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Introduction

The big de Rham—Witt complex was introduced by the author and Madsen in [15] with
the purpose of giving an algebraic description of the equivariant homotopy groups in
low degrees of Bokstedt’s topological Hochschild spectrum of a commutative ring. This
functorial algebraic description, in turn, is essential for understading algebraic K-theory
by means of the cyclotomic trace map of Bokstedt—Hsiang-Madsen [4]; compare [10],
[14] and [16]. The original construction, which relied on the adjoint functor theorem,
was very indirect and a direct construction has been lacking. In this paper, we give a
new and explicit construction of the big de Rham-Witt complex and we also correct the
2-torsion which was not quite correct in the original construction.

The new construction is based on a theory, which is developed first, of modules and
derivations over a A-ring. The main result of this first part of the paper is that the
universal derivation of a A-ring is given by the universal derivation of the underlying
ring together with an additional structure that depends directly on the A-ring structure
in question. In the case of the universal A-ring, which is given by the ring of big Witt
vectors, this additional structure consists of divided Frobenius operators on the module
of Kéhler differentials. It is the existence of these divided Frobenius operators that makes
the new direct construction of the big de Rham—Witt complex possible. This is carried
out in the second part of the paper, where we also show that the big de Rham—Witt
complex behaves well with respect to étale morphisms. Finally, we explicitly evaluate

the big de Rham—Witt complex of the ring of integers.
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In more detail, let A be a ring, which we always assume to be commutative and
unital. The ring W(A) of big Witt vectors in A is equipped with a natural action
through ring homomorphisms by the multiplicative monoid N of positive integers, where

the action by n€N is given by the nth Frobenius map

Fn

W(A) —2s W(A).

The Frobenius maps give rise to a natural ring homomorphism
W(A) =2 W(W(A))
whose Witt components A.: W(A)—W(A) are characterized by the formula

Fu(a)=)_eAc(a)"".
eln
The triple (W(—), A, e) with e: W(A)— A being the first Witt component is a comonad
on the category of rings and a A-ring in the sense of Grothendieck [11] is precisely a
coalgebra (A, \4) over this comonad.

Recently, Borger [5] has proposed that a A-ring structure A4: A—W(A) on a ring A
be considered as descent data from Z-algebras to algebras over a deeper base Fy. This
begs the question as to the natural notions of modules and derivations over A-rings. We
show here that the general approach of Beck [2] leads to the following answer. First,
if (A, A4) is a A-ring, then the ring A is equipped with an action by the multiplicative
monoid N through ring homomorphisms, where the action by n€N is given by the nth

associated Adams operation

AAn g

defined by the formula
Yan(a)= Z edac(a)e.

eln
Here Age: A—A is the eth Witt component of Ag: A—-W(A). Now, the category of
(A, A4)-modules is identified with the category of left modules over the twisted monoid
algebra AY[N] with the product defined by the formula

n-a=1a n(a)n.

Hence, an (A, \4)-module is a pair (M, \ps) that consists of an A-module M and an
N-indexed family of maps Ay pn: M —M such that Aps,, is 14 n-linear, Ay 1 =idas, and

AM mAM,n=AM,mn. Moreover, we identify the derivations

(A, Aa) =25 (M, )
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with the derivations D: A— M that satisfy the identities
Ain(Da) =3 Aa (@)™ ' DAac(a).
eln

It is now easy to show that there is a universal derivation

d
(A, Aq) — (Q%A,AA)a)‘Q )-

1
(Axa)
We prove the following result.

THEOREM A. For every A-ring (A, \a), the canonical map

QL HQ%A)\A)

s an isomorphism of A-modules.

It follows that for a A-ring (A,\4), the A-module of differentials QY carries the
richer structure of an (A, A4)-module. In the case of (W(A), A4), this implies that there
are natural Fj,-linear maps F,: Q%W(A)%Q&(A) defined by

F,(da)= Z Ac(a)™ T dA(a)
eln

such that Fy=id, F,,F,=Fu,, dF,(a)=nF,(da), and F,(d[a])=[a]""'d[a]. The p-
typical analog of F, was also constructed by Borger and Wieland in [7, §12.8].

The construction of the de Rham-Witt complex begins with the following variant
of the de Rham complex. The ring W(Z) contains exactly the four units +[£1], all of
which are square roots of [1], and the 2-torsion element

dlog[—1]=[-1]""d[~1] = [~ 1]d[-1] € Qiy(4)
plays a special role. We define the graded W(A)-algebra
Qi) = Tivgay Qway /T

to be the quotient of the tensor algebra of the W(A)-module Q}

W(A) by the graded ideal

J' generated by all elements of the form
da®da—dlog[—1]® Fada

with aeW(A). It is an anticommutative graded ring which carries a unique graded
derivation d that extends d: W(A)— Qg ) and satisfies

ddw = dlog[—1] - dw.
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Moreover, the maps F;,: W(A)—W(A) and F,: Q%W(A) —>Q%W(A) extend uniquely to a map
of graded rings F,: QW(A)%QW(A) which satisfies dF,,=nF, d. Next, we show that the
maps d and F,, both descend to the further quotient

Dy = By (K
by the graded ideal generated by all elements of the form
F,dV,(a)—da—(p—1)dlog[—1]-a
with p a prime number and a€W(A). We now recall the Verschiebung maps
Vi W(A) — W(A)
which are additive and satisfy the projection formula
aVy,(b) =V, (F,(a)b).

These maps, however, do not extend to SAZW( 4) OF QW( A) and the de Rham—Witt complex,
roughly speaking, is the largest quotient

5 n .
QW(A) — WOy,

such that the Verschiebung maps extend to W', and such that the extended maps F,
and V,, satisfy the projection formula. The precise definition given in §4 below is by
recursion with respect to the quotients Wg(A) of W(A), where S ranges over the finite
subsets SCN that are stable under division. We further prove the following result to the
effect that the de Rham-Witt complex may be characterized as the universal example of
an algebraic structure called a Witt complex, the precise definition of which is given in
Definition 4.1.

THEOREM B. There exists an initial Witt complex S—WgQ2, over the ring A. In

addition, the canonical maps
Q4 s W
Ws(A) 5384
are surjective, and the diagrams

= ns = ns = ns
Oy~ W T —SWsh O W

[ JR | l lF JF

= nr =qg+1 ns +1 = Ns/m
Uy —— Wrlhy, QL WG, Q) — Wy QG

commute.
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If A is an Fj-algebra and S={1,p,...,p" "'}, then Wg(2, agrees with the original p-
typical de Rham—Witt complex W, of Bloch-Deligne-Tllusie [19]. More generally, if A
is a Zp)-algebra and S={1, p, ey PV}, then W5, agrees with the p-typical de Rham—
Witt complex W, 0, constructed by the author and Madsen [17] for p odd and by
Costeanu [9] for p=2. Finally, if 2 is either invertible or zero in A and S is arbitrary, then
Ws€), agrees with the big de Rham-Witt complex introduced by the author and Mad-
sen [15]. We also note that if f: R—A is a map of Z,)-algebras and S={1, p, P
then the relative p-typical de Rham-Witt complex W, /R of Langer—Zink [23] agrees
with the quotient of W2, by the differential graded ideal generated by the image of
W —>WsQl.

We recall that van der Kallen [20, Theorem 2.4] and Borger [6, Theorem B] have
proved independently that for every étale morphism f: A—B and every finite subset

S CN stable under division, the induced morphism

Ws(f)
—

Ws(A) W (B)

again is étale. Based on this theorem, we prove the following result.

THEOREM C. Let f: A—B be an étale map and let SCN be a finite subset stable

under division. Then the induced map
Ws(B)®WS(A)W5Q?4 — WSQ%
is an isomorphism, for all q.

To prove Theorem C, we verify that the left-hand terms form a Witt complex over
the ring B and use Theorem B to obtain the inverse of the map in the statement. The
verification of the Witt complex axioms, in turn, is significantly simplified by the existence
of the divided Frobenius operators on {4 as follows from Theorem A.

Finally, we evaluate the de Rham-Witt complex of Z. The result is that WQ? is

non-zero for g<1 only. Moreover, we may consider W2, as the quotient

Q — WQ,

w(z)
of the de Rham complex of W(Z) by a differential graded ideal generated by elements
of degree 1. Hence, following Borger [5], we may interpret WS, as the complex of
differentials along the leaves of a codimension-1 foliation of Spec(Z) considered as an
F;-space. We note that, by contrast, ng(z) is non-zero for all q.

As mentioned earlier, the big de Rham-Witt complex was introduced in [15] with

the purpose of giving an algebraic description of the equivariant homotopy groups

TRy (A) = [SYA(T/C )y, T(A)]r
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of the topological Hochschild T-spectrum T'(A) of the ring A. Here T=R/Z is the circle
group, C,.CT is the subgroup of order r, and [—,—]r is the abelian group of maps in
the homotopy category of orthogonal T-spectra. We proved in [13, §1] that the groups
TR, (A) give rise to a Witt complex over the ring A in the sense of Definition 4.1 below.

Therefore, by Theorem B, there is a unique map
W<T>Q?4 — TR;(A)

of Witt complexes over A, where (r) denotes the set of divisors of r. We will show

elsewhere that this map is an isomorphism for all r and all ¢<1.

1. Witt vectors

We begin with a review of Witt vectors and A-rings. The material in this section is
due to Cartier [8], Grothendieck [11], Teichmiiller [27], and Witt [29] and accordingly we
make no claim of originality. The reader is also referred to the very readable account by
Bergman [25, Appendix]| and to the more modern and general exposition by Borger [6].
We further mention the books by Hazewinkel [12] and Knutson [21], which focus more
on the role of symmetric functions.

In the approach to Witt vectors taken here, all necessary congruences are isolated in
following lemma, commonly attributed to Dwork [12, §E.2.4]. Let N be the set of positive
integers. We say that a subset SCN, possibly empty, is a truncation set if whenever ne.S
and e is a divisor in n, then e€S. The ring of big Witt vectors Wg(A) associated with
the ring A and the truncation set S is defined to be the set A° equipped with a ring
structure such that the ghost map

Ws(A) 5 A8
that takes the vector a=(a,|n€S) to the sequence w(a)={(wy(a)|nes) with

wy(a) = Z eal’®

eln

is a natural transformation of functors from the category of rings to itself. Here the
target A° is considered a ring with componentwise addition and multiplication. The
elements a, and w,(a) are called the Witt components and the ghost components of
the vector a, respectively. To prove that there exists a unique ring structure on Wg(A)
characterized in this way, we first recall the following result, a different proof of which
is given in [12, Lemma 17.6.1]. We write v,(n) for the p-adic valuation of n, normalized
such that v,(p)=1.
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LEMMA 1.1. Suppose that for every prime number p€S, there exists a ring homo-
morphism ¢p: A—A with the property that ¢p(a)=aP mod pA. Then for every sequence
x=(x,|n€S), the following conditions are equivalent:

(i) the sequence x is in the image of the ghost map w: Wg(A)— A,

(ii) for every prime number peS and every neS with vy(n)>1,

Tp = ¢p(2,/,) mod pur(M) A,

Proof. We first show that if a=b mod pA, then a?’  =b"" mod pUA. If we write

a=b+pe, then
v—1 v—1 pvf1 o1 .
a?  =b"  + oP ‘et
> (1)
1<igpy—!
m—+n
")

In general, the p-adic valuation of the binomial coefficient ( is equal to the number

of carries in the addition of m and n in base p. So in particular,

pU—l .
vp(( ; )pz>:v—1+i—vp(i)>v

which proves the claim. Now, suppose that z=w(a) satisfies (i). Since ¢p: A—A is a

ring homomorphism and lifts the Frobenius endomorphism of A/pA, we have

¢p(wn/p(a)): Z e¢p(a2/pe),

eln/p

which is congruent to 3>, /, ea”™® modulo pU»(™ A. But, if e divides n but not n/p, then

vp(e)=v,(n) and hence, this sum is congruent to 3", ear’“=w,(a) modulo p®»(™ A.

eln
This shows that « satisfies (ii). Conversely, suppose tha‘t x satisfies (ii). We find a vector
a=(an|n€S) with w,(a)=1, as follows. We let a;=x; and assume, inductively, that a.
has been chosen, for all e£n that divide n, such that we(a)=x,.. The calculation above
shows that for every prime number p dividing n,

Tp— E eal/®

eln

e#n

is congruent to zero modulo p’»(™ A. Therefore, this difference is divisible by n and hence
is equal to na, for some a,, € A. This shows that x satisfies (i). O

PROPOSITION 1.2. There exists a unique ring structure on the domain of the ghost
map
Wg (A) L} AS

making it a natural transformation of functors from rings to rings.
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Proof. Let A be the free ring generated by {an,b,|n€S}. The unique ring homo-
morphism ¢,: A— A that maps a,, to af, and b, to b2, satisfies ¢,(f)=f? mod pA. Hence,
if @ and b are the vectors (a,|n€S) and (b, |n€S), respectively, then Lemma 1.1 shows
that the sequences w(a)+w(b), w(a) - w(b), and —w(a) are in the image of the ghost
map. It follows that there are sequences of polynomials s=(s,|n€S), p=(p,|n€S), and
i=(in|n€S) such that w(s)=w(a)+w(b), w(p)=w(a)-w(b), and w(i)=—w(a). Moreover,
since A is torsion free, the ghost map is injective, and accordingly, these polynomials are
unique.

Let A’ be any ring. If o'=(a},|n€S) and V' =(b),|n€S) are two vectors in Wg(A")
then there is a unique ring homomorphism f: A— A’ with the property that Wg(f)(a)=a
and Wg(f)(b)='. We define o/ +0'=Wg(f)(s), a-b=Wg(f)(p), and —a=Wg(f)(i). To

prove that the ring axioms are verified, suppose first that A’ is torsion free. In this case,

Y
/

the ghost map is injective, and hence, the ring axioms hold since they do so in A°. In
general, we choose a surjective ring homomorphism g: A” — A’ from a torsion-free ring
A”. The induced map Wg(g): Wg(A”)—Wg(A') is again surjective, and since the ring

axioms hold in the domain, they do so, too, in the target. O

If TC.S are two truncation sets, then the forgetful map

S

Ws(A) SN Wr(A)

is a natural ring homomorphism called the restriction from S to T'. If SCN is a truncation
set and n€N, then the set
S/n={eeN|nee S}

again is a truncation set, possibly empty. For every n€N, there is a natural map
Vi
Ws/n(A) —— Wg(4)

that to the vector a=(a.|e€S/n) assigns the vector V,,(a)=(by,|m€eS), where

{ ae, if m=ne,
b = i
0, otherwise.

It is called the n-th Verschiebung.
LEMMA 1.3. For every neN, the map V,: Wg/,(A)—=Ws(A) is additive.

Proof. The following diagram, where V;* takes the sequence (z.|e€S/n) to the

sequence whose mth component is nx., if m=ne, and 0, otherwise, commutes:

Ws/n(A) e Ws(A)

L

Asin Y ys,
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Since V¥ is additive, so is V,,. Indeed, if A is torsion free, the horizontal maps are both
injective, and hence V,, is additive in this case. In general, we choose a surjective ring

homomorphism g: A’— A and argue as in the proof of Proposition 1.2. O

LEMMA 1.4. For every n€N, there exists a unique natural ring homomorphism
F,
Ws(A4) —— Wg/n(4)

called the n-th Frobenius map that makes the following diagram, where the map F}¥ takes

the sequence x=(r,,|meS) to the sequence F(x)=(xp.|e€S/n), commute:

Wg(A) —2 W (A)

AS T, aSim,

Proof. The construction of the map F,, is similar to the proof of Proposition 1.2.
We let A be the free ring generated by {a,,|meS}, and let a be the vector (a,,|meS).
By Lemma 1.1, the sequence F(w(a))€A%/™ is the image by the ghost map of a vector

Fr(a)=(fnele€S/n)eWg,,(A),

this vector being unique as A is torsion free. If A’ is any ring and a'=(al,|meS)
is a vector in Wg(A’), then we define F,(a')=Wg/,(9)(Fn(a)), where g: A=A’ is the
unique ring homomorphism that maps a to a’. Finally, since the map F¥ is a ring
homomorphism, an argument similar to the proof of Lemma 1.3 shows that also F), is a

ring homomorphism. O

The Teichmiiller representative is the map

whose mth component is a, if m=1, and 0, otherwise. It is a multiplicative map. Indeed,
the following diagram, where [a]¥ is the sequence with mth component o™, commutes:

A5 wea)

[_]w J

A—25 4 45

)

and [—]¥ is a multiplicative map. In particular, the Teichmiiller representative [1]g is

the multiplicative identity element in the ring Wg(A).
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LEMMA 1.5. Let SCN be a truncation set and let A be a ring.
(i) For all acWg(A), there is a convergent sum

a= Z Vn([an]S/n)'

nes

(ii) For all m,neN with greatest common divisor c¢=(m,n),
F,V,= CVn/cFm/c: WS/C(A) — WS/C(A)'

(iii) For all neN, acWs(A), and a'€Wg,,,(A),

(iv) For all m,neN,

Fo By =Fpp: WS(A) _>WS/mn(A)v

(v) For all neN and a€A,

Fo(ld]s) = [a]5),-

Proof. One readily verifies that the two sides of each equation have the same image
by the ghost map. This shows that the relations hold, if A is torsion free, and hence, in
general. In statement (i), the convergence, for S infinite, is with respect to the product

topology on Wg(A) induced by the discrete topology on A. O

PRrROPOSITION 1.6. The ring of Witt vectors in Z is equal to the abelian group

Ws(Z) =[] Z-Va((1ls/n)
nes

with the multiplication given by

Vm([l]S/m)'Vn([l]S/n) :C'Ve([l]S/e)7

where ¢c=(m,n) and e=[m,n| are the greatest common divisor and the least common

multiple, respectively.
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Proof. The formula for the product follows from Lemma 1.5 (ii)—(iv). For finite S,
we prove the statement by induction beginning from the case S=& which is trivial. So
suppose that S is non-empty, let me€S be maximal, and let T=S5\{m}. The sequence

of abelian groups

RS
0 —— W13 (Z) —2 W (Z) —— Wy (Z) — 0

is exact, and we wish to show that it is equal to the following exact sequence:

RS
0 —— Z-[1](1 VYm 1 zVa(Wlsyn) —= [] Z-Va(ltlzn) — 0.
nes neT

The latter sequence maps to the former, and by induction, the right-hand terms of the
two sequences are equal. Since also the left-hand terms are equal, so are the middle
terms. This completes the proof for S finite. Finally, every truncation set S is the union
of its finite sub-truncation sets S, CS and Wg(Z)=lim, Wg_(Z). O

The values of the restriction, Frobenius, and Verschiebung maps on the generators
Vi([1]g/n) are readily evaluated using Lemma 1.5 (ii)—(iv). To give a formula for the
Teichmiiller representative, we recall the Mobius inversion formula. Let g:N—Z be a
function and define the function f:N—Z by f(n)=3_,, g(e). Then the original function
is given by g(n)=3_,, u(e)f(n/e), where pu: N—{—1,0,1} is the Mobius function defined
by p(e)=(—1)", if e is a product of >0 distinct prime numbers, and p(e)=0, otherwise.

ADDENDUM 1.7. If m is an integer and S is a truncation set, then

s =3 & (X utem )il

nes eln

In particular, the square oot of unity [—1]s is equal to —[1]s+Va([1]g/2)-

Proof. Tt suffices to prove that the formula holds in Wg(Z). By Proposition 1.6,
there are unique integers r., e€.S, such that

mls =3 reVe([Lsye):

ecS

Evaluating the nth ghost component of this equation, we find that

m’ = E ere,

eln
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from which the stated formula follows by Mobius inversion. Finally, defining

1, ifn=1,
g(n)=< 2, ifn=2,
0, otherwise,
we get f(n)=3_,, 9(e)=(—1)", which proves the stated formula for [-1]s. O

If m=q is a prime power, then the coefficient of V,,([1]s/,) in [m]s is equal to the
number of monic irreducible polynomials of degree n over the finite field IF,.

LeMMA 1.8. If A is an Fp-algebra and S is a truncation set, then
Fp=R35,,°Ws(): Ws(A) — W, (A),
where @p: A— A is the Frobenius endomorphism.

Proof. By definition Fj,(a)=(fp.(a)|e€S/p) with the elements f, . of the free ring

on {a,|neS} characterized by the system of equations

doefyle=) " ea™*

e|m elpm
indexed by meS/p. The lemma is equivalent to the statement that for all meS/p,
one has fpm=a¥, mod p, which we proceed to prove by induction on meS/p. Since
fp1=a}+pay, the statement holds for m=1. So we let m>1 and assume that for all
proper divisors e of m, f,.=a? mod p. This implies that ef;f?e/ezeagm/e mod p¥r(m)+1
by the argument at the beginning of the proof of Lemma 1.1. We now write

Ze ;T,Le/e =Zea’e’m/e—|— Z eaP™/®

elm elm elpm
etm

and note that if e|pm and efm, then v,(e)=v,(m)+1. Therefore, we may conclude that
m fp.m=mak, mod p’»(™ 1A, But the free ring on {a, |n€ S} is torsion free, so f, ,,=ak,

mod p as desired. This completes the proof. O

LEMMA 1.9. Let m be an integer, let A be a ring, and let S be a truncation set. If
m is invertible in A, then m is invertible in Wg(A); and if m is a non-zero-divisor in

A, then m is a non-zero-divisor in Wg(A).

Proof. As in the proof of Proposition 1.6, we may assume that S is finite. We
proceed by induction on S beginning from the trivial case S=@. So let S be non-
empty and assume the statement for all proper sub-truncation sets of S. We let n€ S be

maximal, and let T=S5\{n}. In this situation, we have the exact sequence

RS
0 —— Wipp(A) —2s W (A) — W (A) — 0,

from which the induction step readily follows, since Wy (A)=A. O



THE BIG DE RHAM—WITT COMPLEX 147

Let p be a prime number. We say that a sub-truncation set of the truncation set
P={1,p,p* ...} CN

is a p-typical truncation set. For instance, if S is any truncation set, then SNP is
a p-typical truncation set. The p-typical truncation sets TCP are T=2, T=P, and
T={1,p,....,p" "'}, where n is a positive integer. The ring Wp(A) is called the ring of
p-typical Witt vectors and the ring Wy, ,n-13(A) is called the ring of p-typical Witt

vectors of length n in A.

PROPOSITION 1.10. Let p be a prime number, let S be a truncation set, and let 1(S)
be the set of k€S not divisible by p. If A is a ring in which every k€I(S) is invertible,

then the ring homomorphism

Ws(4) = J[ Ws/mnr(4)
kEI(S)

whose k-th component is gk:RfS{fk)mpoFk is an isomorphism.

Proof. We have the commutative diagram of ring homomorphisms

We(4) —L— T Wsmnr(4)

lw w [

as — L ST asmnr,

where the products on the right-hand side range over k€I(S) and where g% is the map
whose kth component g}’ is given by gy’ (a)p» =apvg. The map g" is a bijection since
the sets SNkP with k€I(S) partition S and since the maps SNkP— (S/k)NP that take
p'k to p¥ are bijections. Let h" be the inverse of g*. We claim that there exists a
natural function h: [[Wg/x)np(A4)—Ws(A) such that weh=h"o(][w). Granting this,
the equalities g oh"™ =id and h*>g" =id imply that geh=id and heg=id, which proves
the proposition.

To prove the claim, it suffices to show that, in the universal case, where A is the free
Z[1(S)~!]-algebra generated by {ay ,» |k€I(S) and p¥€(S/k)NP} and a=(ay) with ap=
(ak,pr) EW (s/knp(A), the element z=(h"o([Jw))(a) is in the image of w: Wg(A)— A%,
The unique Z[I(S)~!]-algebra homomorphism ¢,: A— A that to ay ,» associates ap o isa
lift of the Frobenius endomorphism of A/pA. Also, all prime numbers ¢€ S different from

p are invertible in A. Thus, we conclude from Lemma 1.1 that the sequence x={x,,|n€S)
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is in the image of the ghost map if and only if for all n=pk€ S with k€I(S) and v>1,
Tpok =0p(Tpv-15) mod pYA. But zpvp=wpe(ag) and ¢p(xpe-15)=0dp(wye—1(ax)) which
are congruent modulo p’A by Lemma 1.1. Hence, there exists a vector h(a)eWg(A)
such that x=w(h(a)) and this vector is unique, as A is torsion free. The vector h(a), in

turn, uniquely determines the desired natural map h. This completes the proof. O

Example 1.11. If S={1,2,...,n}, then (S/k)NP={1,p,...,p* "1}, where s=s(n, k) is
the unique integer with p*~'k<n<p°k. Hence, if every integer 1<k<n not divisible by

p is invertible in A, then Proposition 1.10 gives an isomorphism

Witz (A) == ] Witp..po-13(A4),

where the product ranges over integers 1<k<n not divisible by p and s=s(n, k).

LeMMA 1.12. If A is an Fp-algebra, then for every truncation set S,
Vpon =p~id: Ws(A) —>W5(A)

Proof. We first reduce to the case where S is a p-typical truncation set. It follows
from Lemma 1.5 that the following diagram, where the products range over k€(S) and

where the vertical maps are the isomorphisms of Proposition 1.10, commutes:

Wa(A) T W), (A) i W(A)

| | |

I1Fp v
TTWes/mnp(A) —= TTWs/peynp(A) —= T Wis/mnr(A4).

Accordingly, it will suffice to prove the lemma for p-typical truncation sets S, and we

may further assume that S is finite. It follows from Lemma 1.5 (iii) that
Voo by = Vp([Usyp)-id: W (A) — W (A),

and we proceed to prove that V,([1]s/,)=p[1]s by induction on the cardinality n of S.
The case n=0 holds trivially, so we let S={1,p,...,p" 1} be the p-typical truncation
set of cardinality n>0 and assume that the identity in question has been proved for all

proper sub-truncation sets T'C.S. The exact sequences

V on-1 RS »
0 4)W{1}(A) p‘)Ws(A) L)WS/]D(A) —0
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furnish an induction argument showing that Wg(A) is annihilated by p™. In particular,
Vy([1]s/p) is annihilated by p™~!. Moreover, it follows from Addendum 1.7 that

s =plls+ 3 ;@f—pf”msaus/ps)
0<s<n

and the left-hand side vanishes, since A is an [F-algebra. The inductive hypothesis shows

that Ve ([1]5/p<)=p" "'V, ([1]s/p), so the formula above becomes

—D)Vp([Us/p)-

But p"~'—1>n—1, so V,([1]s/,)=p[1]s which proves the induction step. O

7171_1

0=p[1]s+(p"

Let A be a p-torsion-free ring equipped with a ring homomorphism ¢: A— A such

that ¢(a)=a? mod pA. By Lemma 1.1, there is a unique ring homomorphism
/\¢: A— WP(A)

such that wpnod,=¢". We define s4: A>Wp(A/pA) to be the composition of Ay and
the map induced by the canonical projection of A onto A/pA. We recall that A/pA is
said to be perfect, if the Frobenius endomorphism ¢: A/pA— A/pA is an automorphism.

ProrosSITION 1.13. Let p be a prime number, let n be a non-negative integer, and
let S be the finite p-typical truncation set of cardinality n. Let A be a p-torsion-free ring
equipped with a ring homomorphism ¢: A— A such that ¢(a)=a? mod pA and suppose

that A/pA is perfect. In this situation, the map s, induces an isomorphism

Afp"A 1 We(A/pA).

Proof. We claim that the map s, induces a map 54 as stated. Indeed, the restriction
map RE:Wp(A/pA)—-Wg(A/pA) has kernel V,»Wp(A/pA), and

VinWp(A/pA) =Vipn We(p" (A/pA)) = Vpr Fpn W(A/pA) = p"Wp(A/pA),

where the left-hand equality follows from A/pA being perfect, the middle equality from
Lemma 1.8, and the right-hand equality from Lemma 1.12. Now, the proof is completed

by an induction argument based on the commutative diagram

00— AfpA—" s A A — P AgprTA 50
prnl J«S(ﬁ de)
Vs 75,
0 AJpA """ Wg(A/pA) % W, (AfpA) —— 0,

where the top horizontal sequence is exact since A is p-torsion free, and where the left-

hand vertical map is an isomorphism as A/pA is perfect. O
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We return to the ring of big Witt vectors. We prove that the underlying additive
group of the ring W(A) is naturally isomorphic to the multiplicative group

A(A) = (1+2A[]])*

of power series with constant term 1. We also view the set tA[[t]] of power series with con-
stant term O as an abelian group under coefficientwise addition. We recall the following
result from [8, §1]; see also [12, Proposition 17.2.9].

ProprosITION 1.14. The diagram of natural group homomorphisms

a
Jw lt it log

AN T Al
where 'y(al,ag,...):Hn>1(1—ant”)’1 and Y (T1,T2,...)=)_, 51 Tnt", commutes, and
the horizontal maps are isomorphisms.

Proof. 1t is clear that the maps in the diagram are natural transformations of func-

tors from the category of rings to the category of sets. Moreover, the calculation

d d eaet’
Zlog( [ -act) ™ ) == 3t log(1—act) =Y -
tdt og( (1—act®) ) tdt og(1—act®) ot

ex1 ex1 ex1
_ qiqe __ nj/e \n
= E g ealt?® = E ( E ea, )t
el g>1 n=1l " eln

shows that the diagram commutes. It is also clear that the two vertical maps are group
homomorphisms and that the map ~* is an isomorphism of abelian groups. This implies
that the map + is a group homomorphism. Indeed, if A is torsion free, then the vertical
maps are both injective, and in general, we choose a surjective ring homomorphism
A’— A from a torsion-free ring and use that W(—) and A(—) both take surjective ring
homomorphisms to surjective group homorphisms.

It remains to show that v is a bijection. To this end, we write

[T —ant™)™ = +bit+bot®+...) 7",
n>1

where the coefficient b,, is given by the sum b,=> (—1)"ay, ... a;, that ranges over all
1<i1<...<i,<n such that i1 +2is+...+7ri.=n. It follows that the Witt coordinates a,,

are uniquely determined, recursively, by the coefficients b,,, and hence, that « is a bijection
as stated. O
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Remark 1.15. We will always consider the set A(A)=1+tA[[t] as a ring with the
unique ring structure that makes the map v: W(A)— A(A) a ring isomorphism. This ring
structure is characterized by begin natural in A, by addition being given by power series

multiplication, and by the product satisfying
(1—at) ' x(1—bt) ' =1 —abt)™!

for all a,b€ A; compare [11, §4]. We remark that (1—¢)~! is the multiplicative unit
element in A(A). The reader is warned, however, that there exists four different ring
structures on the set 1+t A[[t] satisfying the first two of these requirements but with the
last requirement replaced by the four possible choices of signs in the product formula
(1+at)* % (14bt)F =(1£abt)* . The choice ++ is used in [11], [1], [3], while the choice
—+ is used in [12, §17.2]. The four different rings A(A).+ are all naturally isomorphic,
the natural isomorphism u.: A(A)—A(A) s given by uri (f(t))=(1£¢)F % f(¢), where
the product is evaluated in A(A). We also write yi.: W(A)—A(A)s. for the natural

ring isomorphism 7.1 =wu.407; in particular, y=v__.

ADDENDUM 1.16. The map v induces an isomorphism of abelian groups
Ws(A) = As(A),

where Ag(A) is the quotient of the multiplicative group A(A)=(1+tA[[t])* by the sub-

group Is(A) of all power series of the form HneN\s(l—ant”)_l.

Proof. The kernel of the restriction map RY: W(A)—Wg(A) is equal to the subset
of all vectors a=(a,|n€N) such that a,=0, if n€S. The image of this subset by the
map v is the subset Is(A)CA(A). O

Example 1.17. If S={1,2,...,n}, then Is(A)=(1+t"T1A[[t]))*. Hence, in this case,

Addendum 1.16 gives an isomorphism of abelian groups

ny (A) =55 (LHLA[E]) /(L2 Al

,,,,,,

For A a Z;,)-algebra, the structure of this group was examined in Example 1.11.

LEMMA 1.18. Let A be an arbitrary ring. For every prime number p, the natural
ring homomorphism F,: W(A)—W(A) satisfies that F,(a)=a? mod pW(A).
Proof. By naturality, it suffices to consider A=Z[ay,as,...] and a=(a, as, ...) and
show that there exists be W(A) with F},(a)—a”=pb. We have
p
wn(Fyfa)=a) = Y ear/e— (Seatlc)

elpn eln
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which clearly is congruent to zero modulo pA. So we let x=(z,|neN) with

1 P
Ty = Ewn(Fp(a)fa )

and employ Lemma 1.1 to show that z=w(b) with be W(A). To this end, we must show

that for every prime number ¢ and every ne€/N,
Tp = Pp(2ne) mod 0ve(m) A,

where ¢y: A— A is the unique ring homomorphism that takes a, to a’. The congruence

in question is equivalent to the statement that

mod £v¢(™) A, if £#£p and n €N,

n(F, —aP) = nye(F; —a?
wn (Fp(a)—a?) = ¢e(wy, /o (Fp(a)—aP)) {modpup(n)HA if £=p and n € pN.

If /#p, the statement follows from Lemma 1.1, and if /=p and n€pN, we find that

wn(Fp(a) _ap) _¢p(wn/p(Fp(a) _ap))

= Z eal™/¢ — (Z ea?/e>p—z eabt™/ e+ ( Z eaz‘/e)p.

elpn eln eln eln/p

If e|pn and efn, then v,(e)=v,(n)+1, so

Z ea’e’"/e = Z eaﬁ"/e mod pvr(M+1 4.

elpn eln

Similarly, if e|n and efn/p, then v,(e)=v,(n), and hence,

Zeag/e = Z ea™*® mod p»(M A,

eln eln/p

But then » .
(Zeag/e) = ( Z eag/e> mod pUr(M+14
eln eln/p
as required; compare the proof of Lemma 1.1. O

We next recall the following result of Cartier from [12, Theorem 17.6.17].

PrOPOSITION 1.19. There exists a unique natural ring homomorphism

A=AuW(A) — W(W(A))
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such that for every positive integer n,
wpoA=F,:W(A) — W(A).
In addition, the following diagrams, where € 4=w1: W(A)— A, commute:

EWI(A) W(ea) Aw(a)
%

W(A) W(W(A)) —— W(4) W(W(W(A))) W(W(A))
R
W(A) W(W(A)) 24 W(A).

Proof. We first prove that a natural ring homomorphism as stated exists. It suffices
to prove that in the universal case A=Z[aq,as,...] and a=(ay,az, ... ), there exists an
element A 4(a)eW(W(A) whose image by the ghost map

w: W(W(A)) — W(A)"

is the sequence (Fy(a)|n€N). It follows from Lemma 1.9 that, in this case, the ghost
map is injective, so the element A 4(a) necessarily is unique. Now Lemmas 1.1 and 1.18
show that the sequence (F),(a)|n€N) is in the image of the ghost map if and only if for

every prime number p and n€pN, the congruence
Fy(a)=Fy(Fo/p(a)) mod p*»(MW(A)

holds. But in fact equality holds by Lemma 1.5 (iv), so we conclude that the desired
element A 4(a) with w,(A4(a))=F,(a) exists. Hence, there exists a unique natural ring
homomorphism A such that w,cA=F),, for every n€N. Finally, one readily verifies the
commutativity of the two diagrams in the statement by evaluating the corresponding

maps in ghost coordinates. O

Remark 1.20. The map A,,: W(A)—W(A) given by the nth Witt component of the
map A is generally not a ring homomorphism. For example, for a prime number p, the

map A, is the unique natural solution to the equation
Fy(a) = a+pA,(a).
We also note that the map A has the property that for all a€ A,
A([a]) = [[a]]-

Indeed, we may assume that A=Z[a], in which case the ghost map is injective, and

applying w,, on both sides, we get F),([a])=[a]™ which holds by Lemma 1.5 (v).
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The natural transformation A in Proposition 1.19 is called the universal A-operation.

Using it, we may restate Grothendieck’s definition of a A-ring from [11] as follows.

Definition 1.21. A A-ring is a pair (A, ) of a ring A and a ring homomorphism
A: A—W(A) that makes the diagrams

A4 WA W(W(A)) <22 W(A)

)
\ } and Tww A A

W(A)«+—— A4

commute. A morphism of A-rings f: (A, Aa)— (B, \p) is a ring homomorphism f: A— B
with the property that Ago f=W(f)oA4.

If (A4,)) is a A-ring (A, A), then we write A,: A— A for the map that to a assigns
the nth Witt component A, (a) of the Witt vector A(a). The map A, is generally neither

additive nor multiplicative.

Remark 1.22. We recall the translation between the above definition of a A-ring and
the original definition by Grothendieck as stated in [3, Definition V.2.4] (or in [11] and [1,
§1], where a A-ring is called a special A-ring), emphasizing the choices of signs; see also [12,
§E.2.1]. The commutativity of the diagrams in Proposition 1.19 express that the triple
(W(—=),A,¢) is a comonad on the category of commutative rings, and the commutativity
of the diagrams in Definition 1.21 express that the pair (A, ) is a coalgebra over this
comonad. Similarly, in the original definition, a A-ring is defined to be a coalgebra (A, A¢)
over the comonad (A(—).y,A¢, &), where A(—);4 is the functor from the category of
commutative rings to itself defined in Remark 1.15; ¢, 4: A(A);1 — A is the natural ring
homomorphism defined by €; 4(1+ait+...)=as; and Ay a: A(A) 4+ —>A(A(A)4+) 4+ is the
unique natural ring homomorphism that is a section of €; y(4),, and satisfies that for all
acA,

Ay a(l+at) =14+ (1+ata)ty.

We claim that the natural ring isomorphism -y, is an isomorphism of comonads from
(W(=),A,e) to (A(—=)4+, A, e¢) in the sense that if (4, \) is a coalgebra over the former
comonad, then (A4, v;4°)\) is a coalgebra over the latter comonad. Indeed, this follows
immediately from the above characterization of A; and from the formula A 4([a])=[[a]]
from Remark 1.20. This shows that the two definitions of a A-ring agree. Finally, we
remark that if (4, ) is a A-ring and if we expand A\;="7, o\ as

M(a) = T+ (@)t + 22 (@)t + . AN (a)t" + ...,
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then \": A— A is called the n-th exterior operation associated with (A, A); it should not
be confused with A,,: A— A. Similarly, if we expand o;=7v-A\ as

oi(a) =1+0' (a)t+0%(a)t* +...+0" (a)t" +...,

then o™: A— A is called the n-th symmetric operation associated with (A4, \).

Definition 1.23. Let (A4, \) be a A-ring. The associated n-th Adams operation is the

composite ring homomorphism ¥, =w,A: A— A.
We note that, by Proposition 1.14, the series wt(a):Zn>1 ¥, (a)t™ is given by either
one of the following formulas which are, perhaps, more familiar:

Yila) =t S logay(a) and i(a)= 1 log Ai(a).

We recall the following standard properties of the Adams operations, and mention Wilk-
erson’s result [28, Proposition 1.2] that, if A is a ring flat over Z equipped with a family of
ring endomorphisms v,, satisfying (i)—(iii) below, then there is a unique A-ring structure

on A for which the 1), are the associated Adams operators.

LEMMA 1.24. Let (A, ) be a A-ring. The associated Adams operations satisfy the
following properties:

(i) the map 1y is the identity map of A,

(ii) for all positive integers m and n, Ymn="1mn;

(ili) for every prime number p and a€A, ¥p(a)=a? mod pA.
Proof. The properties (i) and (iii) follow immediately from the definitions, and (ii)
follows from the identities
Ym0 = Wiy o AoWp 0 A = Wy oWy o W(AX) o X
:wmownvoA:wmanoA:wmnoA:w7nn.
Here, the second identity follows from the naturality of w,; the third identity from the

definition of a A-ring; the fourth identity from the definition of the map A; and the fifth
identity from the definition of the map F,,. O

Finally, we recall the following general theorem which was proved independently by
Borger [6, Theorem B], [5, Corollary 15.4] and van der Kallen [20, Theorem 2.4].

THEOREM 1.25. Let f: A— B be an étale morphism, let S be a finite truncation set,

and let n be a positive integer. Then the induced morphism

Ws(f)
—

Ws(A) Ws(B)
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1s €tale and the square diagram

Ws(4) —=, w(B)

[ o 17

18 a cocartesian square of rings.

We remark that in loc. cit., the Theorem 1.25 is stated only for the finite truncation
sets (n) that consist of all divisors of a given positive integer n. However, as explained
in [6, §9.5], the case of a general finite truncation set readily follows from the special

case.

2. Modules and derivations over A-rings

In general, if ¥ is a category in which finite limits exist and if X is an object of ¥, then
Beck, in his thesis [2, Definition 5], defines the category of X-modules to be the category
(% /X)ap of abelian group objects in the category over X. He also defines the derivations
from X to the X-module (Y/X,+y,0y, —y) to be the set

Der(X, (Y/X, +y,0y, —y)) =Homg,x (X/X,Y/X)

of morphisms in the category /X equipped with the abelian group structure induced
by the abelian group object structure on Y/X. In this section, we identify and study
these notions in the case of the category 7\ of A-rings.

We recall that, in general, an adjunction from a category % to a category Z is
a quadruple (F, G, e,n) of functors F: ¢ — 2 and G: 2 —% and natural transformations
e: FoG=1dgy and 7: id =G F such that the following composite natural transformations
are equal to the respective identity natural transformations:

F PoGoF =E5 P and G =22 GoFoG =S

compare [24, Theorem IV.1.2]. We refer to this requirement by saying that the triangle
identities hold. The natural transformations ¢ and 7 are called the counit and the unit
of the adjunction, respectively, and the adjunction is said to be an adjoint equivalence if
they both are isomorphisms. A functor G: 2— % is said to admit a left adjoint, if there

exists an adjunction (F,G,e,n) with G as its second component, and in this case, the
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functor F' is said to be a left adjoint of the functor G. If (F',G,&’,n’) is another such

adjunction, then the composition

F = poGoF = pr

is the unique natural transformation o: F'= F’ with the property that the diagrams

FoG ==—>idy idy —=> GoF
ﬂaoG and ﬂ oG
FloG = idy idy =2 G F’

commute, and is an isomorphism; see [24, Theorem IV.7.2]. In this sense, a left adjoint
of a functor G, if it exits, is unique, up to unique isomorphism. Similar statements hold
for right adjoint functors.

Let o be the category of rings. We always assume rings to be commutative and
unital, unless otherwise stated. Given a ring A, we define an adjunction (F,G,¢e,n) from
the category (&7 /A).p of abelian group objects in the over-category o/ /A to the category
A (A) of A-modules in the usual sense, following Beck [2, Example 8]. So let f: B—A
be an object of &7 /A, and let

Bx,B—"4B A2, B—"3B
| ) | ]
)/ pu— A=—— A4, A=—— A

)

be abelian group object structure maps. The functor F' associates to the abelian group
object (f,+p5,05,—p) the A-module M given by the kernel of f with the A-module
structure a-z=0p(a)x. Conversely, if M is an A-module, then we let Ax M be the ring
given by the direct sum A® M equipped with the multiplication

(a,2)-(a’,2") = (ad’,ax’ +a'x)

and define G(M) to be the abelian group object (f,+,0,—), where f: Ax M — A is the
canonical projection, and the abelian group object structure maps are given by (a,z)+
(a,2")=(a,z+2'), 0(a)=(a,0), and —(a,z)=(a,—x). Finally, we define e: Go F=id by
e(a,x)=0p(a)+z and n:id=F-G by n(z)=(0,z). For later use, we include a proof of
the following result of Beck [2, Example 8].

LEMMA 2.1. If A is a ring, then the quadruple (F,G,n,¢) defined above is an adjoint
equivalence of categories from (& /A)ap to M (A).
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Proof. Tt is clear that 7 is well defined and a natural isomorphism, and it is also clear
that ¢ is a natural isomorphism of the underlying additive groups. We must show that ¢
is a multiplicative map and a map of abelian group objects; we first consider the latter
statement. So we fix an object (f: B—A,+5,05,—p) of (&//A).p and let M =ker(f)
with the A-module structure defined above. By definition, we have £(a,0)=0g(a) which
shows that ¢ preserves zero maps. To see that ¢ preserves addition maps, we first note

that, since +p is a ring homomorphism,
(u+v)+p (' +v") = (u+pu')+(v+pv")
for all (u,u’), (v,v")€B X 4B. In particular, if x,y€ M, then
z+py=(r+0)+p(0+y) = (z+50)+(0+5y) =2+,

where we also use that 0=05(0) is a common zero element for the two compositions +
and +p on M. We therefore conclude that for all ac A and z, 2’ €M,

£(a,2)+pe(a,a’) = (0(a)+2)+5 (0(a) +2')
(0(a)+50(a))+(2+52") = 0(a) + (x+2") = (a, x+2"),

as desired. We have showed that ¢ is compatible with the zero and addition maps; but
then it is also compatible with negation maps.

It remains to prove that the map ¢ is multiplicative, or equivalently, that M C B
is a square-zero ideal. Since +p: Bx 4B— B is a ring homomorphism, we have that

w+pu'v'=(u+pu’)(v+pv'), for all (u,u), (v,v")€B x4 B. In particular,
ry+a'y' = (z+y)(z'+y)

for all z,2',y,y’'€M, since +p=+ on M. Taking y=2'=0, we find that xy'=0 for all
x,y'€M as desired. This completes the proof. O

We will prove the analogous statement for A-rings in Proposition 2.10 below, but
first we examine the Witt vectors of Ax M. The polynomials s,, p,, and 4,, that define
the sum, product, and opposite in the ring of Witt vectors all have constant term zero.
Therefore, the ring of Witt vectors is defined also for non-unital rings. Moreover, modulo
terms of higher degree, these polynomials are congruent to a,+b,, a,b,, and —a,,, respec-
tively, as one readily proves by induction. Therefore, if M is an abelian group considered
as a non-unital ring with zero multiplication, then the non-unital ring Wg¢ (M) has zero
multiplication and its underlying additive group is equal to M*° with componentwise ad-

dition. In the same way, one shows that the polynomials f, . and d, . that define the nth
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Frobenius map and the universal A\-operation all have constant term zero and that they
are congruent to nane and a.m,e, respectively, modulo terms of higher degree. Therefore,
for M as above, the map Fy,: Wg(M)—=Wg/, (M) takes (z,|meS) to (nane|e€S/n) and
the map Ay W(M)—->W(W(M)) takes (2, |mEN) to ((zme|e€N)|meN).

LEMMA 2.2. Let S be a truncation set, A be a ring, and M be an A-module. The
canonical inclusions induce a Ting isomorphism
ingy +iH2*ZWS(A) D(WS(M) HWS(AIXM),
provided that Wg(M) is given the Wg(A)-module structure, where for ac€Wg(A) and
x€Wg (M), axeWg(M) has Witt components (ax), =wp(a)zy,.

Proof. We consider the following diagram of rings and ring homomorphisms, whose
underlying diagram of additive groups is split-exact.

ir ing
0—— M5 AxM & A——0.
pTy
It induces the following diagram of rings and ring homomorphisms, whose underlying
diagram of additive groups again is split-exact.
ing, ing,

22 We(Ax M) & Wg(A) —— 0.

Pry.

OHWS(M)

It follows that the map of the statement is a ring isomorphism, if Wg(M) is given
the Wg(A)-module structure such that ing.(axz)=ini.(a)ing.(z), for all aeWg(A) and
x€Wg(M). It remains to prove that az is equal to the Witt vector y with nth component
wy,(a)x,. Since every ring admits a surjective ring homomorphism from a torsion-free
ring, we may assume that A and M are both torsion free. Moreover, since the ghost map
is injective in this case, it will suffice to show that w,(az)=w,(y), or equivalently, that
ing (wy, (az))=ina(wy(y)), for all n>1. Now, since w,, is a natural ring homomorphism,
we find that for all n>1,

ing (wy, (ax)) = wy, (ings (ax)) = wy, (ing4(a) ings (z)) = wy, (ing4 (@) )wy, (ing. (z))

=iny (wy(a)) ing(wy, (x)) = ing (wy, (a)w, (x)) = ing (nwy, (a)x,)

=ing(nyy,) = ing(w, (y))

as desired. Here the fifth equality follows from the definition of the multiplication on the
ring Ax M. O
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ADDENDUM 2.3. Let S be a truncation set, A be a ring, and M be an A-module.
If aeWg(A) and xeWg(M), then the Witt components by, = (an,yn) of the Witt vector
b=in1,(a)+ing.(x) EWg(Ax M) satisfy that for all n€S,

Sy =,

eln

Proof. We may assume that A and M are torsion free and proceed to calculate wy, (b)

in two different ways. First, since w,, is a natural ring homomorphism, we have
W () = wa (01 (@) + 10 (03, (2)) = ity (1 (0)) + e (1w (2))

— () ) = ( et/ ).

eln

Second, by the definition of the multiplication in Ax M, we have

TCE SULES SECARES O DI S

eln eln eln eln
The stated formula follows as M was assumed to be torsion free. O
Ezxample 2.4. Let p be a prime number. Then yp:a:p—af_lxl.

In general, if f: A— B is a ring homomorphism and if M and N are modules over
A and B, respectively, then we define an f-linear map h: M — N to be an additive map
such that h(az)=f(a)h(zx), for all a€ A and z€ M. In the following, given an A-module
M and a truncation set SCN, we write Wg(M) for the Wg(A)-module given by the set
M* with componentwise addition and with the scalar multiplication of a€Wg(A) and
x€Wg(M) defined by to be the element ax eWg (M) with

(ax)n = wA,n(a)xn

for all neS; compare Definition 1.23 and Lemma 2.2. We remark that if M is the ring
A considered as a module over itself via multiplication, then the Wg(A)-module Wg(M)
defined above usually is not the same as the ring Wg(A) considered as a module over
itself via multiplication. To avoid confusion, we will use Wg(A) to indicate the ring of

Witt vectors only and will not use it to indicate either module over this ring.

Definition 2.5. Let (A, A4) be a A-ring. An (A4, A\a)-module is a pair (M, A\ps) of an
A-module M and a \4-linear map

Ans: M — W(M)
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with the property that the diagrams

M <M W(M) W(W(M)) <22 wW(M)
\ ‘v and TWA) TAM
M W(M) 2 A

commute. A morphism h: (M, Ap)—(N,An) of (A, A)-modules is an A-linear map
h: M — N such that Axyoh=W(h)oAy.

Remark 2.6. Let (A, A4) be a A-ring, M be an A-module, and Ap: M —W(M) be
amap. Then (M, Apr) is an (A, A4)-module if and only if the components Apy,,: M — M
are 14 p-linear and satisfy Aps1=idas and ApsmoApsn=Ar,mn, for all m,neN. Hence,
we may identify the category .# (A, \4) with the category .#(AY[N]) of left modules
over the twisted monoid algebra AY[N] by associating to the (A, Aa)-module (M, Axr)
the left A¥[N]-module given by the A-module M and with n€N acting through the map
A M — M. In particular, the category .# (A, A4) is abelian.

Ezample 2.7. Let (A,A4a) be a A-ring. The functor that to an (A4, A4)-module
(M, \pr) assigns the underlying set of M has a left adjoint functor that to the set S
assigns the free (A4, A4)-module (F(S), Ap(s)) defined as follows. The A-module F(S) is
defined to be the free A-module generated by the symbols Ap(g),(s), where s€S and
neN, and Ap(g): F(S)—=W(F(S)) is defined to be the map with mth component

>\F(S),m < Z a’S,’I’L)\F(S)JL(S)> = Z 'l/}A,m (as,n))‘F(S),mn(s)'

seS sES
neN neN

It follows from Remark 2.6 that the pair (F'(S), Ap(g)) is an (A4, A4)-module. The unit
of the adjunction maps s€S to Ap(sy,1(s)€F(S), and the counit of the adjunction maps
Y Ao n AR (T) EF (M) to D g nAnn(x)€M. It is straightforward to verify that the
triangle identities hold.

Ezample 2.8. Tf (A, A4) is a A-ring, then there is an (A4, A4)-module (M, Aps) defined
by setting M=A and Aasn=1%4,. This (4, Aa)-module is not a free (A4, A4)-module in
the sense of Example 2.7, except in trivial cases. We warn the reader that the pair
(A, \4) is typically not an (A, A4)-module, let alone a free (A, A4)-module; compare the
discussion preceding Definition 2.5.

Ezample 2.9. Let A be a ring, unital and commutative, and let K, (A) be the graded
ring given by the Quillen K-groups. The ring Ky(A) has a canonical A-ring structure de-
fined by Grothendieck [11], and for all g>1, the group K,(A) has a canonical structure of



162 L. HESSELHOLT

a module over this A\-ring defined by Kratzer [22] and Quillen [18]. The (Ko(A), Axy(a))-

module structure maps are given by
AR, (A)n = (*1)%1/\?@(@3 K (A) — K4(A)

with )\%Q(A) defined in [22, Théoréme 5.1].

Let U: @/, — </ be the forgetful functor from the category of A-rings to the category
of rings that to a A-ring (A, A) assigns the underlying ring A. It admits the right adjoint
functor R: o7 — o7y defined by R(A)=(W(A), A4) with the counit and unit maps defined
by A: (A, A)—(W(A),A,) and e4: W(A)— A, respectively. The forgetful functor U also
admits a left adjoint, but this will not be relevant for the discussion below. Since W(—)
preserves limits, the forgetful functor U creates limits. Indeed, if {(A;, \;)} is a diagram
of A-rings and if {p;: A—A;} is a limit in & of the diagram {A4;}, then {W(p;): W(A)—
W(A;)} is a limit in o of the diagram {W(A;)}. Therefore, we conclude that the
pair (A, ), where \: A—»W(A) is defined to be the unique map with ith component
Aiopit A=W(A;), is a A-ring and that the family {p;: (A, \)—=(4;, A;)} is a limit in @7

of the given diagram. It follows that for a A-ring (A, A4), we obtain an adjunction

Utang)
A\[(AAa) T A,
Reax
where the left adjoint functor Uga, x,) takes f:(B,Ap)—(A,Aa) to f: B—A, the right
adjoint functor R4y ,) takes f: B—A to p2: (C, A\c)— (A, Aa), for

(C,A\c) —— (W(B), Ap)

lm J{W(f)

A
(Aa >‘A) 414) (W(A)a AA)
a choice of a pullback, the counit is egep;, and the unit is the unique map with com-
ponents Ap and f. Since the functors Ua,,) and R4 x,) both preserve limits, this

adjunction, in turn, induces an adjunction

Uaxy)

(5 / (A, Aa))ab —— (o /A)ay

Reax

between the associated categories of abelian group objects. Corresponding to this, we

have the adjunction

U/
.///(A, )‘A) — L//(A)v
R/
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where the left adjoint functor U’ takes (M, Ap) to M, the right adjoint functor R’
takes N to (Aa«(W(N)),An), and the counit and unit maps are defined to be the maps
N AAx(W(N))—=N and Apr: (M, Aar)— (A ax(W(M)), Apr), respectively. Here we write
Aax(W(N)) for the W(A)-module W(N) considered as an A-module via 4.

PROPOSITION 2.10. Let (A,X4) be a A-ring. There exists, up to unique isomor-
phism, a unique adjunction (F*,G*,e*,n*) from (2 /(A,Aa))ab to A (A, \a) such that,

in the following diagram, the square of left adjoint functors commutes:

P — L0

G
U<A,AA>H(R<A,AA> U’TJR’
F)\

() (A,AA))ab = M (A, \4).
GA

Moreover, the adjunction (F*,G*,&*,n*) is an adjoint equivalence of categories.

We remark that, by the uniqueness statement for adjoints, which we recalled at
the beginning of the section, the commutativity of the square of left adjoint functors in
the diagram in Proposition 2.10 implies that the corresponding square of right adjoint

functors commutes, up to unique natural isomorphism.

Proof. If (f,+,0,—) is an object of (& /(A, A4))ab with underlying map of A-rings
f:(B,Ag)— (A, \4), then we define FA(f,+, —,0) to be the pair (M, \y) of the kernel
M=F(f) of f and the induced map Ap;: M —W(M) of kernels of the vertical maps in

the diagram
A

B——— W(B)
f W(f)
A—24 WA,
We note that U’oF)‘zFoU(A’AA) as stated. Conversely, if (M, A\jr) is an (A, A4)-module,
then we define G*(M, A\ys) to be the abelian group object G(M) in 7 /A with the un-
derlying ring B=Ax M equipped with the A-ring structure Ag: B—W(B) given by the

composite map

Aa®Am

ing. + ings

Ax M W(A)x W(M) W(AXx M);
compare Lemma 2.2. To prove that G*(M, \y) is well defined, we must show (a) that
(B, Ap) is a A-ring; (b) that the canonical projection f:(B,Ag)—(A,\4) is a A-ring

homomorphism; and (c) that the abelian group object structure maps + g, 05, and —p on
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f: B—A are A-ring homomorphisms. First, the map A4 P Ay is a ring homomorphism,
since A\p; is a Ag-linear map. Moreover, Lemma 2.2 shows that also ini, +ing, is a
ring homomorphism, so Ag is a ring homomorphism. To prove (a), it remains to show
that the diagrams in Definition 1.21 commute. The left-hand diagram commutes, since
caoda=id 4 and ep;o Ay =id s, and since iny, + ino, is the identity map on the first Witt

component. To see that the right-hand square commutes, we consider the following larger

diagram:
W(W(Ax M)) B W(Ax M)
W(ing, + inzs) ing. + ing.
V(W (A) ) W(M)) 27020y (W(A)) x W(W(M)) «22E2Y wy(4)  W(M)
WAa®Aar) W(Aa)OW(Aar) AA@Ans
W(Ax M) e+ ihee W(A)x W(M) A A M.

Here, the lower right-hand square commutes, since (A, \4) is a A-ring and since (M, Aps)
is an (A, A\4)-module, and the lower left-hand square commutes by the naturality of
iny« +ing,. To prove that the upper rectangular diagram commutes, it suffices to show

that the two compositions with the nth ghost map
W(W(Ax M)) — W(Ax M)
agree. This, in turn, follows from the calculation
WnoAaxpro(ings +ing, ) = Fpo(ing, + ingy )
= (ingx +ings)o (F,®F),)
= (iny4 + ingy ) o (wp Bwy ) o (AaDApy)
= (inyx + ingy ) owp o (ing 4 + ing. ) o (A4 B Apy)
= wyoW(ini, +ingy)e (ing, +ing. ) (AA®An),

where the first and third equalities hold by the definition of A, the second and fourth
equalities hold by the naturality of iny, + ins,, and the fifth equality holds by the natu-
rality of w,,. This proves (a). Next, if h: (M, Apr)— (N, Ay) is a map of (A4, A4)-modules,
then the following diagram commutes:

A M 2200 gy W (M) 222wy )

Jid ®h Jid ®h. l(id ®h).

Ax N A gy A  W(N) 202wy A N,
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Taking (N, An) to be the trivial (A, As)-module, (b) follows. We use other instances
of this diagram to prove (c). The maps 0p and —p are induced by the (A, A4)-module
maps O0pr: (0,id)— (M, Apr) and —pr: (M, Apr) — (M, Apr) that map 0 to 0 and = to —x,
respectively. Hence, the diagram shows that both are A-ring homomorphisms. Finally,

if we define A\p;qps to be the composition map

AMBAM ing. +ing.

MoM W(M)DW (M) W(MeM),

then (M@®M, Ayrgar) is a direct sum of the (A, A4)-module (M, Aps) with itself. Now,
the addition map +p is given by the map

ide+
(Ax(M&M), Aaxmom)) ——— (A M, Aawnr),
where + i (MOM, Mg ) — (M, M) takes (x,y) to x+y. To complete the proof of (c),
we must verify that +,s is a map of (A, A4)-modules, that is, that the diagram

AMDAM ing. + ingx

MaM —2E2 W eW(M) W(MeM)

J‘F}\l LFW(M) lWHM)
A

M = W(M) W(M)

commutes. But the left-hand square commutes, as Ay; is an additive map, and the
right-hand square commutes, since the addition in W(M) is given by adding the Witt
components of vectors, so (c) follows. This completes the proof that the functor G* is
well defined. We also note that, by construction, we have U(A,,\A)oG)‘:GoU’.

Finally, we claim that there are unique natural isomorphisms
N A
GroF* ==id and id == F*-G

such that U(A’)\A)(E/\)ZEOU(A))\A) and U'(n*)=n-U’. Indeed, this amounts to the follow-
ing diagrams being commutative, where, in the bottom diagram, i: M — B is the (chosen)
of kernel of f: B— A:

M— L wW(M) W(M)

ling ling J{in'z*
Aa®Anm

A M —2282Y W (A) ) W(M) — 120wy A M),

A M 2280w A) W (M) 202wy A M)

JOB-H lOB* +ix J/(OBvLi)*
A

B = W(B) W(B).
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The left-hand squares in the two diagrams commute by naturality and the right-hand

squares commute by the universal property of the direct sum. O

Remark 2.11. A map of A-rings f: (B, Ag)— (A4, A4) gives rise to a functor
for M (A Na) — A (B, AB)

defined by viewing an (A, A4)-module (N,Ay) as a (B, Ag)-module f.(N,Ay) via the
map f. The functor f, has a left adjoint functor f* that to a (B, Ag)-module (M, Aps)
associates the (A, A4)-module f*(M,Anr)=(A,A4)®(B,rz) (M, Apr) defined by

(A, 22)®Bag) (M, Anr) = (ARB M, Mg M),
where Aag,nm is given by the composition of A4 ®x, Ay and the map
W(A)@wr)W(M) — W(A®p M),

that to a®x associates the vector whose nth Witt component is wy, (a) ®z,.

Definition 2.12. Let (A, \4) be a A-ring and let (M, Apr) be an (A, A4)-module. A
derivation from (A, Apr) to (M, Apr) is a map of sets

D: (A a) — (M, A\yr)

such that the following conditions hold:
(1) for all a,be A, D(a+b)=D(a)+D(b);
(2) for all a,be A, D(ab)=bD(a)+aD(b);
(3) for all a€ A and n€N, Ay, (D(a))=>_,, M.e(a)™ DA g.(a)).
The set of derivations from (A, A4) to (M, \pr) is denoted by Der((A4, Aa), (M, Anr)).

We next show that, under the equivalence of categories given in Proposition 2.10,

Definition 2.12 agrees with Beck’s general definition of a derivation.
PROPOSITION 2.13. Let (A, Aa) be a A-ring, let (M, Apr) be an (A, Aa)-module, and
let f:(AXM, Aawxnr)— (A, Aa) be the canonical projection. The map

Der((A,Aa), (M, Anr)) — Homy, (a0 (idanays f)

that to D assigns (ida, D) is a bijection.

Proof. The map from Der(A, M) to Hom,4(ida, f) that takes D to (id4, D) is a

bijection, as is well known and readily verified. We must show that D satisfies (3) if and
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only if (ida,D): A=A M is a A-ring homomorphism, and the latter means that the

following diagram commutes:

A W(A)

J{(idAyD) J/(idA,D)*

A M 229 gAY W(M) 22 (A M),

Now, on the one hand, the map (id 4, D) takes a to (a, Da) which by As @Ay is mapped
to (Aa, Aam(Da)) whose nth Witt component is (A n(a), A, (Da)) and, on the other
hand, the eth Witt component of the image of a by the composite map (ida, D).oAa
is equal to (Aa.(a),DAae(a)). Hence, Lemma 2.2 and Addendum 2.3 show that the
diagram commutes if and only if D satisfies (3). O

LEMMA 2.14. Let (A, A4) be a A-ring. There exists a derivation
d
(A, 04) — (Qara) Ay ,))

which corepresents the functor that to an (A, Aas)-module (M, ;) assigns the set of
derivations Der((A, Aa), (M, Apm)).

Proof. We define the target of the map d to be the quotient of the free (A, Aa)-
module (F,Ap) generated by {d(a)|a€ A} by the sub-(A, A4)-module (R, A\r)C(F, \r)
generated by d(a+b)—d(a)—d(b) with a,b€ A; by d(ab)—bd(a)—ad(b) with a,be A; and
by Apn(da)=3_,, M e(@) ¢ d(Aae(a)) with a€ A and n€N. The map d takes a€ A
to the class of d(a) in Q4 x,). It is clear from the construction that given a derivation
D: (A, a)— (M, M), there is a well-defined map of (A, A4)-modules

Fr(Qana), Aoay ) — (M, Anr)

such that D=fod and that f is unique with this property. This proves the lemma. [J

The map d: A= x,) in Lemma 2.14, in particular, is a derivation of the ring A,
and hence, it defines a map of A-modules Q4 —€(4 5 ,). We call this map the canonical
map and now prove Theorem A, which states that it is an isomorphism.

Proof of Theorem A. We consider the diagram of adjunctions

(7)ab

o JA T (o [A)ap i M (A)

7 G
U(A,AA)H(RM,AA) U<A,AA>]LR<A,AA> U'H{R’
(=) A

ab

(A a) T (DA /(A Aa))ab " M (A, Na),
A G)\

7
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where the functors i and i* forget the abelian group object structure maps, and where
(—)ab and (—)2, are the respective left adjoint functors which we now define. In the
right-hand square, the top and bottom adjunctions are adjoint equivalences of categories
by Lemma 2.1 and Proposition 2.10, respectively. Hence, the composition of the top
adjunctions in the diagram determine the top adjunction in the left-hand square, up to
unique natural isomorphism, and similarly for the bottom adjunctions.

Now, we define an adjunction (H, K,e,n) with K=ioG as follows. The functor K
takes the A-module M to the canonical projection f: Ax M — A, and we let H be the
functor that to f: B— A assigns the A-module A® g, and let € and n be the natural
transformations given by £(1®d(a, x))=z and n(b)=(f(b), L®db), respectively. We must
show that the two composite natural transformations

H HokoH =220 H and K =255 KoHoK =250 K

are equal to the respective identity natural transformations. But Hen maps a®db in
H(f:B—A)toa®d(f(b),1®db)in (HeK-H)(f: B—A) and ecH, in turn, maps this ele-
ment to a-(1®db)=a®dbin H(f: B— A); and ne K maps (a,z) in K (M) to (a,1®d(a,x))
in (KeHoK)(M) and Kee, in turn, maps this element to (a,z) in K(M). This shows
that (H, K,e,n) is an adjunction. Similarly, we define an adjunction (H*, K*, &*,7n")
with K*=i*-G* as follows. The functor K* takes the (A, A4)-module (M, \4) to the
canonical projection f:(Ax M, Aaxar)—(A,Xa), and we let H* be the functor that to
f:(B,AB)— (A, \a) assigns the (A, Aa)-module (A, A4)®(B,xz)(B,2p), and let e* and
7 be the natural transformations given by e*(1®d(a,z))=z and 7*(b)=(f(b), 1®db),
respectively. The change-of-rings functor that we use here was defined in Remark 2.11.
The proof that the triangle identities hold follows mutatis mutandis from the calcula-
tion in the case of the adjunction (H, K,e,n). This shows that (H*, K* e n*) is an
adjunction.

Having established the diagram of adjunctions at the beginning of the proof, we
note that the composite functors R4 )oK and K AoR' agree, up to unique natural

isomorphism. Indeed, the following diagram is cartesian,

ing, +ingy

Ax A W(M) 2229 W) w W) W(Ax M)
g = s W(A) W(A).

By the uniqueness of left adjoint functors, up to unique natural isomorphism, we conclude

that also the composite functors HeU4 y,) and U'-H* agree, up to unique natural
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isomorphism. It follows that the canonical natural transformation
A®pQp — U (A X4)®B.2s) AB.As))

is an isomorphism, and taking (B, Ag)=(A4, A1), the theorem follows. O

THEOREM 2.15. Let A be a ring. There are natural maps Fy: Qyya)y—Qwa) that
are F,-linear and satisfy that for all aeW(A),

F,(da) = Z AA,e(a)”/e_ldAA,e(a).

eln
Moreover, the following conditions hold:
(1) for all m,neN, F, F,=F,,, and F|=id;
(2) for all neN and aeW(A), dF,(a)=nkF,(da);
(3) for all neN and a€ A, F,(d[a])=[a)"'d[a].

Proof. Applying Theorem A to the universal A-ring (W(A), A,4), we conclude that
the canonical map Qyy(a)—w(a),a,) is an isomorphism. Since the target of this map

is a (W(A), A 4)-module, we have the natural map

Frn = Aaway.a 0 Qeway,an) — Qw(a),a.)

defined to be the nth Witt component of the (W(A), A 4)-module structure map; compare
Remark 2.6. Tt is an Fj,,=w, oA s-linear map and Definition 2.12 (3) implies that it is
given by the stated formula. Properties (1) and (2) follow immediately from the definition
of a (W(A), A4)-module and from the calculation

dF,(a) = d(Z eAAye(a)”/e> = A4 e(a)" T dA A (a) =nF,(da),
eln eln

where the first and last equalities follow from the definition of A4. Finally, to prove
property (3), it suffices to show that A4 .([a]) is equal to [a], if e=1, and is equal to 0,
if e>1, or equivalently, that A([a])=[a]], and this was proved in Remark 1.20. O

3. The anticommutative graded algebras QW(A) and ﬁW(A)

We next introduce the anticommutative graded W(A)-algebra (AZW( a)- 1t agrees with the
alternating algebra Qyy 1) =/Aw(a) Q%,V(A), if the element

dlog[~1] = [~1]7d[~1] € Q)

is zero, but is different, in general. We note that 2dlog[—1]=dlog[1]=0 and that, by
Lemma 1.5 (v) and Theorem 2.15 (3), F,,(dlog[—1])=dlog[—1] for all neN.
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Definition 3.1. Let A be a ring. The graded W(A)-algebra

Qwcay = Tivay Qi ay /I

is defined to be the quotient of the tensor algebra of the W(A)-module Q%V(A) by the
graded ideal generated by all elements of the form

da®da—dlog[—1]® Fz(da)

with acW(A).

We remark that the defining relation da-da=dlog[—1]-F»(da) is analogous to the
relation {a,a}={—1,a} in Milnor K-theory.

LEMMA 3.2. The graded W(A)-algebra (AZW(A) is anticommutative.

Proof. Tt suffices to show that the sum da~db+db~da€§§vm) is equal to zero for all
a,beW(A). Now, on the one hand, we have

d(a+b)-d(a+b) =dlog[—1]- Fad(a+b) = dlog[—1]- Foda+dlog[—1]- Fadb,
since Fsd is additive, and on the other hand, we have
d(a+b)-d(a+b) =da-da+da-db+db-da+db-db
=dlog[—1]- Foda+da-db+db-da+dlog[—1]- Fadb.
This shows that da-db+db-da is zero as desired. O
PROPOSITION 3.3. There exists a unique graded derivation
that extends the derivation d: W(A)%Q\%V(A) and satisfies the formula
ddw = dlog[—1]-dw
for all wE(AZW(A). Moreover, the element dlog[—1] is a cycle.
Proof. The relation ddw=dlog[—1]-dw implies that dlog[—1] is a cycle for the desired
derivation d. Indeed,
d(dlog[—1]) = d([-1]d[-1])
=d[-1]-d[-1]+[-1]-dd[-1]
=dlog[—1]- Fad[—1]+[—1]dlog[—1]-d[-1]
=dlog[—1]-[-1]d[-1]+dlog[—1]-[-1]d[-1],
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which is zero by Lemma 3.2. This proves that the desired derivation d necessarily is

unique in that, for all ag, a1, ...,aq € W(A), the following formula must hold:
d(aoday ... dag) = dagday ... dag+qdlog[—1]-apda; ... dag.

Here gdlog[—1] is equal to either dlog[—1] or 0 as ¢ is odd or even. To complete the
proof, it remains to prove that the map d given by this formula is (a) well defined, (b) a

graded derivation, and (c) satisfies ddw=dlog|—1]-dw. First, we have

d(aodas .. day-bodby ... dby)
=d(agboday ... daydby ... dby)
=d(agbo)das ... dapdb; ... dbg+ (p+q)dlog[—1]-apbodas ... daydbs ... dby
=dapday ... day-bodby ... dby+pdlog|—1]-apday ... da,-bodbs ... db,
+(=1)?(aoday ... day,-dbodby ... dby+aoday ... da,-gdlog[—1]-bodby ... dby)
= d(apday ... day)-bodby ... dby+(—1)Pagday ... da,-d(bodby ... dby)

which proves (b). Next, using that ¢*>+¢ is always even, we find that

dd(aoday ... dag) = d(daoday ... dag+qdlog[—1]-apda; ... dag)
= (¢+1)dlog[—1]-dagda; ... dag—qdlog[—1]-dapday ... dag
—qdlog[—1]-qdlog|—1]-apda ... dag
=dlog[—1]-(dagda; ... dag+qdlog[—1]-apday ... day)
=dlog[—1]-d(apda; ... day)

which proves (c¢). Finally, to prove (a), we must show that for all a,be W(A), the ele-
ments d(d(ab)—bda—adb) and d(dada—dlog[—1]-Fada) of QW(A) are zero. First, using
Lemma 3.2 together with (b) and (c), we find that
d(d(ab)—bda—adb) = dd(ab) — dbda—bdda—dadb—addb
=dlog[—1]-d(ab)—dlog[—1]-bda—dlog[—1]-adb
=dlog[—1]-(d(ab) —bda—adb)

which is zero, since d: W(A)%ﬁ‘l,vm) is a derivation. This shows that the first type of

elements are zero. Next, (b) and (c) show that

d(dada) = 2dlog[—1]-dada



172 L. HESSELHOLT

which is zero as is

d(dlog[—1]- Fyda) = dlog[—1]-dFyda = dlog[—1]-d(ada+dAs(a))
=dlog[—1]-(dada+dlog[—1]- Fda)
by the definition of Q@v( A) Hence also the second type of elements are zero. This
completes the proof of (a) and hence of the proposition. O

Remark 3.4. In general, there is no W(A)-algebra map f:ﬁW(A)%QW(A) that is

compatible with the derivations.

PROPOSITION 3.5. Let A be a ring and let n be a positive integer. There is a unique

homomorphism of graded rings

that is given by the maps F,: W(A)—W(A) and F,: Q%,V(A)%Q%,V(A) in degrees 0 and 1,
respectively. In addition, the following formula holds:

dF, =nF,d
Proof. The uniqueness statement is clear: The map F, is necessarily given by
F,(aoday ...dag) = Fy(ao)F(da1) ... F,(day),

where ag, ..., ag €W(A). We show that this formula gives a well-defined map. To prove
this, we must show that for every ac W(A),

F,(da)F,(da) = F,,(dlog[—1]) F,,(Fxda).
It will suffice to let n=p be a prime number. In this case, we find that

F,(da)F,(da) = (a*~'da+dA,(a))-(a?~ da+dA,(a))
= (a’"1)?da-da+dAy(a)-dA,(a)

=dlog[—1]-((a? 1) Fada+ FydA,(a))

=dlog[—1]-(Fy(aP ') Fyda+ FadAp(a))

=dlog[—1]-FyF,da

= F,(dlog[—1]- Fada),

where we have used that Fy(a) is congruent to a? modulo 2W(A). This shows that the

map F;, is well defined. It is a graded ring homomorphism by definition.
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We next prove the formula dF,,=nF,d. Again, we may assume that n=p is a prime
number. We already know from the definition of F},: Q%W(A) —>Q%W(A) that for all ae W(A),
dF,(a)=pFy,(a). Now, for all acW(A),

dF,(da) = d(a?'da+dA,(a)) = (p—1)a?*dada+dlog[—1]-F,da

which is equal to zero for p=2, and equal to dlog[—1]-F,da for p odd. Hence, for every
prime p and every a€W(A), we have

dF,(da) =pdlog[—1]- Fpda = pF,(dlog[—1]-da) = pF,d(da)
as desired. Now, let ao, ..., a, € W(A). We find that

dF,(aoday ... dag)
=d(Fp(ao)Fpdas ... Fpdag)

q
=dF,(a)Fyday ... Fydag+» (—1)""'Fy(ao)Fpday ... dFyda; ... Fydag

i=1
a
=pF,d(ao)Fpdas ... deaq+Z(—1)i_1Fp(a0)dea1 ..pFyd(da;) ... Fydag
i=1
=pF,yd(apda; ... dag)

as stated. This completes the proof. O

We next define the quotient graded algebra QW( 4) of the graded algebra (AZW( 4) and

show that the Frobenius map F;, and derivation d descend to this quotient.

Definition 3.6. Let A be a ring. The graded W(A)-algebra

Qway = Qway/ K
is defined to be the quotient by the graded ideal K generated by the elements
FpdVp(a)—da—(p—1)dlog[—1]-a,

where p ranges over all prime numbers and a over all elements of W(A).

We remark that the element F,dV,(a)—da—(p—1)dlog[—1]-a is annihilated by p.
In particular, it is zero, if p is invertible in A, and hence, in W(A).

~

LEMMA 3.7. The Frobenius map Fn:QW(A)AQW(A) induces a map of graded alge-

bras
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Proof. Tt will suffice to let n=/¢ be a prime number and show that for all prime

numbers p and all a€ W(A), the element
Fy(FpdVy(a)—da—(p—1)dlog[—1]-a) € Qgy 4
maps to zero in ﬁ%&/( A) To this end, we will repeatedly use that for every prime number

p and every be W(A), Theorem 2.15 and Remark 1.20 show that

F _pP
Fodb=b""db+dA, (b) = bp—ldb+d<p<b)b)
p

as elements of Q%W(A). We also use that, by Lemma 1.5 (ii)—(iii), we have
Vm(a)n —_ ,rnn—lvm(an)7
for all m,neN and aeW(A). Now, suppose first that {=p. For p odd, we find that
E,V,(a)—Vy(a)?
F,(FpdVy(a)—da)=F, (Vp(a)p_lde(a)—&-d(IM) —da)

= F,(p"2Vy(a? 1)V, (a) —pP 2 dV,y(a?))
=p? taP L E,dV,(a) —pP 2 FydVy(aP),
where we also use that F},V,=p-id. But this element maps to zero in Q%W(A), since, as

maps from W(A) to E%W(A)v we have Fj,dV,=d, and since the common map is a derivation.

Similarly, for p=2, we find that
Fy(FadVa(a)—da—dlog[—1]-a) = Fy(Va(a)dVa(a) —dVa(a®) —dlog[-1]-a)
=2aFydVs(a) — FpdVa(a?) —dlog[—1]- F(a),

where we further use that F,(dlog[—1])=dlog[—1], for every meN. The image of this

element in ﬁ\l&’( A) is equal to
2ada—d(a*)—dlog[—1]-(Fy(a)—a?),

which, in turn, is zero, since d is a derivation and since Fy(a)—a? is divisible by 2 by
Lemma 1.18. We next suppose that p#£f. In this case, we further use that ¢ divides
p'~1—1 and that, by Lemma 1.5 (ii), Fy V,=V,,F;. If p and ¢ both are odd, then
Fy(FpdVy(a)—da)
=F,(FedVp(a))—Fida

=F, (%(a)“dma)m(W)) —a“da_d<W

F _ =10 F _ L
:p‘f—laf—lede<a)+deVp(‘(a) gp - >—af—1da—d<‘(a - >
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and the image of this element in ﬁ%W(A) is equal to

‘
(pé—l _ l)aé—lda_
which is zero since d is a derivation. Similarly, if p=2 and ¢#p, then

Fy(FydVa(a)—da—dlog[—1]-a) = Fa(FedVa(a))— Fyda—dlog[—1]- Fy(a)

FyVa(a)—Va(a)* ))

—F (‘/Q(a)é_ld‘/'z(a)-i-d( -

a)—a*
—az_lda—d<Ff(Z> —dlog[—1]-Fy(a)

Fg(a)2E1ae)

- QZlaengdVg(a)—FngVg< 7

a)—a*
—ae_lda—d<FAZ> —dlog[—1]-Fy(a),

and the image of this element in ﬁ%,v( A) is equal to

2@—1_ Fz(a)_2€—1a€

(21 —1)a*tda— 1d(az)+dlog[—1]- <€—FE(G)>,

which is zero since d is a derivation and since ¢ is congruent to 1 modulo 2. Finally, if
{=2 and p#/, then we find that

Fy(FpdV,(a)—da) = F,(F2dV,(a))— Fada

A e e R )

F —pa? I 2
=paF,dV,(a)+F,dV, (g(a)2pa> —ada—d(W)
whose image in ﬁ%w( 4 1s equal to

(p—1)ada—5(p—1)d(a?),

which again is zero since d is a derivation. O

LEMMA 3.8. For all positive integers n and a€W(A), the relation
F,dV,(a) =da+(n—1)dlog[—1]-a

holds in ﬁ%,v(A).
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Proof. We argue by induction on the number r of prime factors in n that the stated
relation holds for all aeW(A). The case r=1 follows from Definition 3.6. So we let n be
a positive integer with r>1 prime factors and assume that the relation has been proved
for all positive integers with less than r prime factors. We write n=pm with a prime

number p and use the inductive hypothesis to conclude that
F,dV,(a) = F,F,,dV,,V,(a)
= Fp(dVy(a)+(m—1)dlog[-1]-V;(a))
= FpdV,(a)+(m—1)dlog|—1]- F,V,(a)
=da+(p—1)dlog[—1]-a+p(m—1)dlog[—1]-a
=da+(n—1)dlog[-1]-a
which proves the induction step. O
LEMMA 3.9. The graded derivation d: SA)W A)—>§AZW(A) induces a graded derivation
d: Qi y— O
Proof. We must show that for all prime numbers p and a€W(A), the element
d(F,dV,(a)—da—(p—1)dlog[—1]-a) € 03 )
maps to zero in QWZV(A)' First, for p=2, we have
d(F>dVa(a)—da—dlog[—1]-a) = dF5dVa(a) —dda+dlog[—1]-da
=2F»ddV,(a) =2d1og[—1]- FodVa(a)
which already is zero in (AZ%W( Ay For p odd, we recall from Theorem 2.15 that
FydVy(a)—da=V,(a)" " dVy(a) +dA,V,(a) ~ da,
and using that d is a derivation, we find that
d(F,dV,(a)—da) = d(V,(a)?"*dV,(a)+dA,V,(a))—dda
= (p—1)V,(a)?~2dV,(a)dV,(a)+V,(a)P~ ddV,(a)+ddA,V,(a)—dda.
Now, the first summand in the bottom line vanishes, since p—1 is even and
AV, ()dV, () = dlog[~1]- FydVp(a),
and by Proposition 3.3, the sum of the remaining three summands is equal to
dlog[—1]-(V,(a)?~dV,(a)+dA,V,(a) —da) = dlog[—1]-(F,dV,(a) —da),

which maps to zero in ﬁ%&/(A)’ since p—1 is even. O
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Definition 3.10. Let A be a ring, SCN be a truncation set, and Is(A)CW(A) be
the kernel of the restriction map Rly: W(A)—Wg(A). The maps

~ RY ~ = RS
Qay — > Qigay  and Qg — Ly

are defined to be the quotient maps that annihilate the respective graded ideals generated
by IS (A) and d[s(A)

Remark 3.11. The kernel Ky of the canonical projection (AZWS(A)—)QWS(A) is equal
to the graded ideal generated by the elements

P2 (Vo (aP ™))V, RS (@) —dV, RS () = (p—1)d log[-1]s-a

with a prime number p and a€Wg(A4). Indeed, letting b=V, (a), the formula for F,db
in the beginning of the proof of Lemma 3.7 shows that for all prime numbers p and
a€W(A), the following identity holds in Qg ,:

FydV,y(a)—da=p"=?(V,(a"~")dV; (a) —dV; (a")).

Remark 3.12. If p is a prime number and A is a Z,)-algebra, then for every trun-
cation set S, the ideal V,Wg/,(A)CWg(A) has a divided power structure defined by

If p is odd, then d: WS(A)%QWINS(A) is a divided power derivation in the sense that
d(Vp(a)™) = Vp(@)" "V, (a)

and it is universal with this property; see [23, Lemma 1.2].

LEMMA 3.13. The derivation, restriction, and Frobenius maps induce maps

d: Dy ) — Qinoca) (resp. d: Qi a) — Digg(a)),

~

RE: Qigay — Qwpcay  (resp. BE: iy 4y — Ty

Fo: Qg () = Qg oy (resp Fui Qi) — Qi )

Moreover, the maps d are graded derivations; the maps Ré’: and F, are graded ring

homomorphisms; the maps R% and d commute; and dF,=nkF,d.
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Proof. To prove the statement for d, we note that as d is a derivation, it suffices to
show that Rg(ddIS(A))Cﬁgvs(A) is zero. But if z€lg(A), then

RY(ddx) = RY(dlog[—1]-dx) = RY(dlog[—1])- R%(dx)

which is zero as desired. It follows that Ry (dIs(A))=dR}(Is(A)). Hence, also the
statement for R7 follows as Ry (Is(A)) is trivially zero. Finally, to prove the statement
for F,, we show that both RE/H(Fn(IS(A))) and Rg/n(Fn(dIS(A))) are zero. For the
former, this follows immediately from Lemma 1.4, and for the latter, it will suffice to
show that for divisors e of n, Ac(Is(A))CIg/.(A). Moreover, to prove this, we may
assume that A is torsion free. So let e be a divisor of n and assume that for all proper
divisors d of e, Agq(Is(A))CIg/q(A). Since F(Is(A))Clg/c(A), the formula

Fo(a)=_ dAg(a)*
d

shows that eAc(Is(A))Clg/e(A). This completes the proof of the first part of the state-

ment and the second part is clear. O
Finally, we record the following result concerning the case S={1}.

LEMMA 3.14. For every ring A, the differential graded algebras (AZA and €0, are

equal and the canonical projection QA —>ﬁ;4 s an isomorphism.

Proof. Since dlog[—1];1y is zero, Q, =, as stated. Moreover, Remark 3.11 shows
that the kernel Ky of the canonical projection (AZA —Q, is zero. O

4. The big de Rham—Witt complex

In this section, we construct the big de Rham-Witt complex. We let J be the category
with the truncation sets SCN as objects and with a single morphism from 7" to S if
TcCS. If Ais a ring, then there is a contravariant functor from J to the category of
rings that to S assigns Wg(A) and that to TCS assigns R3: Wg(A)—Wr(A); it takes
colimits in J to limits in the category of rings. For every n€N, there is an endofunctor
on J that takes S to S/n, and the ring homomorphism F,: Wg(A)—=Wg/,(A) and the
abelian group homomorphism V,,: Wg/,,(A4)—Wg(A) are natural transformations with
respect to S.

We proceed to define the notion of a Witt complex over A. The original definition
given in [15, Definition 1.1.1] is not quite correct unless the prime 2 is either invertible
or zero in A. The correct definition of a 2-typical Witt complex was given first by

Costeanu [9, Definition 1.1]. The definition given below was also inspired by [26].
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Definition 4.1. A Witt complex over A is a contravariant functor that to every
truncation set SCN assigns an anticommutative graded ring Fg and that takes colimits

to limits, together with a natural ring homomorphism
Ws(A) = EY
and natural maps of graded abelian groups

q d q+1 q Fn q
Ei—FE;, Ei——FE

¢, and EL S EL (neN)

such that the following conditions hold:
(i) For all ze EY and x’eEgl,

d(z-2")=d(x)-2'+(=1)%z-d(z') and d(d(z))=dlogns([—1]s)-d(z),

where dlogns([—1]s)=ns([—1])"dns([-1]s).
(ii) For all positive integers m and n,

F=Vi=id,
FnLFn = ana Van = an7

anS:nS/nFna nSVn:VnnS/n-

(iii) For all positive integers n, the map Fj, is a ring homomorphism and the maps

F,, and V,, satisfy the projection formula that for all z€ EZ and yEng/,n,

(iv) For all positive integers n and all yeEg/n,
FndVi(y) = d(y) +(n—1)dlognsm([=1s/m)-y-
(v) For all positive integers n and a€ A,
Fodns([als) =ns/m([a] Z/‘nl)dnsm([a] S/n)-

A map of Witt complexes is a natural map of graded rings f: Eg— E§" such that fn=n’,
fd=d'f, fF,=F!f, and fV,=V!f.
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Remark 4.2. (a) For a pair of truncation sets TCS, we write R3: E5— E; for the
map of graded rings that is part of the structure of a Witt complex and call it the
restriction from S to T'.

(b) Every Witt complex is determined, up to canonical isomorphism, by its value
on finite truncation sets. Indeed, for every truncation set S and non-negative integer ¢,
the maps in (a) define a bijection from EY to the limit with respect to the restriction
maps of the Ef., where T'C S ranges over the finite sub-truncation sets. In particular, if
we write a€W(A) as a convergent sum a=)_ ¢ Vy([an]s/n) as in Lemma 1.5 (i), then

the element dng(a)€ EY, too, admits the convergent sum expression

dns(a) ="y dVu([an]s/m)-

nes

(¢) The element dlogns([—1]s) is annihilated by 2. Indeed, since d is a derivation,

2dlog ns([~1]s) = dlog ns ([1]s) = 0.

Therefore, dlogns([—1]s) is zero if 2 is invertible in A and hence in Wg(A). It is also
zero if 2=0 in A since, in this case, [-1]s=[1]s. Finally, it follows from the general
formula [~1]s=—[1]5+V2([1]s/2) proved in Addendum 1.7 that dlogns([—1]s) is zero if
every n€ S is odd.

(d) Let A be a ring and let Ey be a Witt complex over A. For every non-negative
integer ¢, the pair (Ef, Age) consisting of Ef| considered as a W(A)-module via the ring
homomorphism ny: W(A)—EY} and of the maps Ags ,=F,: E{—E} is a module over
the A-ring (W(A), A4) in the sense of Definition 2.5. Moreover, we may substitute the
axiom (v) in Definition 4.1 by the statement (v') that the map

(W(A), Ax) —25 (B} Ap)

is a derivation in the sense of Definition 2.12. Indeed, it follows from Theorem 2.15
that (i)—(iv) and (v') imply (v), and we will show in Proposition 4.4 below that (i)—(v)
imply (v').

LEMMA 4.3. Let m and n be positive integers, let c=(m,n) be the greatest common

divisor, and let i and j be any pair of integers such that mi+nj=c. The following

relations hold in every Witt complex:

dF, =nF,d,
Vpd=ndV,,
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F,dV, = idFm/CVn/C —‘y—ij/cVn/cd
+(Ci 1)d10g nS/m([il]S/m) 'Fm/cVn/(n

dlogns([—1]s) = Z 2" dVarngjor ([1s/2r),
r>1

dlogns([—1]s)-dlogns([-1]s) =0,
ddlogns([-1]s) =0,

F,(dlogns([—1]s)) = dlogns/m([—1ls/n)-
Proof. The following calculations verify the first two relations:

dF, (z) = FhdV, F,(x)—(n—1)dlogn[—1]-F,(z)
= Fnd(Van((1])-2) = (n—1)dlog n([—1])- Fu ()
= Fu(dVan((1])-z+Van([1])-dz) = (n—1)dlog n([—1])- Fy(z)
= FndVn([1])- Fo(2) + Fn Van((1]) - Frd(z) — (n—1)dlog n([—1])- Fy(z)
= (n=1)dlogn([=1])- Fu(z)+nFnd(z)— (n—1)dlogn([—1])- Fu(x)

=nF,d(x)
and
Vad(z) = Vi (FndVy (2) — (n—1)dlog n([-1])-z)
=Van((1])-dVy(z) = (n—1)Va(dlogn([-1])-z)
= d(Van([1])-Va(2)) =dVun([1])-Va(z) = (n=1)Vy (dlog n([-1])-z)
= dVo(FnVan((1])-2) = Vo (FodVan((1])-2) = (n=1) V. (dlog n([—1]) -z)
=ndVy(z)=2(n—1)V,(dlogn([-1])-z)
=ndV,(z).
Next, the last formula follows from F,,([—1])=[—1]™ and the calculation
Fin(dlogn([~1]s)) = Fr (n([=1]"")dn([-1]))
= Fpn([=1]71) Frndn([-1])
=n([=17")n([=1]" " )dn([-1])
=n([=1]7")dn([-1])

— dlog n([~1)).
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Using the three relations proved thus far together with the projection formula, we find
that

FndVy(x) = Fyy o FedVe V()
= EnyedVyye(@)+(c—1)dlog n([=1]) FppjViye(@)
=((m/c)i+(n/c)j)FpcdVin/e(x)+(c=1)dlogn([—1]) Fn/cVise()
=idF/cVnye(@)+iFm/cVayed(@)+(c=1)dlogn([=1]) - Fy /e Vi e ().

Next, to prove the stated formula for dlogn([—1]s), we use that, by Addendum 1.7, we
have [—1]s=—[1]s+Va([1]5/2) to see that

dlogn([—1]s) =n([-1]s)dn([-1]s)
=n(—[1]s+Va([1]s/2))dn(—[1]s+V2([1]s/2))
= —dVan([1]s/2) +Va(F2dVan([1]s/2))
= —dVan([1]s/2)+Va(dlogn([—1]s/2))
= dVan([1]s/2)+Va(dlog n([—1]s/2)),

from which the stated formula follows by easy induction. Here, in the last equality, we
have used that 2dVan([1]g/2)=Vadn([1]s/2)=0. Using this, we find that

dVa(dlogn([-1]s/2)) = Z 2"ddVyr+im([1]s/2r+1)

r>1

= Z 2"dlog ([~1]s) - dVar+11([1] 5/2r+1),

r>1

which is zero, since 2dlogn([—1]s)=0. Now, using Addendum 1.7, we find that

(dlogn([~1]s))? = (dn([~1]5))* = (dVan([1]s/2))*
=d(Van([l]s/2)-dVan([1]s/2)) = Van([1]s/2)-ddVan([1]s/2)
=dVa(dlogn([—1]s/2)) —Van([l]s/2) - dVadlog n([—1]s/2)
=dVa(dlogn([-1]s/2))-n([1]s—Va([l]s/2)),

which is zero, since the first factor in the bottom line is zero, by what was just proved.
This, in turn, shows that (dn([—1]s))?=0, from which we find that

ddlogn([—1]s) = d(n([-1]s)-dn([-1]s))
=dn([=1]s)-dn([=1]s)+n([-1]s)-ddn([-1]s)
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=n([-1]s)ddn([-1]s)
=n([-1]s)dlogn([—1]s)dn([-1]s)
=dn([-1]s)dn([-1]s) =0.
This completes the proof. O

PROPOSITION 4.4. For every Witt complex Ey over A and every meN, the diagram

ns
Q\l/VS(A) Eng

JF,”, Pm

1 Ns/m
Vg, ) — Espm
commutes. Here, the horizontal maps take apda; to n(ag)dn(ay).

Proof. Since the restriction map RY: le/v( A) —>Q\1NS( A) is surjective and satisfies that
both FmRN RS/mF and nSRN:REnN, we may assume that S=N. In addition, by
Remark 4.2 (b), it will suffice to show that for every n€N and a€ A,

FpdVan([a]n) = nuFpdVi([aln)

as elements of EY. To ease notation, we suppress the subscript N. We first suppose
that p does not divide n and set k=(1—nP~!)/p and [=nP~2 such that, in particular,
kp+Iin=1. By Lemma 4.3, we have

FpdVan([a]) = k-dVi, Fpn([a]) +1-V, Fydn([a))
= k-dVan([a]?)+1- Vi (n([a])P~ dn([a]))
=k-dV,n([a]?)+1-Van(la]P~ " d[a]).

—_  ~—

Moreover, arguing as in the proof of Lemma 3.7 above, we find that
NEpdVa(la]) =0 (Vi ([a])P ™ -dVa([a]) +d A, Va([a]))
=n(l-Va([a]P1)-dVn([a]) +k-dV; ([a]))
=1-Van([a]"~1)-dVan([a]) +k-dVi([a]”)
=1-Va(n([a)P ™) FadVan([a])) +k-dVan ([a]?)
=1-Van([a]P = d[a]) +k-dV,n([a]?),

where the last equality uses that n?~2(n—1)dlogn([—1]) is zero. This proves that the
desired equality holds if p does not divide n. Suppose next that p divides n and write
n=pr. We consider the cases p=2 and p odd separately. First, for p odd,

FpdVan(la]) = dVin([a]),
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FyVi(al) =n( Vi)~ v (o) a F2 P )

=n(Va([a)P~"-dVa([a]) +dV (la]) —pP~*rP = dV;([a]"))
=Va(n([a]))"~"-dVun((a]) +dVin([a]) —p" 1P~ dVa (n([a])"),

and the following calculation shows that the first and third terms cancel:

pP 2P AV, (n([a))?) = pP P2 V,d(n([a])P)
= p?~ 22V, (([a])?~ L dn([a])
=P~ 2V, (n([a])P~1)-dVin([a])
= Va(n([a]))P~*-dVin([a).

Here, the third equality follows from Definition 4.1 (iii)—(iv) and from the fact that
nP~2(n—1)dlog[—1] vanishes. Finally, if p=2, then

FadVan(la]) = dVen([a])+dlog n([—1])-Vin([a]),
a))—Vy([a))?
FaaV, (o) = (Vi (a))-av, (o +a P20 )

=n(Va(la])-dVi([a]) +dV;([a]) —rdVy([a]?))
= Van([a])-dVan([a]) +dVyn([a]) —rdVy (n(la))?),

and hence, we must show that

dlog n([~1])-Vin(la]) = Van([al)-dVan([a]) = rdVa (n([a])?).

Suppose first that r=1. By Addendum 1.7, [-1]=—[1]4+V2([1]), so that

dlogn([—1]) = Va(n([1]))-dVan([1]) —dVan([1]),

and hence, using the Witt complex axioms, we find that

dlogn([-1])-n([a]) = Va(n(la])*)-dVan([1]) —((al)-dVan([1])

=Va(n([a])* FadVan([1])) —d(n(la))- Van([1])) +d(n([a])) - Van ([1])
=Va(n([a])*-dlog n([~1])) —dVa(n([a])*) +Va(n([a])dn([a]))
Va(([a)))-dVan([a]) —dVa(n([a])?)

a

[ V)

as desired. In general, we apply V,. to the formula that we just proved. This gives

dlogn([~1])-Vi(n([a])) = V;-(Va(n(la)))-dVan([a])) —rdVa (n(la])?)
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Va(n([a])- F2dVan([a])) —rdVa (1([a])?)
Va(n([a])- FrdVur((al)) = rdVa (n([a])?)
Van(la)-dVan([a]) = rdVa (n([a])?),

where we have FydVo=F, dV,,, since n is even. This completes the proof. O

COROLLARY 4.5. Let Ey be a Witt complex over the ring A. There is a unique

natural homomorphism of graded rings
\Q‘ ns B
Ws(4) S

that extends the natural ring homomorphism ns: Wg(A)—ES and commutes with the

derivations. In addition, for every positive integer m, the diagram

- s .
iy (a) » B
Fr For,
- Ns/m

QWS/nl (A) S/m
commutes.
Proof. The map ng necessarily is given by
ns(aodas ... dag) =ns(ag)dns(a1) ... dns(aq)-

We show that this formula gives a well-defined map. First, from Proposition 4.4, we find
that for all aeW(A),

Fodnn(a) =nnFad(a) = nn(ada+dAs(a)) =nn(a)dnn(a) +dnyAs(a).
Applying d to this equation, the left-hand side becomes
dFydny(a) = 2Fzddny(a) =0,
while the right-hand side becomes

dnn(a)dnw (a)+dlog nu([—1])n- (nn(a)dnw (a) +dnnAsz(a))
= dnn(a)dny(a)+dlog nn([—1])n- Fadnn(a).

Hence, there is a well-defined map of graded rings ng: QWS( A) — I given by the formula
stated at the beginning of the proof, and by axiom (iv) in Definition 4.1, this map factors
through the canonical projection from QWS( 4) onto ﬁws( Ay Finally, Proposition 4.4

shows that the diagram in the statement commutes. O
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Proof of Theorem B. We recall that, in the diagrams in the statement, the left-hand

vertical maps were defined in Lemma 3.13. We define maps of graded rings
=. ns .
QWS(A) E— WSQA
as quotients by graded ideals Ng and verify that, in the diagrams in the statement, the

right-hand vertical maps R% F,,, and d making the respective diagrams commute exist.

We further define maps of graded abelian groups
. Vn .
WS/nQA — WSQA

that make the following diagrams commute:

Ws/n(A) M)Ws/ngg WS/nQ:A LWSQA
Jvn J{Vn JR%Z lRi
W (A) —= s WsQl, Wy s W2,

and

id ®F, V,®id
Wg/n QU @Wg ) Q) o Wg 1, 0 @W Q) 225 W, @W s

I I

Va .
WS/nQA Ws2y.

The definition of these maps, as S ranges over all finite truncation sets, T'C.S over all sub-
truncation sets, and n over all positive integers, will be by induction on the cardinality
of S and will take up most of the proof. Once this is completed, we will show that the
combined structure is a Witt complex over A and that it is initial among Witt complexes
over A.

We define W2y to be the terminal graded ring, which is zero in all degrees, and
define ng to be the unique map of graded rings. So let S be a finite non-empty trun-
cation set and assume, inductively, that the maps nr, RE, F,, d, and V,, have been
defined, for all proper truncation sets T'C.S, all truncation sets UCT, and all positive
integers n, with the properties listed at the beginning of the proof. In this situation, we
define 7g: ﬁws ( A)—>WSQ;4 to be the quotient map that annihilates the graded ideal Ng

generated by all sums

Z Vn(l'a)dyl,a dyq,om d(z Vn(xoz)dyl,oz dyq,a> )
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where the Witt vectors 2, €Wg/,,(A) and 41,4, -, Yg,a € Ws(A) and the integers n>2 and
q=>1 are such that the sum

Ns/n (Z IaFndyl,oz Fndyq,a)

in Wg /nQ?q is zero; and for every positive integer n, we define the map of graded abelian
groups V,: Wg,, Q2 =WgQy by

Vs n(xFndys ... Frdy,) =ns (Vi (z)dyy ... dyg).

Here we use that every element of V\VS/,LQZ1 can be written as a sum of elements of the
form ng (v Fpdys ... Frdy,) with 2€Wg/,(A) and y1, ..., y, €Ws(A). Indeed,

dr = F,dV,(v)—(n—1)dlog[~1]s/, & = F,dV,(v)—(n—1)zF,d([-1]s).

To prove the existence of the necessarily unique right-hand vertical maps R% d, and
F,, making the diagrams in the statement of the theorem commute, we must show that
the left-hand vertical maps in these diagrams satisfy nr(R3.(N$))=0, ns(d(N&))=0, and
ns/m(Fm(NE))=0, respectively, and to this end, we use the properties of the latter maps

established in Lemma 3.13. So we fix a positive integer n and an element
W= Z Va(za)dyi,a ... dyg.a € ﬁgWS(A)

with
Ns/n (Z xaFndyl,a Fndyq,a) S WS/nQ?ax

equal to zero and show that nrR3(w), ns(ddw), Ng/mFm(w), and 1g/mFm(dw) all are

zero. First, in order to show that
I RS(w) =nr (Zv R )RS 1) - AR () )
is zero, it suffices by the definition of the ideal N} to show that
N7 <Z Ry (20) Fad R (y1,0) ...FndRé(yq,a)>
is zero. But this element is equal to

nT/nRiéT,; <Z xaFndyl,a Fndyq,a>
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which, by the inductive hypothesis, is equal to

Ry s (Z ToFndys o .. Fndyqﬂ)
which we assumed to be zero. Similarly, we have
ns(ddw) =ns(dlog([—1]s)-dw) =ns(d(dlog([—1]s)-w))
=ns <d<z V(2o =1]5))d([=1]5)dy1,a - dyq7a>>,

and by the definition of Ng, this element is zero, since

Ns/n (Z o[~/ Fad([~1]s) Fudyi o --- Fndyq,a>
= leg nS/n([fl]S/n) ‘Ns/n <Z xaFndyl,a Fndytba)

is zero. Next, to prove that 1g/m, Fin(w) and ng/m Fin(dw) are zero, we may assume that
m=p is a prime number. Indeed, if m=kp, then, by the inductive hypothesis, we have
NS/mEm=ns/mFrFp=Fins/pFy. Suppose first that n=I[p is divisible by p. We remark

that we have
Ns/p (Z Vi(wa) Fpdyi,a - deyq,a> = Z Vi(s/n(Ta))ns/p(Fpdyr,a - Fpdyg.a)
=D _Vilsyn(@a) Ei(ns/p(Fpdys o - Fypdyg,a)))
=Vins/n <Z ToFndyi o .. Fndyq,a) (4.1)
which is zero. Indeed, the three equalities hold since, by the inductive hypothesis, the

maps Vi: Wg/,, Q% =Wy, Q% and F;:Wg,,Q% -Wg,, QY% exist and have the properties
listed at the beginning of the proof. Now,

TIS/pr(W) = 775/p <Z van(zoz)deyl,oz deyq,cx>
=DPNs/p (Z ‘/l(xa)deyl,a deyq,a>
[0
which is zero by (4.1). Similarly, using Proposition 3.3, we have

nS/pr(dw) = nS/pr (Z dvn(xoz)dyl,a dyq,a> +5'775/pr("‘))
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with
e=qdlogngp([—1]s/p),

and we have just proved that g/, F},(w) is zero. By Lemma 3.8, we may rewrite the first

summand as the sum
ns/p <Z dVi(za) Fpdy,a --- de?Jq,a) +es/p (Z Vi(wa) Fpdyr,a ... deyqva)

with e=(p—1)dlogng/p([—1]s/p). Here, the second term is zero by (4.1), and we rewrite
the first summand as

ns/p (d (Z Vi(za)Fpdyi o ... deyq,a) =3 Vi(za)d(Fpdyr a - deyqﬂ))
=1g/pd <Z Vi(za)Fpdyr o - deyqya) —eNs/p <Z Vi(za)Fpdy1 o - deyqva>

:dnS/p (Z W(xa)deyl,a deyq,a) _5'775/13 (Z Vi(ia)deyl,a deyq,a>
@ @

with e=pgdlogns/,([—1]s/p). Here, the last equality uses that 7g/,, by definition, com-
mutes with d. It follows from (4.1) that both summands in the last line vanish, so

ns/pFp(dw)=0 as desired. Next, suppose that p does not divide n. We have
Ns/pFp(@)=> 15/ Vo Fp(2a) ns/p Fp(dyr.a - dyg.a)
= VaFynis/n(@a) s/p Fy(dyr.a - dyg.a)
= Z Vo (Fpns/n (o) - Funs/pFp(dyia - dyq,a))
= Va(Fpns/n(®a) N8 /mpFup(dy1.a - dYg.o)
=3 Va(Fpns /(@) FolisnFu(dyr.o - dyg.a))

=V Fpns/m <Z TaFndyi o .. Fndyq@)

which is zero. Here the second, third, and fourth equalities use that, by the inductive
hypothesis, the maps F,: Wg,,Q% -Wg/,,Q% and V,: Wg,,,,Q% - Wg,,Q% exist and
have the properties listed at the beginning of the proof, and similarly, the fifth equality
uses that the map F,: Wg,, Q% =Wg/,,, Q% with Fyng/,=ng/mpF, exists. We proceed
to show that also 7g/, [}, (dw) vanishes, and to this end, it suffices to show that both
Pns/pFp(dw) and nng/, Fy(dw) vanish. First,

Ps/pFpd(w) =ng/pdFy(w) = dns,, Fp(w),
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which is zero by what was just proved. Here the two equalities hold by Proposition 3.5
and by the definition of ng/,, respectively. Next,

nnS/PFd ZnnS/pF d( (Z‘a)dyla -dyq,a)

_Znns/p dV l‘a)dyla -dyq,a)+€'775/pr(w)

with e=nqdlogns,,([—1])s/p, and we have already proved that ng/,F),(w) is zero. More-

over, we may rewrite the first term in the last line as

Z nS/pr(an([”S/n)vn(xa)dyl,a dyq,a)
+Z Ns/pFp (Vi ([ s/n)dVi(Ta)dy1,a - dYg,a),

since, by Lemma 1.5 and by d being a derivation,
ndVy () = dVy F, Vi (2) = d(Va ([ s/5) - Va(2)) = dVi ([ s/n) - Vo (2) + Vi ([1 s /5) -dVi ().

Now, since both 7g/, and F}, are graded ring homomorphisms, we have
Z nS/pr(an([1]S/n)Vn(xa)dyl,a e dYg0) = WS/pran([l]S/n) 'ﬁS/pr(W)

which is zero, since ng/, F,(w) is zero, and
Zns/p s/n)dVa(za)dyt,a - dYg,a)

= ns/pFpVa[Us/n) ns/pFp(dVn(za)dyr .o - dYq.)
=Z773/pV Fyp([(Us/n)ns/pFp(dVa(2a)dyra - dyg,a)

= Z Vs jmp Fp(Us/n) 15/ Fp (AVi (T0)dy1 o - dyg.)
:Zvn (s/mpFp([Us/n) Fans)pFp(dVa(Ta)dy1 o - dYq.a))

o
= Z Vo (ns/mpFp([(s/n) N /mp Frp(dVa(Ta)dyr,a - dYg.a))

- Z V nS/np ]S/n) Fan/nFn(an(wa)dyl,a dyq,a)),

where the third and fourth equalities hold, since, by the inductive hypothesis, both
maps Fy,: Wg,,Q% = Wg/,,, Q% and V,,: W, Q% - W, QY exist and have the properties
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listed at the beginning of the proof, and where the fifth and sixth equalities hold, since the
maps Fj: Wg,, Q%4 - Wg/,,, Q% and V,,: W, Q% =Wy, Q9 exist and have the properties
listed at the beginning of the proof. Since 7g/,,,Fp([1]g/n) is the identity and

FodVy(z) =dre+(n—1)dlog([—1]s) x4,

this becomes
VannS/n (Z d('ra)Fndyl,a Fndyq,a) +5'VannS/n (Z xaFndyl,a Fndyq,a)
a a

with e=(n—1)dlogngs/,([~1]s/p), where the second term is zero. Finally, since d is a

derivation, we may rewrite the first term as
VanWS/nd<Z TaFndyi o .. Fndyq7a> —e-VaFpns/m (Z ToFndyi o .. Fndyqﬂ)

with e=nqdlogng,,([~1]s/p), and these terms are both zero. Hence, nFyd(w) is zero,
and therefore, we conclude that Fj,d(w) is zero as desired.

In order to complete the recursive definition of the maps 7g, R‘;, F,, d, and V,,
we must show that the three diagrams at the beginning of the proof commute. The top

left-hand diagram commutes by the definition of V,,, and the calculation
Rig“VnUS/n (xF,dyy ... Frdyy) = Rins (Vi (x)dy: .. dy,
=nrR3 (Vi (2)dy, ... dy,
=00 (VaRY)n (2)dRE (1) - ARF ()
= Vonr/n(Ryfn (@) FudRE (1) ... Fud B3 (yy))
= Vo Ry s Fdyn ... Fudyy)

)
)

shows that the top right-hand diagram commutes. Finally, the following calculation
shows that the bottom diagram commutes:
Vinsn(@Fndyi ... Frdyg)-ns(zdw ... dw,)

=ng(Va(x)dyr ... dyq) -ns(zdw ... dw,)

=ns(Ve(x)dyr ... dyq-zdwy ... dw,)

=ng(Vo(xF,(2))dys ... dygdws ... dw,)

=Vins/n(xFn(2)Frdys ... FndygFrdw: ... Fdw,)

=Va(s/n(@Fudy ... Fudyg) ns/mFn(zdws ... dw,))

=Va(s/n(@Fudy ... Fpdy,)-Fans(zdws ... dw,)).
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Here the first and fourth equalities hold by the definition of the map V,,; the second
and fifth equalities hold by the multiplicativity of the maps s, 7s/n, and Fj; the third
equality holds by Lemma 1.5; and the sixth equality holds by the existence of the map F},
with Fy,ns=ng/nF,. This completes the recursive definition of the graded rings Wg2
and the maps ng, R3, F,, d, and V,, for finite truncation sets S. We extend to infinite
truncation sets as discussed in Remark 4.2 (b).

To show that the structure defined above forms a Witt complex over A, it remains
to prove that Vi =id, V,,V;,=Viun, F,V,=n-id, and F,,V,, =V, F,, if (m,n)=1. The first
identity holds by definition, and the second identity holds, since

Vi1 jmn (T Frndy . Fndyq) =ns(Vinn (2)dys ... dyq)

=n5(Vin (Vo (2))dys ... dyg)

=Viung/m(Va(@)Fndy: ... Fndyg)

= Vin (Va5 /mn (2)) Eindns (Y1) - Frdns (yq))

= Vm(Vn(US/mn($)andﬁs(y1) andnS(yq)))

=V (Vans/mn (2 Fmndyr ... Fndy,)).
Here the first and third equalities hold by the definition of V,,, and V,,, respectively;
the fourth equality holds by the existence of the map F, with ng/,, Fin=Fnns; the fifth

equality holds by the inductive hypothesis; and the last equality holds by the existence
of the map Fy,y wWith 0g/mn Frn=Fmnnns. Similarly, we have

FoVins (@ Fadys ... Frdy,) = Funs (Vi (2)dyy ... dyg)
=Ns/nFn (Vi (2)dys ... dyq) =nngm (v Fpdyy ... Frdy,),

which shows that F,,V,,=n-id; and finally, if (m,n)=1, we have

EpVansn(z-Fpdys ... Fpdyg) = Fans(Va(x)-dys ... dyg)
=05/mEm(Va(@)-dys .. dyq)
=05/mEm(Va(2)) NsjmEm(dys ... dyq)
=05/mVn(Fm(2)) Ns/mFm(dyi ... dyq)

= V(s /mnFm (7)) N5 jmFm(dy1 ... dyg)

=V (s/mnEm () Fans/mEm(dys ... dyg))
=Vans/mnFm (@ Fn(dyy ... dyg))
=VaFmnsm(x-Fo(dy: ... dyq))

=VaFmnsm (- Fody ... Fudy,),
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which shows that F,,V,, =V, F,, as desired.
Finally, let Ey be a Witt complex over A and let ngsﬁws(A)%Eé be the map in

Corollary 4.5. We claim that this map factors as

. ns . fs .
QWS(A) — Wy —— E.

Since the left-hand map ng is surjective, the right-hand map fs necessarily is unique.
We may further assume that the truncation set S is finite. To prove the claim, we
proceed by induction on the cardinality of S, the case S=@ being trivial as ng is a
bijection. So we let S be a finite non-empty truncation set and assume that for every
proper sub-truncation set T'C S, the factorization n¥= frnr exists. To prove that also
the factorization ng: fsns exists, we must show that whenever n is a positive integer
and £, €Wg/,, (A) and y1 o, ..., Yg,a EWs(A) are Witt vectors such that

1S /n (Z ToFndyy o ... Fndyw) €Ws/, Q4%

vanishes, then so does

n& (Z Vo (To)dy1,q - dyq,a) eEl.

[e%

Now, using that Ey is a Witt complex over A, we find that

nE (Z Vi (za)-dy a0 ... dyq,a> => 0 (Va(@a)) & (dy1.a - dyg.a)
=D Va0 (a)) 08 (dyra - dyg.a)
= Va(E)(20) Fun§ (dy1.a - dyg.))
= Va0 (@) 0m Faldya - dyg.a))
=Vl (Z ToFpdyi o ... Fndyq,a)
=VaSs/mns/n <Z ZaFndyia .. de) 7
which vanishes as required. Here the last equality holds by the inductive hypothesis. This

shows that, for every truncation set .S, the map 775@ factors as fgns. Finally, to show that

Ws Y, is initial among Witt complexes over A, it remains to verify that the maps fg
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constitute a map of Witt complexes. In view of Corollary 4.5, the only statement that
needs proof is that for every truncation set S and for every positive integer n, we have

fsVn=Vnfs/n, and this follows from the calculation

fsVans n(x-Fndys ... Frndyg) = fsns(Va(x)-dy: ... dy,)
=g (Va()-dys ... dy,)

1§ (Va(2))-n§ (dy1 ... dyq)

15/5(%)) 05 (dyr ... dyq)

= Va(
Vo (0§ (@) Fan§ (dys ... dy,))
Vau(

Ug/n(fU)'ns/nFn(dyl e dyy))

= nns/n(x.Fndyl . Fndyg)
:anS/nnS/n(ZZ?Fndyl }7ndyq)7

as every element in WgQ% can be written as a convergent sum of elements of the form
Ns/n (- Fpdyy ... Fpdy,) with neN, 2eWg(A), and yi, ..., yg€Wg/n(A). This completes
the proof of Theorem B. O

Definition 4.6. The initial Witt complex Wg{2, over the ring A is called the big
de Rham-Witt complex of A.

ADDENDUM 4.7. (i) For all q, the map ngy: Q4 —W3QY is an isomorphism.
(ii) For all S, the map ns: Wg(A)—=WsQY is an isomorphism.

Proof. This follows immediately from the proofs of Theorem B and Lemma 3.14. [

The statement (i) in Addendum 4.7 is a special case of the question raised at the
top of p.133 in [15]. The explicit construction of the big de Rham-Witt complex given

in the proof of Theorem B answers this question in the affirmative.

Remark 4.8. Suppose that (k,A) is a A-ring and that f:k— A is a k-algebra. We
let fs:k—Wg(A) be the composite ring homomorphism R§oW(f)oX and define the big
de Rham-Witt complex of A relative to (k, A) to be the quotient

Wy ) py =Wsy /Ry

of the big de Rham-Witt complex Wg{2', by the graded ideal Ry generated by the images
of ngofeu: Qp —=WsQl and dengo fs.: Q) —-WsQ?%. It is initial among Witt complexes
over A in which the map d is k-linear when its domain and target are viewed as k-modules
via the map ngs fs: k— E2. In the particular case where (k,\) is (W(R), Ag) and where
A is an R-algebra viewed as a k-algebra via eg: k— R, we obtain (a big version of) the

Langer—Zink relative de Rham-Witt complex [23].
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5. Etale morphisms

The functor that to the ring A associates the Wg(A4)-module W9 defines a presheaf
of Wg(&)-modules on the category of affine schemes. In this section, we use the theorem
of Borger [6] and van der Kallen [20] which we recalled as Theorem 1.25 to show that for
S finite, this presheaf is a quasi-coherent sheaf of Wg(&)-modules for the étale topology.

This is the statement of Theorem C which we now prove.

Proof of Theorem C. We fix an étale morphism f: A— B and consider the map
Ws(B)®WS(A)WsQ:4 = WsQp

that to b®w assigns b- f.(w). To show that this map is an isomorphism, we define a

structure of Witt complex over B on the domain Ey of o. By Theorem 1.25, the map
Ws(f): Ws(A) — Ws(B)

is étale. Hence, the graded derivation d: W Q9 —>WSQ?4+1 extends uniquely to a graded
derivation d¥: Egy—>EAq9+1 defined by

df(b@z) = (d'b)z+bodx

with d’b being the image of b by the composition

id ®ns

d —— Ws(B) Qwg(a) Wsy,

Ws(B) —— Qigyp) —— W5 (B)@ws(a) iy a)
where the middle map is the canonical isomorphism. We further define the maps

R;®:E§{—E} and F:E{—FEL

to be RF®@ R and FF=F,®F,, respectively. Next, to define the map V,F: Eg/n%Eg,

we use that, since the square in the statement of Theorem 1.25 is cocartesian, the map

F,®id
Ws(B)®ws(a)Ws/nQh ——— W/ (B)®ws,, 4) Ws/nQh

is an isomorphism, and we then define V.Z to be the composition of the inverse of this

isomorphism and the map

id®V,
WS(B>®WS(A)WS/nQ?4 — WS(B)®WS(A)WSQ?4-
Finally, we define the map n%: Wg(B)— E% to be the composition

Ws(B) — Ws(B)@wg(a)Ws(A) — Ws(B) Qs (a) Ws Q9
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of the canonical isomorphism and the map id ®ng. We proceed to show that the maps
defined above make Ej into a Witt complex over B. The axioms (i)—(iii) of Definition 4.1
are readily verified. For example, we have d¥d¥ (—)=dlognE ([—1]s)d¥(—), as both sides

are derivations which agree on WgQ?%; and the calculation

VE(F,(b)ow)b @w =b@V,(w)-b@w =bb @V, (w)w =bb' @V, (wF,(w))
=V (Fa (D) @wEFy () = V7 (Fa(b) @w-Fy (V' ®w'))

verifies axiom (iii), since every element of EY /p AN be written as a sum of elements of
the form F,(b)®w with be Wg(B) and weWg,, Q9.
It remains to verify axioms (iv)—(v) of Definition 4.1. To prove axiom (iv), we must

show that for all we E% /> the equality
FPdPV,E () +(n—1)dlog g, ([=1]s/n)-w =d" (w)

holds in Eg.ﬁ On the right-hand side, d¥, by definition, is the unique graded derivation
on Ey /n that extends the graded derivation d on Wg/,,(2; and, on the left-hand side,
D also extends d. Hence, it will suffice to show that D, too, is a graded derivation.
Moreover, since the square diagram of rings in Theorem 1.25 is cocartesian, and since D
is an additive function, it suffices to show that D is a graded derivation on elements of
the form w=F, (b)®T with bc Wg(B) and 7€ Wg,,y. We claim that

D(F,(b)®T) = FF(d¥b)-nt+F, (b)@dr

as elements of Ej/, . Granting this, it follows that axiom (iv) holds, as the right-hand
side clearly is a graded derivation of F,(b)®7. Now,

D(F,(b)@7) = FPd"V,F(Fu(b)@7)+(n—1)dlog 1§, ([~1]s/n)- Fu(b) @7
=FFPdE(baV, (1)) + F,(b)®(n—1)dlog nsm([=1])7
=EF(d®(b)- Vo (1) +b@dV, (1)) + F, (b)® (n—1)d log ng ([~ 1])T
=FF(d"b) n7+F, (b)) @ (FndV,, (1) +(n—1)dlog ns/n ([—1])7)
= FP(d"b)-nr+F,(b)@dr,

which proves the claim. Here the first two equalities follow from the definitions; the
third equality holds, since d¥ is a derivation; the fourth equality holds, as FF is a ring
homomorphism which satisfies FEV P =nid; and the last equality holds, since axiom (iv)
holds in the de Rham—Witt complex over A.
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In order to prove axiom (v), we consider the following diagram, where the left-hand

horizontal maps are the canonical isomorphisms,

id ®ns
Vyg(B) ¢ Ws(B)@wy(a) Uy a) Eg

an iFn@aFn lFf

1 id ®775‘/n 1
Qwg)(B) — Ws/n(B)@wg), () Ry, 1) — Esyne

Here, the left-hand square commutes, since F,: Q%MB) —>Q“1/V(B) is Fj,-linear and a natural
transformation; and the right-hand square commutes by Proposition 4.4. Hence, also the
outer square commutes and this immediately implies axiom (v); compare Remark 4.2 (d).

We have proved that the domains of the canonical map « at the beginning of the

proof form a Witt complex over B. Therefore, there exists a unique map
3: ngqB — WS(B)®WS(A)WSQ?4

of Witt complexes over B. The composition a3 is a selfmap of the initial object WsQ%,,
and therefore, is the identity map. The composition Go« is a map of Witt complexes
over B. In particular, it is a map of Wg(B)-modules, and therefore, is determined by

the composition with the map of Witt complexes
L WsQi — Wy (B) Ows(A) Wsﬂ%

that takes = to [1]s®z. But both ¢ and Soaet are maps of Witt complexes over A with
the initial Witt complex over A as domain. Therefore, the two maps are equal, and

hence, also o« is the identity map. This completes the proof. O

6. The big de Rham—Witt complex of the ring of integers

We finally evaluate the absolute de Rham—Witt complex of the ring of integers. If m and
n are positive integers, we write (m,n) and [m,n] for the greatest common divisor and
least common multiple of m and n, respectively. We define (m, n] to be the unique integer
modulo [m,n] such that (m,n]=0 mod m and (m,n]=(m,n) mod n, and define {m,n}
to be the unique integer modulo 2 that is non-zero if and only if both m and n are even.
We note that (m, n]+(n, m]=(m,n) mod [m, n|. We also remark that, by Lemma 4.3 and
by d being a derivation, in any Witt complex, the element dV,,ng/y([1]s/,) is annihilated
by n.
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THEOREM 6.1. The big de Rham—Witt complex of 7Z is given as follows:

WsQf = H Z-Voansn([Us/m),
nes

WsQy = H Z[nZ-dVians n([s/m),
nes

and the groups in degrees q=2 are zero. The multiplication is given by
Vinns/m (U s/m) - Vans/n([(Ls/n) = (M) - Vi ns/(m.n) ([L s/ pmn))
ans/m([l]s/m) 'annS/n([l]S/n) = (mv n] 'dV[m,n]nS/[m,n] ([HS/[m,n])
+{ma n} Z 2ril[mvn}'dVZT[m,nm([”S/QT[m,n])v

r>1

and the m-th Frobenius and Verschiebung maps are given by

FmVnnS/n([l]S/n) = (ma n) ‘/[m,n]/mnS/[m,n] ([1]5/[771,71])7

(m,n
1 m,n
+{m,n}> 2 ! m }'d‘ér[m,n}/m’?smm,n]([115/27*[m7n])7
r>1
and by

Vi (@Vns pmn ([ s/mn)) =m0 dVinnns jmn ([ s /mn)-

Proof. We claim that there is a Witt complex Fg over Z with

ES=[] 2 Vans/n(Us/n) and E§=]] Z/nZ-dVans/m([lls/n),
nes nes
with E4=0 for ¢>2, and with the Witt complex structure maps defined to be the unique
additive maps satisfying the formulas listed in the statement. For instance, the map
ns:Ws(Z)—EY is defined to be the unique additive map that to V,([1]g/,) assigns
Vins/n([1s/n); it is a ring isomorphism by Proposition 1.6. Granting this claim, the
map ng extends uniquely to a map

of Witt complexes over Z. It is an isomorphism in degree ¢=0, as noted above, and it is

also an isomorphism in degree g=1. For it is clearly surjective in degree g=1, and since
Lemma 4.3 shows that, in every Witt complex over Z,

ndVins/m([1s/m) = Vadns/n([1]s/m) =0,
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it is also injective in degree ¢=1. Finally, to prove that ng is an isomorphism in degrees
g>2, we must show that WgQ2 is zero, and to this end, it suffices to show that, for every
finite truncation set S and every n€S, the element ddV,,ns/,([1]s/n) of WgQZ vanishes.

Now, using Lemma 4.3 and the projection formula, we find that

ddVunsm([1s/n) = dlogns([—1]s)-dVans/n([1]s/m)
=d(dlogns([~1]s) Vans/n([lls/m))
=dV,(dlogns/n([—1]s/n))
= 2" dV,dVarnsjarn ([ s 2rm)

r>1

=nddVanns/an([1]s/2n),

and since S was assumed to be finite, this furnishes an induction argument showing that
ddV,n([1]s/n) is zero.

It remains to prove the claim. For notational convenience, we will suppress the
subscript S. We first show that the product on Ej is associative. Since [—1] is a square
root of one in Wg(Z) which, by Addendum 1.7, is equal to —[1]+V2([1]), the formula
defining the product in Eg shows that, as elements of F§,

dlog n([~1]) = (=n([1])+ Van([1]))d(—n([1]) + Van(1))
= o+ Vera)avn(() = 32 2 dVer() (6.1)
Using this formula, we find that -
Ven([1])-dlogn([—1]) =Z>;2’“_1Ven([1])de7([1])
- Z 2 e X e+ 2) 22 e Vi)

Moreover, 2"~1(m, 2"] is congruent to 2" ~'m modulo [m, 2], because 2" ~m is congruent
to 0 modulo m and to 2"~%(m,2") modulo 2". Hence, if e is odd, the lower left-hand
summand is equal to 3~ -, 2" tedVaren([1]) and the lower right-hand summand is zero,
and if e is even, the lower left-hand summand is zero and the lower right-hand summand

is equal to 3 -, 25~ tedVas.n([1]). So for any positive integer e, we have

Ven([1])-dlogn([~1]) = > 2" "edVaren([1]). (6.2)

r>1

We conclude that the product in Ey satisfies

an([l]) anﬁ([l]) = (mv 77,] 'd‘/[m,n]n([”)+{mv n} ‘V[m,n]ﬁ([l]) -d log 77([71])7 (63)
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where we use (6.2) to identify the second term on the right-hand side. A similar calcu-

lation shows that for all positive integers a and b,

Van([1])-(Ven([1])-dlog n([-1])) = (Van([1])- Ven([1]))-dlog n([-1]).

Using this identity, we find, on the one hand, that

Vin([1])- (Ve ([1])-@Vaun([1])) = (2 [m, ] (m, 0] -dViy a0 ([1])
+({lv [mv n]}(m’ Tl]—|—(l, [m7 nD{mv n})v[l,[m,n]]n([l})dlog 77([_1])’

and, on the other hand, that

(Vin([1])- Vi ([1]))-dVeun([1]) = (I, m) ([, m], n]-dVig,m),myn([1])
+(l7 m){[lv m]’ n}"/[[l,m],n]n([l])dlog 77([1])

Here (I, [m,n]]=[[l

[, m],n] and to prove that (I, [m,n]](m,n] and (I, m)([l, m],n] are con-
gruent modulo [I, [m

,n]], we use that [[, [m, n]]Z is the kernel of the map
7 LJILX L/ mL XL nL

that takes a to (a+IZ,a+mZ,a+nZ). So it will suffice to verify that the desired con-
gruence holds modulo [, m, and n, respectively. By definition, both numbers are zero

modulo [ and m, and the congruence modulo n follows from the identity
(l’ [m) n])(m, n) = (l7 m)([l’ m]? n)

which is readily verified by multiplying by [l, [, n]]=[[l, m],n] on both sides. We also
note that {l, [m, n]}(m,n]+ (I, [m,n]){m,n} and (I, m){[l, m],n} are well-defined integers
modulo 2 which are non-zero if and only if n and exactly one of [ and m are even. This
shows that the product in Ey is associative.

We proceed to verify the axioms (i)—(v) of Definition 4.1. First, we note that since

the sum (m, n]+(n, m] is congruent to (m,n) modulo [m, n]=[n,m], we have

AV ([1]) - Ve ([1]) + Vi ((1]) -dVaun ([1])
= (n, mldVin (1) +{n, m} Vin mn((1])d log n([—1])
+ (m, 2] dVign nyn([1) +{m, 0} Vi wyn([1]) dlog n([=1])
= (m, n)dVim nn([1])
= d(Vinn((1])-Van([1])),
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which verifies axiom (i).

To verify axiom (iv), we first show that for all positive integers m,

F(dlogn([—1])) = dlog([-1]). (6.4)

It follows from formula (6.1) that

Fin(dlogn([-1]))
:E:T*Emwmmb

r>1

__ZEIQT 1 ]

r>1 s>1
=3 2" dVip 2y (1)) +{m, 2} > 27 1l ] -dVas .2 mM([1])s
r>1 s>1

where the second equality follows from the definition of F,, and the last equality uses
that 27=1(m,2"] is congruent to 2"~'m modulo [m,2"]. Now, if the integer m is even,
then the lower the left-hand term is zero, since [m,2"]/m=2" with t<r, and the lower
right-hand term is equal to ) ., 2°7'dVasn([1]); and if m is odd, then the lower left-
hand term is equal to )., 2"~ 'dVarn([1]) and the lower right-hand term is zero. Hence,
using (6.1) again, we conclude that (6.4) holds. By using this equality, we may restate

the definition of the Frobenius map on EL in the form

FodVy (1) = 7

AVl ) (1) +{m, 0} Vi g (1)) - dlog m([=1]),  (6.5)

and taking n=mk and y=V;n([1]), this verifies axiom (iv).
We next consider axiom (ii) which is easily verified on EY. We first show that the
identity F}F,,=F,, holds on E'. Using (6.5), we have, on the one hand, that

Fl(Fdenn([lD)
(, [m,n]/m] (m,n]

= o Wil ([1)
e (el [0 R T R S )}
and, on the other hand, that
EundVin (1)) = Vi (1)+-0m, 2} Vi (1) g (1)),

Here, we have [l, [m, n]/m]/l=[lm,n]/lm, since both are equal to n/(lm,n), and more-

over, (Im,n] and (I, [m,n]/m](m,n] are congruent modulo [Im, n|, as both are congruent
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to 0 modulo Im and congruent to (Im,n)=(l, [m,n]/m)(m,n) modulo n. Finally, the
two factors {Im,n} and {I,[m,n]/m}(m,n]/m+(l, [m,n]/m){m,n} are well-defined in-
tegers modulo 2 which are non-zero if and only if Im and n are even. Indeed, for the
first factor, this is the definition, and for the second factor, it is seen as follows. If n
is odd, then both summands in this factor are zero, so suppose that n is even. If Im
is odd, then again both summands are zero; if [ is odd and m is even, then the first
summand is zero and the second summand is non-zero; if [ is even and m is odd, then
the first summand is non-zero and the second summand is zero; if [ and m are both even
and if the 2-adic valuation of m is strictly less than that of n, then [m,n]/m is even
and (m,n]/m is not divisible by 2 modulo [m,n]/m, so the first summand is non-zero
and the second summand is zero; and, finally, if [ and m are both even and the 2-adic
valuation of m is greater than or equal to that of n, then [m,n|/m is odd, so the first
summand is zero and the second summand is non-zero. This completes the proof that
F F,,=F,. The formulas V;V,,,=V},,, and F,,,V,,=m-id are readily verified, so we next
show that F;V,,=V,, F; if [ and m are relatively prime. To this end, we first note that
by (6.2) and by the definition of V,,, on EY, we have

Vin (Ven([1])-dlog n([—1])) = Vinen([1])-dlog n([-1]), (6.6)

for all positive integers m and e. Using this identity, (6.4), and (6.5), we find that

m(l, mn]
l
m(l,n]

l

Vin FidVin([1]) = AV 1,01 (1) +{l, 0} Vi m([1]) - dlog n([—1]).

But if [ and m are relatively prime, then [I,mn] and m[l,n] are equal; m(l,mn] and
m(l,n] are congruent modulo [, mn]=m|l, n|, as both are congruent to 0 modulo Im and
to m(l,mn)=m(l,n) modulo mn; and m{l, mn}={Il,n}, as is easily checked. This shows
that F}V,,=V,, F}, concluding the proof of axiom (ii).

To verify axiom (iii), we first note that for all positive integers I, m, and n,

Vin([1])- FrndVan([1]) = Vi(n([1]) - FimdVyn([1])).-

Indeed, by (6.3) and (6.5), the identity becomes

(17 [”:n’“]} (mT’n]-dV[l,[m,n]/mm([l])

i ({l o } . (l’ . ) {m, n}> Vit ([1])-dlog n([~ 1)

m

(Im,n)

= AVt ) (L) +{Im, 0} Vi ) mn ([1]) -d log n([—1]),
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and hence, the proof of the identity F;F,, = F},, above shows that the two sides are equal.

Now, from this equation and from the definition of V,,, on Ey, we find that
Vi(Veun([1]))-dVan((1]) = Vi(Veun([1]) - F1dVun([1])).
It remains to prove that also
Vi(dViun([1])-Van([1]) = Vi(dVinn([1])- FtVan([1])).-
Using (6.3), the left-hand side becomes
L(n, Im]-dVi iy (1) + {1, I} - Vi 0 ([1]) - d log 1 ([1])

and the right-hand sides becomes

00) (7 ) im0+ 0.0 {7 i 010 -1

We have seen above that [n,Im]|=I[[l,n]/l,m], and I(n,lm] and I(I,n)([l,n]/l,m] are
congruent modulo [n,lm], since both are congruent to 0 modulo n and congruent to
I(n,Im) modulo Im. Here we use that ([I,n]/l,m] is congruent to ([/,n]/l,m) modulo
m and that (I,n)([l,n]/l,m)=(n,lm). Moreover, [{n,Im} and (I,n){[l,n]/l,m} are well-
defined integers modulo 2 which are non-zero if and only if [ is odd and m and n are both
even. This completes the proof that axiom (iii) holds. Indeed, it is clear that axiom (iii)
holds on E°.

Finally, to verify axiom (v), it suffices to consider the case S=N. Since the formula
for [a] in Addendum 1.7 is quite complicated, it would be a rather onerous task to verify
this axiom directly. By axiom (i), the map dn: W(A)— E} is a derivation, provided that
we view Ef; as a W(A)-module via n°=n: W(A)— EJ, and hence, there is a unique W(A)-
linear map 7': Q%,V(A)%EI%, such that dn’=n'd. We will show that, for every positive

integer m, the diagram
Q) L B
lFm JFm
Q) L B}
commutes. Granting this, we find that
Fdn([a]) = Frndn’((a]) = Fpn'd([a]) = 0" Fnd([a]) =" ([a]™ ' d[a])
=n"([a]™ ")n'd((a]) =n"([a])™ " dn°([a]) = n([a])™dn([a)),
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which verifies axiom (v). Here, the first and last equalities are identities; the third
equality holds by the commutativity of the diagram above; the fourth equality holds by
Theorem 2.15; and the remaining equalities hold by the properties of the maps n° and
n'. It remains to prove that the diagram above commutes, and by Theorem 2.15 and
axiom (i), we may assume that m=p is a prime number. It further suffices to show that
for every positive integer n, the image of the element dV,,([1]) by the two compositions
in the diagram are equal. We consider three cases separately. First, if p is odd and n=ps

is divisible by p, then
Fpnlan([lD = deVnnO([I]) = stﬂo([l]%

while

anpan([l]) = 771 (Vn([l])P—lan([l])+d<Fpuz([l])p_ub([l])p)>

=0 (P2 (Vo (1) Vi ([1]) +dV ([1]) 0P~ 2sdV,, ([1])))

=n"dV,([1])

=dVyn([1))

as desired. Here we used that ndV;,([1])=0. Second, if p=2 and n=2s is even, then
Fyn'dV,([1]) = FadVon (1) = dVar® (1) + > 27 LsdVarar* (1))

while
' FadVy, ([1]) =0 (dV; ([1)) + Vi (1)) dVa (1)) = sV ([1]))
= dVen ([1])+Vaun® ([1])dViun® ([1]) = sdVoun® ([1])

=dVen"([1)+ 27 'ndVae,n’([1]) — sV ([1]),
t>1
so the desired equality holds in this case, too, as 2sdV,,n°([1])=0. Third, if n is not
divisible by p, then (p,n] is congruent to 1—nP~! modulo [p,n]=pn, since both are

congruent to 0 modulo p and to 1 modulo n, and {p,n} is zero. Hence,

FytdVa([1]) = FydVan®([1]) = ~

We wish to prove that this is equal to

0 FydVy (1)) = ' (vn<[11>f’-1dvn<m>+d(

Fan([l})p— Va ([1)7 ))

—np-1

! (np2vn<[11>czvn<m>+1

1—nP

av,(n)

-1

=n? =2V (1) dVon (1)) + dVan’([1]),
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or equivalently, that n?~2V,,n°([1])dV,,n°([1]) is zero. If p is odd, then this holds, since
ndV,n°([1]) is zero; and if p=2, then it holds, since V,,n°([1])dV,,n°([1]) is zero, for n odd.
This completes the proof of the claim made at the beginning of the proof, and hence, of
the theorem. O

ADDENDUM 6.2. Let S be a finite truncation set. The kernel of the canonical map
ns: QWS(Z) —>WSQZ

is equal to the graded ideal generated by the following elements together with their images
by the derivation d:
(i) for all m,n€eS, the element

Vin ([ s/m)dVa([s/n) — (M, n]dVim m ([1]s/(m.n))
- {mv ’Il} Z 2r! [m> n}dVQT[m,n] ([”S/ZT[m,n]);

r>1
(ii) for all neS, the element ndV,,([1]s/n)-
Proof. This follows from the proof of Theorem 6.1. O

We remark that in Addendum 6.2, the graded ring QWX s(z) Mmay be replaced by the
graded ring QWS(Z).
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