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1. Notation and main results

Here we put d®=(i/2m)(0—0), so that dd®=(i/7)00. The normalization of the d° opera-
tor is chosen so that we have precisely (dd€log |z|)™=0d¢ for the Monge—Ampeére operator
in C*. The Monge-Ampere operator is defined on locally bounded plurisubharmonic
functions according to the definition of Bedford—Taylor [BT1], [BT2]; it can also be
extended to plurisubharmonic functions with isolated or compactly supported poles by
[D3]. If 2 is an open subset of C™, we let PSH(2) (resp. PSH™ (€2)) be the set of plurisub-

harmonic (resp. psh<0) functions on €.

Definition 1.1. Let  be a bounded hyperconvex domain (i.e. a domain possessing
a negative psh exhaustion). Following Cegrell [Ce], we introduce certain classes of psh

functions on 2, in relation with the definition of the Monge—Ampere operator:
& ()= {ga €PSH (Q): lim ¢(z)=0 and / (ddp)"™ < oo}, (a)
F(Q)= {ga € PSH™ (Q) : there is & () 3 ¢, \ ¢ such that sup / (ddpp)"™ < oo}, (b)
Q

p>1

E(Q)={pePSH (Q):there is px € F(2) such that px =¢ on K for all K € Q}. (c)

It is proved in [Ce] that the class £(2) is the biggest subset of PSH™ (2) on which
the Monge-Ampere operator is well defined. For a general complex manifold X, after
removing the negativity assumption of the functions involved, one can in fact extend the

Monge—-Ampere operator to the class

£(X) C PSH(X) (1.1)
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of psh functions which, on a neighborhood 2>z of an arbitrary point x¢o€ X, are equal
to a sum u+v with u€&(Q) and veC>®(Q); again, this is the biggest subclass of functions
of PSH(X) on which the Monge-Ampeére operator is locally well defined. It is easy to see
that £(X) contains the class of psh functions which are locally bounded outside isolated
singularities.

For pePSH(Q) and 0€), we introduce the log canonical threshold at 0,

c(p) =sup{c>0:e72% is L' on a neighborhood of 0}, (1.2)

and for pe&(Q) we introduce the intersection numbers
cil)= [ () At og 1), (1.3

which can be seen also as the Lelong numbers of (dd°p)’ at 0. Our main result is the
following sharp estimate. It is a generalization and a sharpening of similar inequali-
ties discussed in [Col], [Co2], [FEM1] and [FEMZ2]; such inequalities have fundamental
applications to birational geometry (see [IM], [P1], [P2], [I] and [Ch]).

THEOREM 1.2. Let 0e&(Q) and 0€Q. Then c¢(@)=cc if e1(p)=0 and, otherwise,

Remark 1.3. By Lemma 2.1 below, we have (e1(¢), ..., en(®)) €D, where
D={t=(t1,....tn) €[0,00)" : 1T <ty and t; <t;_1t;4q for j=2,...,n—1},

i.e. loge;j(p) is a convex sequence. In particular, we have e;(¢)>e1(¢)?, and the de-
nominators do not vanish in Theorem 1.2 if e1(¢)>0. On the other hand, a well-known
inequality due to Skoda [S] tells us that

1 n
alp S ay

)

and hence ¢(p)<oo if and only if e1(¢)>0. To see that Theorem 1.2 is optimal, let us

choose

©(z) =max{a log|z1], ..., an log |z, |},

with 0<a;<as<...<a,. Then e;(¢)=aias...a;, and a change of variable zj:(;/aj on
C\R_ easily shows that

n

o) =)+

j=1 7
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Assume that we have a function f: D—[0, 00) such that c¢(¢) > f(e1(9), ..., en(p)) for all
©€&(Q). Then, by the above example, we must have

n
f(al, a1a2,...,0a71 ... an) < Z ,
=1

for all a; as above. By taking a;j=t;/t;_1, with ty=1, this implies that

tnfl

1 ¢
Fltr, oty < —4 24+ for all t€ D,
t ot

n
whence the optimality of our inequality.

Remark 1.4. Theorem 1.2 is of course stronger than Skoda’s lower bound

clp) = .
(?) e1(y)

By the inequality between the arithmetic and geometric means, we infer the main in-
equality of [FEM1], [FEM2] and [D4]:

n

c(p) > el (1.4)

By applying the arithmetic-geometric inequality for the indices 1<j<n—1 in our sum-

mation Z?:_Ol ej(¢)/ej+1(p), we also infer the stronger inequality

o (o) WD)
o(p) > — +(n—1)<6;((3> . (1.5)

2. Log convexity of the multiplicity sequence

The log convexity of the multiplicity sequence can be derived from very elementary

integration by parts and the Cauchy—Schwarz inequality, using an argument from [Ce].

LEMMA 2.1. Let p€€(Q) and 0€Q. We have

e;(0)? <ej_1(@)essly) forall j=1,..,n—1.

Proof. Without loss generality, by replacing ¢ with a sequence of local approxima-

tions ¢, (2)=max{p(z)—C, plog |z|} of p(z)—C, C>>1, we may assume that  is the unit
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ball and ¢€&)(2). Take also h,1€&(2). Then integration by parts and the Cauchy—
Schwarz inequality yield

2
([ ~ntaaop ntaaoy=)
Q
) . 2
= (/ d@/\dcl/)/\(ddctp)]_l/\(ddc’(/l)"_j_l/\ddch)
Q
Q
></ dcp/\dccp/\(ddcga)j*/\(ddcwnfjfl/\ddch
Q
:/ 7h(ddc¢)j71/\(ddc,¢))n7j+l/ 7h(ddc¢)j+1/\(ddc,¢))nfj71.
Q Q
Now, as p— o0, take

0, ifzeQ\{0},

1
h(z)=hy(2) :max{—l, » log ||z||} S { 1 =0,

By the monotone convergence theorem, we get in the limit

([ wappnaaoy=) < [ aapp-taeoy o [ aappeaaesy .
{0} {0} {0}

For ¢(z)=log ||z||, this is the desired estimate. O

COROLLARY 2.2. Let p€€(R) and 0€Q. We have the inequalities

ej(p) = e1(p)’ for 0<j<n,
er(p) < ej((p)(lfk)/(lfj)el(w)(kfj)/(lfj) for 0<j<k<l<n.

In particular e1(p)=0 implies that ey(p)=0 for k=2,...,n—1 if n>3.

Proof. If ej(¢) >0 for all j, Lemma 2.1 implies that j—e;(¢)/e;—1(¢p) is increasing,
at least equal to e1(p)/eo(w)=e1(p), and the inequalities follow from the log convex-
ity. The general case can be proved by considering ¢.(z)=p(z)+¢log||z||, since 0<e? <
ej(pe)—e;(p) as e—=0. The last statement is obtained by taking j=1 and l=n. O

3. Proof of the main theorem

We start with a monotonicity statement.
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LEMMA 3.1. Let @,€&(Q) be such that o<t (i.e. @ is “more singular” than ).
Then

=

n— n—1

&) e;()
2 (@) S o)

— ei+1(9) " ein

<

Proof. As in Remark 1.3, we set
D={t=(t1,....tn) €[0,00)" : 1] <ty and t7 <tj_1t;4y for j=2,...,n—1}.

Then D is a convex set in R", as can be checked by a straightforward application of the

Cauchy—Schwarz inequality. We consider the function f:int D— [0, 00) given by

1 tl tn—l
t . t’I’L = — —_ ee 3'1
f( 1y ) tl +t2 +ot t'n. ( )
We have P ¢ 1
i(t):_%+—<o for all te D.
ot 5t

For a,beint D such that a;>b; for all j=1,...,n, [0,1]3A— f(b+A(a—Db)) is thus a de-
creasing function. This implies that f(a)< f(b) for a,b€int D, with a; >b; for j=1,...,n.
On the other hand, the hypothesis ¢ <t implies that e;(¢)>e;(¢) for j=1,...,n, by the

comparison principle (see e.g. [D1]). Therefore

fler(®); - enl)) < fler(¥), s en(¥)). o

3.1. Proof of the main theorem in the “toric case”

It will be convenient here to introduce Kiselman’s refined Lelong numbers (cf. [K1] and
[K2]).

Definition 3.2. Let ¢€PSH(2). Then the function

max{p(z): |z1| =™t ..., |2] = e}

volo) = :

is called the refined Lelong number of ¢ at 0. This function is increasing in each variable

x; and concave on R”.

By “toric case”, we mean that ¢(21, ..., 2n)=¢(|21], ..., |2n|) depends only on |z;| for
all j; then ¢ is psh if and only if (¢1,...,t,)—>¢(e', ...,e') is increasing in each ¢; and
convex. By replacing ¢ with p(A2)—¢(A, ..., A), 0<A<1, we may assume that Q=A" is
the unit polydisk, ¢(1,...,1)=0 (so that ¢<0 on ), and we have

er() =nw, (1 1).

n n
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By convexity, the slope
max{p(z) : |z =e™"}
t
is increasing in t for t<0. Therefore, by taking t=—1, we get

V<p(_ lOg ‘Zl|’ ceey T IOg |ZTL|) < _(p(zla ey ZTL)

Notice also that v, (x) satisfies the 1-homogeneity property v,(Az)=Av,(z) for AeR..

As a consequence, v, is entirely characterized by its restriction to the set

j=1
We choose 2°=(29, ...,20)€¥ such that
uw(xo) =max{v,(z):z€X} € [617(:0), 61(90):| .

By [K2, Theorem 5.8] (see also [H] for similar results in an algebraic context) we have

the formula

1
c(p) =
’/w(xo)
Set
)= lamind 5. B for ey
xl xn

Then ( is the smallest non-negative concave 1-homogeneous function on R} that is in-
creasing in each variable x; and such that ((2")=v,(2"). Therefore we have (<., and

hence
@(21, -y 2n) < —Vy(—log|z1], ..., —log [2n|) < =((—log |21], ..., — log | zn|)

1 1 n
Smp(xo)max{ o8 Lzll o |}=:1/J(Z1,...,zn).

g eeey

0
Ty T

By Lemma 3.1 and Remark 1.3 we get

fler(9), s enl9)) < flea (@), s en(¥)) = () = =c(¢p).

3.2. Reduction to the case of psh functions with analytic singularities

In the second step, we reduce the proof to the case p=log(|fi|*>+...+|fn|?), where
f1,-.., fv are germs of holomorphic functions at 0. Following the technique introduced
in [D2], we let Hp,,(2) be the Hilbert space of holomorphic functions f on § such that

/ |f|?e™2™% dV < oo,
Q
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and let
2

)

1 oo
Ym = o log ; ‘gm,k

where {gp, 1 }r>1 is an orthonormal basis of H,,(€2). Due to [DK, Theorem 4.2], mainly
based on the Ohsawa—Takegoshi L? extension theorem [OT] (see also [D2]), there are
constants C7, Cy >0 independent of m such that

q

1
P(2) =2 <Ym(2) < sup p(Q)+—log —
()= SUm()< s @O+ log

for every z€Q and r<d(z,09),

111
cle) m " c(m)  clp)

n
Vo)~ <v(m) <H(p) and
By Lemma 3.1, we get that

f(€1(<p), ey en(‘ﬂ)) < f(61(¢m)7 sy en(wm)) for all m>1.

The above inequalities show that in order to prove the lower bound of ¢(¢) in Theo-
rem 1.2, we only need to prove it for ¢(¢,,) and let m tend to infinity. Also notice that
since the Lelong numbers of a function €& (©) occur only on a discrete set, the same is

true for the functions .

3.3. Reduction of the main theorem to the case of monomial ideals

The final step consists of proving the theorem for

o=log(|f1]*+...+|fn %),

where f1,..., fy are germs of holomorphic functions at 0 (this is because the ideals
(gm. k) ken in the Noetherian ring Ocn ¢ are always finitely generated). Set J=(f1, ..., fn),
co(J)=c(p) and e;(J)=e;(yp) for all j=0,...,n. By the final observation of §3.2, we may
assume that J has an isolated zero at 0. Now, by fixing a multiplicative order on the
monomials z*=2z" ... 22" (see [E, Chapter 15] and [FEM2]), it is well known that one
can construct a flat family (J)sec of ideals of O¢n ¢ depending on a complex parameter
s€C, such that Jp is a monomial ideal, 71 =7 and dim(Ocn o/J})=dim(Ocn o/ J") for
all s and t€N; in fact Jj is just the initial ideal associated with J with respect to the
monomial order. Moreover, we can arrange, by a generic rotation of coordinates C? CC",

so that the family of ideals Js|c» is also flat, and that the dimensions

) Ocr 0 . Ocr 0
d —— | =d 2
”“((Jsm:p)t) “((JW)
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compute the intermediate multiplicities

ep(Js) = lim p!dim(o(cp’o> =e,(J)

T iheo 1P WAESE

(notice, in the analytic setting, that the Lelong number of the (p, p)-current (dd°p)? at 0

is the Lelong number of its slice on a generic C?CC™); in particular e,(Jo)=e,(J) for

all p. The semicontinuity property of the log canonical threshold (see for example [DK])
now implies that ¢(Jp) <c(Js) for s small. As ¢(Js)=c(J) for s#£0 (Js being a pull-back
of J by a biholomorphism, in other words Ocn o/ Js~Ocn o/J as rings; see again [E,
Chapter 15]), the lower bound is valid for ¢(J) if it is valid for ¢(Jp).
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