exists a u such that u∈ααα∗
K(ηj1)\ωK and u∈ααα∗

K(ηj2)\ωK .
As u /∈ωK , we know that αααK(u) is a singleton. But (2.19), in conjunction with u∈ααα∗

K(ηj1)
and u∈ααα∗

K(ηj2), yields αααK(u)∩ηj1 6=∅ and αααK(u)∩ηj2 6=∅, which contradicts the fact
that ηj1∩ηj2 =∅ since αααK(u) is a singleton.

The reverse radial Gauss image of a convex body and the radial Gauss image of its
polar body are related.

Lemma 2.5. If K∈Kn
o , then

ααα∗
K(η) =αααK∗(η)

for each η⊂Sn−1.
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Proof. It suffices to show that

ααα∗
K(v) =αααK∗(v)

for each v∈Sn−1. Fix v∈Sn−1. From (2.15), we see that, for u∈Sn−1,

u∈αααK∗(v) if and only if HK∗(u) is a support hyperplane at %K∗(v)v,

that is,
u∈αααK∗(v) if and only if hK∗(u) = (u·v)%K∗(v).

By (2.3), this is the case if and only if

hK(v) = (v ·u) %K(u) = v ·rK(u),

or equivalently, using (2.15), if and only if

v ∈αααK(u).

But, from (2.20) we know that v∈αααK(u) if and only if u∈ααα∗
K(v).

For almost all v∈Sn−1 we have ααα∗
K(v)={α∗

K(v)}, and for almost all v∈Sn−1 we
have αααK∗(v)={αK∗(v)}. These two facts combine to give the following lemma.

Lemma 2.6. If K∈Kn
o , then

α∗
K =αK∗

almost everywhere on Sn−1, with respect to spherical Lebesgue measure.

2.3. Wulff shapes and convex hulls

Throughout, Ω⊂Sn−1 will denote a closed set that is assumed not to be contained in any
closed hemisphere of Sn−1. Let h: Ω!(0,∞) be continuous. The Wulff shape [[[h]]]∈Kn

o ,
also known as the Aleksandrov body, determined by h is the convex body defined by

[[[h]]] = {x∈Rn :x·v 6h(v) for all v ∈Ω}.

Obviously, if K∈Kn
o ,

[[[hK]]] = K.

For the radial function of the Wulff shape we have

%[[[h]]](u)−1 =max
v∈Ω

(u·v)h(v)−1, (2.24)
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which is easily verified by:

%[[[h]]](u) =max{r > 0 : ru∈ [[[h]]]}=max{r > 0 : ru·v 6h(v) for all v ∈Ω}

=max{r > 0 : r maxv∈Ω(u·v)h(v)−1 6 1}=
1

maxv∈Ω(u·v)h(v)−1

for each u∈Sn−1.
Let %: Ω!(0,∞) be continuous. Since Ω⊂Sn−1 is assumed to be closed and % is

continuous, {%(u)u:u∈Ω} is a compact set in Rn. Hence, the convex hull 〈〈〈%〉〉〉 generated
by %,

〈〈〈%〉〉〉=conv{%(u)u :u∈Ω},

is compact as well (see Schneider [75, Theorem 1.1.11]). Since Ω is not contained in any
closed hemisphere of Sn−1 and % is strictly positive, the compact convex set 〈〈〈%〉〉〉 contains
the origin in its interior. Obviously, if K∈Kn

o ,

〈〈〈%K〉〉〉=K. (2.25)

We shall make frequent use of the fact that

h〈〈〈%〉〉〉(v) =max
u∈Ω

(v ·u)%(u) (2.26)

for all v∈Sn−1.

Lemma 2.7. Let Ω be a closed subset of Sn−1 that is not contained in any closed
hemisphere of Sn−1 and let %: Ω!(0,∞) be continuous. If v is a regular normal vector
of 〈〈〈%〉〉〉, then ααα∗

〈〈〈%〉〉〉(v)⊂Ω.

Proof. By (2.26) there exists a u0∈Ω such that

h〈〈〈%〉〉〉(v) = (u0 ·v)%(u0).

This means that
%(u0)u0 ∈H〈〈〈%〉〉〉(v) = {x∈Rn :x·v =h〈〈〈%〉〉〉(v)}, (2.27)

and since clearly %(u0)u0∈〈〈〈%〉〉〉, it follows from (2.27) that %(u0)u0∈∂〈〈〈%〉〉〉 and u0∈ααα∗
〈〈〈%〉〉〉(v).

But v is a regular normal vector of 〈〈〈%〉〉〉, and hence

ααα∗
〈〈〈%〉〉〉(v) = {α∗

〈〈〈%〉〉〉(v)}.

We conclude that α∗
〈〈〈%〉〉〉(v)=u0∈Ω, which completes the proof.

The Wulff shape of a function and the convex hull generated by its reciprocal are
related.
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Lemma 2.8. Let Ω⊂Sn−1 be a closed set that is not contained in any closed hemi-
sphere of Sn−1. Let h: Ω!(0,∞) be continuous. Then the Wulff shape [[[h]]] determined
by h and the convex hull 〈〈〈1/h〉〉〉 generated by the function 1/h are polar reciprocals of each
other ; i.e.,

[[[h]]]∗ = 〈〈〈1/h〉〉〉.

Proof. Let %=1/h. Then, by (2.24) and (2.26), we see that for u∈Sn−1,

%[[[h]]](u)−1 =max
v∈Ω

(u·v)h(v)−1 =max
v∈Ω

(u·v)%(v) =h〈〈〈%〉〉〉(u).

This and (2.3) give the desired identity.

We recall Aleksandrov’s convergence theorem for Wulff shapes (see Schneider [75,
p. 412]): If a sequence of continuous functions hi: Ω!(0,∞) converges uniformly to
h: Ω!(0,∞), then the sequence of Wulff shapes [[[hi]]] converges to the Wulff shape [[[h]]]
in Kn

o .
We will use the following convergence of convex hulls: If a sequence of positive con-

tinuous functions %i: Ω!(0,∞) converges uniformly to %: Ω!(0,∞), then the sequence
of convex hulls 〈〈〈%i〉〉〉 converges to the convex hull 〈〈〈%〉〉〉 in Kn

o . Lemma 2.8, together with
Aleksandrov’s convergence theorem for Wulff shapes, provides a quick proof.

Let f : Ω!R be continuous and δ>0. Let ht: Ω!(0,∞) be a continuous function
defined for each t∈(−δ, δ) and each v∈Ω by

log ht(v) = log h(v)+tf(v)+o(t, v), (2.28)

where, for each t∈(−δ, δ), the function o(t, ·): Ω!R is continuous and limt!0 o(t, ·)/t=0
uniformly on Ω. Denote by [[[ht]]] the Wulff shape determined by ht,

[[[ht]]] = {x∈Rn :x·v 6ht(v) for all v ∈Ω}.

We shall call [[[ht]]] a logarithmic family of Wulff shapes formed by (h, f). On occasion, we
shall write [[[ht]]] as [[[h, f, t]]], and if h happens to be the support function of a convex body
K perhaps as [[[K, f, t]]], or as [[[K, f, o, t]]], if required for clarity.

Let g: Ω!R be continuous and δ>0. Let %t: Ω!(0,∞) be a continuous function
defined for each t∈(−δ, δ) and each u∈Ω by

log %t(u) = log %(u)+tg(u)+o(t, u), (2.29)

where, for each t∈(−δ, δ), the function o(t, ·):Ω!R is continuous and limt!0 o(t, ·)/t=0
uniformly on Ω. Denote by 〈〈〈%t〉〉〉 the convex hull generated by %t,

〈〈〈%t〉〉〉=conv{%t(u)u :u∈Sn−1}.

We will call 〈〈〈%t〉〉〉 a logarithmic family of convex hulls generated by (%, g). On occasion, we
shall write 〈〈〈%t〉〉〉 as 〈〈〈%, g, t〉〉〉, and if % happens to be the radial function of a convex body
K as 〈〈〈K, g, t〉〉〉, or as 〈〈〈K, g, o, t〉〉〉, if required for clarity.
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2.4. Two integral identities

Lemma 2.9. Let K∈Kn
o and q∈R. Then for each bounded Lebesgue integrable func-

tion f :Sn−1!R,∫
Sn−1

f(u)%K(u)q du =
∫

∂′K

x·νK(x)f(x̄)|x|q−n dHn−1(x). (2.30)

Proof. We only need to establish∫
Sn−1

f(u)%K(u)n du =
∫

∂′K

x·νK(x)f(x̄) dHn−1(x), (2.31)

because replacing f with f%q−n
K in (2.31) gives (2.30).

We begin by establishing equality (2.31) for C1-functions f . To that end, define
F : Rn\{0}!R by letting F (x)=f(x̄) for x 6=0. Thus F (x) is a C1 homogeneous function
of degree 0 in Rn\{0}. The homogeneity of F implies that x·∇F (x)=0, and thus we
have that div(F (x)x)=nF (x) for all x 6=0.

Let Bδ⊂K be the ball of radius δ>0 centered at the origin. Apply the divergence
theorem for sets of finite perimeter (see [22, §5.8, Theorem 5.16]) to K\Bδ, and get

n

∫
K\Bδ

F (x) dx =
∫

∂′K

F (x) x·νK(x) dHn−1(x)−
∫

∂Bδ

F (x) x·νBδ
(x) dHn−1(x)

=
∫

∂′K

F (x) x·νK(x) dHn−1(x)−δn

∫
Sn−1

F (u) du,

and hence ∫
∂′K

F (x) x·νK(x) dHn−1(x) =n

∫
K\{0}

F (x) dx.

Switching to polar coordinates gives∫
K\{0}

F (x) dx =
∫

Sn−1

∫ %K(u)

0

F (ru)rn−1 dr du =
1
n

∫
Sn−1

F (u)%n
K(u) du,

which establishes (2.31) for C1-functions.
Since every continuous function on Sn−1 can be uniformly approximated by C1

functions, (2.31) holds whenever f is continuous.
Define the measure S̃n on Sn−1 by

S̃n(ω) =
1
n

∫
ω

%n
K(u) du

for each Lebesgue measurable set ω⊂Sn−1, and define the measure V∂K on ∂′K by

V∂K(σ) =
∫

σ

x·νK(x) dHn−1(x)
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for each Hn−1-measurable σ⊂∂′K.
It is easily seen that there exist constants m0,m1,m2>0 such that

Hn−1(rK(ω))6m0Hn−1(ω), V∂K(σ) 6m1Hn−1(σ) and S̃n(ω) 6m2Hn−1(ω) (2.32)

for every spherical Lebesgue measurable set ω and Hn−1-measurable σ.
Let f :Sn−1!R be a bounded integrable function; say |f(u)|6m, for all u∈Sn−1.

Lusin’s theorem followed by the Tietze’s extension theorem, guarantees the existence of
an open subset ωj⊂Sn−1 and a continuous function fj :Sn−1!R so that Hn−1(ωj)< 1

j ,
while f=fj on Sn−1\ωj , with |fj(u)|6m for all u∈Sn−1.

Observe that∣∣∣∣∫
Sn−1

(f(u)−fj(u))%n
K(u) du

∣∣∣∣ 6

∣∣∣∣∫
Sn−1\ωj

(f(u)−fj(u))%n
K(u) du

∣∣∣∣+2mnS̃n(ωj),

where the integral on the right is zero, and that∣∣∣∣∫
∂′K

(f(x̄)−fj(x̄))x·νK(x) dHn−1(x)
∣∣∣∣

6

∣∣∣∣∫
∂′K\rK(ωj)

(f(x̄)−fj(x̄))x·νK(x) dHn−1(x)
∣∣∣∣+2mV∂K(rK(ωj)),

where the integral on the right is zero.
In light of (2.32), the above allows us to establish (2.31) for bounded integrable

functions f , given that we had established (2.31) for the continuous functions fj .

Lemma 2.10. Let K∈Kn
o be strictly convex, and let f :Sn−1!R and F : ∂K!R be

continuous. Then∫
Sn−1

f(v)F (∇hK(v))hK(v) dS(K, v) =
∫

∂′K

x·νK(x)f(νK(x))F (x) dHn−1(x), (2.33)

where the integral on the left is with respect to the surface area measure of K.

Proof. First observe that from the definition of the support function hK and the
definition of νK , it follows immediately that, for each x∈∂′K,

hK(νK(x))= x·νK(x). (2.34)

The assumption that K is strictly convex implies that ∇hK always exists. But a
convex function that is differentiable must be continuously differentiable and hence ∇hK

is continuous on Sn−1. We shall use the fact that the composition

∇hK �νK : ∂′K −! ∂′K is the identity map (2.35)
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(see, e.g., Schneider [75, p. 47]).

Now, from (2.34), (2.35), and (2.12), we have∫
∂′K

x·νK(x)f(νK(x))F (x) dHn−1(x)

=
∫

∂′K

hK(νK(x))f(νK(x))F (∇hK(νK(x)) dHn−1(x)

=
∫

Sn−1
f(v)F (∇hK(v))hK(v) dS(K, v).

3. Dual curvature measures

To display the conceptual duality between the Brunn–Minkowski theory and the dual
Brunn–Minkowski theory, we first, following Schneider [75, Chapter 4], briefly develop
the classical area and curvature measures for convex bodies in the Brunn–Minkowski
theory. Then we introduce two new families of geometric measures: the dual curvature
and dual area measures, in the dual Brunn–Minkowski theory. While curvature and area
measures can be viewed as differentials of the quermassintegrals, dual curvature and dual
area measures are viewed as differentials of the dual quermassintegrals.

3.1. Curvature and area measures

Let K be a convex body in Kn
o . For x /∈K, denote by d(K, x) the distance from x to K.

Define the metric projection map pK : Rn\K!∂K so that pK(x)∈∂K is the unique point
satisfying

d(K, x) = |x−pK(x)|.

Denote by vK : Rn\K!Sn−1 the outer unit normal vector of ∂K at pK(x), defined by

d(K, x)vK(x) =x−pK(x),

for x∈Rn\K.

For t>0, and Borel sets ω⊂Sn−1 and η⊂Sn−1, let

At(K, ω) = {x∈Rn : 0 <d(K, x) 6 t and pK(x)∈ rK(ω)},

Bt(K, η) = {x∈Rn : 0 <d(K, x) 6 t and vK(x)∈ η},
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which are the so-called local parallel bodies of K. There are the following Steiner-type
formulas:

V (At(K, ω))=
1
n

n−1∑
i=0

(
n

i

)
tn−iCi(K, ω),

V (Bt(K, η))=
1
n

n−1∑
i=0

(
n

i

)
tn−iSi(K, η),

where Ci(K, ·) is a Borel measure on Sn−1, called the i-th curvature measure of K, and
Si(K, ·) is a Borel measure on Sn−1, called the i-th area measure of K. For all this, see
Schneider [75, §4.2].

Note that the classical curvature measures are defined on the boundary ∂K, and
are the image measures of the Ci(K, ·) under the radial map rK :Sn−1!∂K. Since,
for K∈Kn

o , the radial map rK is bi-Lipschitz, one can define the curvature measures
equivalently on either the space ∂K or the space Sn−1.

The (n−1)-th area measure Sn−1(K, ·) is the usual surface area measure S(K, ·)
which can be defined, for each Borel η⊂Sn−1, directly by

Sn−1(K, η) =Hn−1(xxxK(η)). (3.1)

The (n−1)-th curvature measure Cn−1(K, ·) on Sn−1 can be defined, for each Borel
ω⊂Sn−1, by

Cn−1(K, ω) =Hn−1(rK(ω)). (3.2)

From (3.1), (3.2), and the fact that ααα∗
K =r−1

K �xxxK , we see that the (n−1)-th curvature
measure Cn−1(K, ·) on Sn−1 and the (n−1)-th area measure Sn−1(K, ·) on Sn−1 are
related by

Cn−1(K,ααα∗
K(η))= Sn−1(K, η), (3.3)

for each Borel η⊂Sn−1. See Schneider [75, Theorem 4.2.3].
The zeroth area measure S0(K, ·) is just spherical Lebesgue measure on Sn−1; i.e.,

S0(K, η) =Hn−1(η),

for Borel η⊂Sn−1. The zeroth curvature measure C0(K, ·) on Sn−1 can be defined, for
Borel ω⊂Sn−1, by

C0(K, ω) =Hn−1(αααK(ω)); (3.4)

that is, C0(K, ω) is the spherical Lebesgue measure of αααK(ω). The zeroth curvature
measure is also called the integral curvature of K. It was first defined by Aleksandrov.
Obviously, (3.4) can be written as

C0(K, ω) =S0(K,αααK(ω)) (3.5)
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(see Schneider [75, Theorem 4.2.3]). If K∈Kn
o happens to be strictly convex, then (3.5)

can be extended to

Ci(K, ω) =Si(K,αααK(ω)), i =0, 1, ..., n−1 (3.6)

(see Schneider [75, Theorem 4.2.5]).

3.2. Definition of dual curvature and dual area measures

We first define the dual notions of the metric projection map pK and the distance function
d(K, ·). Suppose K∈Kn

o . Define the radial projection map p̃K : Rn\K!∂K by

p̃K(x) = %K(x)x= rK(x̄),

for x∈Rn\K. For x∈Rn, the radial distance d̃(K, x) of x to K, is defined by

d̃(K, x) =
{
|x−p̃K(x)|, if x /∈K,
0, if x∈K.

Let
ṽK(x) = x̄.

For t>0, a Lebesgue measurable set ω⊂Sn−1, and a Borel set η⊂Sn−1, define

Ãt(K, η) = {x∈Rn : 0 6 d̃(K, x) 6 t and p̃K(x)∈xxxK(η)}, (3.7)

B̃t(K, ω) = {x∈Rn : 0 6 d̃(K, x) 6 t and ṽK(x)∈ω}, (3.8)

to be the local dual parallel bodies. These local dual parallel bodies also have Steiner-type
formulas as shown in the following theorem.

Theorem 3.1. Let K∈Kn
o . For t>0, a Lebesgue measurable set ω⊂Sn−1, and a

Borel set η⊂Sn−1,

V (Ãt(K, η))=
n∑

i=0

(
n

i

)
tn−iC̃i(K, η), (3.9)

V (B̃t(K, ω))=
n∑

i=0

(
n

i

)
tn−iS̃i(K, ω), (3.10)

where C̃i(K, ·) and S̃i(K, ·) are Borel measures on Sn−1 given by

C̃i(K, η) =
1
n

∫
ααα∗

K(η)

%i
K(u) du, (3.11)

S̃i(K, ω) =
1
n

∫
ω

%i
K(u) du. (3.12)
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Proof. Write (3.8) as

B̃t(K, ω) = {x∈Rn : 0 6 |x|6 %K(x̄)+t with x̄∈ω}. (3.13)

Writing x=%u, with %>0 and u∈Sn−1, we find that

V (B̃t(K, ω))=
∫

u∈ω

(∫ %K(u)+t

0

%n−1 d%

)
du

=
1
n

∫
u∈ω

(%K(u)+t)n du =
1
n

n∑
i=0

(
n

i

)
tn−i

∫
ω

%i
K(u) du.

This gives (3.10) and (3.12).
In (3.7), the condition that p̃K(x)∈xxxK(η), or equivalently rK(x̄)∈xxxK(η), is by (2.16)

the same as x̄∈r−1
K (xxxK(η))=ααα∗

K(η). Thus, (3.7) can be written as

Ãt(K, η) = {x∈Rn : 0 6 |x|6 %K(x̄)+t with x̄∈ααα∗
K(η) }. (3.14)

Since η⊂Sn−1 is a Borel set, ααα∗
K(η) is a Lebesgue measurable subset of Sn−1 by

Lemma 2.1. Therefore, a glance at (3.13) and (3.14) immediately gives

Ãt(K, η) = B̃t(K,ααα∗
K(η)).

Now (3.10) yields

V (Ãt(K, η))= V (B̃t(K,ααα∗
K(η)))=

n∑
i=0

(
n

i

)
tn−iS̃i(K,ααα∗

K(η)),

and by defining
C̃i(K, η) = S̃i(K,ααα∗

K(η)) (3.15)

we get both (3.9) and (3.11).
Obviously, S̃i(K, ·) is a Borel measure. Note that since the integration in the integral

representation of S̃i(K, ·) is with respect to spherical Lebesgue measure, the measure
S̃i(K, ·) will assume the same value on sets that differ by a set of spherical Lebesgue
measure zero.

We now show that C̃i(K, ·) is a Borel measure as well. For the empty set ∅,

C̃i(K, ∅) = S̃i(K,ααα∗
K(∅))= S̃i(K, ∅) = 0.

Let {ηj}∞j=1 be a sequence of pairwise disjoint Borel sets in Sn−1. From Lemmas 2.1
and 2.4, together with the fact that ωK has spherical Lebesgue measure 0, we know that
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{ααα∗
K(ηj)\ωK}∞j=1 is a sequence of pairwise disjoint Lebesgue measurable sets. Using

(3.15), Lemma 2.3, the fact that ωK has measure 0, the fact that the sets ααα∗
K(ηj)\ωK

are pairwise disjoint, again the fact that ωK has measure 0, and (3.15), we have

C̃i

(
K,

⋃∞
j=1 ηj

)
= S̃i

(
K,ααα∗

K

(⋃∞
j=1 ηj

))
= S̃i

(
K,

⋃∞
j=1 ααα∗

K(ηj)
)

= S̃i

(
K,

(⋃∞
j=1 ααα∗

K(ηj)
)
\ωK

)
= S̃i

(
K,

⋃∞
j=1(ααα

∗
K(ηj)\ωK)

)
=

∑∞
j=1 S̃i(K,ααα∗

K(ηj)\ωK)

=
∑∞

j=1 S̃i(K,ααα∗
K(ηj))

=
∑∞

j=1 C̃i(K, ηj).

This shows that C̃i(K, ·) is a Borel measure.

We call the measure S̃i(K, ·) the i-th dual area measure of K and the measure
C̃i(K, ·) the i-th dual curvature measure of K. From (2.5), (3.11) and (3.12), we see
that the total measures of the ith dual area measure and the ith dual curvature measure
are the (n−i)-th dual quermassintegral W̃n−i(K); i.e.,

W̃n−i(K) = S̃i(K, Sn−1) = C̃i(K, Sn−1). (3.16)

The integral representations (3.11) and (3.12) show that the dual curvature and dual
area measures can be extended.

Definition 3.2. Let K∈Kn
o and q∈R. Define the q-th dual area measure S̃q(K, ·) by

S̃q(K, ω) =
1
n

∫
ω

%q
K(u) du

for each Lebesgue measurable ω⊂Sn−1, and the q-th dual curvature measure C̃q(K, ·) by

C̃q(K, η) =
1
n

∫
ααα∗

K(η)

%q
K(u) du =

1
n

∫
Sn−1

1ααα∗
K(η)(u)%q

K(u) du (3.17)

for each Borel η⊂Sn−1.

The verification that each C̃q(K, ·) is a Borel measure is the same as for the cases
where q=1, ..., n as can be seen by examining the proof of this fact in Theorem 3.1.

Obviously, the total measures of the q-th dual curvature measure and the qth dual
area measure are the (n−q)-th dual quermassintegral; i.e.,

W̃n−q(K) = S̃q(K, Sn−1) = C̃q(K, Sn−1). (3.18)
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It follows immediately from their definitions that the qth dual curvature measure of
K is the “image measure” of the qth dual area measure of K under αααK ; i.e.,

C̃q(K, η) = S̃q(K,ααα∗
K(η)), (3.19)

for each Borel η⊂Sn−1.

3.3. Dual curvature measures for special classes of convex bodies

Lemma 3.3. Let K∈Kn
o and q∈R. For each function g:Sn−1!R that is bounded

and Borel, ∫
Sn−1

g(v) dC̃q(K, v) =
1
n

∫
Sn−1

g(αK(u))%q
K(u) du. (3.20)

In the integral on the right in (3.20), the integration is with respect to spherical
Lebesgue measure (recall that αK is defined a.e. with respect to spherical Lebesgue
measure).

Proof. Let φ be a simple function on Sn−1 given by

φ=
m∑

i=1

ci1ηi

with ci∈R and Borel ηi⊂Sn−1. By using (3.17) and (2.21), we get∫
Sn−1

φ(v) dC̃q(K, v) =
∫

Sn−1

m∑
i=1

ci1ηi
(v) dC̃q(K, v)

=
m∑

i=1

ciC̃q(K, ηi)

=
1
n

∫
Sn−1

m∑
i=1

ci1ααα∗
K(ηi)(u)%q

K(u) du

=
1
n

∫
Sn−1

m∑
i=1

ci1ηi(αK(u))%q
K(u) du

=
1
n

∫
Sn−1

φ(αK(u))%q
K(u) du.

Now that we have established (3.20) for simple functions, for a bounded Borel g, we choose
a sequence of simple functions φk that converge uniformly to g. Then φk �αK converges
to g�αK a.e. with respect to spherical Lebesgue measure. Since g is a Borel function on
Sn−1 and the radial Gauss map αK is continuous on Sn−1\ωK , the composite function
g�αK is a Borel function on Sn−1\ωK . Thus, g and g�αK are Lebesgue integrable on
Sn−1 because g is bounded and ωK has Lebesgue measure zero. Taking the limit k!∞
establishes (3.20).
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Lemma 3.4. Let K∈Kn
o and q∈R. For each bounded Borel function g:Sn−1!R,∫

Sn−1
g(v) dC̃q(K, v) =

1
n

∫
∂′K

x·νK(x)g(νK(x))|x|q−n dHn−1(x). (3.21)

Let f=g�αK . Then, as shown in the proof of Lemma 3.3, f is bounded and Lebesgue
integrable on Sn−1. Thus, the desired (3.21) follows immediately from (2.30) and (3.20).

Lemma 3.5. Let K∈Kn
o and q∈R. For each Borel set η⊂Sn−1,

C̃q(K, η) =
1
n

∫
x∈ν−1

K (η)

x·νK(x)|x|q−n dHn−1(x). (3.22)

Taking g=1η in (3.21) immediately yields (3.22).
We conclude with three observations regarding the dual curvature measures.

(i) Let P∈Kn
o be a polytope with outer unit normals v1, ..., vm. Let ∆i be the cone

that consists of all of the rays emanating from the origin and passing through the facet of
P whose outer unit normal is vi. Then, recalling that we abbreviate ααα∗

P ({vi}) by ααα∗
P (vi),

we have
ααα∗

P (vi) =Sn−1∩∆i. (3.23)

If η⊂Sn−1 is a Borel set such that {v1, ..., vm}∩η=∅, then ααα∗
P (η) has spherical Lebesgue

measure zero. Therefore, the dual curvature measure C̃q(P, ·) is discrete and concentrated
on {v1, ..., vm}. From the definition of dual curvature measures (3.17), and (3.23), we see
that

C̃q(P, ·) =
m∑

i=1

ciδvi
, (3.24)

where δvi denotes the delta measure concentrated at the point vi on Sn−1, and

ci =
1
n

∫
Sn−1∩∆i

%P (u)q du. (3.25)

(ii) Suppose that K∈Kn
o is strictly convex. If g:Sn−1!R is continuous, then (3.21)

and (2.33) give∫
Sn−1

g(v) dC̃q(K, v) =
1
n

∫
∂K

x·νK(x) g(νK(x))|x|q−ndHn−1(x)

=
1
n

∫
Sn−1

g(v)|∇hK(v)|q−nhK(v) dS(K, v).

This shows that
dC̃q(K, ·) =

1
n

hK |∇hK |q−n dS(K, ·). (3.26)
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(iii) Suppose that K∈Kn
o has a C2 boundary with everywhere positive curvature.

Since in this case S(K, ·) is absolutely continuous with respect to spherical Lebesgue mea-
sure, it follows that C̃q(K, ·) is absolutely continuous with respect to spherical Lebesgue
measure, and from (3.26) and (1.3) we have

dC̃q(K, v)
dv

=
1
n

hK(v)|∇hK(v)|q−n det(hij(v)+hK(v)δij), (3.27)

where (hij) denotes the Hessian matrix of hK with respect to an orthonormal frame
on Sn−1.

3.4. Properties of dual curvature measures

The weak convergence of the qth dual curvature measure is critical and is contained in
the following lemma.

Lemma 3.6. Let q∈R. If Ki∈Kn
o with Ki!K0∈Kn

o , then C̃q(Ki, ·)!C̃q(K0, ·),
weakly.

Proof. Let g:Sn−1!R be continuous. From (3.20) we know that∫
Sn−1

g(v) dC̃q(Ki, v) =
1
n

∫
Sn−1

g(αKi
(u))%q

Ki
(u) du,

for all i. Since Ki!K0, with respect to the Hausdorff metric, we know that %Ki!%K0

uniformly, and using Lemma 2.2 that αKi
!αK almost everywhere on Sn−1. Thus,

1
n

∫
Sn−1

g(αKi(u))%q
Ki

(u) du! 1
n

∫
Sn−1

g(αK0(u))%q
K0

(u) du,

from which it follows that C̃q(Ki, ·)!C̃q(K0, ·), weakly.

Lemma 3.7. If K∈Kn
o and q∈R, then the dual curvature measure C̃q(K, ·) is ab-

solutely continuous with respect to the surface area measure S(K, ·).

Proof. Let η⊂Sn−1 be such that S(K, η)=0, or equivalently, Hn−1(ν−1
K (η))=0. In

this case, using (3.22), we conclude that

C̃q(K, η) =
1
n

∫
x∈ν−1

K (η)

|x|q−nx·νK(x) dHn−1(x) = 0,

since we are integrating over a set of measure zero.

The following lemma tells us that the nth dual curvature measure of a convex body
is the cone-volume measure of the body, while the zeroth dual curvature measure of the
convex body is essentially Aleksandrov’s integral curvature of the polar of the body.
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Lemma 3.8. If K∈Kn
o , then

C̃n(K, ·) =VK , (3.28)

C̃0(K, ·) =
1
n

C0(K∗, ·). (3.29)

Proof. Let η⊂Sn−1 be a Borel set. From (3.22), with q=n, and (1.6), we have

C̃n(K, η) =
1
n

∫
x∈ν−1

K (η)

x·νK(x) dHn−1(x) =VK(η),

which establishes (3.28).
From the definition of the zeroth dual curvature measure (3.11), with i=0, and

Lemma 2.5, followed by (3.4), we have

C̃0(K, η) =
1
n
Hn−1(ααα∗

K(η))=
1
n
Hn−1(αααK∗(η))=

1
n

C0(K∗, η),

which gives (3.29).

From equations (2.13), (3.28), and (3.21), we see that, for each bounded Borel
function g:Sn−1!R, one has∫

∂′K

g(νK(x)) dHn−1(x) =
∫

Sn−1
g(v) dS(K, v). (3.30)

The theory of valuations has witnessed explosive growth during the past two decades
(see, e.g., [4]–[7], [12], [37]–[39], [47]–[51], and [76]–[77]). Let M(Sn−1) denote the set of
Borel measures on Sn−1. That the dual area measures are valuations whose codomain
is M(Sn−1) is easily seen. But it turns out that the dual curvature measures are valu-
ations (whose codomain is M(Sn−1)) as well. We now show that, for fixed index q, the
functional that associates the body K∈Kn

o with C̃q(K, ·)∈M(Sn−1) is a valuation.

Lemma 3.9. For each real q, the dual curvature measure C̃q:Kn
o!M(Sn−1) is a

valuation; i.e., if K, L∈Kn
o are such that K∪L∈Kn

o , then

C̃q(K, ·)+C̃q(L, ·) = C̃q(K∩L, ·)+C̃q(K∪L, ·).

Proof. Since for Q∈Kn
o , the function rQ :Sn−1!∂Q is a bijection, we have the fol-

lowing disjoint partition of Sn−1=Ω0∪ΩL∪ΩK , where

Ω0 = r−1
K (∂K∩∂L) = r−1

L (∂K∩∂L) = {u∈Sn−1 : %K(u) = %L(u)},

ΩL = r−1
K (∂K∩intL) = r−1

L ((Rn\K)∩∂L) = {u∈Sn−1 : %K(u) <%L(u)},

ΩK = r−1
K (∂K∩(Rn\L))= r−1

L (intK∩∂L) = {u∈Sn−1 : %K(u) >%L(u)}.
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Since K∪L is a convex body, for Hn−1-almost all u∈Ω0 we have

%K(u) = %L(u) = %K∩L(u) = %K∪L(u),

αK(u) =αL(u) =αK∩L(u) =αK∪L(u);

For Hn−1-almost all u∈ΩL we have

%K(u) = %K∩L(u), %L(u) = %K∪L(u),

αK(u) =αK∩L(u), αL(u) =αK∪L(u);

For Hn−1-almost all u∈ΩK we have

%K(u) = %K∪L(u), %L(u) = %K∩L(u),

αK(u) =αK∪L(u), αL(u) =αK∩L(u).

From this it follows that if g:Sn−1!R is continuous, then∫
Ω0

g(αK(u))%q
K(u) du =

∫
Ω0

g(αK∩L(u))%q
K∩L(u) du,∫

ΩL

g(αK(u))%q
K(u) du =

∫
ΩL

g(αK∩L(u))%q
K∩L(u) du,∫

ΩK

g(αK(u))%q
K(u) du =

∫
ΩK

g(αK∪L(u))%q
K∪L(u) du,

and ∫
Ω0

g(αL(u))%q
L(u) du =

∫
Ω0

g(αK∪L(u))%q
K∪L(u) du,∫

ΩL

g(αL(u))%q
L(u) du =

∫
ΩL

g(αK∪L(u))%q
K∪L(u) du,∫

ΩK

g(αL(u))%q
L(u) du =

∫
ΩK

g(αK∩L(u))%q
K∩L(u) du.

Summing up both sides of the integrals above gives∫
Sn−1

g(αK(u))%q
K(u) du+

∫
Sn−1

g(αL(u))%q
L(u) du

=
∫

Sn−1
g(αK∩L(u))%q

K∩L(u) du+
∫

Sn−1
g(αK∪L(u))%q

K∪L(u) du.

Since this holds for each continuous g, we may appeal to (3.20) to obtain the desired
valuation property.
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4. Variational formulas for the dual quermassintegrals

When using the variational method to solve the Minkowski problem, one of the cru-
cial steps is to establish the variational formula for volume which gives an integral of a
continuous function on the unit sphere integrated with respect to the surface area mea-
sure. The variational formula is the key to transforming the Minkowski problem into
the Lagrange equation of an optimization problem. Since the variational method needs
to deal with convex bodies that are not necessarily smooth, finding variational formulas
of geometric invariants of convex bodies is difficult. In fact, for either quermassintegrals
or dual quermassintegrals, a variational formula was known for only one—namely, the
volume. This variational formula was established by Aleksandrov.

Let K∈Kn
o and let f :Sn−1!R be continuous. For some δ>0, let ht:Sn−1!(0,∞)

be defined, for v∈Sn−1 and each t∈(−δ, δ), by

ht(v) =hK(v)+tf(v)+o(t, v),

where o(t, ·):Sn−1!R is continuous and o(t, ·)/t!0, as t!0, uniformly on Sn−1.
Let [[[ht]]] be the Wulff shape determined by ht. Aleksandrov’s variational formula

states that

lim
t!0

V ([[[ht]]])−V (K)
t

=
∫

Sn−1
f(v) dS(K, v).

The proof makes critical use of the Minkowski mixed-volume inequality. Such a varia-
tional formula is not known for the surface area or the other quermassintegrals.

In this section we shall take a completely different approach. Instead of considering
Wulff shapes, we consider convex hulls. We establish variational formulas for all dual
quermassintegrals. In particular, Aleksandrov’s variational principle will be established
without using the Minkowski mixed-volume inequality.

Let Ω⊂Sn−1 be a closed set that is not contained in any closed hemisphere of
Sn−1. Let %0: Ω!(0,∞) and g: Ω!R be continuous. For some δ>0, let %t: Ω!(0,∞)
be defined, for u∈Ω and each t∈(−δ, δ), by

log %t(u) = log %0(u)+tg(u)+o(t, u), (4.1)

where o(t, ·): Ω!R is continuous on Ω and o(t, ·)/t!0, as t!0, uniformly on Ω. Recall
that the logarithmic family of convex hulls 〈〈〈%t〉〉〉 of (%0, g), indexed by t∈(−δ, δ), is just
the family of convex bodies conv{%t(u)u:u∈Ω}, indexed by t∈(−δ, δ).

Since %t!%0 uniformly on Ω, for the associated bodies we have

〈〈〈%t〉〉〉! 〈〈〈%0〉〉〉, as t! 0, (4.2)
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in Kn
o . But (2.26) tells us that, for each v∈Sn−1,

h〈〈〈%t〉〉〉(v) =max
u∈Ω

(u·v)%t(u) (4.3)

for each t∈(−δ, δ).
The following lemma shows that the support functions of a logarithmic family of

convex hulls are differentiable with respect to the variational variable.

Lemma 4.1. Let Ω⊂Sn−1 be a closed set that is not contained in any closed hemi-
sphere of Sn−1. Let %0: Ω!(0,∞) and g: Ω!R be continuous. If 〈〈〈%t〉〉〉 is a logarithmic
family of convex hulls of (%0, g), then

lim
t!0

log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)
t

= g(α∗
〈〈〈%0〉〉〉(v)), (4.4)

for all v∈Sn−1\η〈〈〈%0〉〉〉; i.e., for all regular normals v of 〈〈〈%0〉〉〉. Hence (4.4) holds a.e. with
respect to spherical Lebesgue measure. Moreover, there exist δ0>0 and M>0 so that

|log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)|6M |t|, (4.5)

for all v∈Sn−1 and all t∈(−δ0, δ0).

Proof. Recall that η〈〈〈%0〉〉〉 is the set of measure zero off of which ααα∗
〈〈〈%0〉〉〉 is single valued,

and by (2.17) the function α∗
〈〈〈%0〉〉〉:S

n−1\η〈〈〈%0〉〉〉!Sn−1 is defined by α∗
〈〈〈%0〉〉〉=r−1

〈〈〈%0〉〉〉�x〈〈〈%0〉〉〉 or
ααα∗
〈〈〈%0〉〉〉(v)={α∗

〈〈〈%0〉〉〉(v)}.
Let v∈Sn−1\η〈〈〈%0〉〉〉 be fixed throughout the proof. From (4.3) we know that there

exist ut∈Ω such that

h〈〈〈%t〉〉〉(v) = (ut ·v)%t(ut), while h〈〈〈%t〉〉〉(v) > (u·v)%t(u), (4.6)

for all u∈Ω. Note that ut ·v>0, for all t.
From (4.6) we have h〈〈〈%0〉〉〉(v)=(u0 ·v) %0(u0), and hence we know that

%0(u0)u0 ∈H〈〈〈%0〉〉〉(v) = {x∈Rn :x·v =h〈〈〈%0〉〉〉(v)}.

But %0(u0)u0∈〈〈〈%0〉〉〉, so %0(u0)u0∈∂〈〈〈%0〉〉〉, and hence u0∈ααα∗
〈〈〈%0〉〉〉(v)={α∗

〈〈〈%0〉〉〉(v)}. Thus

u0 =α∗
〈〈〈%0〉〉〉(v). (4.7)

We first show that
lim
t!0

ut =u0, (4.8)
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where the ut come from (4.6); i.e., are such that h〈〈〈%t〉〉〉(v)=(ut ·v)%t(ut). To see this, we
consider any sequence tk!0 and show that the bounded sequence utk

in the compact
set Ω converges to u0. It is sufficient to show that any convergent subsequence of utk

converges to u0. Pick a convergent subsequence of utk
, which we also denote by utk

, such
that

utk
!u′ ∈Ω.

Since %tk
!%0 uniformly on Ω,

h〈〈〈%tk
〉〉〉(v) = (utk

·v) %tk
(utk

)! (u′ ·v) %0(u′). (4.9)

The fact that %tk
!%0 uniformly on Ω implies that 〈〈〈%tk

〉〉〉!〈〈〈%0〉〉〉 in Kn
o , and hence that

h〈〈〈%tk
〉〉〉(v)!h〈〈〈%0〉〉〉(v), which with (4.9) shows that h〈〈〈%0〉〉〉(v)=(u′ ·v) %0(u′). It follows that

%0(u′)u′ ∈H〈〈〈%0〉〉〉(v) = {x∈Rn :x·v =h〈〈〈%0〉〉〉(v)}.

But %0(u′)u′∈〈〈〈%0〉〉〉, so %0(u′)u′∈∂〈〈〈%0〉〉〉, and hence u′∈ααα∗
〈〈〈%0〉〉〉(v)={α∗

〈〈〈%0〉〉〉(v)}. But from
(4.7) we know that α∗

〈〈〈%0〉〉〉(v)=u0, and thus u′=u0. This establishes (4.8).
From (2.1) we see that, for all t,

h〈〈〈%0〉〉〉(v) > (ut ·v) %〈〈〈%0〉〉〉(ut). (4.10)

Since 〈〈〈%0〉〉〉=conv{%0(u)u:u∈Ω}, we have

%〈〈〈%0〉〉〉(ut) > %0(ut). (4.11)

From (4.6), (4.10), (4.11), and (4.1), we have

log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v) = log %t(ut)+log(ut ·v)−log h〈〈〈%0〉〉〉(v)

6 log %t(ut)−log %〈〈〈%0〉〉〉(ut)

6 log %t(ut)−log %0(ut)

= tg(ut)+o(t, ut).

(4.12)

Since 〈〈〈%t〉〉〉=conv{%t(u)u:u∈Ω}, it follows that %〈〈〈%t〉〉〉(u)>%t(u) for all u∈Ω. Using
the case t=0 in (4.6), followed by the fact that h〈〈〈%t〉〉〉(v)>(u0 ·v)%t(u0), and then again
(4.6) and (4.1), we get

log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v) = log h〈〈〈%t〉〉〉(v)−log %0(u0)−log(u0 ·v)

> log %t(u0)−log %0(u0)

= tg(u0)+o(t, u0).

(4.13)
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Let M0=maxu∈Ω |g(u)|. Since o(t, ·)/t!0, as t!0, uniformly on Ω, we may choose
δ0>0 so that for all t∈(−δ0, δ0) we have |o(t, ·)|6|t| on Ω. From (4.12), (4.13), and the
definition of M0, we immediately see that

|log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)|6 (M0+1)|t|. (4.14)

Combining (4.12) and (4.13), we have

0 6 log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)−tg(u0)−o(t, u0) 6 t(g(ut)−g(u0))+o(t, ut)−o(t, u0).

When t>0, this gives

o(t, u0)
t

6
log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)

t
−g(u0) 6 g(ut)−g(u0)+

o(t, ut)
t

.

From (4.8) and the continuity of g, we can conclude that

lim
t!0+

log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)
t

= g(u0). (4.15)

On the other hand, when t<0, we have

o(t, u0)
t

>
log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)

t
−g(u0) > g(ut)−g(u0)+

o(t, ut)
t

,

from which we can also conclude that

lim
t!0−

log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)
t

= g(u0). (4.16)

Together with (4.7), we now obtain the desired result:

lim
t!0

log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)
t

= g(u0) = g(α∗
〈〈〈%0〉〉〉(v)).

Now (4.14) holds for all v∈Sn−1\η〈〈〈%0〉〉〉, i.e. almost everywhere on Sn−1 with respect
to spherical Lebesgue measure. Since the support functions in (4.14) are continuous on
Sn−1, it follows that (4.14) holds for all v∈Sn−1, which gives (4.5).

Lemma 4.2. Let Ω⊂Sn−1 be a closed set that is not contained in any closed hemi-
sphere of Sn−1. Let %0: Ω!(0,∞) and g: Ω!R be continuous. If 〈〈〈%t〉〉〉 is a logarithmic
family of convex hulls of (%0, g), then, for q∈R,

lim
t!0

h−q
〈〈〈%t〉〉〉(v)−h−q

〈〈〈%0〉〉〉(v)

t
=−qh−q

〈〈〈%0〉〉〉(v)g(α∗
〈〈〈%0〉〉〉(v)), (4.17)

for all v∈Sn−1\η〈〈〈%0〉〉〉. Moreover, there exist δ0>0 and M>0 such that

|h−q
〈〈〈%t〉〉〉(v)−h−q

〈〈〈%0〉〉〉(v)|6M |t|, (4.18)

for all v∈Sn−1 and all t∈(−δ0, δ0).
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Proof. Obviously,

lim
t!0

h−q
〈〈〈%t〉〉〉(v)−h−q

〈〈〈%0〉〉〉(v)

t
=−qh−q

〈〈〈%0〉〉〉(v) lim
t!0

log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)
t

,

provided the limit on the right exists. Thus, Lemma 4.1 gives (4.17).
Since 〈〈〈%0〉〉〉 is a convex body in Kn

o and 〈〈〈%t〉〉〉!〈〈〈%0〉〉〉 as t!0, there exist m0,m1∈(0,∞)
and δ1>0 such that

0 <m0 <h〈〈〈%t〉〉〉 <m1 on Sn−1,

for each t∈(−δ1, δ1). From this it follows that there exists M1>1 so that

0 <
h−q
〈〈〈%t〉〉〉

h−q
〈〈〈%0〉〉〉

<M1 on Sn−1.

It is easily seen that s−1>log s whenever s∈(0, 1), whereas s−16M1 log s whenever
s∈[1,M1]. Thus,

|s−1|6M1|log s| when s∈ (0,M1).

It follows that ∣∣∣∣h−q
〈〈〈%t〉〉〉

h−q
〈〈〈%0〉〉〉

−1
∣∣∣∣ 6M1

∣∣∣∣log
h−q
〈〈〈%t〉〉〉

h−q
〈〈〈%0〉〉〉

∣∣∣∣,
that is,

|h−q
〈〈〈%t〉〉〉−h−q

〈〈〈%0〉〉〉|6h−q
〈〈〈%0〉〉〉M1|log h〈〈〈%t〉〉〉−log h〈〈〈%0〉〉〉|6

M1

min{mq
0,m

q
1}
|log h〈〈〈%t〉〉〉−log h〈〈〈%0〉〉〉|

on Sn−1, whenever t∈(−δ1, δ1). This and (4.5) give (4.18).

The derivative of radial functions of Wulff shapes is contained in the following lemma.

Lemma 4.3. Let Ω⊂Sn−1 be a closed set not contained in any closed hemisphere of
Sn−1. Let h0: Ω!(0,∞) and f : Ω!R be continuous. If [[[ht]]] is a logarithmic family of
Wulff shapes associated with (h0, f), where

log ht(v) = log h0(v)+tf(v)+o(t, v)

for v∈Ω, then for almost all u∈Sn−1, with respect to spherical Lebesgue measure,

lim
t!0

log %[[[ht]]](u)−log %[[[h0]]](u)
t

= f(α[[[h0]]](u)).
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Proof. Let %t=1/ht. Then

log %t(v) = log %0(v)−tf(v)−o(t, v),

and from Lemma 4.1 we know that

lim
t!0

log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)
t

=−f(α∗
〈〈〈%0〉〉〉(v)) (4.19)

for almost all v∈Sn−1, with respect to spherical Lebesgue measure. From Lemma 2.8 we
have

[[[ht]]] = 〈〈〈%t〉〉〉∗. (4.20)

From (4.20) and (2.3) we have

log %[[[ht]]]−log %[[[h0]]] =−(log h〈〈〈%t〉〉〉−log h〈〈〈%0〉〉〉). (4.21)

But (4.20), when combined with Lemma 2.6, gives

α∗
〈〈〈%t〉〉〉 =α〈〈〈%t〉〉〉∗ =α[[[ht]]] (4.22)

almost everywhere on Sn−1, with respect to spherical Lebesgue measure.

When (4.19) is combined with (4.21) and (4.22), we obtain the desired result.

The following theorem gives a variational formula for a dual quermassintegral in
terms of its associated dual curvature measure and polar convex hull.

Theorem 4.4. Let Ω⊂Sn−1 be a closed set not contained in any closed hemisphere
of Sn−1, and %0: Ω!(0,∞) and g: Ω!R be continuous. If 〈〈〈%t〉〉〉 is a logarithmic family
of convex hulls of (%0, g), then, for q 6=0,

lim
t!0

Ṽq(〈〈〈%t〉〉〉∗)−Ṽq(〈〈〈%0〉〉〉∗)
t

=−q

∫
Ω

g(u) dC̃q(〈〈〈%0〉〉〉∗, u),

lim
t!0

log
V0(〈〈〈%t〉〉〉∗)−log
V0(〈〈〈%0〉〉〉∗)
t

=− 1
ωn

∫
Ω

g(u) dC̃0(〈〈〈%0〉〉〉∗, u),

or equivalently, for each q ∈R,

d

dt
log
Vq(〈〈〈%t〉〉〉∗)

∣∣∣∣
t=0

=− 1

Ṽq(〈〈〈%0〉〉〉∗)

∫
Ω

g(u) dC̃q(〈〈〈%0〉〉〉∗, u).
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Proof. Abbreviate η〈〈〈%0〉〉〉 by η0. Recall that η0 is the set of spherical Lebesgue measure
zero that consists of the complement, in Sn−1, of the regular normal vectors of the convex
body 〈〈〈%0〉〉〉=conv{%0(u)u:u∈Ω}. Recall also that the continuous function

α∗
〈〈〈%0〉〉〉:S

n−1\η0 −!Sn−1

is well defined by α∗
〈〈〈%0〉〉〉(v)∈ααα∗

〈〈〈%0〉〉〉(v)={α∗
〈〈〈%0〉〉〉(v)} for all v∈Sn−1\η0.

Let v∈Sn−1\η0. To see that ααα∗
〈〈〈%0〉〉〉(v)⊂Ω, let

h〈〈〈%0〉〉〉(v) =max
u∈Ω

%0(u)u·v = %0(u0)u0 ·v

for some u0∈Ω. But this means that

%0(u0)u0 ∈H〈〈〈%0〉〉〉(v),

and hence %0(u0)u0∈∂〈〈〈%0〉〉〉 because in addition to %0(u0)u0 obviously belonging to 〈〈〈%0〉〉〉,
it also belongs to H〈〈〈%0〉〉〉(v). But v is a regular normal vector of 〈〈〈%0〉〉〉, and therefore
α∗
〈〈〈%0〉〉〉(v)=u0∈Ω. Thus,

ααα∗
〈〈〈%0〉〉〉(S

n−1\η0)⊂Ω. (4.23)

But (4.23) and Lemma 2.5 now yield the fact that

ααα〈〈〈%0〉〉〉∗(S
n−1\η0)⊂Ω. (4.24)

As Ω is closed, we can, by using the Tietze extension theorem, extend the continuous
function g: Ω!R to a continuous function ĝ:Sn−1!R. Therefore, using (4.24) we see
that

g(α〈〈〈%0〉〉〉∗(v))= (ĝ1Ω)(α〈〈〈%0〉〉〉∗(v)) (4.25)

for v∈Sn−1\η0.
Using (2.6), (2.9), (2.3), the fact that η0 has measure zero, (4.18), the dominated

convergence theorem, (4.17), Lemma 2.6, (2.3), (4.25), (3.20), and again (4.25), we have

lim
t!0

Ṽq(〈〈〈%t〉〉〉∗)−Ṽq(〈〈〈%0〉〉〉∗)
t

= lim
t!0

1
n

∫
Sn−1

%q
〈〈〈%t〉〉〉∗(v)−%q

〈〈〈%0〉〉〉∗(v)

t
dv

= lim
t!0

1
n

∫
Sn−1

h−q
〈〈〈%t〉〉〉(v)−h−q

〈〈〈%0〉〉〉(v)

t
dv

=
1
n

∫
Sn−1\η0

lim
t!0

h−q
〈〈〈%t〉〉〉(v)−h−q

〈〈〈%0〉〉〉(v)

t
dv

=− q

n

∫
Sn−1\η0

g(α∗
〈〈〈%0〉〉〉(v))h−q

〈〈〈%0〉〉〉(v) dv
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=− q

n

∫
Sn−1\η0

g(α〈〈〈%0〉〉〉∗(v))%q
〈〈〈%0〉〉〉∗(v) dv

=− q

n

∫
Sn−1

(ĝ1Ω)(α〈〈〈%0〉〉〉∗(v))%q
〈〈〈%0〉〉〉∗(v) dv

=−q

∫
Sn−1

(ĝ1Ω)(u) dC̃q(〈〈〈%0〉〉〉∗, u)

=−q

∫
Ω

g(u) dC̃q(〈〈〈%0〉〉〉∗, u).

From (2.8), (2.9), (2.3), the fact that η0 has measure zero together with Lemma 4.1,
Lemma 2.6, (4.25), (3.20), and again (4.25), we have

lim
t!0

log
V0(〈〈〈%t〉〉〉∗)−log
V0(〈〈〈%0〉〉〉∗)
t

= lim
t!0

1
nωn

∫
Sn−1

log %〈〈〈%t〉〉〉∗(v)−log %〈〈〈%0〉〉〉∗(v)
t

dv

=− lim
t!0

1
nωn

∫
Sn−1

log h〈〈〈%t〉〉〉(v)−log h〈〈〈%0〉〉〉(v)
t

dv

=− 1
nωn

∫
Sn−1\η0

g(α∗
〈〈〈%0〉〉〉(v)) dv

=− 1
nωn

∫
Sn−1\η0

g(α〈〈〈%0〉〉〉∗(v)) dv

=− 1
nωn

∫
Sn−1

(ĝ1Ω)(α〈〈〈%0〉〉〉∗(v)) dv

=− 1
ωn

∫
Sn−1

(ĝ1Ω)(u) dC̃0(〈〈〈%0〉〉〉∗, u)

=− 1
ωn

∫
Ω

g(u) dC̃0(〈〈〈%0〉〉〉∗, u).

The following theorem gives a variational formula for a dual quermassintegral in
terms of its associated dual curvature measure and Wulff shapes.

Theorem 4.5. Let Ω⊂Sn−1 be a closed set not contained in any closed hemisphere
of Sn−1. If h0: Ω!(0,∞) and f : Ω!R are continuous, and [[[ht]]] is a logarithmic family
of Wulff shapes associated with (h0, f), then, for q 6=0,

lim
t!0

Ṽq([[[ht]]])−Ṽq([[[h0]]])
t

= q

∫
Ω

f(v) dC̃q([[[h0]]], v),

and

lim
t!0

log
V0([[[ht]]])−log
V0([[[h0]]])
t

=
1

ωn

∫
Ω

f(v) dC̃0([[[h0]]], v),

or equivalently, for all q∈R,

d

dt
log
Vq([[[ht]]])

∣∣∣∣
t=0

=
1

Ṽq([[[h0]]])

∫
Ω

f(v) dC̃q([[[h0]]], v).
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Proof. The logarithmic family of Wulff shapes [[[ht]]] is defined as the Wulff shape of
ht, where ht is given by

log ht = log h0+tf+o(t, ·).

Let %t=1/ht. Then
log %t = log %0−tf−o(t, ·).

Let 〈〈〈%t〉〉〉 be the logarithmic family of convex hulls associated with (%0,−f). But from
Lemma 2.8 we know that

[[[ht]]] = 〈〈〈%t〉〉〉∗,

and the desired conclusions now follow from Theorem 4.4.

The variational formulas above imply variational formulas for dual quermassintegrals
of convex hull perturbations of a convex body in terms of dual curvature measures.

Let K∈Kn
o and f :Sn−1!R be continuous. We shall write [[[K, f, t]]] for the Wulff

shape [[[ht]]] where ht:Sn−1!R is given by

log ht = log hK +tf+o(t, ·).

If K∈Kn
o and g:Sn−1!R is continuous, we shall write 〈〈〈K, g, t〉〉〉 for the convex hull 〈〈〈%t〉〉〉,

where %t:Sn−1!R is given by

log %t = log %K +tg+o(t, ·).

Corollary 4.6. Let K∈Kn
o and g:Sn−1!R be continuous. Then, for q 6=0,

lim
t!0

Ṽq(〈〈〈K∗, g, t〉〉〉∗)−Ṽq(K)
t

=−q

∫
Sn−1

g(v) dC̃q(K, v)

and

lim
t!0

log
V0(〈〈〈K∗, g, t〉〉〉∗)−log
V0(K)
t

=− 1
ωn

∫
Sn−1

g(v) dC̃0(K, v),

or equivalently, for all q∈R,

d

dt
log
Vq(〈〈〈K∗, g, t〉〉〉∗)

∣∣∣∣
t=0

=− 1

Ṽq(K)

∫
Sn−1

g(v) dC̃q(K, v).

Proof. In Theorem 4.4, let %0=1/hK =%K∗ . Then 〈〈〈%t〉〉〉∗=〈〈〈K∗, g, t〉〉〉∗, and in particu-
lar, from (2.25) we have 〈〈〈%0〉〉〉∗=〈〈〈%K∗〉〉〉∗=K∗∗=K.

The variational formulas for convex hulls above imply variational formulas for Wulff
shapes.
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Corollary 4.7. Let K∈Kn
o and f :Sn−1!R be continuous. Then, for q 6=0,

lim
t!0

Ṽq([[[K, f, t]]])−Ṽq(K)
t

= q

∫
Sn−1

f(v) dC̃q(K, v)

and

lim
t!0

log
V0([[[K, f, t]]])−log
V0(K)
t

=
1

ωn

∫
Sn−1

f(v) dC̃0(K, v),

or equivalently, for all q∈R,

d

dt
log
Vq([[[K, f, t]]])

∣∣∣∣
t=0

=
1

Ṽq(K)

∫
Sn−1

f(v) dC̃q(K, v).

Proof. The logarithmic family of Wulff shapes [[[K, f, o, t]]] is defined by the Wulff
shape [[[ht]]], where

log ht = log hK +tf+o(t, ·).

This, and the fact that 1/hK =%K∗ , allows us to define

log %∗t = log %K∗−tf−o(t, ·),

and %∗t will generate a logarithmic family of convex hulls 〈〈〈K∗,−f,−o, t〉〉〉. Since %∗t =1/ht,
Lemma 2.8 gives

[[[K, f, o, t]]] = 〈〈〈K∗,−f,−o, t〉〉〉∗.

The lemma now follows directly from Corollary 4.6.

The following gives variational formulas for dual quermassintegrals of Minkowski
combinations.

Corollary 4.8. Let K∈Kn
o and L be a compact convex set in Rn. Then, for q 6=0,

lim
t!0+

Ṽq(K+tL)−Ṽq(K)
t

= q

∫
Sn−1

hL(v)
hK(v)

dC̃q(K, v),

and

lim
t!0+

log
V0(K+tL)−log
V0(K)
t

=
1

ωn

∫
Sn−1

hL(v)
hK(v)

dC̃0(K, v),

or equivalently, for all q∈R,

d

dt
log
Vq(K+tL)

∣∣∣∣
t=0+

=
1

Ṽq(K)

∫
Sn−1

hL(v)
hK(v)

dC̃q(K, v).
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Proof. From (2.4), we have

hK+tL =hK +thL. (4.26)

From (4.26), it follows immediately that, for sufficiently small t>0,

log hK+tL = log hK +t
hL

hK
+o(t, ·).

Since K and L are convex, the Wulff shape [[[hK+tL]]]=K+tL. The desired result now
follows directly from Corollary 4.7.

The following variational formula of Aleksandrov for the volume of a convex body is
a critical ingredient in the solution of the classical Minkowski problem. The proof given
by Aleksandrov depends on the Minkowski mixed-volume inequality, see Schneider [75,
Lemma 7.5.3]. The proof presented below is different and does not depend on inequalities
for mixed volumes.

Corollary 4.9. Let Ω⊂Sn−1 be a closed set not contained in any closed hemisphere
of Sn−1. Let h0: Ω!(0,∞) and f : Ω!R be continuous, and let δ0>0. If for each
t∈(−δ0, δ0) the function ht: Ω!(0,∞) is defined by

ht =h0+tf+o(t, ·), (4.27)

where o(t, ·) is continuous in Ω and limt!0 o(t, ·)/t=0 uniformly in Ω, and [[[ht]]] is the
Wulff shape of ht, then

lim
t!0

V ([[[ht]]])−V ([[[h0]]])
t

=
∫

Ω

f(v) dS([[[h0]]], v).

Proof. From (4.27), it follows immediately that, for sufficiently small t,

log ht(v) = log h0(v)+t
f(v)
h0(v)

+o(t, v).

Since Ṽn=V , the case q=n in Theorem 4.5 gives

lim
t!0

V ([[[ht]]])−V ([[[h0]]])
t

=n

∫
Ω

f(v)
h0(v)

dC̃n([[[h0]]], v).

But from (3.28) we know that, on Sn−1,

dC̃n([[[h0]]], ·) = dV[[[h0]]] =
1
n

h[[[h0]]] dS([[[h0]]], ·) =
1
n

h0 dS([[[h0]]], ·).

The last of these equalities follows from the well-known fact that the set of points on Ω
where h[[[h0]]] 6=h0 has S([[[h0]]], ·)-measure zero (see statement (7.100) in Schneider [75]).
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5. Minkowski problems associated with quermassintegrals
and dual quermassintegrals

Roughly speaking, Minkowski problems are characterization problems of the differentials
of geometric functionals of convex bodies. Two families of fundamental geometric func-
tionals of convex bodies are quermassintegrals and dual quermassintegrals. Minkowski
problems associated with quermassintegrals have a long history and have attracted much
attention from convex geometry, differential geometry, and partial differential equations.
We first mention these Minkowski problems, and then pose a Minkowski problem for
dual quermassintegrals, that we call the dual Minkowski problem.

Area measures come from variations of quermassintegrals and can be viewed as differ-
entials of quermassintegrals. The Minkowski problem associated with quermassintegrals
is the following.

The Minkowski problem for area measures. Given a finite Borel measure µ on the
unit sphere Sn−1 and an integer 16i6n−1, what are necessary and sufficient conditions
for the existence of a convex body K in Rn satisfying

Si(K, ·) =µ ?

The case of i=n−1 is the classical Minkowski problem. The case of i=1 is the
classical Christoffel problem.

As is established in previous sections, dual curvature measures come from varia-
tions of dual quermassintegrals and can be viewed as differentials of dual quermassinte-
grals. Thus, the Minkowski problem associated with dual quermassintegrals is dual to
the Minkowski problem for area measures which is associated with quermassintegrals.
Therefore, it is natural to pose the following dual Minkowski problem.

The Minkowski problem for dual curvature measures. Given a finite Borel mea-
sure µ on the unit sphere Sn−1 and a real number q, what are necessary and sufficient
conditions for the existence of a convex body K∈Kn

o satisfying

C̃q(K, ·) =µ ?

Now, (3.28) reminds us that the nth dual curvature measure C̃n(K, ·) is the cone-
volume measure VK . So, the case q=n of the dual Minkowski problem is the logarithmic
Minkowski problem for cone-volume measure. Also (3.29) reminds us that the zeroth
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dual curvature measure C̃0(K, ·) is Aleksandrov’s integral curvature of K∗ (with the
constant factor 1/n). Thus, the case q=0 of the dual Minkowski problem is the Aleksan-
drov problem. The logarithmic Minkowski problem and the Aleksandrov problem were
thought to be two entirely different problems. It is amazing that they are now seen to
be special cases of the dual Minkowski problem.

We will use the variational method to obtain a solution to the dual Minkowski prob-
lem for the symmetric case. The first crucial step is to associate the dual Minkowski
problem with a maximization problem. By using the variational formulas for dual quer-
massintegrals, we can transform the existence problem for the Minkowski problem for
dual curvature measures into a maximization problem.

Let µ be a finite Borel measure on Sn−1 and let K∈Kn
o . Define

Φµ(K) =− 1
|µ|

∫
Sn−1

log hK(v) dµ(v)+log
Vq(K). (5.1)

Recall that 
Vq(K) is the normalized (n−q)-th dual quermassintegral of K. Since 
Vq is
homogeneous of degree 1, it follows that Φµ is homogeneous of degree 0; i.e., for Q∈Kn

o

and λ>0,

Φµ(λQ) =Φµ(Q). (5.2)

The following lemma shows that a solution to the dual Minkowski problem for the
measure µ is also a solution to a maximization problem for the functional Φµ.

Lemma 5.1. Let q∈R and µ be a finite even Borel measure on Sn−1 with |µ|>0.
When q=0, we further require that |µ|=ωn. If K∈Kn

e with Ṽq(K)=|µ| is such that

sup{Φµ(Q) : Ṽq(Q) = |µ| and Q∈Kn
e }=Φµ(K),

then

C̃q(K, ·) =µ.

Proof. On C+
e (Sn−1), the class of strictly positive continuous even functions on

Sn−1, define the functional Φ:C+
e (Sn−1)!R by letting, for each f∈C+

e (Sn−1),

Φ(f) =
1
|µ|

∫
Sn−1

log f dµ+log
Vq(〈〈〈f〉〉〉∗). (5.3)

Note that since f is even, it follows that 〈〈〈f〉〉〉=conv{f(u)u:u∈Sn−1}∈Kn
e . We first observe

that Φ is homogeneous of degree 0, in that for all λ>0 and all f∈C+
e (Sn−1),

Φ(λf) =Φ(f).
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To see this, first recall the fact that, from its definition, 
Vq is obviously homogeneous of
degree 1, while clearly 〈〈〈λf〉〉〉=λ〈〈〈f〉〉〉 and thus 〈〈〈λf〉〉〉∗=λ−1〈〈〈f〉〉〉∗.

To see that Φ:C+
e (Sn−1)!R is continuous, recall that if f0, f1, ...∈C+

e (Sn−1) are
such that limk!∞ fk=f0, uniformly on Sn−1, then 〈〈〈fk〉〉〉!〈〈〈f0〉〉〉, and thus 〈〈〈fk〉〉〉∗!〈〈〈f0〉〉〉∗.
Since 
Vq:Kn

o!(0,∞) is continuous, the continuity of Φ follows.
Consider the maximization problem

sup{Φ(f) : f ∈C+
e (Sn−1)}. (5.4)

For the convex hull 〈〈〈f〉〉〉=conv{f(u)u:u∈Sn−1}, of f∈C+
e (Sn−1), we clearly have

%〈〈〈f〉〉〉>f and also 〈〈〈%〈〈〈f〉〉〉〉〉〉=〈〈〈f〉〉〉, from (2.25), and thus 〈〈〈%〈〈〈f〉〉〉〉〉〉
∗=〈〈〈f〉〉〉∗. Thus, directly from

(5.3), we see that

Φ(f) 6Φ(%〈〈〈f〉〉〉).

This tells us that in searching for the supremum in (5.4) we can restrict our attention to
the radial functions of bodies in Kn

e ; i.e.,

sup{Φ(f) : f ∈C+
e (Sn−1)}=sup{Φ(%Q) :Q∈Kn

e }.

Therefore, a convex body K0∈Kn
e satisfies

Φµ(K0) = sup{Φµ(Q) :Q∈Kn
e }

if and only if

Φ(%K∗
0
) = sup{Φ(f) : f ∈C+

e (Sn−1)}.

From (5.2) we see that we can always restrict our search to bodies Q∈Kn
e for which

Ṽq(Q)=|µ|, when q 6=0. When q=0, note that Ṽ0(Q)=|µ| requires that |µ|=ωn, since
Ṽ0(Q)=ωn for all bodies Q. Thus, we can restrict our attention to bodies such that
Ṽq(Q)=|µ|.

Suppose that K0∈Kn
e is a maximizer for Φµ, or equivalently that %K∗

0
is a maximizer

for Φ; i.e.,

Φµ(K0) = sup{Φµ(Q) : Ṽq(Q) = |µ| and Q∈Kn
e }.

Fix an arbitrary continuous even function g:Sn−1!R. For δ>0 and t∈(−δ, δ), define %t

by

%t = %K∗
0
etg,

or equivalently by

log %t = log %K∗
0
+tg. (5.5)
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Let 〈〈〈%t〉〉〉=〈〈〈K∗
0 , g, t〉〉〉 be the logarithmic family of convex hulls associated with (K∗

0 , g).
Since 〈〈〈%0〉〉〉=〈〈〈%K∗

0
〉〉〉=K∗

0 , Corollary 4.6 gives

d

dt
log
Vq(〈〈〈K∗

0 , g, t〉〉〉∗)
∣∣∣∣
t=0

=− 1

Ṽq(K0)

∫
Sn−1

g(v) dC̃q(K0, v). (5.6)

From the fact that %0=%K∗
0

is a maximizer for Φ and definition (5.3), we have

0 =
d

dt
Φ(%t)

∣∣∣∣
t=0

=
d

dt

(
1
|µ|

∫
Sn−1

log %t(v) dµ(v)+log
Vq(〈〈〈K∗
0 , g, t〉〉〉∗)

)∣∣∣∣
t=0

.

This, together with (5.5) and (5.6), shows that

1
|µ|

∫
Sn−1

g(v) dµ(v)− 1

Ṽq(K0)

∫
Sn−1

g(v) dC̃q(K0, v) = 0. (5.7)

Since Ṽq(K0)=|µ|, and since (5.7) must hold for all continuous even g:Sn−1!R, we
conclude that µ=C̃q(K0, ·).

Since this paper aims at a solution to the dual Minkowski problem for origin-
symmetric convex bodies, Lemma 5.1 is stated and proved only for even measures and
origin-symmetric convex bodies. However, a similar result holds for general measures and
convex bodies that contain the origin in their interiors. The above proof works, mutatis
mutandis. However, note that the maximization problem in Lemma 5.1 may not have
a solution for a general measure and convex bodies that are not origin-symmetric. For
example, this can occur when the measure is discrete and the origin approaches one of
the vertices of the polytope, since the supremum then becomes arbitrarily large.

6. Solving the maximization problem
associated with the dual Minkowski problem

In the previous section, by using a variational argument, we showed that the existence
of a solution to a certain maximization problem would imply the existence of a solution
to the dual Minkowski problem. In this section we show that the maximization problem
does indeed have a solution. The key is to prove compactness and non-degeneracy,
that is, the convergence of a maximizing sequence of convex bodies to a convex body
(a compact convex set with non-empty interior). This requires delicate estimates of
dual quermassintegrals of polytopes and entropy-type integrals with respect to the given
measure in the dual Minkowski problem.

Throughout this section, for real p>0, we shall use p′ to denote the Hölder conjugate
of p. Also, the expression c1=c(n, k,N) will be used to mean that c1 is a “constant”
depending on only the values of n, k, and N .
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6.1. Dual quermassintegrals of cross polytopes

Let e1, ..., en be orthogonal unit vectors and a1, ..., an∈(0,∞). The convex body

P = {x∈Rn : |x·ei|6 ai for all i}

is a rectangular parallelotope centered at the origin. The parallelotope P is the Minkowski
sum of the line segments whose support functions are x 7!ai|x·ei|, and hence the support
function of P is given by

hP (x) =
n∑

i=1

ai|x·ei|,

for x∈Rn. The polar body P ∗ is a cross polytope. From (2.3) we know that the radial
function of P ∗ is given by

%P∗(x) =
1

hP (x)
=

( n∑
i=1

ai|x·ei|
)−1

for x∈Rn\{0}. From (2.6) we know that for the (n−q)-th dual quermassintegral of the
cross polytope P ∗ we have

W̃n−q(P ∗) =
1
n

∫
Sn−1

( n∑
i=1

ai|u·ei|
)−q

du. (6.1)

From (2.6) we see that, when q=n, (6.1) becomes the (well-known) volume of a
cross-polytope:

V (P ∗) =
2n

n!
(a1 ... an)−1, (6.2)

and thus ∫
Sn−1

( n∑
i=1

ai|u·ei|
)−n

du =
2n

(n−1)!
(a1 ... an)−1. (6.3)

When some of the ai are small, the dual quermassintegral W̃n−q(P ∗) becomes large.
The following lemma gives a critical estimate for the size of the dual quermassintegral.

Lemma 6.1. Let q∈(0, n] and let k be an integer such that 16k<n. Let e1, ..., en be
an orthonormal basis in Rn, and let ε0>0. If a1, ..., an∈(0,∞) with ak+1, ..., an∈(ε0,∞),
then

1
q

log
∫

Sn−1

( n∑
i=1

ai|u·ei|
)−q

du 6− 1
N

log(a1 ... ak)+c0, (6.4)

where

N =


n, when q =n,
∞, when 0 <q < 1,
θ, when 1 6 q <n,
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where θ can be chosen to be any real number such that

q−1
(n−1)q

<
1
θ

<
1
n

,

and c0>0 is

c0 =


c(k, n, ε0), when q =n,
c(q, k, n, ε0), when 0 <q < 1,
c(q, k, n, ε0, N), when 1 6 q <n.

Proof. When q=n, inequality (6.4) follows directly from (6.3).
Now consider the case where 0<q<n. Write Rn=Rk×Rn−k, with {e1, ..., ek}⊂Rk

and {ek+1, ..., en}⊂Rn−k. Consider the general spherical coordinates

u =(u2 cos ϕ, u1 sinϕ),

with u2∈Sk−1⊂Rk, u1∈Sn−k−1⊂Rn−k, and 06ϕ6 1
2π.

For spherical Lebesgue measures on Sn−1 and its subspheres we have (see [30])

du =(cos ϕ)k−1(sinϕ)n−k−1 dϕ du2 du1. (6.5)

Let

h1(u1) =
n∑

i=k+1

ai|u1 ·ei| and h2(u2) =
k∑

i=1

ai|u2 ·ei|

be the support functions of the corresponding rectangular parallelotopes in Rn−k and Rk.
Throughout N will be chosen so that N>n. Let p=N/k>1. From (6.5) and Young’s
inequality, we have∫

Sn−1

( n∑
i=1

ai|u·ei|
)−q

du =
∫

Sn−1

(
h2(u2) cos ϕ+h1(u1) sinϕ

)−q

du

6
∫ π/2

0

∫
Sn−k−1

∫
Sk−1

(p′h1(u1) sinϕ)−q/p′(ph2(u2) cos ϕ)−q/p

×(sinϕ)n−k−1(cos ϕ)k−1 dϕ du1 du2

= c2

∫
Sn−k−1

h1(u1)−q/p′ du1

∫
Sk−1

h2(u2)−q/p du2, (6.6)

where

c2 =(p′1/p′
p1/p)−q

∫ π/2

0

(sinϕ)n−k−1−q/p′(cos ϕ)k−1−q/p dϕ

=
1
2
(p′1/p′

p1/p)−q B
(

1
2

(
n−k− q

p′

)
,
1
2

(
k− q

p

))
.
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The integral above lies in (0,∞) provided that both

k− q

p
> 0 and n−k− q

p′
> 0, (6.7)

which, since N=pk, can be written as

1
N

<
1
q

and
1
N

>
1
k

(
1−n

q

)
+

1
q
. (6.8)

From 16k<n and 0<q<n, we know that

1
q

>
1
n

and
1
k

(
1−n

q

)
+

1
q

6
1

n−1

(
1−n

q

)
+

1
q

=
1

(n−1)q′
.

Thus, the inequalities in (6.8), and hence the inequalities in (6.7), will be satisfied when-
ever N can be chosen so that

1
(n−1)q′

<
1
N

<
1
n

. (6.9)

Since we are dealing with the case where 0<q<n, such a choice of N is always possible.
Note that all of this continues to hold in the cases where N=∞=p and where p=1,
mutatis mutandis.

Consider first the subcase where 16q<n. Jensen’s inequality, together with the left
inequality in (6.7), and (6.3) in Rk, gives

(
1

kωk

∫
Sk−1

h2(u2)−q/p du2

)p/q

6

(
1

kωk

∫
Sk−1

h2(u2)−k du2

)1/k

= c3(a1 ... ak)−1/k.

(6.10)
Jensen’s inequality, together with the right inequality in (6.7), and (6.3) in Rn−k, when
combined with the fact that ak+1, ..., an>ε0, gives

(∫
Sn−k−1

h1(u1)−q/p′ du1

)p′/q

6 c4

(∫
Sn−k−1

h1(u1)k−n du1

)1/(n−k)

= c5(ak+1 ... an)1/(k−n) 6 c6,

(6.11)

where c3, ..., c6 are c(q, k, n,N, ε0) constants.
Since p>1, we know that p′ is positive. Using (6.6), (6.11), and (6.10), we get

log
∫

Sn−1

( n∑
i=1

ai|u·ei|
)−q

du 6 log c2+
q

p′
log c6+

q

p
log c3+log(kωk)− q

pk
log(a1 ... ak).

Since N=pk, this gives (6.4) for the case where 16q<n.
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Finally, we treat the subcase where 0<q<1. In this case, the Hölder conjugate q′<0,
and to satisfy (6.9) we may take N to be arbitrary large. Taking the limit p!∞ (and
hence p′!1) turns (6.6) into

∫
Sn−1

( n∑
i=1

ai|u·ei|
)−q

du 6 c′2

∫
Sn−k−1

h1(u1)−q du1

∫
Sk−1

du2, (6.12)

where

c′2 =
1
2

B
(

n−k−q

2
,
k

2

)
,

which is positive and depends only on q, k, and n. In this subcase, inequalities (6.11)
become (∫

Sn−k−1
h1(u1)−q du1

)1/q

6 c′4

(∫
Sn−k−1

h1(u1)k−n du1

)1/(n−k)

= c′5(ak+1 ... an)1/(k−n) 6 c′6.

(6.13)

Thus, using (6.12) and (6.13), gives

1
q

log
∫

Sn−1

( n∑
i=1

ai|u·ei|
)−q

du 6
1
q

log c′2+log c′6+
1
q

log(kωk),

which gives (6.4) in the subcase where 0<q<1.

6.2. An elementary entropy-type inequality

As a technical tool, the following elementary entropy-type inequality is needed.

Lemma 6.2. Let N∈(0,∞) and α1, ..., αn∈(0,∞) be such that

αi+...+αn < 1− i−1
N

for all i> 1, and α1+...+αn =1. (6.14)

Then there exists a small t>0 such that

n∑
i=1

αi log ai 6
1+t

N
log(a1 ... an)+

(
1−n(1+t)

N

)
log an,

for all a1, ..., an∈(0,∞) with a16a26...6an.

Note that t=t(α1, ..., αn, N) is independent of all of the a1, ..., an∈(0,∞).
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Proof. Let t>0 be sufficiently small such that, for all 1<i6n,

αi+...+αn < 1− i−1
N

(1+t) = 1−(i−1)λ, (6.15)

where λ=(1+t)/N . Let

βi =αi−λ, for i< n, and βn =αn+(n−1)λ−1.

Let also
si =βi+...+βn, for i=1, ..., n, and sn+1 =0.

Then, not only is sn+1=0, but also

s1 =β1+...+βn =α1+...+αn−(n−1)λ+(n−1)λ−1 =0,

while, for 1<i6n,

si =βi+...+βn =αi+...+αn−(n−i+1)λ+nλ−1 =αi+...+αn+(i−1)λ−1 < 0,

by (6.15). Now,

n∑
i=1

βi log ai =
n∑

i=1

(si−si+1) log ai

=
n∑

i=1

si log ai−
n∑

i=1

si+1 log ai

=
n−1∑
i=1

si+1 log ai+1+s1 log a1−
n−1∑
i=1

si+1 log ai−sn+1 log an

=
n−1∑
i=1

si+1(log ai+1−log ai)

6 0,

since the ai are monotone non-decreasing. Therefore,

n∑
i=1

αi log ai =
n∑

i=1

(βi+λ) log ai+(1−nλ) log an

=
n∑

i=1

βi log ai+λ log(a1 ... an)+(1−nλ) log an

6
1+t

N
log(a1 ... an)+

(
1−n(1+t)

N

)
log an.
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6.3. Estimation of an entropy-type integral with respect to a measure

We first define a partition of the unit sphere. Then we use the partition to estimate an
entropy-type integral by the entropy-type finite sum treated in §6.2.

Let e1, ..., en be a fixed orthonormal basis for Rn. Relative to this basis, for each
i=1, ..., n, define Sn−i=Sn−1∩span{ei, ..., en}. For convenience, define S−1=∅.

For small δ∈(0, 1/
√

n ), define a partition of Sn−1, with respect to the orthonormal
basis e1, ..., en, by letting

Ωi,δ = {u∈Sn−1 : |u·ei|> δ, and |u·ej |<δ for j < i}, i =1, 2, ..., n. (6.16)

Explicitly,

Ω1,δ = {u∈Sn−1 : |u·e1|> δ},

Ω2,δ = {u∈Sn−1 : |u·e1|<δ, |u·e2|> δ},

Ω3,δ = {u∈Sn−1 : |u·e1|<δ, |u·e2|<δ, |u·e3|> δ},
...

Ωn,δ = {u∈Sn−1 : |u·e1|<δ, ..., |u·en−1|<δ, |u·en|> δ}.

These sets are non-empty since ei∈Ωi,δ. They are obviously disjoint. For δ∈(0, 1/
√

n )
and each u∈Sn−1, there is an ei such that |u·ei|>δ and for the smallest such i, say i0,
we will have u∈Ωi0,δ. Thus, the union of Ωi,δ covers Sn−1.

If we let

Ω′
i,δ = {u∈Sn−1 : |u·ei|> δ, and |u·ej |=0 for j < i},

Ω′′
i,δ = {u∈Sn−1 : |u·ei|> 0, and |u·ej |<δ for j < i},

then
Ω′

i,δ ⊂Ωi,δ ⊂Ω′′
i,δ. (6.17)

As δ decreases to 0, the set Ω′
i,δ increases (with respect to set inclusion) to Sn−i\Sn−i−1,

while Ω′′
i,δ decreases to Sn−i\Sn−i−1.

Suppose now that µ is a finite Borel measure on Sn−1. From the definitions of Ω′
i,δ

and Ω′′
i,δ, we conclude that

lim
δ!0+

µ(Ω′
i,δ) =µ(Sn−i\Sn−i−1)

and also

lim
δ!0+

µ(Ω′′
i,δ) =µ(Sn−i\Sn−i−1).
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This, together with (6.17), gives

lim
δ!0+

µ(Ωi,δ) =µ(Sn−i\Sn−i−1). (6.18)

It follows that, for each integer 16k6n,

lim
δ!0+

µ

( n⋃
i=k

Ωi,δ

)
= lim

δ!0+

n∑
i=k

µ(Ωi,δ) =
n∑

i=k

µ(Sn−i\Sn−i−1) =µ(Sn−k), (6.19)

where Sn−k=Sn−1∩span{ek, ..., en}.

Lemma 6.3. Let µ be a finite Borel measure on Sn−1. Let a1l, ..., anl be n sequences
in (0,∞) indexed by l=1, 2, ... . Similarly, let e1l, ..., enl be a sequence of orthonormal
bases in Rn, which converges to the orthonormal basis e1, ..., en. For each i=1, ..., n, and
small δ∈(0, 1/

√
n ), let

Ωi,δ = {u∈Sn−1 : |u·ei|> δ, and |u·ej |<δ for j < i}.

Then, for each small δ>0, there exists an integer L such that, for all l>L,

1
|µ|

∫
Sn−1

log
n∑

i=1

|u·eil|
ail

dµ(u) > log
δ

2
−

n∑
i=1

µ(Ωi,δ)
|µ|

log ail.

Proof. Since e1l, ..., enl converge to e1, ..., en, for the given δ>0, there exists an L

such that, for all l>L,
|eil−ei|< 1

2δ,

for all i. Then, for l>L and u∈Ωi,δ,

|u·eil|> |u·ei|−|u·(eil−ei)|> |u·ei|−|eil−ei|> 1
2δ (6.20)

for all i. Therefore, for l>L, by using the partition Sn−1=
⋃n

i=1 Ωi,δ, together with
(6.20), we have∫

Sn−1
log

n∑
j=1

|u·ejl|
ajl

dµ(u) =
n∑

i=1

∫
Ωi,δ

log
n∑

j=1

|u·ejl|
ajl

dµ(u)

>
n∑

i=1

∫
Ωi,δ

log
|u·eil|

ail
dµ(u)

=
n∑

i=1

∫
Ωi,δ

log |u·eil| dµ−
n∑

i=1

µ(Ωi,δ) log ail

>µ(Sn−1) log
δ

2
−

n∑
i=1

µ(Ωi,δ) log ail.
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6.4. The subspace mass inequality and non-degeneracy

Let µ be a non-zero finite Borel measure on Sn−1. Fix an ordered orthonormal basis
β={e1, ..., en} in Rn. Let ξn−i+1=span(ei, ..., en) be the subspace spanned by ei, ..., en.

Let q∈[1, n]. We will say that µ satisfies the q-th subspace mass inequality with
respect to the basis β if

µ(Sn−1∩ξn−i)
|µ|

< 1− i

(n−1)q′
(6.21)

for all positive i<n. We will say that µ satisfies the q-th subspace mass inequality if it
does so with respect to every orthonormal basis.

For q∈(0, 1), we will say that µ satisfies the q-th subspace mass inequality with respect
to the basis β if

µ(Sn−1∩ξn−1)
|µ|

< 1, (6.22)

and if this is the case for every orthonormal basis, we shall say that µ satisfies the q-th
subspace mass inequality.

When q=1, obviously q′=∞, and thus the measure µ satisfies the qth subspace mass
inequality (6.21) if

µ(Sn−1∩ξn−i)
|µ|

< 1

for all positive i<n and each basis β. Here, obviously the case for i=1 implies all the
cases for i<n. Observe that this is equivalent to the definition for q∈(0, 1).

When q=n, the subspace mass inequality (6.21) is also called the strict subspace
concentration condition, see [14],

µ(Sn−1∩ξ)
|µ|

<
dim(ξ)

n

for each subspace ξ.
The following lemma will be used to show that the limit of a maximizing sequence,

for the maximization problem associated with the dual Minkowski problem, will not be
a degenerate compact convex set provided that the given measure satisfies the subspace
mass inequality.

Lemma 6.4. Let µ be a non-zero finite Borel measure on Sn−1 and q∈(0, n]. Let
a1l, ..., anl be n sequences in (0,∞) for which there exist ε0>0 and M0 such that

a1l 6 a2l 6 ...6 anl 6M0 for all l,

and, for some integer 16k<n,

a1l, ..., akl! 0 as l!∞, and ak+1,l, ..., an,l >ε0 for all l.
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Let e1l, ..., enl be a sequence of orthonormal bases in Rn that converges to an orthonor-
mal basis e1, ..., en. If µ satisfies the q-th subspace mass inequality, with respect to the
orthonormal basis e1, ..., en, then

− 1
|µ|

∫
Sn−1

log
n∑

i=1

|u·eil|
ail

dµ(u)+
1
q

log
∫

Sn−1

( n∑
i=1

ail|u·eil|
)−q

du!−∞, (6.23)

as l!∞.

Proof. First consider the case q∈[1, n].
When q∈[1, n), we use the fact that µ satisfies the qth subspace mass inequality, with

respect to the orthonormal basis e1, ..., en, to deduce the existence of an N∈(n, (n−1)q′)
such that, for all i>1,

µ(Sn−1∩ξn−i+1)
|µ|

< 1− i−1
N

6 1− i−1
(n−1)q′

, (6.24)

where ξn−i+1=span{ei, ..., en}. When q=n, take N=n and note that (6.24) still holds.
For a small δ>0, and each i=1, ..., n, let Ωi,δ be the partition defined in (6.16), with

respect to the orthonormal basis e1, ..., en, and let

αi =αi(δ) =
µ(Ωi,δ)
|µ|

for each i. From (6.19), we see that, as δ!0+,

αi+...+αn!
µ(Sn−1∩ξn−i+1)

|µ|

for each i. This and (6.24) tell us that we can choose δ>0 sufficiently small so that

αi+...+αn < 1− i−1
N

for each i>1. Note that the αi satisfy the conditions of (6.14) in Lemma 6.2.
The fact that αi=µ(Ωi,δ)/|µ|, combined with Lemma 6.3, followed by the fact that

ak+1,l, ..., anl>ε0, together with Lemma 6.1, the given monotonicity a1l6a2l6...6anl,
and lastly Lemma 6.2, yields the existence of a t>0 such that

− 1
|µ|

∫
Sn−1

log
n∑

i=1

|u·eil|
ail

dµ(u)+
1
q

log
∫

Sn−1

( n∑
i=1

ail|u·eil|
)−q

du

6
n∑

i=1

αi log ail−log
δ

2
− 1

N
log(a1l ... akl)+c0 (6.25)

6
1+t

N
log(a1l ... anl)+

(
1−n(1+t)

N

)
log anl−log

δ

2
− 1

N
log(a1l ... akl)+c0.
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Since the ak+1,l, ..., an,l are bounded, for all l, from below by ε0 and from above by M0,
the last expression in (6.25) is bounded from above by (t/N) log(a1l ... akl) plus a quantity
independent of l. But, since by hypothesis a1l, ..., akl!0 as l!∞, obviously as l!∞
the last quantity in (6.25) tends to −∞. This establishes the desired result for the case
where q∈[1, n].

Now suppose q∈(0, 1). For small δ>0, and each i=1, ..., n, let Ωi,δ be the partition
defined in (6.16), with respect to the orthonormal basis e1, ..., en, and let

αi =αi(δ) =
µ(Ωi,δ)
|µ|

,

for each i, but choose δ>0 so that α1=α1(δ)>0. Since α1+...+αn=1, we have

α1 > 0 and α2+...+αn < 1.

From Lemmas 6.3 and 6.1 we have, for sufficiently large l,

− 1
|µ|

∫
Sn−1

log
n∑

i=1

|u·eil|
ail

dµ(u)+
1
q

log
∫

Sn−1

( n∑
i=1

ail|u·eil|
)−q

du

6
n∑

i=1

αi log ail−log
δ

2
+c0,

where c0 is a constant independent of the sequences a1l, ..., anl.
Since α1 is positive and a1l!0+ as l!∞, we have α1 log a1l!−∞. This and the

assumption that a1l, ..., anl are bounded from above, allows us to conclude that, as l!∞,
n∑

i=1

αi log ail!−∞.

This establishes the desired result for the case where q∈(0, 1).

6.5. Existence of a solution to the maximization problem

The following lemma establishes the existence of solutions to the maximization problem
associated with the dual Minkowski problem.

Lemma 6.5. Let q∈(0, n], and let µ be a non-zero finite Borel measure on Sn−1.
Suppose that the functional Φ:Kn

e!R is defined for Q∈Kn
e by

Φ(Q) =
1
|µ|

∫
Sn−1

log %Q(u) dµ(u)+
1
q

log
∫

Sn−1
hQ(u)−q du.

If µ satisfies the q-th subspace mass inequality, then there exists a K∈Kn
e so that

sup
Q∈Kn

e

Φ(Q) =Φ(K).
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Proof. Let Ql be a maximizing sequence of origin-symmetric convex bodies; i.e.
Ql∈Kn

e such that

lim
l!∞

Φ(Ql) = sup
Q∈Kn

e

Φ(Q).

Since Φ(λQ)=Φ(Q) for λ>0, we may assume that the diameter of each Ql is 1. By
the Blaschke selection theorem, Ql has a convergent subsequence, denoted again by Ql,
whose limit we call K. Note that K must be an origin-symmetric compact convex set.
We will prove that K is not degenerate; i.e., K has non-empty interior.

Let El∈Kn
e be the John ellipsoid associated with Ql, that is, the ellipsoid of maximal

volume contained in Ql. Then, as is well known (see Schneider [75, p. 588]),

El ⊂Ql ⊂
√

nEl.

Observe that for each ellipsoid El, there is a right parallelotope Pl so that

Pl ⊂El ⊂
√

nPl.

This is easily seen when El is a ball. The general case is established as follows: transform
El into a ball using an affine transformation whose eigenvectors are along the principal
axes of El and whose eigenvalues are chosen so that El is transformed into a ball.

Therefore,

Pl ⊂Ql ⊂nPl. (6.26)

But this means that

%Ql
6 %nPl

=n%Pl
and hPl

6hQl
. (6.27)

The support function of the right parallelotope Pl can be written, for u∈Sn−1, as

hPl
(u) =

n∑
i=1

ail|u·eil|, (6.28)

where the orthonormal basis e1l, ... .enl is ordered so that 0<a1l6...6anl. The radial
function of Pl, for u∈Sn−1, is given by

%Pl
(u) = min

16i6n

ail

|u·eil|
.

Thus,

%Pl
(u) 6

(
1
n

n∑
i=1

|u·eil|
ail

)−1

. (6.29)
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Therefore, from the definition of Φ, (6.27), (6.29), and (6.28), we have

Φ(Ql) 6Φ(Pl)+log n (6.30)

6
1
|µ|

∫
Sn−1

log
( n∑

i=1

|u·eil|
ail

)−1

dµ(u)+
1
q

log
∫

Sn−1

( n∑
i=1

ail|u·eil|
)−q

du+2 log n.

Since the diameter of each Ql is 1, the parallelotopes Pl are bounded. Using the
Blaschke selection theorem, we conclude that sequence Pl has a convergent subsequence,
denoted again by Pl, whose limit we call P .

As Ql!K and Pl!P , while Pl⊂Ql⊂nPl, we must have P⊂K⊂nP . First note that
P cannot be a point since the diameter of each Pl is at least 1/n. Suppose that K has
empty interior in Rn. Hence, P is a degenerate right parallelotope, and hence there exists
a k such that 16k<n and a ε0>0 so that a1l, ..., akl!0+, while ak+1,l, ..., anl>ε0>0,
for all l. Moreover, as l!∞, taking subsequences as necessary, the orthonormal basis
e1l, ..., enl converges to an orthonormal basis e1, ..., en derived from P .

From (6.30) and Lemma 6.4, Φ(Ql)!−∞ as l!∞. Since Ql is a maximizing se-
quence, we have that

lim
l!∞

Φ(Ql) >Φ(B) =
1
q

log(nωn).

Thus we have the contradiction, which shows that K must have non-empty interior.

6.6. Existence of a solution to the dual Minkowski problem

The main existence theorem for the dual Minkowski problem stated in the introduction
is implied by the following theorem.

Theorem 6.6. Let µ be a non-zero finite even Borel measure on Sn−1 and let
q∈(0, n]. If the measure µ satisfies the q-th subspace mass inequality, then there exists
an origin-symmetric convex body K in Rn such that C̃q(K, ·)=µ.

The proof follows directly from Lemmas 5.1 and 6.5.

The theorem above shows that the subspace mass inequality is a sufficient condition
for the existence of a solution to the dual Minkowski problem. When 0<q61, the
subspace mass inequality means that the given even measure is not concentrated on
any great hypersphere. This condition is obviously necessary. When q=n, if the given
even measure is not concentrated in two complementary subspaces, it was proved in [14]
that the subspace mass inequality is also necessary. Progress regarding the intermediate
cases 1<q<n would be most welcome.
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