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1. Introduction

Considerable progress has recently been achieved in the theory of Vinogradov’s mean
value theorem (see [14] and [15]), associated estimates finding application throughout
analytic number theory, in Waring’s problem and the theory of the Riemann zeta func-
tion, to name but two. The vehicle for these advances is the so-called “efficient con-
gruencing” method, the most striking consequence of which is that the main conjecture
in Vinogradov’s mean value theorem holds with a number of variables only twice the
number conjectured to be best possible (see [14, Theorem 1.1]). Our goal in the present
paper is to establish the main conjecture in the complementary variable regime, showing
that diagonal behaviour dominates for half of the range conjectured. In common with
the previous work cited, this work far exceeds in this direction the conclusions available
hitherto for any Diophantine system of large degree k.

When k and s are positive integers, denote by Js,k(X) the number of integral solu-
tions of the system of Diophantine equations

s∑
i=1

(xji−y
j
i ) = 0 (1 6 j6 k), (1.1)

with 16xi, yi6X (16i6s). The lower bound

Js,k(X)�Xs+X2s−k(k+1)/2 (1.2)
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arises by considering the diagonal solutions of the system (1.1) with xi=yi (16i6s),
together with a lower bound for the product of local densities (see [7, equation (7.5)]).
Motivated by the latter considerations, the main conjecture in Vinogradov’s mean value
theorem asserts that for each ε>0, one has(1)

Js,k(X)�Xε(Xs+X2s−k(k+1)/2). (1.3)

In §7 of this paper, we prove the main conjecture (1.3) for 16s6 1
4 (k+1)2.

Theorem 1.1. Suppose that k>4 and 16s6 1
4 (k+1)2. Then, for each ε>0, one has

Js,k(X)�Xs+ε. (1.4)

In the range 16s6k, the upper bound Js,k(X)�Xs follows directly from the Viéte–
Girard–Newton formulae concerning the roots of polynomials. Hitherto, the only other
case in which the bound (1.4) had been established was that in which s=k+1 (see [3,
Lemma 5.4], and [8] for a sharper variant). The extension of the range 16s6k+1,
in which the bound (1.4) is known to hold, to 16s6 1

4 (k+1)2 covers half of the total
range predicted by the main conjecture. Previous approximations to strongly diagonal
behaviour in the range 16s6 1

4 (k+1)2 were considerably weaker. The second author
established that when s6k3/2(log k)−1, one has the bound

Js,k(X)�Xs+νs,k+ε,

with νs,k=exp(−Ak3/s2), for a certain positive constant A (see [10]), and with νs,k=
4s/k2 in the longer range s6 1

4 (k+1)2 (see [15]). Both results improve upon earlier
work of Arkhipov and Karatsuba [1] and Tyrina [6], these authors offering substantially
sharper bounds than the classical work of Vinogradov [9] for smaller values of s.

We also improve upon bounds for Js,k(X) given in [14] and [15] in the range

1
4 (k+1)2<s<k2−1.

Theorem 1.2. One has the following upper bounds for Js,k(X).
(i) Let s and m be non-negative integers with

2m6 k and s> (k−m)2+(k−m).

Then, for each ε>0, one has

Js,k(X)�X2s−k(k+1)/2+δk,m+ε, (1.5)

(1) Throughout this paper, the implicit constant in Vinogradov’s notation � and � may depend
on s, k and ε.



vinogradov’s mean value theorem 201

where

δk,m =m2.

(ii) Let s and m be non-negative integers with

2m6 k−1 and s> (k−m)2−1.

Then, for each ε>0, one has the upper bound (1.5) with

δk,m =m2+m+
m

k−m−1
.

We note that the second bound of Theorem 1.2, with m=0, recovers Theorem 1.1 of
[15], which asserts that the bound (1.3) holds for s>k2−1. Meanwhile, the first bound
of Theorem 1.2, again with m=0, recovers the earlier estimate provided by the main
theorem of [14], which delivered (1.3) for s>k2+k.

One measure of the strength of Theorem 1.2 compared with previous work is provided
by the bound for Js,k(X) furnished in the central case s= 1

2k(k+1). For this value of s,
it follows from [15, Theorem 1.4] that

Js,k(X)�Xs+∆,

with ∆= 1
8k

2+O(k). Meanwhile, Theorem 1.2 above establishes such a bound with
∆=

(
3
2−

√
2
)
k2+O(k). Note that

3
2−

√
2 =0.085786 ... < 0.125 = 1

8 .

More generally, in the situation with s=αk2, in which α is a parameter with 1
4 6α61,

we find from [15, Theorem 1.4] that

Js,k(X)�X2s−k(k+1)/2+∆(α),

where ∆(α)= 1
2 (1−α)2k2+O(k). Theorem 1.2, on the other hand, shows that such a

bound holds with ∆(α)=(1−
√
α)2k2+O(k). Note on this occasion that when 1

4 6α<1
one has

(1−
√
α)2< 1

2 (1−α)2,

as is easily verified by a modest computation.
Theorems 1.1 and 1.2 are special cases of a more general estimate, and it is the proof

of this which is our focus in §§2–7.
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Theorem 1.3. Suppose that k, r and t are positive integers with

k> 2, max
{
2, 1

2 (k−1)
}

6 t6 k, 1 6 r6 k and r+t> k. (1.6)

Define �=�(r, t, k) by

�= r(t+1)− 1
2
(t+r−k)

(
t+r−k−1+

2r−2
t−1

)
. (1.7)

Then, for each ε>0, one has

Jr(t+1),k(X)�X2r(t+1)−�+ε.

Theorem 1.1 follows directly from Theorem 1.3 on taking r and t to be suitable
integers satisfying r+t=k. When k is even we put r=t= 1

2k, and when k is odd we
instead put r= 1

2 (k+1) and t= 1
2 (k−1). In each case it follows that s=r(t+1) is the

largest integer not exceeding 1
4 (k+1)2, and we have Js,k(X)�Xs+ε. For smaller values

of s, the same conclusion is a consequence of the convexity of exponents that follows
from Hölder’s inequality.(2)

Theorem 1.2 follows in the first case from Theorem 1.3 on putting r=t=k−m, since
then we obtain

�(r, t, k) = (k−m)(k−m+1)− 1
2 (k−2m)(k−2m+1) = 1

2k(k+1)−m2.

Meanwhile, in the second case we put r=k−m−1 and t=k−m, in this instance obtaining

�(r, t, k) = (k−m−1)(k−m+1)− 1
2
(k−2m−1)

(
k−2m− 2

k−m−1

)
=

1
2
k(k+1)−m2−m− m

k−m−1
.

In brief, Theorem 1.3 is obtained by fully incorporating the ideas of Arkhipov and
Karatsuba [1] and Tyrina [6] into the efficient congruencing method which was first
created in [14] and further developed in [15]. The parameters r and t control the way
in which solutions of certain systems of congruences are counted (see (3.1) below). The
power of the method is enhanced by the flexibility to choose the latter parameters,
constrained only by (1.6). In particular, the work in [14] corresponds to the case r=t=k,
while [15] covers the cases t=k and r+t=k+1. We describe in more detail the role played
by r and t in §3. The reader will find the fundamental estimate which lies at the core of
our argument in Lemma 3.3 below.

(2) Hölder’s inequality was evidently first proved, in a form different from that usually found in
textbooks, by L. J. Rogers in [5].
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There are consequences of the new estimates supplied by Theorem 1.2 in particular
so far as the asymptotic formula in Waring’s problem is concerned. By applying the mean
value estimates published in work [2] of the first author in combination with mean value
estimates restricted to minor arcs established in work [13] of the second author, one may
convert improved estimates in Vinogradov’s mean value theorem into useful estimates for
mean values of exponential sums over kth powers. These in turn lead to improvements
in bounds for the number of variables required to establish the anticipated asymptotic
formula in Waring’s problem. In the present paper we enhance these tools by engineering
a hybrid of these approaches, increasing further the improvements stemming from Theo-
rem 1.2. We discuss this new hybrid approach in §8, exploring in §9 consequences for the
asymptotic formula in Waring’s problem. The details are somewhat complicated, and so
we refer the reader to the latter section for a summary of the bounds now available.

Acknowledgments. The authors are grateful to Xiaomei Zhao for identifying an over-
sight in the original proof of Lemma 7.2 that we have remedied in the argument described
in the present paper. The authors also thank the referee for carefully reading the paper
and for a number of useful comments.

2. Preliminaries

We initiate the proof of Theorem 1.3 by setting up the apparatus necessary for the
application of the efficient congruencing method. Here, we take the opportunity to
introduce a number of simplifications over the treatments of [14] and [15] that have
become apparent as the method has become more familiar. Since we consider the integer
k to be fixed, we abbreviate Js,k(X) to Js(X) without further comment. Our attention
is focused on bounding Js(X) where, for the moment, we think of s as being an arbitrary
natural number.(3) We define the real number λ∗s by means of the relation

λ∗s = lim sup
X!∞

log Js(X)
logX

.

It follows that, for each δ>0, and any real number X sufficiently large in terms of s,
k and δ, one has Js(X)�Xλ∗s+δ. In the language of [14] and [15], the real number λ∗s
is the infimum of the set of exponents λs permissible for s and k. In view of the lower
bound (1.2), together with a trivial bound for Js(X), we have

max
{
s, 2s− 1

2k(k+1)
}

6λ∗s 6 2s, (2.1)

(3) In this paper, the set of natural numbers N consists of 1, 2, ... .
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while the conjectured upper bound (1.3) implies that the first inequality in (2.1) should
hold with equality.

Next, we record some conventions that ease our expositary burden in what follows.
The letters k, r and t denote fixed positive integers satisfying (1.6), and

s= rt.

We make sweeping use of vector notation. In particular, we may write z≡w (mod p) to
denote that zi≡wi (mod p) (16i6r), write z≡ξ (mod p) to denote that zi≡ξ (mod p)
(16i6r), and [z (mod q)] to denote the r-tuple (ζ1, ..., ζr), where for 16i6r one has
16ζi6q and zi≡ζi (mod q). Also, we employ the convention that whenever G: [0, 1)k!C
is integrable, then ∮

G(α) dα=
∫

[0,1)k

G(α) dα.

For brevity, we write λ=λ∗s+r. Our goal is to show that λ62(s+r)−�, in which
� is the carefully chosen target exponent given in (1.7). Let N be an arbitrary natural
number, sufficiently large in terms of s, k, t and r, and put

θ=(16t)−N−1 and δ=(1000NtN )−1θ. (2.2)

In view of the definition of λ, there exists a sequence of natural numbers {Xl}∞l=1, tending
to infinity, with the property that

Js+r(Xl)>Xλ−δ
l (l∈N). (2.3)

Also, provided that Xl is sufficiently large, one has the corresponding upper bound

Js+r(Y )<Y λ+δ for Y >X
1/2
l . (2.4)

In the argument that follows, we take a fixed element X=Xl of the sequence {Xl}∞l=1,
which we may assume to be sufficiently large in terms of s, k, r, t and N . We then put
M=Xθ. Throughout, constants implied in the notation of Landau and Vinogradov may
depend on s, k, r, t, N , θ and δ, but not on any other variable.

Let p be a fixed prime number with M<p62M to be chosen in due course. That
such a prime exists is a consequence of the prime number theorem. When c and ξ are
non-negative integers, and α∈[0, 1)k, define

fc(α; ξ) =
∑

16x6X
x≡ξ (mod pc)

e(α1x+α2x
2+...+αkxk), (2.5)
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where e(z) denotes the complex exponential e2πiz. As in [15], we must consider well-
conditioned r-tuples of integers belonging to distinct congruence classes modulo a suit-
able power of p. The following notation is similar to, though slightly simpler than, the
corresponding notation introduced in [14] and [15]. Denote by Ξrc(ξ) the set of r-tuples
(ξ1, ..., ξr), with

1 6 ξi 6 pc+1 and ξi≡ ξ (mod pc) (16 i6 r),

and such that ξ1, ..., ξr are distinct modulo pc+1. We then define

Fc(α; ξ) =
∑

ξ∈Ξr
c(ξ)

r∏
i=1

fc+1(α; ξi), (2.6)

where the exponential sums fc+1(α; ξi) are defined via (2.5).
Two mixed mean values play leading roles within our arguments. When a and b are

positive integers, we define

Ia,b(X; ξ, η) =
∮
|Fa(α; ξ)2fb(α; η)2s| dα, (2.7)

Ka,b(X; ξ, η) =
∮
|Fa(α; ξ)2Fb(α; η)2t| dα. (2.8)

For future reference, we note that, as a consequence of orthogonality, the mean value
Ia,b(X; ξ, η) counts the number of integral solutions of the system

r∑
i=1

(xji−y
j
i ) =

s∑
l=1

(vjl −w
j
l ) (16 j6 k), (2.9)

with
1 6x,y,v,w 6X, v≡w≡ η (mod pb),

[x (mod pa+1)]∈Ξra(ξ) and [y (mod pa+1)]∈Ξra(ξ).

Similarly, the mean value Ka,b(X; ξ, η) counts the number of integral solutions of the
system

r∑
i=1

(xji−y
j
i ) =

t∑
l=1

r∑
m=1

(vjlm−w
j
lm) (16 j6 k), (2.10)

with
1 6x,y 6X, [x (mod pa+1)]∈Ξra(ξ), [y (mod pa+1)]∈Ξra(ξ),

and, for 16l6t,

1 6vl,wl 6X, [vl (mod pb+1)]∈Ξrb(η), [wl (mod pb+1)]∈Ξrb(η).
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It is convenient to put

Ia,b(X) = max
16ξ6pa

max
16η6pb

η 6≡ξ (mod p)

Ia,b(X; ξ, η) (2.11)

and

Ka,b(X) = max
16ξ6pa

max
16η6pb

η 6≡ξ (mod p)

Ka,b(X; ξ, η). (2.12)

Of course, these mean values implicitly depend on our choice of p, and this will depend
on s, k, r, t, θ and Xl alone. Since we fix p in the pre-congruencing step described in §6,
following the proof of Lemma 6.1, the particular choice will be rendered irrelevant.

The pre-congruencing step requires a definition of K0,b(X) consistent with the con-
ditioning idea, and this we now describe. When ζ is a tuple of integers, we denote by Ξ(ζ)
the set of r-tuples (ξ1, ..., ξr)∈Ξr0(0) such that ξi 6≡ζj (mod p) for all i and j. Recalling
(2.5), we put

F(α; ζ) =
∑

ξ∈Ξ(ζ)

r∏
i=1

f1(α; ξi). (2.13)

Finally, we define

Ĩc(X; η) =
∮
|F(α; η)2fc(α; η)2s| dα, (2.14)

K̃c(X; η) =
∮
|F(α; η)2Fc(α; η)2t| dα, (2.15)

K0,c(X) = max
16η6pc

K̃c(X; η). (2.16)

As in [14] and [15], our arguments are simplified by making transparent the relation-
ship between mean values and their anticipated magnitudes. In this context, we define
[[Js+r(X)]] by means of the relation

Js+r(X) =X2s+2r−�[[Js+r(X)]]. (2.17)

Also, we define [[Ia,b(X)]] and [[Ka,b(X)]] by means of the relations

Ia,b(X) =
(
X

M b

)2s(
X

Ma

)2r−�
[[Ia,b(X)]] (2.18)

and

Ka,b(X) =
(
X

M b

)2s(
X

Ma

)2r−�
[[Ka,b(X)]]. (2.19)
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The lower bound (2.3), in particular, may now be written as

[[Js+r(X)]]>XΛ−δ, (2.20)

where we have written

Λ =λ−2(s+r)+�. (2.21)

We finish this section by recalling a simple estimate from [14] that encapsulates the
translation-dilation invariance of the Diophantine system (1.1).

Lemma 2.1. Suppose that c is a non-negative integer with cθ61. Then, for each
natural number u, one has

max
16ξ6pc

∮
|fc(α; ξ)|2u dα�u Ju

(
X

M c

)
.

Proof. This is [14, Lemma 3.1].

We record an immediate consequence of Lemma 2.1 useful in what follows.

Corollary 2.2. Suppose that c and d are non-negative integers with c6θ−1 and
d6θ−1. Then, whenever u, v∈N and ξ, ζ∈Z, one has

∮
|fc(α; ξ)2ufd(α; ζ)2v| dα�u,v Ju+v

(
X

M c

)u/(u+v)

Ju+v

(
X

Md

)v/(u+v)

.

Proof. This follows at once from Lemma 2.1 via Hölder’s inequality.

3. Auxiliary systems of congruences

Following the pattern established in [14], in which efficient congruencing was introduced,
and further developed in [15], we begin the main thrust of our analysis with a discussion
of the congruences that play a critical role in our method.

Recall the conditions (1.6) on k, r and t. When a and b are integers with 16a<b,
we denote by Bra,b(m; ξ, η) the set of solutions of the system of congruences

r∑
i=1

(zi−η)j ≡mj (mod pjb) (16 j6 k), (3.1)

with 16z6pkb and z≡ξ (mod pa+1) for some ξ∈Ξra(ξ). We define an equivalence relation
R(λ) on integral r-tuples by declaring the r-tuples x and y to be R(λ)-equivalent when
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x≡y (mod pλ). We then write Cr,ta,b(m; ξ, η) for the set of R(tb)-equivalence classes of
Bra,b(m; ξ, η), and we define Br,ta,b(p) by putting

Br,ta,b(p) = max
16ξ6pa

max
16η6pb

η 6≡ξ (mod p)

max
16m6pkb

card(Cr,ta,b(m; ξ, η)). (3.2)

When a=0 we modify these definitions, so that Br0,b(m; ξ, η) denotes the set of
solutions of the system of congruences (3.1) with 16z6pkb and z≡ξ (mod p) for some
ξ∈Ξr0(ξ), and for which in addition one has zi 6≡η (mod p) for 16i6r. As in the previous
case, we write Cr,t0,b(m; ξ, η) for the set of R(tb)-equivalence classes of Br0,b(m; ξ, η), but
we define Br,t0,b(p) by putting

Br,t0,b(p) = max
16η6pb

max
16m6pkb

card(Cr,t0,b(m; 0, η)). (3.3)

We note that although the choice of ξ in this situation with a=0 is irrelevant, it is
notationally convenient to preserve the similarity with the situation in which a>1.

Our argument exploits the non-singularity of the solution set underlying Br,ta,b(p) by
means of a version of Hensel’s lemma made available within the following lemma.

Lemma 3.1. Let f1, ..., fd be polynomials in Z[x1, ..., xd] with respective degrees
k1, ..., kd, and write

J(f ;x) =det
(
∂fj
∂xi

(x)
)
16i,j6d

.

When $ is a prime number, and l is a natural number, let N (f ;$l) denote the number
of solutions of the simultaneous congruences

fj(x1, ..., xd)≡ 0 (mod $l) (1 6 j6 d),

with 16xi6$l (16i6d), and (J(f ;x), $)=1. Then N (f ;$l)6k1 ... kd.

Proof. This is [11, Theorem 1].

We recall also an auxiliary lemma from [15], in which terms are eliminated between
related polynomial expansions.

Lemma 3.2. Let α and β be natural numbers. Then there exist integers cl (α6l6

α+β), and dm (β6m6α+β), depending at most on α and β, and with dβ 6=0, for which
one has the polynomial identity

cα+
β∑
l=1

cα+l(x+1)α+l =
α+β∑
m=β

dmx
m.
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Proof. This is [15, Lemma 3.2].

Our approach to bounding Br,ta,b(p) proceeds by discarding the k−r congruences
of smallest modulus pjb (16j6k−r), but nonetheless aims to lift all solutions to the
modulus ptb. The idea of reducing the lifting required, which is tantamount to taking
t<k, was first exploited by Arkhipov and Karatsuba [1] in the setting of Linnik’s classical
p-adic approach [4]. Likewise, taking r<k removes from consideration those congruences
that require the greatest lifting and produce the biggest inefficiency in the method.
Tyrina [6] took r=t> 1

2k and further improved bounds on Js,k(X) for s=O(k2). Later,
the second author used a hybrid approach (see [10, Lemma 2.1]), with r and t as free
parameters, to obtain large improvements to the bounds for s=O(k3/2−ε).

We also follow a very general approach here, keeping r and t as free parameters,
subject only to the necessary constraints given in (1.6). For Theorem 1.1, the crucial
observation is that when r+t=k, then there is no lifting at all and we capture only
diagonal solutions in the symmetric version of (3.1). This observation is reflected in the
fact that the coefficients µ and ν imminently to be defined satisfy the condition µ=ν=0
in this situation.

The following lemma generalises Lemmata 3.3 to 3.6 of [15]. For future reference,
at this point we introduce the coefficients

µ= 1
2 (t+r−k)(t+r−k−1) and ν= 1

2 (t+r−k)(k+r−t−1). (3.4)

Lemma 3.3. Suppose that k, r and t satisfy the conditions (1.6), and further that
a and b are integers with 06a<b and b>(k−t−1)a. Then

Br,ta,b(p) 6 k!pµb+νa.

Proof. We suppose in the first instance that a>1. Fix integers ξ and η with

1 6 ξ6 pa, 1 6 η6 pb and η 6≡ ξ (mod p).

We consider the set of R(tb)-equivalence classes of solutions Cr,ta,b(m; ξ, η) of the system
(3.1), in our first step upgrading a subset of the congruences to the same level. Put

%= k−r+1 and ω=max{0, k−t−1}.

We denote by D1(n) the set of R(tb)-equivalence classes of solutions of the system of
congruences

r∑
i=1

(zi−η)j ≡nj (mod ptb+ωa) (%6 j6 k), (3.5)
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with 16z6pkb and z≡ξ (mod pa+1) for some ξ∈Ξra(ξ).
Recall our assumed bound b>ωa and fix an integral k-tuple m. To any solution z

of (3.1) there corresponds a unique r-tuple n=(n%, ..., nk) with 16n6ptb+ωa for which
(3.5) holds and

nj ≡mj (mod pσ(j)) (%6 j6 k),

where σ(j)=min{jb, tb+ωa}. We therefore infer that

Cr,ta,b(m; ξ, η)⊆
⋃

16n%6ptb+ωa

n%≡m% (mod pσ(%))

...
⋃

16nk6ptb+ωa

nk≡mk (mod pσ(k))

D1(n).

The number of r-tuples n in the union is equal to

t∏
j=%

p(t−j)b+ωa =(pb)(t−%)(t−%+1)/2(pa)(t−%+1)ω = pµb+(t−%+1)ωa.

Consequently,

card(Cr,ta,b(m; ξ, η))6 pµb+(t−%+1)ωa max
16n6ptb+ωa

card(D1(n)). (3.6)

Observe that for any solution z′ of (3.5) there is an R(tb)-equivalent solution z
satisfying 16z6ptb+ωa. We next rewrite each variable zi in the shape zi=payi+ξ. In
view of the hypothesis that z≡ξ (mod pa+1) for some ξ∈Ξra(ξ), the r-tuple y necessarily
satisfies

yi 6≡ ym (mod p) (16 i<m6 r). (3.7)

Write ζ=ξ−η, and note that the constraint η 6≡ξ (mod p) ensures that p -ζ. We denote
the multiplicative inverse of ζ modulo ptb+ωa by ζ−1. In this way we deduce from (3.5)
that card(D1(n)) is bounded above by the number of R(tb−a)-equivalence classes of
solutions of the system of congruences

r∑
i=1

(payiζ−1+1)j ≡nj(ζ−1)j (mod ptb+ωa) (%6 j6 k), (3.8)

with 16y6ptb+(ω−1)a satisfying (3.7). Let y=w be any solution of the system (3.8), if
indeed any one such exists. Then we find that all other solutions y satisfy the system

r∑
i=1

((payiζ−1+1)j−(pawiζ−1+1)j)≡ 0 (mod ptb+ωa) (%6 j6 k). (3.9)

Next we make use of Lemma 3.2 just as in the corresponding argument of the proof
of [15, Lemmata 3.3–3.6]. Consider an index j with %6j6k, and apply the latter lemma
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with α=%−1 and β=j−%+1. We find that there exist integers cj,l (%−16l6j), and
dj,m (j−%+16m6j), depending at most on j and k, and with dj,j−%+1 6=0, for which
one has the polynomial identity

cj,%−1+
j∑
l=%

cj,l(x+1)l =
j∑

m=j−%+1

dj,mx
m. (3.10)

Since we may assume p to be large, moreover, we may suppose that p -dj,j−%+1. Thus, by
multiplying the equation (3.10) through by the multiplicative inverse of dj,j−%+1 modulo
ptb+ωa, we see that there is no loss in supposing that dj,j−%+1≡1 (mod ptb+ωa). Taking
suitable linear combinations of the congruences comprising (3.9), therefore, we deduce
that any solution of this system satisfies

(ζ−1pa)j−%+1
r∑
i=1

(ψj(yi)−ψj(wi))≡ 0 (mod ptb+ωa) (%6 j6 k),

in which

ψj(z) = zj−%+1+
j∑

m=j−%+2

dj,m(ζ−1pa)m−j+%−1zm.

We note for future reference that when a>1, one has

ψj(z)≡ zj−%+1 (mod p). (3.11)

Denote by D2(u) the set of R(tb−a)-equivalence classes of solutions of the system
of congruences

r∑
i=1

ψj(yi)≡uj (mod ptb+ωa−(j−%+1)a) (%6 j6 k),

with 16y6ptb+(ω−1)a satisfying (3.7). Then we have shown thus far that

card(D1(n))6 max
16u6ptb+ωa

card(D2(u)). (3.12)

Let D3(v) denote the set of solutions of the system

r∑
i=1

ψj(yi)≡ vj (mod ptb−a) (%6 j6 k), (3.13)

with 16y6ptb−a satisfying (3.7). For %6j6k, let

τ(j) =min{tb−a, tb+ωa−(j−%+1)a}.
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From (1.6) we see that τ(k)=tb+ωa−ra6tb−a, and we obtain

card(D2(u))6
∑

16v%6ptb−a

v%≡u% (mod pτ(%))

...
∑

16vk6ptb−a

vk≡uk (mod pτ(k))

card(D3(v))

6 (pa)(r−ω)(r−ω−1)/2 max
16v6ptb−a

card(D3(v)).

(3.14)

By combining (3.6), (3.12) and (3.14), we discern at this point that

card(Cr,ta,b(m; ξ, η))6 (pb)µ(pa)(t−%+1)ω+(r−ω)(r−ω−1)/2 max
16v6ptb−a

card(D3(v))

= pµb+νa max
16v6ptb−a

card(D3(v)).
(3.15)

It remains now only to bound the number of solutions of the system of congruences (3.13)
lying in the set D3(v). Define the determinant

J(ψ;x) =det(ψ′%+l−1(xi))16i,l6r.

In view of (3.11), one has ψ′%+l−1(yi)≡ly
l−1
i (mod p). It follows from (3.7) that

det(yl−1
i )16i,l6r =

∏
16i<m6r

(yi−ym) 6≡ 0 (mod p),

so that, since p>k, we have (J(ψ;y), p)=1. We therefore deduce from Lemma 3.1 that

card(D3(v))6 %(%+1) ... k6 k!,

and thus the conclusion of the lemma when a>1 follows at once from (3.2) and (3.15).
The proof presented above requires only small modifications when a=0. In this case,

we denote by D1(n; η) the set of R(tb)-equivalence classes of solutions of the system of
congruences (3.5) with 16z6pkb and z≡ξ (mod p) for some ξ∈Ξr0(0), and for which in
addition zi 6≡η (mod p) for 16i6r. Then as in the opening paragraph of our proof, it
follows from (3.1) that

card(Cr,t0,b(m; 0, η))6 pµb max
16n6ptb

card(D1(n; η)). (3.16)

But card(D1(n; η))=card(D1(n; 0)), and card(D1(n; 0)) counts the solutions of the sys-
tem of congruences

r∑
i=1

yji ≡nj (mod ptb) (%6 j6 k),
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with 16y6ptb satisfying (3.7), and in addition p -yi (16i6r). Write

J(y) =det((%+j−1)y%+j−2
i )16i,j6r.

Then, since p>k, we have

J(y) =
k!

(%−1)!
(y1 ... yr)%−1

∏
16i<j6r

(yi−yj) 6≡ 0 (mod p).

We therefore conclude from Lemma 3.1 that

card(D1(n; 0)) 6 %(%+1) ... k6 k!.

In view of (3.3), the conclusion of the lemma therefore follows from (3.16) when a=0.

4. The conditioning process

We follow the previous treatments of [14] and [15] in seeking next to bound the mean
value Ia,b(X; ξ, η) in terms of analogous mean values Ka,b+h(X; ξ, ζ), in which variables
are arranged in “non-singular” blocks. We deviate from these earlier treatments, however,
by sacrificing some of the strength of these prior results in order to simplify the proofs. In
particular, we are able in this way to avoid introducing coefficient r-tuples from {1,−1}r

within the conditioned blocks of variables.

Lemma 4.1. Let a and b be integers with b>a>1. Then one has

Ia,b(X)�Ka,b(X)+M2s/3Ia,b+1(X).

Proof. Fix integers ξ and η with η 6≡ξ (mod p). Let T1 denote the number of solutions
x, y, v, w of the system (2.9) counted by Ia,b(X; ξ, η) in which v1, ..., vs together occupy
at least r distinct residue classes modulo pb+1, and let T2 denote the corresponding
number of solutions in which v1, ..., vs together occupy at most r−1 distinct residue
classes modulo pb+1. Then

Ia,b(X; ξ, η) =T1+T2. (4.1)

We first estimate T1. Recall the definitions (2.6)–(2.8). Then, by orthogonality and
Hölder’s inequality, one finds that

T1 6

(
s

r

)∮
|Fa(α; ξ)|2Fb(α; η)fb(α; η)s−rfb(−α; η)s dα

�Ka,b(X; ξ, η)1/2tIa,b(X; ξ, η)1−1/2t.

(4.2)
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Next, we estimate T2. In view of the assumptions (1.6), one has s=rt>2r>2(r−1). Con-
sequently, there is an integer ζ≡η (mod pb) having the property that at least three of the
variables v1, ..., vs are congruent to ζ modulo pb+1. Hence, again recalling the definitions
(2.7) and (2.8), one finds by orthogonality in combination with Hölder’s inequality that

T2 6

(
s

3

) ∑
16ζ6pb+1

ζ≡η (mod pb)

∮
|Fa(α; ξ)|2fb+1(α; ζ)3fb(α; η)s−3fb(−α; η)s dα

�MIa,b(X; ξ, η)1−3/2sIa,b+1(X)3/2s.

(4.3)

By substituting (4.2) and (4.3) into (4.1), and recalling (2.11) and (2.12), we there-
fore conclude that

Ia,b(X)�Ka,b(X)1/2tIa,b(X)1−1/2t+MIa,b(X)1−3/2sIa,b+1(X)3/2s,

whence

Ia,b(X)�Ka,b(X)+M2s/3Ia,b+1(X).

This completes the proof of the lemma.

Repeated application of Lemma 4.1, together with a trivial bound for the mean value
Ka,b+H(X) when H is large enough, yields a relation suitable for iterating the efficient
congruencing process.

Lemma 4.2. Let a and b be integers with 16a<b, and put H=15(b−a). Suppose
that b+H6(2θ)−1. Then there exists an integer h with 06h<H having the property
that

Ia,b(X)� (Mh)2s/3Ka,b+h(X)+(MH)−s/4
(
X

M b

)2s(
X

Ma

)λ−2s

.

Proof. By repeated application of Lemma 4.1, we derive the upper bound

Ia,b(X)�
H−1∑
h=0

(Mh)2s/3Ka,b+h(X)+(MH)2s/3Ia,b+H(X). (4.4)

On considering the underlying Diophantine systems, it follows from Corollary 2.2 that

Ia,b+H(X; ξ, η) 6
∮
|fa(α; ξ)2rfb+H(α; η)2s| dα

� Js+r

(
X

Ma

)r/(s+r)
Js+r

(
X

M b+H

)s/(s+r)
.



vinogradov’s mean value theorem 215

Since M b+H=(Xθ)b+H6X1/2, we deduce from (2.4) that

(MH)2s/3Ia,b+H(X)�Xδ

((
X

Ma

)r/(s+r)(
X

M b+H

)s/(s+r))λ
(MH)2s/3

=Xδ

(
X

M b

)2s(
X

Ma

)λ−2s

MΩ,

where

Ω =λ

(
a− ar

s+r
− bs

s+r

)
+2s(b−a)+Hs

(
2
3
− λ

s+r

)
.

We recall from (2.1) that λ>s+r. Then the lower bound b>a leads to the estimate

Ω 6−s(b−a) λ

s+r
+2s(b−a)− 1

3
Hs6 s(b−a)− 1

3
Hs.

But H=15(b−a), and so from (2.2) we discern that

Ω 6− 4
15Hs6−δθ−1− 1

4Hs.

We therefore arrive at the estimate

(MH)2s/3Ia,b+H(X)� (MH)−s/4
(
X

M b

)2s(
X

Ma

)λ−2s

,

and the conclusion of the lemma follows on substituting this bound into (4.4).

5. The efficient congruencing step

We next seek to convert latent congruence information within the mean value Ka,b(X)
into a form useful in subsequent iterations, this being achieved by using the work of
§3. We recall now the definitions of the coefficients µ and ν from (3.4). The following
generalises Lemmata 5.1, 5.2, 6.2 and 6.3 of [15].

Lemma 5.1. Suppose that a and b are integers with 06a<b6θ−1 and b>(k−t−1)a.
Then one has

Ka,b(X)�Mµb+νa(M tb−a)rJs+r

(
X

M b

)1−1/t

Ib,tb(X)1/t.

Proof. Suppose first that a>1. Consider fixed integers ξ and η with

1 6 ξ6 pa, 1 6 η6 pb and η 6≡ ξ (mod p).
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The quantity Ka,b(X; ξ, η) counts integral solutions of the system (2.10) subject to the
attendant conditions on x, y, v, w. As in the argument of the proof of [14, Lemma 6.1],
an application of the binomial theorem shows that these solutions satisfy the system of
congruences

r∑
i=1

(xi−η)j ≡
r∑
i=1

(yi−η)j (mod pjb) (16 j6 k). (5.1)

In the notation of §3, it follows that for some k-tuple of integers m, we have

[x (mod pkb)]∈Bra,b(m; ξ, η) and [y (mod pkb)]∈Bra,b(m; ξ, η).

Writing

Ga,b(α; ξ, η;m) =
∑

θ∈Br
a,b(m;ξ,η)

r∏
i=1

fkb(α; θi),

we see from (2.10) and (5.1) that

Ka,b(X; ξ, η) =
pb∑

m1=1

...

pkb∑
mk=1

∮
|Ga,b(α; ξ, η;m)2Fb(α; η)2t| dα.

We now partition the vectors in each set Bra,b(m; ξ, η) into equivalence classes modulo
ptb as in §3. An application of Cauchy’s inequality leads via Lemma 3.3 to the bound

|Ga,b(α; ξ, η;m)|2 =
∣∣∣∣ ∑
C∈Cr,t

a,b(m;ξ,η)

∑
θ∈C

r∏
i=1

fkb(α; θi)
∣∣∣∣2

6 card(Cr,ta,b(m; ξ, η))
∑

C∈Cr,t
a,b(m;ξ,η)

∣∣∣∣∑
θ∈C

r∏
i=1

fkb(α; θi)
∣∣∣∣2

�Mµb+νa
∑

C∈Cr,t
a,b(m;ξ,η)

∣∣∣∣∑
θ∈C

r∏
i=1

fkb(α; θi)
∣∣∣∣2.

Hence

Ka,b(X; ξ, η)�Mµb+νa
∑
m

∑
C∈Cr,t

a,b(m;ξ,η)

∮ ∣∣∣∣∑
θ∈C

r∏
i=1

fkb(α; θi)
∣∣∣∣2|Fb(α; η)|2t dα.

For each k-tuple m and equivalence class C, the integral above counts solutions of (2.10)
with the additional constraints that [x (mod pkb)]∈C and [y (mod pkb)]∈C. In particu-
lar, x≡y (mod ptb). Moreover, as the sets Bra,b(m; ξ, η) are disjoint for distinct vectors
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m (with 16mj6pjb for each j), to each pair (x,y) there corresponds at most one pair
(m, C). Hence,

Ka,b(X; ξ, η)�Mµb+νaH,

where H is the number of solutions of (2.10) with the additional hypothesis that x≡y
(mod ptb). It follows that

Ka,b(X; ξ, η)�Mµb+νa
∑

16ζ6ptb

ζ≡ξ (mod pa)

∮ ( r∏
i=1

|ftb(α; ζi)|2
)
|Fb(α; η)|2t dα.

An application of Hölder’s inequality reveals that∑
16ζ6ptb

ζ≡ξ (mod pa)

r∏
i=1

|ftb(α; ζi)|2 =

( ∑
16ζ6ptb

ζ≡ξ (mod pa)

|ftb(α; ζ)|2
)r

6 (ptb−a)r−1
∑

16ζ6ptb

ζ≡ξ (mod pa)

|ftb(α; ζ)|2r,

and so it follows that

Ka,b(X; ξ, η)�Mµb+νa(M tb−a)r max
16ζ6ptb

ζ≡ξ (mod pa)

∮
|ftb(α; ζ)2rFb(α; η)2t| dα. (5.2)

Next we apply Hölder’s inequality to the integral on the right-hand side of (5.2) to obtain∮
|ftb(α; ζ)2rFb(α; η)2t| dα6U1−1/tIb,tb(X; η, ζ)1/t,

where, on considering the underlying Diophantine system and using Lemma 2.1, one has

U =
∮
|Fb(α; η)|2t+2 dα6

∮
|fb(α; η)|2s+2r dα� Js+r

(
X

M b

)
.

Notice that, since η 6≡ξ (mod p) and ζ≡ξ (mod pa) with a>1, one has ζ 6≡η (mod p).
Then we have Ib,tb(X; η, ζ)6Ib,tb(X), and so when a>1 the conclusion of the lemma
follows from (5.2).

When a=0, we must modify the argument slightly. In this case, from (2.15) and
(2.16) we find that

K0,b(X) = max
16η6pb

∮
|F(α; η)2Fb(α; η)2t| dα.

The desired conclusion then follows by pursuing the proof given above in the case a>1,
noting that the definition of F(α; η) ensures that the variables resulting from the congru-
encing argument will avoid the congruence class η modulo p. This completes the proof
of the lemma.
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By applying Lemmata 4.2 and 5.1 in tandem, we obtain a sequence of inequalities
for the quantities Kc,d(X). Recall the definition of Λ from (2.21).

Lemma 5.2. Suppose that a and b are integers with 06a<b6(32tθ)−1 and b>ta. In
addition, put H=15(t−1)b and g=b−ta. Then there exists an integer h, with 06h<H,
having the property that

[[Ka,b(X)]]�Xδ((Mg−4h/3)s[[Kb,tb+h(X)]])1/t
(
X

M b

)Λ(1−1/t)

+(MH)−r/6
(
X

M b

)Λ
.

Proof. Recall the notational conventions (2.18) and (2.19). The hypotheses b>ta
and (1.6) imply that b>(k−t−1)a. Then it follows from Lemma 5.1 in combination with
(2.4) that

[[Ka,b(X)]]�XδMω[[Ib,tb(X)]]1/t
(
X

M b

)Λ(1−1/t)

, (5.3)

in which we have written

ω=µb+νa+r(tb−a)+(2r−�)(a−b)− 2s(t−1)b
t

.

On recalling that s=rt and noting the definition (1.7) of �, one finds that

ω=�(b−a)−
(
rt− 1

2 (t+r−k)(t+r−k−1)
)
b+
(
r+ 1

2 (t+r−k)(k+r−t−1)
)
a,

whence

ω=
(
r− (t+r−k)(r−1)

t−1

)
(b−ta) 6 rg.

The hypothesized upper bound on b implies that tb+H616tb6(2θ)−1. We may therefore
apply Lemma 4.2 to show that for some integer h with 06h<H, one has

[[Ib,tb(X)]]� (Mh)−4s/3[[Kb,tb+h(X)]]+(MH)−s/4
(
X

M b

)Λ
.

We thus deduce from (5.3) that

[[Ka,b(X)]]�Xδ

(
X

M b

)Λ(1−1/t)

Mrg−4rh/3[[Kb,tb+h(X)]]1/t+XδMrg−rH/4
(
X

M b

)Λ
.

(5.4)
But in view of the hypotheses (1.6), one has t>2 and hence

H =15(t−1)b> 15b> 15g.

Then on recalling (2.2), we find that

Xδ(Mr)g−H/4 6M δθ−1
(MrH)1/15−1/4 6M−rH/6.

The conclusion of the lemma therefore follows from (5.4).
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The following crude upper bound for Ka,b(X) is a useful addition to our arsenal
when b is very large.

Lemma 5.3. Suppose that a and b are integers with 06a<b6(2θ)−1. Then provided
that Λ>0, one has

[[Ka,b(X)]]�XΛ+δ(M b−a)s.

Proof. On considering the underlying Diophantine equations, we deduce from Corol-
lary 2.2 that

Ka,b(X)� Js+r

(
X

Ma

)r/(s+r)
Js+r

(
X

M b

)s/(s+r)
,

so that (2.4), (2.17), (2.19) and (2.21) yield the relation

[[Ka,b(X)]]� Xδ((X/Ma)r/(s+r)(X/M b)s/(s+r))2s+2r−�+Λ

(X/M b)2s(X/Ma)2r−�
6XΛ+δ(M b−a)�s/(s+r).

In view of (1.7), one has �6s+r, and thus the proof of the lemma is complete.

6. The pre-congruencing step

In order to ensure that the variables in the auxiliary mean values that we consider are
appropriately configured, we must expend some additional effort initiating the iteration
in a pre-congruencing step. It is at this point that we fix the prime p once and for all.
Although we follow the argument of [15, Lemma 6.1] in broad strokes, we are able to
obtain some simplification by weakening our conclusions inconsequentially.

Lemma 6.1. There exists a prime number p with M<p62M , and an integer h with
06h63, for which one has

Js+r(X)�M2s+2sh/3K0,1+h(X).

Proof. The mean value Js+r(X) counts the number of integral solutions of the sys-
tem

s+r∑
i=1

(xji−y
j
i ) = 0 (1 6 j6 k), (6.1)

with 16x,y6X. Let T1 denote the number of these solutions with either at least two of
x1, ..., xs+r equal or at least two of y1, ..., ys+r equal, and let T2 denote the corresponding
number of solutions with x1, ..., xs+r distinct and y1, ..., ys+r distinct. Then

Js+r(X) =T1+T2.
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Suppose first that T1>T2. Then by considering the underlying Diophantine systems,
it follows from Hölder’s inequality that

Js+r(X) 6 2T1

6 4
(
s+r

2

)∮
|f0(α; 0)2s+2r−2f0(2α; 0)| dα

�
(∮

|f0(α; 0)|2s+2r dα

)1−1/(s+r)(∮
|f0(2α; 0)|2s+2r dα

)1/(2s+2r)

=Js+r(X)1−1/(2s+2r).

Consequently, one has Js+r(X)�1, which contradicts the lower bound (2.3) if X=Xl is
large enough. We may therefore suppose that T1<T2, and hence that Js+r(X)62T2.

Given a solution x,y of (6.1) counted by T2, let

D(x,y) =
∏

16i<j6s+r

(xi−xj)(yi−yj).

Also, let P denote a set of d(s+r)2θ−1e prime numbers in (M, 2M ]. That such a set of
primes exists for X large enough is a consequence of the prime number theorem. From
the definition of T2, we have D(x,y) 6=0 and

|D(x,y)|<X(s+r)2 6M card(P).

We therefore find that for some p∈P one must have p -D(x,y). Denote by T2(p) the
number of solutions of (6.1) counted by Js+r(X) in which x1, ..., xs+r are distinct modulo
p and likewise y1, ..., ys+r are distinct modulo p. Then we have shown thus far that

Js+r(X) 6 2T2 6 2
∑
p∈P

T2(p),

whence for some prime number p∈P, one has

Js+r(X) 6 2d(s+r)2θ−1eT2(p). (6.2)

We next introduce some notation with which to consider more explicitly the residue
classes modulo p of a given solution x, y counted by T2(p). Let η and ζ be s-tuples with
16η, ζ6p satisfying the condition that, for 16i6s, one has xi≡ηi (mod p) and yi≡ζi
(mod p). Recall the notation introduced prior to the definition (2.13). Then, since
x1, ..., xs+r are distinct modulo p, it follows that (xs+1, ..., xs+r)∈Ξ(η), and likewise one
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finds that (ys+1, ..., ys+r)∈Ξ(ζ). On considering the underlying Diophantine systems, we
thus obtain the relation

T2(p) 6
∑

16η,ζ6p

∮ ( s∏
i=1

f1(α; ηi)f1(−α; ζi)
)

F(α;η)F(−α; ζ) dα.

Write
I(θ, ψ) =

∮
|F(α;θ)2f1(α;ψ)2s| dα.

Next, applying Hölder’s inequality, and again considering the underlying Diophantine
systems, we discern that

T2(p) 6
∑

16η,ζ6p

s∏
i=1

(I(η, ηi)I(ζ, ζi))1/2s 6
∑

16η,ζ6p

s∏
i=1

(I(ηi, ηi)I(ζi, ζi))1/2s.

Hence, on recalling the definition (2.14), we obtain the upper bound

T2(p) 6 p2s max
16η6p

∮
|F(α; η)2f1(α; η)2s| dα= p2s max

16η6p
Ĩ1(X; η). (6.3)

The mean value Ĩc(X; η) counts the number of integral solutions of the system (2.9)
with

1 6x,y,v,w 6X, v≡w≡ η (mod pc),

and with
[x (mod p)]∈Ξ(η) and [y (mod p)]∈Ξ(η).

Let T3 denote the number of such solutions in which the s integers v1, ..., vs together
occupy at least r distinct residue classes modulo pc+1, and let T4 denote the corresponding
number of solutions in which these integers together lie in at most r−1 distinct residue
classes modulo pc+1. Then Ĩc(X; η)=T3+T4. By an argument similar to that leading to
(4.2), we obtain the bound

T3�
∮
|F(α; η)|2Fc(α; η)fc(α; η)s−rfc(−α; η)s dα

6

(∮
|F(α; η)2Fc(α; η)2t| dα

)1/2t(∮
|F(α; η)2fc(α; η)2s| dα

)1−1/2t

6 K̃c(X; η)1/2tĨc(X; η)1−1/2t.

(6.4)

Also, since s>2r>2(r−1), the argument leading to (4.3) implies that

T4�MĨc(X; η)1−3/2s
(

max
16ζ6pc+1

Ĩc+1(X; ζ)
)3/2s

. (6.5)
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Then by combining (6.4) and (6.5) to bound Ĩc(X; η), we infer that

Ĩc(X; η)� K̃c(X; η)+M2s/3 max
16ζ6pc+1

Ĩc+1(X; ζ). (6.6)

We now iterate (6.6) to bound Ĩ1(X; η), thereby deducing from (6.2), (6.3) and the
definition (2.16) that

Js+r(X)�T2(p)� max
06h63

M2s(Mh)2s/3K0,1+h(X)+M2s+8s/3 max
16ζ6p5

Ĩ5(X; ζ). (6.7)

By considering the underlying Diophantine systems, we deduce from (2.13) and (2.14)
via Corollary 2.2 that

Ĩ5(X; ζ) 6
∮
|f0(α; 0)2rf5(α; ζ)2s| dα� Js+r(X)r/(s+r)Js+r

(
X

M5

)s/(s+r)
.

Now (6.7) implies either that

Js+r(X)�M2s+2sh/3K0,1+h(X) (6.8)

for some index h∈{0, 1, 2, 3}, so that the conclusion of the lemma holds, or else that

Js+r(X)�M14s/3Js+r(X)r/(s+r)Js+r

(
X

M5

)s/(s+r)
.

In the latter case, since λ>s+r, we obtain the upper bound

Js+r(X)�M14(s+r)/3Js+r

(
X

M5

)
�M14(s+r)/3

(
X

M5

)λ+δ

�Xλ+δM−(s+r)/3.

Invoking the definition (2.2) of δ, we find that Js+r(X)�Xλ−2δ, contradicting the lower
bound (2.3) if X=Xl is large enough. We are therefore forced to accept the former upper
bound (6.8), and hence the proof of the lemma is complete.

7. The iterative process

By first applying Lemma 6.1, and following up with repeated application of Lemma 5.2,
we are able to bound Js+r(X) in terms of quantities of the shape Kc,d(X), in which c

and d pass through an increasing sequence of integral values. In this section we explore
this iterative process, and ultimately establish Theorem 1.3.
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Lemma 7.1. Suppose that Λ>0. Let a and b be integers with 06a<b6(32tθ)−1

and b>ta, and put g=b−ta. Suppose that there are real numbers ψ, c and γ, with

0 6 c6 (2δ)−1θ, γ>−rb and ψ> 0,

such that
XΛMΛψ�XcδM−γ [[Ka,b(X)]]. (7.1)

Then, for some integer h with 06h615(t−1)b, one has

XΛMΛψ′ �Xc′δM−γ′ [[Kb,tb+h(X)]],

where
ψ′ = tψ+(t−1)b, c′ = t(c+1) and γ′ = tγ+ 4

3sh−sg.

Proof. From Lemma 5.2, there exists an integer h with 06h<15(t−1)b with the
property that

[[Ka,b(X)]]�XδMrg(M−4sh/3[[Kb,tb+h(X)]])1/t
(
X

M b

)Λ(1−1/t)

+(M15(t−1)b)−r/6
(
X

M b

)Λ
.

Consequently, from the hypothesised bound (7.1), we infer that

XΛMΛψ�X(c+1)δM−γ+rg(M−4sh/3[[Kb,tb+h(X)]])1/t
(
X

M b

)Λ(1−1/t)

+XcδM−γ−2rbXΛ.

By hypothesis, we have Xcδ6M1/2, whence XcδM−γ−2rb6M1/2−rb6M−1/2 and thus

XΛ/tMΛ(ψ+(1−1/t)b)�X(c+1)δM−γ+rg−4rh/3[[Kb,tb+h(X)]]1/t.

The conclusion of the lemma follows on raising left and right-hand sides in the last
inequality to the power t.

Lemma 7.2. We have Λ60.

Proof. Assume that Λ>0, for otherwise there is nothing to prove. We begin by
noting that as a consequence of Lemma 6.1, it follows from (2.17) and (2.19) that there
exists an integer h−1∈{0, 1, 2, 3} such that

[[Js+r(X)]]� (Mh−1)−4s/3[[K0,1+h−1(X)]].

We therefore deduce from (2.20) that

XΛ�Xδ[[Js+r(X)]]�Xδ(Mh−1)−4s/3[[K0,1+h−1(X)]]. (7.2)
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We define sequences {an}Nn=0, {bn}Nn=0, {hn}Nn=0, {cn}Nn=0, {γn}Nn=0 and {ψn}Nn=0 in
such a way that

0 6hn−1 6 15(t−1)bn−1 (n> 1), (7.3)

and
XΛMΛψn �XcnδM−γn [[Kan,bn(X)]]. (7.4)

Given a fixed choice for the sequence {hn}Nn=−1, these sequences are defined by means of
the relations

an+1 = bn, (7.5)

bn+1 = tbn+hn, (7.6)

ψn+1 = tψn+(t−1)bn, (7.7)

cn+1 = t(cn+1), (7.8)

γn+1 = tγn+ 4
3shn−s(bn−tan). (7.9)

We put a0=0, b0=1+h−1, ψ0=0, c0=1 and γ0= 4
3sh−1, so that (7.4) holds with n=0

as a consequence of our initial choice of h−1 together with (7.2). We prove by induction
that for each integer n with 06n<N , the sequence {hm}nm=−1 may be chosen in such a
way that

0 6 an<bn 6 (32tθ)−1, ψn > 0, γn >−rbn, 0 6 cn 6 (2δ)−1θ, (7.10)

and so that (7.3) and (7.4) both hold with n replaced by n+1.
Suppose that 06n<N , and suppose also that (7.3) and (7.4) both hold for the

index n. We have already shown such to be the case when n=0. We observe first that
the relations (7.5) and (7.6) plainly demonstrates that bn>an for all n. Moreover, from
(7.3) and (7.6), we see that bn+1616tbn for all n. By induction, therefore, we deduce
that bn64(16t)n whence, by invoking (2.2) we find that bn6(32tθ)−1 for 06n<N . It is
also apparent from (7.7) and (7.8) that cn and ψn are non-negative for all n. In addition,
by iterating (7.8), we have

cn = tn+t
(
tn−1
t−1

)
6 3tn (n> 0). (7.11)

Thus, by reference to (2.2) we see that cn6(2δ)−1θ for 06n<N .
In order to bound γn, we begin by noting from (7.5) and (7.6) that, for m>1,

hm = bm+1−tbm and am = bm−1.
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Then it follows from (7.9) that for m>1 one has

γm+1− 4
3sbm+1+sbm = t

(
γm− 4

3sbm+sbm−1

)
.

By iterating this identity, we deduce that, for m>1, one has

γm = 4
3sbm−sbm−1+tm−1

(
γ1− 4

3sb1+sb0
)
.

On recalling that b0=1+h−1, γ0= 4
3sh−1 and b1=tb0+h0, we discern first from (7.9) that

γ1 = 4
3st(b0−1)+ 4

3s(b1−tb0)−sb0 = 4
3s(b1−t)−sb0,

and hence that
γm = 4

3sbm−sbm−1− 4
3st

m (m> 1). (7.12)

Finally, we find from (7.6) that bm>tbm−1>tm for m>1, and hence

γm = 4
3s(bm−t

m)−sbm−1 >−sbm−1 >−rbm.

Collecting together this conclusion with those of the previous paragraph, we have shown
that (7.10) holds for 06n<N .

At this point in the argument, we may suppose that both (7.4) and (7.10) hold for
the index n. An application of Lemma 7.1 therefore reveals that there exists an integer
hn satisfying the constraint implied by (7.3) with n replaced by n+1, for which the upper
bound (7.4) holds also with n replaced by n+1. This completes the inductive step, so
that in particular the upper bound (7.4) holds for 06n6N .

We now exploit the bound just established. Since we have bN64(16t)N6(2θ)−1, it
is a consequence of Lemma 5.3 that

[[KaN ,bN
(X)]]�XΛ+δ(M bN−bN−1)s. (7.13)

By combining (7.4) with (7.12) and (7.13), we obtain the bound

XΛMΛψN �XΛ+(cN+1)δM (bN−bN−1)s−γN =XΛ+(cN+1)δM (4s/3)tN−(s/3)bN . (7.14)

By applying (7.11) and (2.2), on the other hand, we have

X(cN+1)δ <M.

We therefore deduce from (7.14) and the lower bound bN>tN that

ΛψN 6 4
3st

N− 1
3bNs+1 6 stN+1.
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In addition, a further application of the lower bound bn>tn reveals that

ψn+1 = tψn+(t−1)bn > tψn+(t−1)tn,

whence ψN>N(t−1)tN−1. Thus we deduce that

Λ 6
stN+1

N(t−1)tN−1
6

3s
N
.

Since N may be taken arbitrarily large in terms of s, we are forced to conclude that
Λ60, and this completes the proof of the lemma.

The conclusion of Theorem 1.3 is an immediate consequence of Lemma 7.2. For the
latter shows that when s=rt, then for each ε>0 one has

Js+r(X)�X2s+2r−�+ε,

where � is given by (1.7).

8. A mean value estimate for Weyl sums

Our goal in this section is to establish a mean value estimate for 1-dimensional Weyl
sums that, in a sense, forms a hybrid between the treatments of [2] and [14, §10]. This
estimate permits the output from the efficient congruencing method to be more effectively
transformed into a mean value estimate for 1-dimensional Weyl sums.

Consider natural numbers s and m with 16m6k. When q∈N and b∈Z, we define
the quantity Is,m(X; q, b) to be the number of integral solutions of the system of equations

s∑
i=1

((qxi+b)k−(qyi+b)k) = 0,

s∑
i=1

(xji−y
j
i ) = 0 (1 6 j6m−1),

(8.1)

with 06x,y6X/q. We begin by adapting the work of [14, §10] so as to estimate
Is,k−1(X; q, b) on average over q. To assist with our discussion, we now define η(s, k)
to be the least positive number η with the property that, whenever X is sufficiently large
in terms of s and k, one has

Js,k(X)�εX
2s−k(k+1)/2+η+ε.

Throughout this and the following section, we adopt the convention that whenever ε
appears in a statement, either implicitly or explicitly, we assert that the statement holds



vinogradov’s mean value theorem 227

for each ε>0. Note that the “value” of ε may consequently change from statement to
statement. It is convenient to write

f(α;X) =
∑

16x6X

e(α1x+...+αkxk).

We pause to recall a lemma on reciprocal sums.

Lemma 8.1. Suppose that δ is a positive number, and that α and β are real numbers.
Let N and R be large real numbers, and write B=N1+δ+R1+δ. Then∑

16z6R

min{N, ‖zα+β‖−1}�B+(logB)
∑

16u6BN−δ

min
{
NR

u
, ‖uα‖−1

}
.

Proof. This is [12, Lemma 3.4].

When Q⊂N, write

Θs,k(Q) =
∑
q∈Q

max
(b,q)=1

Is,k−1(X; q, b).

Lemma 8.2. Let X denote a large positive number, and let Q be a real number
with 1<Q6X(k−2)/(k−1). Suppose that Q⊆(2−kQ,Q] is a set of natural numbers with
card(Q)�Q(logQ)−k satisfying the condition that for each q∈Q, one has (q, k)=1.
Then, for each natural number s, one has

Θs,k(Q)�
(
X

Q

)2s−(k2−k+2)/2+ε((
X

Q

)η(s,k)−1

+
(
X

Q

)η(s,k−1))
.

Proof. For the moment, consider fixed integers q and b satisfying (kb, q)=1 and
2−kQ<q6Q. Define Υk(X;h)=Υk(X;h; q, b) to be the number of integral solutions of
the Diophantine system

s∑
i=1

((qxi+b)k−(qyi+b)k) = 0,

s∑
i=1

(xk−1
i −yk−1

i ) =h,

s∑
i=1

(xji−y
j
i ) = 0 (1 6 j6 k−2),

(8.2)

with 06x,y6X/q. Then on considering the corresponding system (8.1), we see that

Is,k−1(X; q, b) =
∑

|h|6s(X/q)k−1

Υk(X;h). (8.3)
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Next, by applying an integer shift z to the variables in the system (8.2), we find that
Υk(X;h) counts the number of integral solutions of the Diophantine system

s∑
i=1

((q(xi−z)+b)k−(q(yi−z)+b)k) = 0,

s∑
i=1

((xi−z)k−1−(yi−z)k−1) =h,

s∑
i=1

((xi−z)j−(yi−z)j) = 0 (1 6 j6 k−2),

with z6x,y6z+X/q. By applying the binomial theorem, we find that x,y satisfies this
system of equations if and only if

s∑
i=1

(xji−y
j
i ) = 0 (1 6 j6 k−2),

s∑
i=1

(xk−1
i −yk−1

i ) =h,

q

s∑
i=1

(xki −yki ) = k(qz−b)h.

(8.4)

Notice that, in view of the hypothesis (kb, q)=1, the equation of degree k in (8.4) ensures
that q |h. We write g=h/q, so that the condition |h|6s(X/q)k−1 in (8.3) implies that
|g|6sq−1(X/q)k−1.

If we restrict the shifts z to lie in the interval 16z6X/q, then we see that an upper
bound for Υk(X;h) is given by the number of integral solutions of the system

s∑
i=1

(xji−y
j
i ) = 0 (1 6 j6 k−2),

s∑
i=1

(xk−1
i −yk−1

i ) = qg,

s∑
i=1

(xki −yki ) = k(qz−b)g,

with 16x,y62X/q. On considering the underlying Diophantine system, we therefore
deduce from (8.3) that for each integer z with 16z6X/q, the mean value Is,k−1(X; q, b)
is bounded above by

∑
|g|6sq−1(X/q)k−1

∮ ∣∣∣∣f(α;
2k+1X

Q

)∣∣∣∣2se(−k(qz−b)gαk−qgαk−1) dα.
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Write

ψq,b(z;αk, αk−1) =min
{
q−1

(
X

q

)k−1

, ‖k(qz−b)αk+qαk−1‖−1

}
and

Ψq,b(αk, αk−1) =
∑

16z6X/q

ψq,b(z;αk, αk−1). (8.5)

Then we obtain the estimate

Is,k−1(X; q, b)�
(
X

q

)−1 ∑
16z6X/q

∮ ∣∣∣∣f(α;
2k+1X

Q

)∣∣∣∣2sψq,b(z;αk, αk−1) dα

=
(
X

q

)−1 ∮ ∣∣∣∣f(α;
2k+1X

Q

)∣∣∣∣2sΨq,b(αk, αk−1) dα.

(8.6)

Our assumption that 1<Q6X(k−2)/(k−1) ensures that X/q6q−1(X/q)k−1. Then by
applying Lemma 8.1 with α=kqαk, we deduce from (8.5) that

Ψq,b(αk, αk−1)� q−1

(
X

q

)k−1+ε

+Xε
∑

16u62q−1(X/q)k−1

min
{

(qu)−1

(
X

q

)k
, ‖kquαk‖−1

}
.

Define
Φ(αk, αk−1) =

∑
q∈Q

max
(b,q)=1

Ψq,b(αk, αk−1). (8.7)

Then we arrive at the upper bound

Φ(αk, αk−1)�Xk−1+ε
∑

2−kQ<q6Q

q−k

+Xε
∑

16q6Q

∑
16u62q−1(X/q)k−1

min
{

(qu)−1

(
X

Q

)k
, ‖kquαk‖−1

}
.

By making use of a familiar estimate for the divisor function, therefore, we obtain the
bound

Φ(αk, αk−1)�
(
X

Q

)k−1+ε

+Xε
∑

16v6k2k2 (X/Q)k−1

min
{(

X

Q

)k
v−1, ‖vαk‖−1

}
.

Suppose that αk∈R, and that c∈Z and r∈N satisfy (c, r)=1 and |αk−c/r|6r−2.
Then it follows from [7, Lemma 2.2] that

Φ(αk, αk−1)�
(
X

Q

)k+ε((
X

Q

)−1

+r−1+r
(
X

Q

)−k)
. (8.8)
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Applying a standard transference principle (compare Exercise 2 of [7, §2.8]), it follows
that

Φ(αk, αk−1)�
(
X

Q

)k+ε((
X

Q

)−1

+Hr,c(α)−1+Hr,c(α)
(
X

Q

)−k)
, (8.9)

where Hr,c(α)=r+(X/Q)k|rαk−c|.
We now compare the respective estimates (8.8) and (8.9) on the one hand, and [14,

estimates (10.6) and (10.7)] on the other. In this way, one finds that the argument of the
proof of [14, Lemma 10.1] leading to the estimate (10.10) of that paper may be adapted
without serious modification to deliver from (8.6) and (8.7) the bound

Θs,k(Q)�
(
X

Q

)−1 ∮ ∣∣∣∣f(α;
2k+1X

Q

)∣∣∣∣2sΦ(αk, αk−1) dα

�
(
X

Q

)k−2+ε

Js,k

(
2k+1X

Q

)
+
(
X

Q

)ε−1

Js,k−1

(
2k+1X

Q

)
�
(
X

Q

)2s−k(k+1)/2+ε((
X

Q

)k−2+η(s,k)

+
(
X

Q

)k−1+η(s,k−1))
.

The conclusion of the lemma now follows.

In the next phase of our work in this section, we make use of the iterative process
from [2], and this entails the introduction of certain sets of prime numbers. Let X
be a large real number and for r>1 denote by Yr the set of primes in the interval
(sX1/r(r+1), 2sX1/r(r+1)]. We adopt the convention in what follows that the empty
product is 1.

Lemma 8.3. Suppose that k>3, 16m6k−1, s>m and q=p1 ... pm−1, where each
pi∈Yi. Let Pm be any set of 2sk4 primes in the set Ym. Also, suppose that b is an
integer with 06b<q satisfying (b, q)=1. Then

Is,m(X; q, b)� max
p∈Pm

p2s−2m+3m(m+1)/2 max
a∈B(p)

Is−m,m+1(X; pq, b+aq),

where B(p)=B(p; q, b) denotes the set of integers a with 06a<p and (b+aq, pq)=1.

Proof. This is essentially the special case of [2, Lemma 4.1] in which f(x)=xk. The
statement of [2, Lemma 4.1] has the stronger hypotheses that each pi be one of the
smallest 2sk4 primes in Yi, and that Pm be the set of 2sk4 smallest primes in Ym. The
argument of the proof, however, shows that the conclusion holds whenever pi∈Yi for
16i6m−1 and Pm⊆Ym.

Lemma 8.4. When 16m6k−1, q6(2s)mXm/(m+1) and (b, q)=1, one has

Is,m(X; q, b)�
( k−2∏
j=m

q−1

(
X

q

)j)
Is,k−1(X; q, b).
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Proof. The argument of the proof of [2, Lemma 4.2] shows that, for 16m6k−2,
one has

Is,m(X; q, b) 6

(
1+sq−1

(
X

q

)m)
Is,m+1(X; q, b).

The desired conclusion therefore follows by induction on m.

We are now equipped to state and prove the main result of this section. Define the
exponential sum g(α)=gk(α;X) by

gk(α;X) =
∑

16x6X

e(αxk),

and when s∈N, define

Is(X) =
∫ 1

0

|g(α)|2s dα.

Theorem 8.5. Let s be a natural number. Then whenever r is a natural number
with 16r6k−1, one has

Is(X)�X2s−k+ε(Xη∗r (s,k)−1/r+Xη∗r (s,k−1)),

where
η∗r (s, w) = r−1η

(
s− 1

2r(r−1), w
)
.

Proof. By the prime number theorem, for 16i6r−1 there is a collection Ci of
dX1/i(i+1)(2sk4 logX)−1e disjoint sets of 2sk4 primes in the set Yi. Fix some choice
of sets P1∈C1, ...,Pr−1∈Cr−1. By applying Lemma 8.3, one finds that whenever b and q
satisfy the hypotheses of that lemma, then

Is−m(m−1)/2,m(X; q, b)�X2s/m(m+1)+1/2 max
p∈Pm

max
a∈B(p)

Is−m(m+1)/2,m+1(X; pq, b+aq).

By iterating this relation, starting with m=1 and terminating with Lemma 8.4 at m=r,
we obtain

Is(X)�XΩIs−r(r−1)/2,k−1(X; q, b), (8.10)

in which

Ω =2s
r−1∑
m=1

1
m(m+1)

+
r−1

2
+
k−2∑
j=r

(
j+1
r

−1
)
,

and q=p1 ... pr−1 for some prime numbers pi∈Pi (16i6r−1). A modest computation
confirms that

Ω =2s
(

1− 1
r

)
+
r−1

2
+
k(k−1)

2r
− r(r+1)

2r
−(k−1−r) = 2s

(
1− 1

r

)
+
k(k−1)

2r
−k+r.

(8.11)
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On putting Q=(2s)r−1X1−1/r, we see that 2−rQ<q<Q. Moreover, distinct choices
for the (r−1)-tuple P1, ...,Pr−1 produce distinct numbers q. Therefore, there is a set Q
of integers in the interval (2−rQ,Q) such that (8.10) holds for each q∈Q. We observe
that (q, k)=1 for every q∈Q, and moreover that

card(Q) =
r−1∏
m=1

card(Cm)�
r−1∏
m=1

(X1/m(m+1)(logX)−1)

=X1−1/r(logX)1−r�Q(logQ)1−r.

Since X is large, it follows that we may apply Lemma 8.2 to infer that

Θs−r(r−1)/2,k(Q)�Xε

(
X

Q

)2s−r(r−1)−(k2−k+2)/2

×
((

X

Q

)η(s−r(r−1)/2,k)−1

+
(
X

Q

)η(s−r(r−1)/2,k−1))
�Xε(X1/r)2s−r(r−1)−(k2−k+2)/2(Xη∗r (s,k)−1/r+Xη∗r (s,k−1)).

(8.12)

Next, on substituting (8.11) and (8.12) into (8.10), we deduce that∑
q∈Q

Is(X)�X2s−k+1−1/r+ε(Xη∗r (s,k)−1/r+Xη∗r (s,k−1)).

But card(Q)�X1−1/r−ε, and so the conclusion of the theorem follows by dividing the
left- and right-hand sides of the last relation by card(Q).

9. Application to Waring’s problem

The mean value estimate supplied by our new bounds for Js,k(X) via Theorem 8.5 may
be utilised to derive improvements in our understanding of the asymptotic formula in
Waring’s problem. Before describing our conclusions, we introduce some notation. We
define the set of minor arcs m=mk to be the set of real numbers α∈[0, 1) satisfying the
property that, whenever a∈Z and q∈N satisfy (a, q)=1 and |qα−a|6(2k)−1X1−k, then
q>(2k)−1X. We recall a mean value estimate restricted to minor arcs.

Theorem 9.1. Suppose that s>k2−1. Then for each ε>0, one has∫
m

|gk(α;X)|2s dα�X2s−k−1+ε.

Proof. This is [15, Theorem 10.1].
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For each natural number v, we define

∆∗
v =max{η(v, k)−1, η(v, k−1)},

where η is defined as in the preamble to Lemma 8.1. Then, for natural numbers v and
w we put

s0(k, v, w) = 2k2−2− 2k2−2−(2v+w2−w)
1+∆∗

v/w
,

and then define

s1(k) = min
16w6k−1

v>1

2v+w2−w<2k2−2

s0(k, v, w).

Theorem 9.2. Suppose that s and k are natural numbers with k>3 and s>s1(k).
Then there exists a positive number δ=δ(k, s) with the property that∫

m

|gk(α;X)|s dα�Xs−k−δ.

Proof. The desired conclusion is immediate from Theorem 9.1 in circumstances
where s>2k2−2, on making use of the trivial estimate |gk(α;X)|6X. We suppose
therefore that s1(k)<s<2k2−2. Let v and w be integers with 16w6k−1, v>1 and
2v+w2−w<2k2−2, for which s1(k)=s0(k, v, w). Then, by Hölder’s inequality, one has

∫
m

|g(α)|s dα6

(∫
m

|g(α)|2k
2−2 dα

)a(∫ 1

0

|g(α)|2v+w
2−w dα

)1−a
,

where

a=
s−(2v+w2−w)

2k2−2−(2v+w2−w)
.

By applying Theorems 9.1 and 8.5 in sequence, one finds that∫
m

|g(α)|s dα�Xε(X2k2−k−3)a(X2v+w2−w−k+∆∗
v/w)1−a =Xs−k−a+(1−a)∆∗

v/w+ε. (9.1)

Since we may suppose that

s> s0(k, v, w) =
(2k2−2)∆∗

v+w(2v+w2−w)
w+∆∗

v

,

we see that a>(1−a)∆∗
v/w, and the conclusion of the theorem follows at once from

(9.1).
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We now recall some notation associated with the asymptotic formula in Waring’s
problem. When s and k are natural numbers, let Rs,k(n) denote the number of repre-
sentations of the natural number n as the sum of s kth powers of positive integers. A
formal application of the circle method suggests that for k>3 and s>k+1, one should
have

Rs,k(n) =
Γ(1+1/k)s

Γ(s/k)
Ss,k(n)ns/k−1+o(ns/k−1), (9.2)

where

Ss,k(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e

(
ark

q

))s
e

(
−na
q

)
.

Subject to suitable congruence conditions, one has 1�Ss,k(n)�nε, so that the conjec-
tured relation (9.2) represents an honest asymptotic formula. Let G̃(k) denote the least
integer t with the property that, for all s>t, and all sufficiently large natural numbers n,
one has the asymptotic formula (9.2).

The argument following the proof of [13, Lemma 3.1] may be adapted in the present
circumstances to show that G̃(k)6bs1(k)c+1 for k>3. For each natural number m6 1

2k,
we find from Theorem 1.2 that when v=(k−m)2+(k−m), one has

η(v, k)−1 6m2−1 and η(v, k−1) 6 (m−1)2,

so that
∆∗
v 6m2−1 for v=(k−m)2+(k−m). (9.3)

Similarly, again from Theorem 1.2, for each natural number m6 1
2 (k−1), we find that

when v=(k−m)2−1, one has

η(v, k)−1 6m2+m−1+
m

k−m−1

and
η(v, k−1) 6 (m−1)2+(m−1)+

m−1
k−m

,

so that
∆∗
v 6m2+m−1+

m

k−m−1
for v=(k−m)2−1. (9.4)

Employing these exponents (9.3) and (9.4) in order to obtain upper bounds for s1(k), we
obtain the upper bounds for G̃(k) recorded in the following corollary.

Corollary 9.3. One has

G̃(12)6 253, G̃(13)6 299, G̃(14)6 349, G̃(15)6 403, G̃(16)6 460,

G̃(17)6 521, G̃(18)6 587, G̃(19)6 656, G̃(20)6 729.
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We note that in each of these bounds, it is (9.4) which is utilised within the formula
for s1(k). One takes m=2 for k=12, and m=3 for 136k620. Meanwhile, one takes
w=5 for k=12, w=6 for k=13, 14, and w=7 for 156k620.

For comparison, the bounds for G̃(k) made available in [15, Corollary 1.7] show that

G̃(12)6 255, G̃(13)6 303, G̃(14)6 354, G̃(15)6 410, G̃(16)6 470,

G̃(17)6 534, G̃(18)6 602, G̃(19)6 674, G̃(20)6 748.

For k611, the bounds for G̃(k) in [15, Corollary 1.7] prove superior to those that follow
from the work of this paper. For large values of k, meanwhile, the conclusion of [15,
Corollary 1.6] shows that

G̃(k) 6 2k2−k4/3+O(k).

We are able to provide a modest improvement in this bound as a consequence of Theo-
rem 9.2.

Corollary 9.4. When k is a large natural number, one has

G̃(k) 6 2k2−22/3k4/3+O(k).

Proof. As we have already noted, one has G̃(k)6bs1(k)c+1, and so it suffices to
bound s1(k) for large values of k. We take

m= b22/3k1/3c, v=(k−m)2+(k−m) and w= b21/3k2/3c,

so that from (9.3) one obtains

s0(k, v, w) 6 2k2−2− 2k2−2−2(k2−2mk)−w2+O(k)
1+m2/w+O(k−2/3)

= 2k2−2− 4(22/3k1/3)k−22/3k4/3+O(k)
3+O(k−1/3)

= 2k2−22/3k4/3+O(k).

This confirms the conclusion of the corollary.
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