A sharp lower bound for the log canonical threshold

by

JEAN-PIERRE DEMAILLY

Hoàng Hiệp Pham

Université de Grenoble I Saint-Martin d'Hères, France Hanoi National University of Education Hanoi, Vietnam

1. Notation and main results

Here we put $d^c = (i/2\pi)(\bar{\partial} - \partial)$, so that $dd^c = (i/\pi)\partial\bar{\partial}$. The normalization of the d^c operator is chosen so that we have precisely $(dd^c \log |z|)^n = \delta_0$ for the Monge–Ampère operator in \mathbb{C}^n . The Monge–Ampère operator is defined on locally bounded plurisubharmonic functions according to the definition of Bedford–Taylor [BT1], [BT2]; it can also be extended to plurisubharmonic functions with isolated or compactly supported poles by [D3]. If Ω is an open subset of \mathbb{C}^n , we let $\mathrm{PSH}(\Omega)$ (resp. $\mathrm{PSH}^-(\Omega)$) be the set of plurisubharmonic (resp. $\mathrm{psh} \leqslant 0$) functions on Ω .

Definition 1.1. Let Ω be a bounded hyperconvex domain (i.e. a domain possessing a negative psh exhaustion). Following Cegrell [Ce], we introduce certain classes of psh functions on Ω , in relation with the definition of the Monge–Ampère operator:

$$\mathcal{E}_0(\Omega) = \left\{ \varphi \in \mathrm{PSH}^-(\Omega) : \lim_{z \to \partial \Omega} \varphi(z) = 0 \text{ and } \int_{\Omega} (dd^c \varphi)^n < \infty \right\},\tag{a}$$

$$\mathcal{F}(\Omega) = \bigg\{ \varphi \in \mathrm{PSH}^-(\Omega) : \text{there is } \mathcal{E}_0(\Omega) \ni \varphi_p \searrow \varphi \text{ such that } \sup_{p \geqslant 1} \int_{\Omega} (dd^c \varphi_p)^n < \infty \bigg\}, \quad (b)$$

$$\mathcal{E}(\Omega) = \{ \varphi \in \mathrm{PSH}^-(\Omega) : \text{there is } \varphi_K \in \mathcal{F}(\Omega) \text{ such that } \varphi_K = \varphi \text{ on } K \text{ for all } K \subseteq \Omega \}.$$
 (c)

It is proved in [Ce] that the class $\mathcal{E}(\Omega)$ is the biggest subset of PSH⁻(Ω) on which the Monge–Ampère operator is well defined. For a general complex manifold X, after removing the negativity assumption of the functions involved, one can in fact extend the Monge–Ampère operator to the class

$$\tilde{\mathcal{E}}(X) \subset \mathrm{PSH}(X)$$
 (1.1)

of psh functions which, on a neighborhood $\Omega \ni x_0$ of an arbitrary point $x_0 \in X$, are equal to a sum u+v with $u \in \mathcal{E}(\Omega)$ and $v \in C^{\infty}(\Omega)$; again, this is the biggest subclass of functions of PSH(X) on which the Monge–Ampère operator is locally well defined. It is easy to see that $\tilde{\mathcal{E}}(X)$ contains the class of psh functions which are locally bounded outside isolated singularities.

For $\varphi \in PSH(\Omega)$ and $0 \in \Omega$, we introduce the log canonical threshold at 0,

$$c(\varphi) = \sup\{c > 0 : e^{-2c\varphi} \text{ is } L^1 \text{ on a neighborhood of } 0\},$$
 (1.2)

and for $\varphi \in \tilde{\mathcal{E}}(\Omega)$ we introduce the intersection numbers

$$e_j(\varphi) = \int_{\{0\}} (dd^c \varphi)^j \wedge (dd^c \log ||z||)^{n-j}, \qquad (1.3)$$

which can be seen also as the Lelong numbers of $(dd^c\varphi)^j$ at 0. Our main result is the following sharp estimate. It is a generalization and a sharpening of similar inequalities discussed in [Co1], [Co2], [FEM1] and [FEM2]; such inequalities have fundamental applications to birational geometry (see [IM], [P1], [P2], [I] and [Ch]).

THEOREM 1.2. Let $\varphi \in \tilde{\mathcal{E}}(\Omega)$ and $0 \in \Omega$. Then $c(\varphi) = \infty$ if $e_1(\varphi) = 0$ and, otherwise,

$$c(\varphi) \geqslant \sum_{j=0}^{n-1} \frac{e_j(\varphi)}{e_{j+1}(\varphi)}.$$

Remark 1.3. By Lemma 2.1 below, we have $(e_1(\varphi),...,e_n(\varphi)) \in D$, where

$$D = \{t = (t_1, ..., t_n) \in [0, \infty)^n : t_1^2 \le t_2 \text{ and } t_i^2 \le t_{i-1} t_{i+1} \text{ for } j = 2, ..., n-1\},$$

i.e. $\log e_j(\varphi)$ is a convex sequence. In particular, we have $e_j(\varphi) \geqslant e_1(\varphi)^j$, and the denominators do not vanish in Theorem 1.2 if $e_1(\varphi) > 0$. On the other hand, a well-known inequality due to Skoda [S] tells us that

$$\frac{1}{e_1(\varphi)} \leqslant c(\varphi) \leqslant \frac{n}{e_1(\varphi)},$$

and hence $c(\varphi) < \infty$ if and only if $e_1(\varphi) > 0$. To see that Theorem 1.2 is optimal, let us choose

$$\varphi(z) = \max\{a_1 \log |z_1|, ..., a_n \log |z_n|\},\$$

with $0 < a_1 \le a_2 \le ... \le a_n$. Then $e_j(\varphi) = a_1 a_2 ... a_j$, and a change of variable $z_j = \zeta_j^{1/a_j}$ on $\mathbb{C} \setminus \mathbb{R}_-$ easily shows that

$$c(\varphi) = \sum_{j=1}^{n} \frac{1}{a_j}.$$

Assume that we have a function $f: D \to [0, \infty)$ such that $c(\varphi) \ge f(e_1(\varphi), ..., e_n(\varphi))$ for all $\varphi \in \tilde{\mathcal{E}}(\Omega)$. Then, by the above example, we must have

$$f(a_1, a_1 a_2, ..., a_1 ... a_n) \le \sum_{j=1}^{n} \frac{1}{a_j}$$

for all a_j as above. By taking $a_j = t_j/t_{j-1}$, with $t_0 = 1$, this implies that

$$f(t_1, ..., t_n) \le \frac{1}{t_1} + \frac{t_1}{t_2} + ... + \frac{t_{n-1}}{t_n}$$
 for all $t \in D$,

whence the optimality of our inequality.

Remark 1.4. Theorem 1.2 is of course stronger than Skoda's lower bound

$$c(\varphi) \geqslant \frac{1}{e_1(\varphi)}.$$

By the inequality between the arithmetic and geometric means, we infer the main inequality of [FEM1], [FEM2] and [D4]:

$$c(\varphi) \geqslant \frac{n}{e_n(\varphi)^{1/n}}. (1.4)$$

By applying the arithmetic-geometric inequality for the indices $1 \le j \le n-1$ in our summation $\sum_{j=0}^{n-1} e_j(\varphi)/e_{j+1}(\varphi)$, we also infer the stronger inequality

$$c(\varphi) \geqslant \frac{1}{e_1(\varphi)} + (n-1) \left(\frac{e_1(\varphi)}{e_n(\varphi)}\right)^{1/(n-1)}.$$
(1.5)

2. Log convexity of the multiplicity sequence

The log convexity of the multiplicity sequence can be derived from very elementary integration by parts and the Cauchy–Schwarz inequality, using an argument from [Ce].

LEMMA 2.1. Let $\varphi \in \tilde{\mathcal{E}}(\Omega)$ and $0 \in \Omega$. We have

$$e_i(\varphi)^2 \leqslant e_{i-1}(\varphi)e_{i+1}(\varphi)$$
 for all $j = 1, ..., n-1$.

Proof. Without loss generality, by replacing φ with a sequence of local approximations $\varphi_p(z) = \max\{\varphi(z) - C, p \log |z|\}$ of $\varphi(z) - C, C \gg 1$, we may assume that Ω is the unit

ball and $\varphi \in \mathcal{E}_0(\Omega)$. Take also $h, \psi \in \mathcal{E}_0(\Omega)$. Then integration by parts and the Cauchy–Schwarz inequality yield

$$\begin{split} \left(\int_{\Omega} -h(dd^{c}\varphi)^{j} \wedge (dd^{c}\psi)^{n-j}\right)^{2} \\ &= \left(\int_{\Omega} d\varphi \wedge d^{c}\psi \wedge (dd^{c}\varphi)^{j-1} \wedge (dd^{c}\psi)^{n-j-1} \wedge dd^{c}h\right)^{2} \\ &\leqslant \int_{\Omega} d\psi \wedge d^{c}\psi \wedge (dd^{c}\varphi)^{j-1} \wedge (dd^{c}\psi)^{n-j-1} \wedge dd^{c}h \\ &\qquad \times \int_{\Omega} d\varphi \wedge d^{c}\varphi \wedge (dd^{c}\varphi)^{j-1} \wedge (dd^{c}\psi)^{n-j-1} \wedge dd^{c}h \\ &= \int_{\Omega} -h(dd^{c}\varphi)^{j-1} \wedge (dd^{c}\psi)^{n-j+1} \int_{\Omega} -h(dd^{c}\varphi)^{j+1} \wedge (dd^{c}\psi)^{n-j-1}. \end{split}$$

Now, as $p \rightarrow \infty$, take

$$h(z) = h_p(z) = \max \left\{ -1, \frac{1}{p} \log ||z|| \right\} \nearrow \left\{ \begin{array}{ll} 0, & \text{if } z \in \Omega \setminus \{0\}, \\ -1, & \text{if } z = 0. \end{array} \right.$$

By the monotone convergence theorem, we get in the limit

$$\left(\int_{\{0\}} (dd^c\varphi)^j \wedge (dd^c\psi)^{n-j}\right)^2 \leqslant \int_{\{0\}} (dd^c\varphi)^{j-1} \wedge (dd^c\psi)^{n-j+1} \int_{\{0\}} (dd^c\varphi)^{j+1} \wedge (dd^c\psi)^{n-j-1}.$$

For $\psi(z) = \log ||z||$, this is the desired estimate.

COROLLARY 2.2. Let $\varphi \in \tilde{\mathcal{E}}(\Omega)$ and $0 \in \Omega$. We have the inequalities

$$e_j(\varphi) \geqslant e_1(\varphi)^j$$
 for $0 \leqslant j \leqslant n$,
 $e_k(\varphi) \leqslant e_j(\varphi)^{(l-k)/(l-j)} e_l(\varphi)^{(k-j)/(l-j)}$ for $0 \leqslant j < k < l \leqslant n$.

In particular $e_1(\varphi)=0$ implies that $e_k(\varphi)=0$ for k=2,...,n-1 if $n\geqslant 3$.

Proof. If $e_j(\varphi) > 0$ for all j, Lemma 2.1 implies that $j \mapsto e_j(\varphi)/e_{j-1}(\varphi)$ is increasing, at least equal to $e_1(\varphi)/e_0(\varphi) = e_1(\varphi)$, and the inequalities follow from the log convexity. The general case can be proved by considering $\varphi_{\varepsilon}(z) = \varphi(z) + \varepsilon \log ||z||$, since $0 < \varepsilon^j \le e_j(\varphi_{\varepsilon}) \to e_j(\varphi)$ as $\varepsilon \to 0$. The last statement is obtained by taking j=1 and l=n.

3. Proof of the main theorem

We start with a monotonicity statement.

LEMMA 3.1. Let $\varphi, \psi \in \tilde{\mathcal{E}}(\Omega)$ be such that $\varphi \leqslant \psi$ (i.e. φ is "more singular" than ψ). Then

$$\sum_{j=0}^{n-1} \frac{e_j(\varphi)}{e_{j+1}(\varphi)} \le \sum_{j=0}^{n-1} \frac{e_j(\psi)}{e_{j+1}(\psi)}.$$

Proof. As in Remark 1.3, we set

$$D = \{t = (t_1, ..., t_n) \in [0, \infty)^n : t_1^2 \le t_2 \text{ and } t_i^2 \le t_{j-1} t_{j+1} \text{ for } j = 2, ..., n-1\}.$$

Then D is a convex set in \mathbb{R}^n , as can be checked by a straightforward application of the Cauchy–Schwarz inequality. We consider the function f: int $D \to [0, \infty)$ given by

$$f(t_1, ..., t_n) = \frac{1}{t_1} + \frac{t_1}{t_2} + ... + \frac{t_{n-1}}{t_n}.$$
(3.1)

We have

$$\frac{\partial f}{\partial t_j}(t) = -\frac{t_{j-1}}{t_j^2} + \frac{1}{t_{j+1}} \leqslant 0 \quad \text{for all } t \in D.$$

For $a, b \in \text{int } D$ such that $a_j \geqslant b_j$ for all j=1,...,n, $[0,1]\ni \lambda \mapsto f(b+\lambda(a-b))$ is thus a decreasing function. This implies that $f(a)\leqslant f(b)$ for $a, b\in \text{int } D$, with $a_j\geqslant b_j$ for j=1,...,n. On the other hand, the hypothesis $\varphi\leqslant \psi$ implies that $e_j(\varphi)\geqslant e_j(\psi)$ for j=1,...,n, by the comparison principle (see e.g. [D1]). Therefore

$$f(e_1(\varphi), ..., e_n(\varphi)) \leqslant f(e_1(\psi), ..., e_n(\psi)). \qquad \Box$$

3.1. Proof of the main theorem in the "toric case"

It will be convenient here to introduce Kiselman's refined Lelong numbers (cf. [K1] and [K2]).

Definition 3.2. Let $\varphi \in PSH(\Omega)$. Then the function

$$\nu_{\varphi}(x) = \lim_{t \to -\infty} \frac{\max\{\varphi(z) : |z_1| = e^{x_1 t}, ..., |z_n| = e^{x_n t}\}}{t}$$

is called the *refined Lelong number* of φ at 0. This function is increasing in each variable x_i and concave on \mathbb{R}^n_+ .

By "toric case", we mean that $\varphi(z_1,...,z_n)=\varphi(|z_1|,...,|z_n|)$ depends only on $|z_j|$ for all j; then φ is psh if and only if $(t_1,...,t_n)\mapsto \varphi(e^{t_1},...,e^{t_n})$ is increasing in each t_j and convex. By replacing φ with $\varphi(\lambda z)-\varphi(\lambda,...,\lambda)$, $0<\lambda\ll 1$, we may assume that $\Omega=\Delta^n$ is the unit polydisk, $\varphi(1,...,1)=0$ (so that $\varphi\leqslant 0$ on Ω), and we have

$$e_1(\varphi) = n\nu_{\varphi}\left(\frac{1}{n}, ..., \frac{1}{n}\right).$$

By convexity, the slope

$$\frac{\max\{\varphi(z):|z_j|=e^{x_jt}\}}{t}$$

is increasing in t for t<0. Therefore, by taking t=-1, we get

$$\nu_{\varphi}(-\log|z_1|,...,-\log|z_n|) \leqslant -\varphi(z_1,...,z_n).$$

Notice also that $\nu_{\varphi}(x)$ satisfies the 1-homogeneity property $\nu_{\varphi}(\lambda x) = \lambda \nu_{\varphi}(x)$ for $\lambda \in \mathbb{R}_+$. As a consequence, ν_{φ} is entirely characterized by its restriction to the set

$$\Sigma = \left\{ x = (x_1, ..., x_n) \in \mathbb{R}_+^n : \sum_{i=1}^n x_i = 1 \right\}.$$

We choose $x^0 = (x_1^0, ..., x_n^0) \in \Sigma$ such that

$$\nu_{\varphi}(x^0) = \max\{\nu_{\varphi}(x) : x \in \Sigma\} \in \left[\frac{e_1(\varphi)}{n}, e_1(\varphi)\right].$$

By [K2, Theorem 5.8] (see also [H] for similar results in an algebraic context) we have the formula

$$c(\varphi) = \frac{1}{\nu_{\varphi}(x^0)}.$$

Set

$$\zeta(x) = \nu_{\varphi}(x^0) \min \left\{ \frac{x_1}{x_1^0}, ..., \frac{x_n}{x_n^0} \right\} \quad \text{for } x \in \mathbb{R}_+^n.$$

Then ζ is the smallest non-negative concave 1-homogeneous function on \mathbb{R}^n_+ that is increasing in each variable x_j and such that $\zeta(x^0) = \nu_{\varphi}(x^0)$. Therefore we have $\zeta \leqslant \nu_{\varphi}$, and hence

$$\varphi(z_1, ..., z_n) \leqslant -\nu_{\varphi}(-\log|z_1|, ..., -\log|z_n|) \leqslant -\zeta(-\log|z_1|, ..., -\log|z_n|)$$

$$\leqslant \nu_{\varphi}(x^0) \max\left\{\frac{\log|z_1|}{x_1^0}, ..., \frac{\log|z_n|}{x_n^0}\right\} =: \psi(z_1, ..., z_n).$$

By Lemma 3.1 and Remark 1.3 we get

$$f(e_1(\varphi), ..., e_n(\varphi)) \le f(e_1(\psi), ..., e_n(\psi)) = c(\psi) = \frac{1}{\nu_{\varphi}(x^0)} = c(\varphi).$$

3.2. Reduction to the case of psh functions with analytic singularities

In the second step, we reduce the proof to the case $\varphi = \log(|f_1|^2 + ... + |f_N|^2)$, where $f_1, ..., f_N$ are germs of holomorphic functions at 0. Following the technique introduced in [D2], we let $\mathcal{H}_{m\varphi}(\Omega)$ be the Hilbert space of holomorphic functions f on Ω such that

$$\int_{\Omega} |f|^2 e^{-2m\varphi} \, dV < \infty,$$

and let

$$\psi_m = \frac{1}{2m} \log \sum_{k=1}^{\infty} |g_{m,k}|^2,$$

where $\{g_{m,k}\}_{k\geqslant 1}$ is an orthonormal basis of $\mathcal{H}_{m\varphi}(\Omega)$. Due to [DK, Theorem 4.2], mainly based on the Ohsawa–Takegoshi L^2 extension theorem [OT] (see also [D2]), there are constants $C_1, C_2 > 0$ independent of m such that

$$\varphi(z) - \frac{C_1}{m} \leqslant \psi_m(z) \leqslant \sup_{|\zeta - z| < r} \varphi(\zeta) + \frac{1}{m} \log \frac{C_2}{r^n}$$

for every $z \in \Omega$ and $r < d(z, \partial \Omega)$,

$$\nu(\varphi) - \frac{n}{m} \leqslant \nu(\psi_m) \leqslant \nu(\varphi) \quad \text{and} \quad \frac{1}{c(\varphi)} - \frac{1}{m} \leqslant \frac{1}{c(\psi_m)} \leqslant \frac{1}{c(\varphi)}.$$

By Lemma 3.1, we get that

$$f(e_1(\varphi), ..., e_n(\varphi)) \le f(e_1(\psi_m), ..., e_n(\psi_m))$$
 for all $m \ge 1$.

The above inequalities show that in order to prove the lower bound of $c(\varphi)$ in Theorem 1.2, we only need to prove it for $c(\psi_m)$ and let m tend to infinity. Also notice that since the Lelong numbers of a function $\varphi \in \tilde{\mathcal{E}}(\Omega)$ occur only on a discrete set, the same is true for the functions ψ_m .

3.3. Reduction of the main theorem to the case of monomial ideals

The final step consists of proving the theorem for

$$\varphi = \log(|f_1|^2 + ... + |f_N|^2),$$

where $f_1, ..., f_N$ are germs of holomorphic functions at 0 (this is because the ideals $(g_{m,k})_{k\in\mathbb{N}}$ in the Noetherian ring $\mathcal{O}_{\mathbb{C}^n,0}$ are always finitely generated). Set $\mathcal{J}=(f_1,...,f_N)$, $c(\mathcal{J})=c(\varphi)$ and $e_j(\mathcal{J})=e_j(\varphi)$ for all j=0,...,n. By the final observation of §3.2, we may assume that \mathcal{J} has an isolated zero at 0. Now, by fixing a multiplicative order on the monomials $z^{\alpha}=z_1^{\alpha_1}\ldots z_n^{\alpha_n}$ (see [E, Chapter 15] and [FEM2]), it is well known that one can construct a flat family $(\mathcal{J}_s)_{s\in\mathbb{C}}$ of ideals of $\mathcal{O}_{\mathbb{C}^n,0}$ depending on a complex parameter $s\in\mathbb{C}$, such that \mathcal{J}_0 is a monomial ideal, $\mathcal{J}_1=\mathcal{J}$ and $\dim(\mathcal{O}_{\mathbb{C}^n,0}/\mathcal{J}_s^t)=\dim(\mathcal{O}_{\mathbb{C}^n,0}/\mathcal{J}^t)$ for all s and $t\in\mathbb{N}$; in fact \mathcal{J}_0 is just the initial ideal associated with \mathcal{J} with respect to the monomial order. Moreover, we can arrange, by a generic rotation of coordinates $\mathbb{C}^p\subset\mathbb{C}^n$, so that the family of ideals $\mathcal{J}_s|_{\mathbb{C}^p}$ is also flat, and that the dimensions

$$\dim\!\left(\frac{\mathcal{O}_{\mathbb{C}^p,0}}{(\mathcal{J}_s|_{\mathbb{C}^p})^t}\right) = \dim\!\left(\frac{\mathcal{O}_{\mathbb{C}^p,0}}{(\mathcal{J}|_{\mathbb{C}^p})^t}\right)$$

compute the intermediate multiplicities

$$e_p(\mathcal{J}_s) = \lim_{t \to \infty} \frac{p!}{t^p} \dim\left(\frac{\mathcal{O}_{\mathbb{C}^p,0}}{(\mathcal{J}_s|_{\mathbb{C}^p})^t}\right) = e_p(\mathcal{J})$$

(notice, in the analytic setting, that the Lelong number of the (p,p)-current $(dd^c\varphi)^p$ at 0 is the Lelong number of its slice on a generic $\mathbb{C}^p\subset\mathbb{C}^n$); in particular $e_p(\mathcal{J}_0)=e_p(\mathcal{J})$ for all p. The semicontinuity property of the log canonical threshold (see for example [DK]) now implies that $c(\mathcal{J}_0) \leq c(\mathcal{J}_s)$ for s small. As $c(\mathcal{J}_s)=c(\mathcal{J})$ for $s\neq 0$ (\mathcal{J}_s being a pull-back of \mathcal{J} by a biholomorphism, in other words $\mathcal{O}_{\mathbb{C}^n,0}/\mathcal{J}_s\simeq\mathcal{O}_{\mathbb{C}^n,0}/\mathcal{J}$ as rings; see again [E, Chapter 15]), the lower bound is valid for $c(\mathcal{J})$ if it is valid for $c(\mathcal{J}_0)$.

References

- [BT1] BEDFORD, E. & TAYLOR, B. A., The Dirichlet problem for a complex Monge–Ampère equation. *Invent. Math.*, 37 (1976), 1–44.
- [BT2] A new capacity for plurisubharmonic functions. Acta Math., 149 (1982), 1–40.
- [Ce] CEGRELL, U., The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier (Grenoble), 54 (2004), 159–179.
- [Ch] CHEL'TSOV, I. A., Birationally rigid Fano varieties. Uspekhi Mat. Nauk, 60:5 (2005), 71–160 (Russian); English translation in Russian Math. Surveys, 60 (2005), 875–965.
- [Co1] CORTI, A., Factoring birational maps of threefolds after Sarkisov. J. Algebraic Geom., 4 (1995), 223–254.
- [Co2] Singularities of linear systems and 3-fold birational geometry, in Explicit Birational Geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, pp. 259–312. Cambridge Univ. Press, Cambridge, 2000.
- [D1] DEMAILLY, J.-P., Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité. Acta Math., 159 (1987), 153–169.
- [D2] Regularization of closed positive currents and intersection theory. J. Algebraic Geom., 1 (1992), 361–409.
- [D3] Monge-Ampère operators, Lelong numbers and intersection theory, in Complex Analysis and Geometry, Univ. Ser. Math., pp. 115–193. Plenum, New York, 1993.
- [D4] Estimates on Monge-Ampère operators derived from a local algebra inequality, in *Complex Analysis and Digital Geometry*, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 86, pp. 131–143. Uppsala Universitet, Uppsala, 2009.
- [DK] Demaily, J.-P. & Kollár, J., Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds. *Ann. Sci. École Norm. Sup.*, 34 (2001), 525–556.
- [E] EISENBUD, D., Commutative Algebra. Graduate Texts in Mathematics, 150. Springer, New York, 1995.
- [FEM1] DE FERNEX, T., EIN, L. & MUSTAŢĂ, M., Bounds for log canonical thresholds with applications to birational rigidity. *Math. Res. Lett.*, 10 (2003), 219–236.
- [FEM2] Multiplicities and log canonical threshold. J. Algebraic Geom., 13 (2004), 603–615.
- [H] HOWALD, J. A., Multiplier ideals of monomial ideals. Trans. Amer. Math. Soc., 353 (2001), 2665–2671.

- ISKOVSKIKH, V. A., Birational rigidity of Fano hypersurfaces in the framework of Mori [I]theory. Uspekhi Mat. Nauk, 56:2 (2001), 3-86 (Russian); English translation in Russian Math. Surveys, 56 (2001), 207-291.
- [IM]ISKOVSKIKH, V. A. & MANIN, J. I., Three-dimensional quartics and counterexamples to the Lüroth problem. Mat. Sb., 86(128) (1971), 140-166 (Russian); English translation in Math. USSR-Sb., 15 (1971), 141-166.
- KISELMAN, C.O., Un nombre de Lelong raffiné, in Séminaire d'Analyse Complexe et [K1] Géométrie 1985–87, pp. 61–70. Faculté des Sciences de Tunis & Faculté des Sciences et Techniques de Monastir, Monastir, 1987.
- [K2]— Attenuating the singularities of plurisubharmonic functions. Ann. Polon. Math., 60 (1994), 173–197.
- Ohsawa, T. & Takegoshi, K., On the extension of L^2 holomorphic functions. Math. [OT]Z., 195 (1987), 197–204.
- Pukhlikov, A.V., Birational isomorphisms of four-dimensional quintics. Invent. [P1] Math., 87 (1987), 303-329.
- [P2] Birationally rigid Fano hypersurfaces. Izv. Ross. Akad. Nauk Ser. Mat., 66:6 (2002), 159–186 (Russian); English translation in Izv. Math., 66 (2002), 1243–1269.
- Skoda, H., Sous-ensembles analytiques d'ordre fini ou infini dans \mathbb{C}^n . Bull. Soc. Math. [S]France, 100 (1972), 353-408.

JEAN-PIERRE DEMAILLY Université de Grenoble I Département de Mathématiques Institut Fourier FR-38402 Saint-Martin d'Hères France

jean-pierre.demailly@ujf-grenoble.fr

Hoàng Hiệp Phạm Department of Mathematics Hanoi National University of Education 136-Xuan Thuy, Cau Giay, Hanoi Vietnam phhiep_vn@yahoo.com

Received January 20, 2012