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One of the central questions in the study of fusion systems is whether with each
saturated fusion system one can associate a centric linking system, and if so, whether
it is unique. This question was recently answered positively by Andy Chermak [Ch2],
using direct constructions. His proof is quite lengthy, although some of the structures
developed there seem likely to be of independent interest.

There is also a well-established obstruction theory for studying this problem, in-
volving derived functors of certain inverse limits. This is analogous to the use of group
cohomology as an “obstruction theory” for the existence and uniqueness of group exten-
sions. By using this theory, Chermak’s proof can be greatly shortened, in part because
it allows us to focus on the essential parts of Chermak’s constructions, and in part by
using results which are already established. The purpose of this paper is to present this
shorter version of Chermak’s proof, a form which we hope will be more easily accessible
to researchers with a background in topology or homological algebra.

A saturated fusion system over a finite p-group S is a category whose objects are
the subgroups of S, and whose morphisms are certain monomorphisms between the
subgroups. This concept is originally due to Puig (see [P2]), and one version of his
definition is given in §1 (Definition 1.1). One motivating example is the fusion system of
a finite group G with S∈Sylp(G): the category FS(G) whose objects are the subgroups
of S and whose morphisms are those group homomorphisms which are conjugation by
elements of G.

For S∈Sylp(G) as above, there is a second, closely related category which can be
defined, and which supplies the “link” between FS(G) and the classifying space BG
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of G. A subgroup P6S is called p-centric in G if Z(P )∈Sylp(CG(P )); or equivalently,
if CG(P )=Z(P )×C ′G(P ) for some (unique) subgroup C ′G(P ) of order prime to p. Let
Lc

S(G) (the centric linking system of G) be the category whose objects are the subgroups
of S which are p-centric in G, and where, for each pair of objects P and Q,

MorLc
S(G)(P,Q) = {g ∈G | gP 6Q}/C ′G(P ).

Such categories were originally defined by Puig in [P1].
To explain the significance of linking systems from a topologist’s point of view, we

must first define the geometric realization of an arbitrary small category C. This is a
space |C| built up of one vertex (point) for each object in C, one edge for each non-
identity morphism (with endpoints attached to the vertices corresponding to its source
and target), one 2-simplex (triangle) for each commutative triangle in L, etc. (See, e.g.,
[AKO, §III.2.1 and §III.2.2] for more details.) By a theorem of Broto, Levi, and Oliver
[BLO1, Proposition 1.1], for any G and S as above, the space |Lc

S(G)|, after p-completion
in the sense of Bousfield and Kan, is homotopy equivalent to the p-completed classifying
space BG∧p of G. Furthermore, many of the homotopy theoretic properties of the space
BG∧p , such as its self homotopy equivalences, can be determined combinatorially by the
properties (such as automorphisms) of the finite category Lc

S(G) [BLO1, Theorems B
and C].

Abstract centric linking systems associated with a fusion system were defined in
[BLO2] (see Definition 1.3). One of the motivations in [BLO2] for defining these categories
was that it provides a way to associate a classifying space with a saturated fusion system.
More precisely, if L is a centric linking system associated with a saturated fusion system
F , then we regard the p-completion |L|∧p of its geometric realization as a classifying space
for F . This is motivated by the equivalence |Lc

S(G)|∧p 'BG∧p noted above. To give one
example of the role played by these classifying spaces, if L′ is another centric linking
system, associated with a fusion system F ′, and the classifying spaces |L|∧p and |L′|∧p are
homotopy equivalent, then L∼=L′ and F∼=F ′. We refer to [BLO2, Theorem A] for more
details and discussion.

It is unclear from the definition whether there is a centric linking system associ-
ated with any given saturated fusion system, and if so, whether it is unique. Even
when working with fusion systems of finite groups, which always have a canonical asso-
ciated linking system, there is no simple reason why two groups with isomorphic fusion
systems need have isomorphic linking systems, and hence equivalent p-completed classi-
fying spaces. This question—whether FS(G)∼=FT (H) implies Lc

S(G)∼=Lc
T (H) and hence

BG∧p 'BH∧
p —was originally posed by Martino and Priddy, and was what first got this

author interested in the subject.
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The main theorem of Chermak described in this paper is the following.

Theorem A. (Chermak [Ch2]) Each saturated fusion system has an associated cen-
tric linking system, which is unique up to isomorphism.

Proof. This follows immediately from Theorem 3.4 in this paper, together with
[BLO2, Proposition 3.1].

In particular, this provides a new proof of the Martino–Priddy conjecture, which
was originally proven in [O1] and [O2] using the classification of finite simple groups.
Chermak’s theorem is much more general, but it also (indirectly) uses the classification
in its proof.

Theorem A is proven by Chermak by directly and systematically constructing the
linking system, and by directly constructing an isomorphism between two given linking
systems. The proof given here follows the same basic outline, but uses as its main tool
the obstruction theory which had been developed in [BLO2, Proposition 3.1] for dealing
with this problem. So if this approach is shorter, it is only because we are able to profit
from the results of [BLO2, §3], and also from other techniques which have been developed
more recently for computing these obstruction groups.

By [BLO3, Proposition 4.6], there is a bijective correspondence between centric
linking systems associated with a given saturated fusion system F up to isomorphism,
and homotopy classes of rigidifications of the homotopy functor O(Fc)!hoTop which
sends P to BP . (See Definition 1.5 for the definition of O(Fc).) Furthermore, if L
corresponds to a rigidification B̃, then |L| is homotopy equivalent to the homotopy direct
limit of B̃. Thus another consequence of Theorem A is the following result.

Theorem B. For each saturated fusion system F , there is a functor

B̃:O(Fc)−! Top,

together with a choice of homotopy equivalences B̃(P )'BP for each object P , such that
for each [ϕ]∈MorO(Fc)(P,Q), the composite

BP ' B̃(P )
B̃([ϕ])−−−−! B̃(Q)'BQ

is homotopic to Bϕ. Furthermore, B̃ is unique up to homotopy equivalence of functors,
and (hocolim(B̃))∧p is the (unique) classifying space for F .

We also want to compare “outer automorphism groups” of fusion systems, linking
systems, and their classifying spaces. When F is a saturated fusion system over a p-group
S, set

Aut(S,F) = {α∈Aut(S) | αF =F} and Out(S,F) =Aut(S,F)/AutF (S).
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Here, for α∈Aut(S), αF is the fusion system over S for which

HomαF (P,Q) =α�HomF (α−1(P ), α−1(Q))�α−1.

Thus Aut(S,F) is the group of “fusion-preserving” automorphisms of S.
When L is a centric linking system associated with F , then for each object P of L,

there is a “distinguished monomorphism” δP :P!AutL(P ) (Definition 1.3). An auto-
morphism α of L (a bijective functor from L to itself) is called isotypical if it permutes
the images of the distinguished monomorphisms; i.e., if α(δP (P ))=δα(P )(α(P )) for each
P . We denote by Outtyp(L) the group of isotypical automorphisms of L modulo natu-
ral transformations of functors. See also [AOV, §2.2] or [AKO, Lemma III.4.9] for an
alternative description of this group.

By [BLO2, Theorem D], Outtyp(L)∼=Out(|L|∧p ), where Out(|L|∧p ) is the group of
homotopy classes of self-homotopy equivalences of the space |L|∧p . This is one reason for
the importance of this particular group of (outer) automorphisms of L. Another reason
is the role played by Outtyp(L) in the definition of tame fusion systems in [AOV, §2.2].

The other main consequence of the results in this paper is the following.

Theorem C. For each saturated fusion system F over a p-group S with associated
centric linking system L, the natural homomorphism

Outtyp(L)
µL−−−!Out(S,F)

induced by restriction to δS(S)∼=S is surjective, and is an isomorphism if p is odd.

Proof. By [AKO, III.5.12], we have that Ker(µL)∼=lim −
1(ZF ), and µL is onto when-

ever lim −
2(ZF )=0. (This was shown in [BLO1, Theorem E] when L is the linking system

of a finite group.) So the result follows from Theorem 3.4 in this paper.
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parts of the paper and made detailed suggestions for simplifying or clarifying several of
the arguments. And, of course, I very much want to thank Andy Chermak for solving
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1. Notation and background

We first briefly recall the definitions of saturated fusion systems and centric linking
systems. For any group G and any pair of subgroups H,K6G, set

HomG(H,K) = {cg =(x 7! gxg−1) | g ∈G and gH 6K}⊆Hom(H,K).
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A fusion system F over a finite p-group S is a category whose objects are the subgroups
of S, and whose morphism sets HomF (P,Q) satisfy the following two conditions:

• HomS(P,Q)⊆HomF (P,Q)⊆Inj(P,Q) for all P,Q6S.
• For each ϕ∈HomF (P,Q), one has ϕ−1∈HomF (ϕ(P ), P ).
Two subgroups P, P ′6S are called F-conjugate if they are isomorphic in the cate-

gory F . Let PF denote the set of subgroups which are F-conjugate to P .
The following is the definition of a saturated fusion system first formulated in [BLO2].

Other (equivalent) definitions, including the original one by Puig, are discussed and
compared in [AKO, §I.2 and §I.9].

Definition 1.1. Let F be a fusion system over a p-group S.
• A subgroup P6S is fully centralized in F if |CS(P )|>|CS(Q)| for all Q∈PF .
• A subgroup P6S is fully normalized in F if |NS(P )|>|NS(Q)| for all Q∈PF .
• A subgroup P6S is F-centric if CS(Q)6Q for all Q∈PF .
• The fusion system F is saturated if the following two conditions hold:
(I) For every P6S which is fully normalized in F , P is fully centralized in F and

AutS(P )∈Sylp(AutF (P )).
(II) If P6S and ϕ∈HomF (P, S) are such that ϕ(P ) is fully centralized, and if we

set
Nϕ = {g ∈NS(P ) |ϕcgϕ−1 ∈AutS(ϕ(P ))},

then there is �ϕ∈HomF (Nϕ, S) such that �ϕ|P =ϕ.

The following technical result will be needed later.

Lemma 1.2. ([AKO, Lemma I.2.6 (c)]) Let F be a saturated fusion system over a
finite p-group S. Then, for each P6S, and each Q∈PF which is fully normalized in F ,
there is ϕ∈HomF (NS(P ), S) such that ϕ(P )=Q.

For any fusion system F over S, let Fc⊆F be the full subcategory whose objects
are the F-centric subgroups of S, and also let Fc denote the set of F-centric subgroups
of S.

Definition 1.3. ([BLO2]) Let F be a fusion system over the p-group S. A centric
linking system associated with F is a category L with Ob(L)=Fc, together with a functor
π:L!Fc and distinguished monomorphisms P δP−−−!AutL(P ) for each P∈Ob(L), which
satisfy the following conditions:

(A) π is the identity on objects and is surjective on morphisms. For each P,Q∈Fc,
δP (Z(P )) acts freely on MorL(P,Q) by composition, and π induces a bijection

MorL(P,Q)/δP (Z(P ))
∼=−−!HomF (P,Q).
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(B) For each g∈P∈Fc, π sends δP (g)∈AutL(P ) to cg∈AutF (P ).
(C) For each P,Q∈Fc, ψ∈MorL(P,Q), and g∈P ,

ψ�δP (g) = δQ(π(ψ)(g))�ψ

in MorL(P,Q).

We next fix some notation for sets of subgroups of a given group. For any group G,
let S (G) be the set of subgroups of G. If H6G is any subgroup, set

S (G)>H = {K ∈S (G) |K >H}.

Definition 1.4. Let F be a saturated fusion system over a finite p-group S. An
interval of subgroups of S is a subset R⊆S (S) such that P<Q<R and P,R∈R imply
Q∈R. An interval is F-invariant if it is invariant under F-conjugacy.

Thus, for example, an F-invariant interval R⊆S (S) is closed under overgroups
if and only if S∈R. Each F-invariant interval has the form R\R0 for some pair of
F-invariant intervals R0⊆R which are closed under overgroups.

We next recall the obstruction theory to the existence and uniqueness of linking
systems.

Definition 1.5. Let F be a saturated fusion system over a finite p-group S.
(a) Let O(Fc) be the centric orbit category of F : Ob(O(Fc))=Ob(Fc), and

MorO(Fc)(P,Q) = Inn(Q)\HomF (P,Q).

(b) Let ZF :O(Fc)op!Ab be the functor which sends P to Z(P )=CS(P ). If ϕ∈
HomF (P,Q), and [ϕ] denotes its class in Mor(O(Fc)), then ZF ([ϕ])=ϕ−1 as a homo-
morphism from Z(Q)=CS(Q) to Z(P )=CS(P ).

(c) For any F-invariant interval R⊆Fc, let ZRF be the subquotient functor of ZF ,
where ZRF (P )=Z(P ) if P∈R and ZRF (P )=0 otherwise.

(d) For each F-invariant interval R⊆Fc, we write for short

L∗(F ;R) = lim −
∗

O(Fc)

(ZRF ) ;

i.e., the derived functors of the inverse limit of ZRF .

We refer to [AKO, §III.5.1] for more discussion of the functors lim −
∗( ·).

Thus ZF=ZFc

F , and lim −
∗(ZF )=L∗(F ;Fc). By [BLO2, Proposition 3.1], the ob-

struction to the existence of a centric linking system associated with F lies in L3(F ;Fc),
and the obstruction to uniqueness lies in L2(F ;Fc).

For any F and any F-invariant interval R, ZRF is a quotient functor of ZF if S∈R
(if R is closed under overgroups). If R0⊆R are both F-invariant intervals, and P∈R0

and Q∈R\R0 imply that P 6>Q, then ZR0
F is a subfunctor of ZRF .
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Lemma 1.6. Fix a finite group Γ with Sylow subgroup S∈Sylp(Γ), and set F=
FS(Γ). Let Q⊆Fc be an F-invariant interval such that S∈Q (i.e., Q is closed under
overgroups).

(a) Let F :O(Fc)op!Ab be a functor such that F (P )=0 for each P∈Fc\Q. Let
O(FQ)⊆O(Fc) be the full subcategory with object set Q. Then

lim −
∗

O(Fc)

(F )∼= lim −
∗

O(FQ)

(F |O(FQ)).

(b) Assume Q=S (S)>Y for some p-subgroup Y EΓ such that CΓ(Y )6Y . Then

Lk(F ;Q) def= lim −
k

O(Fc)

(ZQF )∼=
{
Z(Γ), if k=0,
0, if k > 0.

Proof. (a) Set C=O(Fc) and C0=O(FQ) for short. There is no morphism in C from
any object of C0 to any object not in C0. Hence, for any functor F : Cop!Ab such that
F (P )=0 for each P /∈Ob(C0), the two chain complexes C∗(C;F ) and C∗(C0;F |C0) are
isomorphic (see, e.g., [AKO, §III.5.1]). So lim −

∗(F )∼=lim −
∗(F |C0) in this situation, and this

proves (a). Alternatively, (a) follows upon showing that any C0-injective resolution of
F |C0 can be extended to a C-injective resolution of F by assigning to all functors the
value zero on objects not in C0.

(b) To simplify notation, set �H=H/Y for each H∈S (Γ)>Y , and ḡ=gY ∈�Γ for
each g∈Γ. Let O�S(�Γ) be the “orbit category” of �Γ: the category whose objects are the
subgroups of 	S, and where, for P,Q∈Q,

MorO�S(�Γ)(
P , 
Q) = 
Q\{g ∈ �Γ | g
P 6 
Q}.

There is an isomorphism of categories Ψ:O(FQ)
∼=−!O�S(�Γ) which sends P∈Q to 
P=P/Y

and sends [cg]∈MorO(FQ)(P,Q) to 
Qḡ. Then ZQF �Ψ−1 sends 
P to Z(P )=CZ(Y )(
P ).
Hence, for k>0,

lim −
k

O(Fc)

(ZQF )∼= lim −
k

O(FQ)

(ZQF |O(FQ))∼= lim −
k

O�S(�Γ)

(ZQF �Ψ−1)∼=
{
CZ(Y )(�Γ) =Z(Γ), if k=0,
0, if k > 0,

where the first isomorphism holds by (a), and the last by a theorem of Jackowski and
McClure [JM, Proposition 5.14]. We refer to [JMO, Proposition 5.2] for more details on
the last isomorphism.

More tools for working with these groups come from the long exact sequence of
derived functors induced by a short exact sequence of functors.
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Lemma 1.7. Let F be a saturated fusion system over a finite p-group S. Let Q and
R be F-invariant intervals such that

(i) Q∩R=∅;
(ii) Q∪R is an interval ;
(iii) Q∈Q and R∈R imply Q 66R.

Then ZRF is a subfunctor of ZQ∪RF , ZQ∪RF /ZRF ∼=Z
Q
F , and there is a long exact

sequence

0−!L0(F ;R)−!L0(F ;Q∪R)−!L0(F ;Q)−! ...

...−!Lk−1(F ;Q)−!Lk(F ;R)−!Lk(F ;Q∪R)−!Lk(F ;Q)−! ... .

In particular, the following hold :
(a) If Lk(F ;R)∼=Lk(F ;Q)=0 for some k>0, then Lk(F ;Q∪R)=0.
(b) Assume that F=FS(Γ), where S∈Sylp(Γ), and there is a normal p-subgroup

Y EΓ such that CΓ(Y )6Y and Q∪R=S (S)>Y . Then, for each k>2,

Lk−1(F ;Q)∼=Lk(F ;R).

Also, there is a short exact sequence

1−!CZ(Y )(Γ)−!CZ(Y )(Γ∗)−!L1(F ;R)−! 1,

where

Γ∗ = 〈g ∈Γ | gP ∈Q for some P ∈Q〉.

Proof. Condition (iii) implies that ZRF is a subfunctor of ZQ∪RF , and it is then
immediate from the definitions (and (i) and (ii)) that ZQ∪RF /ZRF ∼=Z

Q
F . The long exact

sequence is induced by this short exact sequence of functors and the snake lemma. Point
(a) now follows immediately.

Under the hypotheses in (b), by Lemma 1.6 (b), Lk(F ;Q∪R)=0 for k>0 and

L0(F ;Q∪R)∼=Z(Γ)=CZ(Y )(Γ).

The first statement in (b) thus follows immediately from the long exact sequence, and
the second since L0(F ;Q)∼=CZ(Y )(Γ∗) (by definition of inverse limits).

We next consider some tools for making computations in the groups lim −
∗( ·) for

functors on orbit categories.
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Definition 1.8. Fix a finite group G and a Z[G]-module M . Let Op(G) be the
category whose objects are the p-subgroups of G, and where

MorOp(G)(P,Q) =Q\{g ∈G | gP 6Q}.

Define a functor FM :Op(G)op!Ab by setting

FM (P ) =
{
M , if P =1,
0, if P 6=1.

Here, FM (1)=M has the given action of AutOp(G)(1)=G. Set

Λ∗(G;M) = lim −
∗

Op(G)

(FM ).

These groups Λ∗(G;M) provide a means of computing higher limits of functors on
orbit categories which vanish except on one conjugacy class.

Proposition 1.9. ([BLO2, Proposition 3.2]) Let F be a saturated fusion system
over a p-group S. Let

F :O(Fc)op−!Z(p)-mod

be any functor which vanishes except on the isomorphism class of some subgroup Q∈Fc.
Then

lim −
∗

O(Fc)

(F )∼=Λ∗(OutF (Q);F (Q)).

Upon combining Proposition 1.9 with the exact sequences of Lemma 1.7, we get the
following corollary.

Corollary 1.10. Let F be a saturated fusion system over a p-group S, and let
R⊆Fc be an F-invariant interval. Assume, for some k>0, that Λk(OutF (P );Z(P ))=0
for each P∈R. Then Lk(F ;R)=0.

What makes these groups Λ∗( · ; ·) so useful is that they vanish in many cases, as
described by the following proposition.

Proposition 1.11. ([JMO, Proposition 6.1 (i)–(iv)]) The following hold for each
finite group G and each Z(p)[G]-module M .

(a) If p - |G|, then

Λi(G;M) =
{
MG, if i=0,
0, if i> 0.

(b) Let H=CG(M) be the kernel of the G-action on M . Then

Λ∗(G;M)∼=Λ∗(G/H;M)
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if p - |H|, and Λ∗(G;M)=0 if p||H|.
(c) If Op(G) 6=1, then Λ∗(G;M)=0.
(d) If M06M is a Z(p)[G]-submodule, then there is an exact sequence

0−!Λ0(G;M0)−!Λ0(G;M)−!Λ0(G;M/M0)−! ...

...−!Λn−1(G;M/M0)−!Λn(G;M0)−!Λn(G;M)−! ... .

The next lemma allows us in certain cases to replace the orbit category for one fusion
system by that for a smaller one. For any saturated fusion system F over S and any
Q6S, the normalizer fusion system NF (Q) is defined as a fusion system over NS(Q) (cf.
[AKO, Definition I.5.3]). If Q is fully normalized, then NF (Q) is always saturated (cf.
[AKO, Theorem I.5.5]).

Lemma 1.12. Let F be a saturated fusion system over a p-group S, fix a subgroup
Q∈Fc which is fully normalized in F , and set E=NF (Q). Set E�=Fc∩Ec, a full sub-
category of Ec, and let O(E�)⊆O(Ec) be its orbit category. Define

T = {P 6S |QEP, and R∈QF and REP imply R=Q}.

Let F :O(Fc)op!Z(p)-mod be a functor which vanishes except on subgroups F-conjugate
to subgroups in T , set F0=F |O(E�), and let F1:O(Ec)op!Ab be such that F1|O(E�)=F0

and F1(P )=0 for all P∈Ec\E�. Then restriction to E� induces isomorphisms

lim −
∗

O(Fc)

(F ) R−−−!∼= lim −
∗

O(E�)
(F0)

R1 −−−∼= lim −
∗

O(Ec)

(F1). (1.1)

Proof. Since R1 is an isomorphism by Lemma 1.6 (a), we only need to show that R
is an isomorphism. If F ′⊆F is a pair of functors from O(Fc)op to Z(p)-mod, and the
lemma holds for F ′ and for F/F ′, then it also holds for F by the five lemma (and since
R is natural with respect to functors on O(Fc)op). It thus suffices to prove that R is an
isomorphism when F vanishes except on the F-conjugacy class of one subgroup in T .

Fix P∈T , and assume that F (R)=0 for all R/∈PF . Then QEP by the definition
of T . If ϕ∈HomF (P, S) is such that QEϕ(P ), then ϕ−1(Q)EP , and ϕ(Q)=Q since
P∈T . Thus OutF (P )=OutE(P ), and

P E = {R∈PF |QER}. (1.2)

Since P E⊆T , we may assume that P was chosen to be fully normalized in E .
Let F2⊆F1 be the subfunctor on O(Ec) defined by setting

F2(R) =
{
F1(R), if R 6>Q,
0, if R>Q.
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Then P E contains all subgroups in PF (and hence all objects in Ec) on which F1/F2

is non-vanishing. If R∈Ec and R 6>Q, then Op(OutE(R)) 6=1 (R is not E-radical) since
QEE and R∈Ec (cf. [AKO, Proposition I.4.5 (b)]), so Λ∗(OutE(R);F1(R))=0 by Proposi-
tion 1.11 (c). Thus lim −

∗(F2)=0 by Corollary 1.10. Set F �

2 =F2|O(E�)⊆F0; then lim −
∗(F �

2)∼=
lim −

∗(F2)=0 by Lemma 1.6 (a), so lim −
∗(F0)∼=lim −

∗(F0/F
�

2). By (1.2), (F0/F
�

2)(R)=0 for
all R∈Ob(E�)\P E .

This yields the diagram

lim −
∗

O(Fc)

(F ) R //

∼=
Φ∗

$$HHHHHHHHHHHHHH

lim −
∗

O(E�)
(F0) R2

∼=
// lim −

∗

O(E�)
(F0/F

�

2) lim −
∗

O(Ec)

(F1/F2)R3

∼=
oo

Φ∗1
∼=

xxrrrrrrrrrrrrrrrr

Λ∗(OutF (P );F (P )),

where Φ∗ and Φ∗1 are the isomorphisms of Proposition 1.9, where R2 is induced by
(F0

// // F0/F
�

2 ), and where R3 is induced by restriction (and is an isomorphism by
Lemma 1.6 (a)).

Let OOutS(P )(OutF (P ))⊆Op(OutF (P )) be the full subcategory whose objects are
the subgroups of OutS(P )∈Sylp(OutF (P )). (Recall that P is fully normalized in E
and OutF (P )=OutE(P ).) By the proof of [BLO2, Proposition 3.2], Φ∗ and Φ∗1 are
both induced by restriction via an embedding of OOutS(P )(OutF (P )) into O(E�): the
embedding which sends OutR(P ) to R (for P6R6NS(P )), and sends a morphism (the
coset of some γ∈OutF (P )) to the class of the appropriate extension of γ. Hence the
above diagram commutes, and R is an isomorphism.

The following lemma can also be stated and proven as a result about extending
automorphisms from a linking system to a group.

Lemma 1.13. ([Ch2, Lemma 4.11]) Fix a pair of finite groups HEG, together with
S∈Sylp(G) and T=S∩H∈Sylp(H). Set F=FS(G) and E=FT (H). Let Y 6T be such
that Y EG and CG(Y )6Y . Let Q be an F-invariant interval in S (S)>Y such that
S∈Q, and such that Q∈Q implies H∩Q∈Q. Set Q0={Q∈Q|Q6H}. Then restriction
induces an injective homomorphism

L1(F ;Q) R−−!L1(E ;Q0).

Proof. Since Ec need not be contained in Fc, we must first check that there is a well-
defined “restriction” homomorphism. Set E�=Ec∩Fc: a full subcategory of Ec. Since
the functor ZQ0

E vanishes on all subgroups in Ec not in Q0⊆E�, the higher limits are
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the same whether taken over O(E�) or O(Ec) (Lemma 1.6 (a)). Thus R is defined as the
restriction map to lim −

1(ZQ0
E |E�)∼=L1(E ;Q0).

We work with the bar resolutions for O(Fc) and O(E�), using the notation of [AKO,
§III.5.1]. Fix a cocycle η∈Z1(O(Fc);ZQF ) such that [η]∈Ker(R). Thus η is a function
from Mor(O(Fc)) to Z(Y ) which sends the class [ϕ] of ϕ∈HomG(P,Q) to an element of
Z(P ) if P∈Q, and to 1 if P /∈Q. We may assume, after adding an appropriate coboundary,
that η(Mor(O(E�)))=1.

Define η̂∈Z1(NG(T )/T ;Z(T )) to be the restriction of η to AutO(Fc)(T )=NG(T )/T .
For g∈NG(T ), let ḡ be its class in NG(T )/T . Set

γ= η([inclST ])∈Z(T ),

so dγ∈Z1(NG(T )/T ;Z(T )) is the cocycle dγ(ḡ)=γg·γ−1. For each g∈S,

[inclST ]�[cg] = [inclST ]

in O(Fc), so γg·η([cg])=γ, and thus η̂(ḡ)=η([cg])=(dγ(ḡ))−1. In other words, η̂|S/T

is a coboundary, and since S/T∈Sylp(NG(T )/T ), [η̂]=1∈H1(NG(T )/T ;Z(T )) (cf. [CE,
Theorem XII.10.1]). Hence, there is β∈Z(T ) such that η̂=dβ. Since η([ch])=1 for all
h∈NH(T ), [β, h]=1 for all h∈NH(T ), and thus β∈Z(NH(T )).

Let G∗6G be the subgroup generated by all g∈G such that, for some Q∈Q, one has
gQ∈Q. Define H∗6H similarly. Since S6NG(T )6G∗ and NH(T )6H∗, S∈Sylp(G∗),
T∈Sylp(H∗), and HG∗>HNG(T )=G by the Frattini argument (Lemma 1.14 (b) below).
If g=ha where h∈H, a∈NG(T ), and gQ∈Q for some Q∈Q, then a(Q∩H) and g(Q∩H)=
gQ∩H are both in Q0, and thus h∈H∗. Since NG(T ) normalizes H∗, this shows that
G∗=H∗NG(T ). So

G∗∩H =(H∗NG(T ))∩H =H∗NH(T ) =H∗.

In particular, H∗EG∗ and G∗/H∗∼=G/H.
For each ϕ∈HomH(P,Q) (where Y 6P,Q6T ), and each g∈NG(T ), set

gϕ= cgϕc
−1
g ∈HomH(gP, gQ).

Since η([ϕ])=η([gϕ])=1, ϕ−1(η̂(ḡ))=η̂(ḡ). Thus for each g∈NG(T ), η̂(ḡ)=βgβ−1 is in-
variant under the action of H∗; i.e., βgβ−1∈Z(H∗). So the class [β]∈Z(NH(T ))/Z(H∗)
is fixed under the action of NG(T ) on this quotient.

Since p -[H∗:NH(T )], and since NG(T ) normalizes H∗ and NH(T ), the inclusion of
Z(H∗)=CZ(Y )(H∗) into Z(NH(T ))=CZ(Y )(NH(T )) is NG(T )-equivariantly split by the



existence and uniqueness of linking systems 153

trace homomorphism for the actions of H∗>NH(T ) on Z(Y ). So the fixed subgroup for
the NG(T )-action on the quotient group Z(NH(T ))/Z(H∗) is Z(NG(T ))/Z(G∗). Thus
β∈Z(NG(T ))Z(H∗), and we may assume that β∈Z(H∗) without changing dβ=η̂.

Define a 0-cochain β̂∈C0(O(Fc);ZQF ) by setting β̂(P )=β if P∈Q0 and β̂(P )=1
otherwise. Then η([ϕ])=dβ̂([ϕ]) for all ϕ∈Mor(E�) (since both vanish) and also for all
ϕ∈AutG(T ). Since G=HNG(T ), each morphism in F between subgroups of T is the
composite of a morphism in E and the restriction of a morphism in AutF (T ). Hence
η([ϕ])=dβ̂([ϕ]) for all such morphisms ϕ (since η and dβ̂ are both cocycles). Upon
replacing η by η(dβ̂)−1, we may assume that η vanishes on all morphisms in F between
subgroups of T .

For each P∈Q, set P0=P∩T and let iP ∈HomG(P0, P ) be the inclusion. Then
η([iP ])∈Z(P0) (and η([iP ])=1 if P /∈Q). For each g∈P , the relation [iP ]=[iP ]�[cg] in
O(Fc) (where [cg]∈AutO(Fc)(P0)) implies that η([iP ]) is cg-invariant. Thus we have
η([iP ])∈Z(P ). Let %∈C0(O(Fc);ZQF ) be the 0-cochain defined by

%(P ) =
{
η([iP ]), if P ∈Q,
1, if P ∈Fc\Q.

Thus %(P )=1 if P6T , by the initial assumptions on η. Then d%([iP ])=η([iP ]) for each
P , and d%(ϕ)=1=η(ϕ) for each ϕ between subgroups of T . For each ϕ∈HomG(P,Q)
in Fc, let ϕ0∈HomG(P0, Q0) be its restriction; the relation [ϕ]�[iQ]=[iP ]�[ϕ0] in O(Fc)
implies that η([ϕ])=d%([ϕ]), since this holds for [ϕ0] and the inclusions. Thus η=d%, and
so [η]=1 in L1(F ;Q).

We end the section by recalling a few elementary results about finite groups.

Lemma 1.14. (a) If Q>P are p-groups for some prime p, then NQ(P )>P .
(b) (Frattini argument) If HEG are finite groups and T∈Sylp(H), then

G=HNG(T ).

Proof. See, for example, [S, Theorems 2.1.6 and 2.2.7].

As usual, for any finite p-group P , Ω1(P )=〈g∈P |gp=1〉.

Lemma 1.15. Let G be a finite group such that Op(G)=1, and assume that G acts
faithfully on an abelian p-group D. Then G acts faithfully on Ω1(D).

Proof. CG(Ω1(D)) is a normal p-subgroup of G (cf. [G, Theorem 5.2.4]), and hence
is contained in Op(G)=1.
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2. The Thompson subgroup and offenders

The proof of the main theorem is centered around the Thompson subgroup of a p-group,
and the FF-offenders for an action of a group on an abelian p-group. We first fix the
terminology and notation which will be used.

Definition 2.1. (a) For any p-group S, set d(S)=sup{|A| |A6S is abelian}, letA(S)
be the set of all abelian subgroups of S of order d(S), and set J(S)=〈A(S)〉.

(b) Let G be a finite group which acts faithfully on the abelian p-group D. A best
offender in G on D is an abelian subgroup A6G such that |A| |CD(A)|>|B| |CD(B)| for
each B6A. (In particular, |A| |CD(A)|>|D|.) Let AD(G) be the set of best offenders in
G on D, and set JD(G)=〈AD(G)〉.

(c) Let Γ be a finite group, and let DEΓ be a normal abelian p-subgroup. Let
J(Γ, D)6Γ be the subgroup such that J(Γ, D)/CΓ(D)=JD(Γ/CΓ(D)).

Note, in the situation of point (c) above, that

D6CΓ(D) 6J(Γ, D) 6Γ and J(J(Γ, D), D) =J(Γ, D).

The relation between the Thompson subgroup J( ·) and best offenders is described
by the next lemma and its corollary.

Lemma 2.2. (a) Assume that G acts faithfully on a finite abelian p-group D. If A
is a best offender in G on D, and U is an A-invariant subgroup of D, then A/CA(U)
is a best offender in NG(U)/CG(U) on U .

(b) Let S be a finite p-group, let DES be a normal abelian subgroup, and set G=
S/CS(D). Assume that A∈A(S). Then the image of A in G is a best offender on D.

Proof. We give here the standard proofs.
(a) Set Ā=A/CA(U) for short. For each 
B=B/CA(U)6Ā,

|CU (B)| |CD(A)|= |CU (B)CD(A)| |CU (B)∩CD(A)|6 |CD(B)| |CU (A)|.

Also, |B| |CD(B)|6|A| |CD(A)| since A is a best offender on D, and hence

|
B| |CU (
B)|= |B| |CU (B)|
|CA(U)|

6
|B| |CD(B)|
|CD(A)|

|CU (A)|
|CA(U)|

6 |A| |CU (A)|
|CA(U)|

= |Ā| |CU (Ā)|.

Thus Ā is a best offender on U .
(b) Set Ā=A/CA(D), identified with the image of A in G. Fix some 
B=B/CA(D)6

Ā, and set B∗=CD(B)B. This is an abelian group since D and B are abelian, and hence
|B∗|6|A| since A∈A(S). Since B∩CD(B)6CD(A),

|
B| |CD(
B)|= |B| |CD(B)|
|CA(D)|

=
|B∗| |B∩CD(B)|

|CA(D)|
6
|A| |CD(A)|
|CA(D)|

= |Ā| |CD(Ā)|.

Since this holds for all 
B6Ā, Ā is a best offender on D.
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The following corollary reinterprets Lemma 2.2 in terms of the groups J(Γ, D) de-
fined above.

Corollary 2.3. Let Γ be a finite group, and let DEΓ be a normal abelian p-
subgroup.

(a) If U6D is also normal in Γ, then J(Γ, U)>J(Γ, D).
(b) If Γ is a p-group, then J(Γ)6J(Γ, D).

An action of a group G on a group D is quadratic if [G, [G,D]]=1. If D is abelian
and G acts faithfully, then a quadratic best offender in G on D is an abelian subgroup
A6G which is a best offender and whose action is quadratic.

Lemma 2.4. Let G be a finite group which acts faithfully on an elementary abelian
p-group V . If the action of G on V is quadratic, then G is also an elementary abelian
p-group.

Proof. We write V additively for convenience; thus [g, v]=gv−v for g∈G and v∈V .
By an easy calculation, and since the action is quadratic, [gh, v]=[g, v]+[h, v] for each
g, h∈G and v∈V . Thus g 7!(v 7![g, v]) is a homomorphism from G to the additive group
End(V ), and is injective since the action is faithful. Since End(V ) is an elementary
abelian p-group, so is G.

We will also need the following form of Timmesfeld’s replacement theorem.

Theorem 2.5. Let A 6=1 and V 6=1 be abelian p-groups. Assume that A acts faith-
fully on V and is a best offender on V . Then there is 1 6=B6A such that B is a
quadratic best offender on V . More precisely, we can take B=CA([A, V ]) 6=1, in which
case |A| |CV (A)|=|B| |CV (B)| and CV (B)=[A, V ]+CV (A)<V .

Proof. We follow the proof given by Chermak in [Ch1, §1]. Set m=|A| |CV (A)|.
Since A is a best offender,

m=sup{|B| |CU (B)| |B6A and U 6V }. (2.1)

For each U6V , consider the set

MU = {B6A | |B| |CU (B)|=m}.

By the maximality of m in (2.1),

B ∈MU =⇒ |CU (B)|= |CV (B)| =⇒ CV (B) 6U. (2.2)

Step 1. (Thompson’s replacement theorem) For each x∈V , set

Vx = [A, x] def= 〈[a, x] = ax−x | a∈A〉 and Ax =CA(Vx).
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Note that Vx is A-invariant. We will show that

|Ax| |CV (Ax)|= |A| |CV (A)|=m and CV (Ax) =Vx+CV (A). (2.3)

Define Φ:A!Vx (a map of sets) by setting Φ(a)=[a, x]=ax−x for each a∈A. We
first claim that Φ induces an injective map of sets

φ:A/Ax−!Vx/CVx
(A)

between these quotient groups. Since A is abelian, [a, [b, x]]=abx−bx−ax+x=[b, [a, x]]
for all a, b∈A. Hence, for all g, h∈A,

Φ(g)−Φ(h) = gx−hx∈CVx(A) ⇐⇒ h([h−1g, x])∈CVx(A)

⇐⇒ 1 = [A, [h−1g, x]] = [h−1g, [A, x]] = [h−1g, Vx]

⇐⇒ h−1g ∈CA(Vx) =Ax.

Thus φ is well defined and injective.
Now,

|Vx| |CV (A)|= |CVx(A)| |Vx+CV (A)|6 |CVx(A)| |CV (Ax)|, (2.4)

since Vx6CV (Ax) by the definition of Ax. Together with the injectivity of φ, this implies
that

|A|
|Ax|

6
|Vx|

|CVx
(A)|

6
|CV (Ax)|
|CV (A)|

,

and hence m=|A| |CV (A)|6|Ax| |CV (Ax)|. The opposite inequality holds by (2.1), so
Ax∈MV and the inequality in (2.4) is an equality. Thus |Vx+CV (A)|=|CV (Ax)|, finish-
ing the proof of (2.3).

Step 2. Assume, for some U6V , that B0, B1∈MU . Then

m= |B0| |CU (B0)|> |B0B1| |CU (B0B1)|

by (2.1), and hence

|B1|
|B0∩B1|

=
|B0B1|
|B0|

6
|CU (B0)|
|CU (B0B1)|

=
|CU (B0)+CU (B1)|

|CU (B1)|
6
|CU (B0∩B1)|
|CU (B1)|

.

So m=|B1| |CU (B1)|6|B0∩B1| |CU (B0∩B1)| with equality by (2.1) again, and we con-
clude that B0∩B1∈MU .

Step 3. Set B=CA([A, V ]) and U=[A, V ]+CV (A). For each x∈V , (2.3) implies
that CV (Ax)=[A, x]+CV (A)6U and Ax∈MU . Hence B=

⋂
x∈V Ax∈MU by Step 2,
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so B is a best offender on V , and is quadratic since [B, [A, V ]]=1 by definition. Also,
CV (B)6U by (2.2). Since U=[A, V ]+CV (A)6CV (B) by definition, we conclude that
U=CV (B).

If U=V , then V =[A, V ]⊕W is an A-invariant splitting for some W6CV (A). But
this would imply that [A, V ]=[A, [A, V ]]+[A,W ]=[A, [A, V ]], which is impossible since
[A,X]<X for each finite non-trivial p-group X on which A acts. We conclude that
U=CV (B)<V , and hence that B 6=1.

We finish this section with two lemmas which were suggested to us by one of the
referees, and which will be very useful in §4.

Lemma 2.6. Let A 6=1 be a finite abelian p-group, and let V 6=0 be an Fp[A]-module
such that A acts freely on a basis of V and quadratically on V . Then p=2 and |A|=2.
If A is a best offender on V , then rk(V )=2.

Proof. Assume that |A|>2, and choose g, h∈A such that g 6=h and g 6=1 6=h. Let B
be a basis permuted freely by A. For b∈B, (1−g)(1−h)b=b−gb−hb+ghb 6=0 since the
elements b, gb, and hb are independent in V , contradicting the assumption that A acts
quadratically. Thus |A|=2 (and hence p=2).

If A is a best offender on V , then |A| |CV (A)|>|V |, so rk(CV (A))=rk(V )−1. But
rk(CV (A))= 1

2 |B|=
1
2 rk(V ) since B is permuted freely by A, so rk(V )=2.

Lemma 2.7. Let G be a non-trivial finite group, and let V be a faithful Fp[G]-
module. Fix p-subgroups QEP6G, where Q<P and |P/Q|>4 if p=2. Assume that
CV (Q), with its induced action of P/Q, contains a copy of the free module Fp[P/Q].
Then for each quadratic best offender A6P on V , A6Q.

Proof. Set A0=A∩Q, and assume that A>A0. By assumption, there is an Fp[P/Q]-
submodule 1 6=W6CV (Q) with a basis on which P/Q acts freely. Thus rk(W )>|P/Q|,
|P/Q|>3 by assumption, and A/A0 permutes the basis freely. By Lemma 2.2 (a), A/A0 is
a quadratic best offender on W . Hence, by Lemma 2.6, |A/A0|=2, p=2, and rk(W )=2,
which is a contradiction. Thus A=A06Q.

3. Proof of the main theorem

The following terminology will be very useful when carrying out the reduction procedures
used in this section.

Definition 3.1. ([Ch2, Definition 6.3]) A general setup is a triple (Γ, S, Y ), where Γ
is a finite group, S∈Sylp(Γ), Y EΓ is a normal p-subgroup, and CΓ(Y )6Y (Y is centric
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in Γ). A reduced setup is a general setup (Γ, S, Y ) such that Y =Op(Γ), CS(Z(Y ))=Y ,
and Op(Γ/CΓ(Z(Y )))=1.

The next proposition, which will be shown in §4, is the key technical result needed
to prove the main theorem. Its proof uses the classification by Meierfrankenfeld and
Stellmacher [MS] of FF-offenders, and through that depends on the classification of finite
simple groups.

Proposition 3.2. (Cf. [Ch2, Proposition 6.10]) Let (Γ, S, Y ) be a reduced setup, set
D=Z(Y ), and assume that Γ/CΓ(D) is generated by quadratic best offenders on D. Set
F=FS(Γ), and let R⊆Fc be the set of all R>Y such that J(R,D)=Y . Then we have
L2(F ;R)=0 if p=2, and L1(F ;R)=0 if p is odd.

Since this distinction between the cases where p=2 or where p is odd occurs through-
out this section and the next, it will be convenient to define

k(p) =
{

2, if p=2,
1, if p is an odd prime.

Thus under the hypotheses of Proposition 3.2, we claim that Lk(p)(F ;R)=0.
Proposition 3.2 seems very restricted in scope, but it can be generalized to the

following situation.

Proposition 3.3. (Cf. [Ch2, Proposition 6.11]) Let (Γ, S, Y ) be a general setup.
Set F=FS(Γ) and D=Z(Y ). Let R⊆S (S)>Y be an F-invariant interval such that for
each Q∈S (S)>Y , Q∈R if and only if J(Q,D)∈R. Then Lk(F ;R)=0 for all k>k(p).

Proof. Assume that the proposition is false. Let (Γ, S, Y,R, k) be a counterexample
for which the 4-tuple (k, |Γ|, |Γ/Y |, |R|) is the smallest possible under the lexicographical
ordering.

We will show in Step 1 that R={P6S |J(P,D)=Y }, in Step 2 that k=k(p), in
Step 3 that (Γ, S, Y ) is a reduced setup, and in Step 4 that Γ/CΓ(D) is generated by
quadratic best offenders on D. The result then follows from Proposition 3.2.

Step 1. Let R0∈R be a minimal element of R which is fully normalized in F .
Since J(R0, D)∈R by assumption (and J(R0, D)6R0), J(R0, D)=R0. Let R0 be the
set of all R∈R such that J(R,D) is F-conjugate to R0, and set Q0=R\R0. Then
R0 and Q0 are both F-invariant intervals, and satisfy the conditions Q∈R0 (Q∈Q0) if
and only if J(Q,D)∈R0 (J(Q,D)∈Q0). Since Lk(F ;R) 6=0, Lemma 1.7 (a) implies that
Lk(F ;R0) 6=0 or Lk(F ;Q0) 6=0. Hence Q0=∅ and R=R0 by the minimality assumption
on |R| (and since R0 6=∅).
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Set Γ1=NΓ(R0), S1=NS(R0), F1=NF (R0)=FS1(Γ1) ([AKO, Proposition I.5.4]),
and R1={R∈R|J(R,D)=R0}. Since R0 is fully normalized, each subgroup in R is F-
conjugate to a subgroup in R1 (Lemma 1.2). Also, for P∈R1, if R∈RF0 and REP , then
J(P,D)>J(R,D)=R implies R=R0. The hypotheses of Lemma 1.12 are thus satisfied,
and so Lk(F1;R1)∼=Lk(F ;R) 6=0. For R∈S (S1)>Y , R∈R1 if and only if J(R,D)=R0.
Thus (Γ1, S1, Y,R1, k) is another counterexample to the proposition. By the minimality
assumption, Γ1=Γ, and thus R0EΓ.

We have now shown that there is a p-subgroup R0EΓ such that

R= {R6S |J(R,D) =R0}.

Set Y1=R0>Y and D1=Z(Y1)6D. For each R6S such that R>R0 and R/∈R, one
has J(R,D1)>J(R,D) by Corollary 2.3 (a), J(R,D) /∈R by the remarks just after Def-
inition 2.1, and hence J(R,D1) /∈R. Thus (Γ, S, Y1,R, k) is a counterexample to the
proposition, and so Y =Y1=R0 by the minimality assumption on |Γ/Y |. We conclude
that

R= {R6S |J(R,D) =Y }.

Step 2. Let Q be the set of all overgroups of Y in S which are not inR. Equivalently,
Q={Q6S |J(Q,D)>Y }. If k>2, then Lk−1(F ;Q)∼=Lk(F ;R) 6=0 by Lemma 1.7 (b).
Since k was assumed to be the smallest degree >k(p) for which the proposition is not
true, we conclude that k=k(p).

Step 3. Assume that the triple (Γ, S, Y ) is not a reduced setup. Let KEΓ be
such that K>CΓ(D) and K/CΓ(D)=Op(Γ/CΓ(D)), and set Y2=S∩KES. Then Y2>Y ,
since either Y2>Op(Γ)>Y , or Y2>CS(D)>Y , or p||K/CΓ(D)| and hence Y2>CS(D)>Y .
Set Γ2=NΓ(Y2), and set R2={P∈R|P>Y2}. Note that S∈Sylp(Γ2), and also that
R2 is an F-invariant interval since Y2 is strongly closed in S with respect to Γ. Set
F2=FS(Γ2)=NF (Y2) [AKO, Proposition I.5.4].

Assume that P∈R\R2. Then P 6>Y2, so PY2>P , and hence NPY2(P )>P (see
Lemma 1.14 (a)). Set G=OutΓ(P ) and G0=OutK(P ). Then G0EG since KEΓ, and

CG0(Z(P ))= OutCK(Z(P ))(P ) >OutCΓ(D)(P ),

since K>CΓ(D) and Z(P )6Z(Y )=D. Hence G0/CG0(Z(P )) is a p-group as K/CΓ(D)
is a p-group. For any g∈NPY2(P )\P , Id 6=[cg]∈OutK(P )=G0 since Y26K (and since
CΓ(P )6CΓ(Y )6Y 6P ). Thus OutK(P )=G0EG contains a non-trivial element of pth
power order, and its action on Z(P ) factors through the p-group G0/CG0(Z(P )). Propo-
sition 1.11 (b) and (c) now implies that Λ∗(OutΓ(P );Z(P ))=0.



160 b. oliver

Since this holds for all P∈R\R2, one has L∗(F ;R\R2)=0 by Corollary 1.10. Hence
L∗(F ;R2)∼=L∗(F ;R) by the exact sequence in Lemma 1.7. Also, the hypotheses of
Lemma 1.12 hold for the functor ZR2

F on O(Fc) (with Q=Y2), since Y2 is strongly
closed. So L∗(F ;R2)∼=L∗(F2;R2). Since Lk(F ;R) 6=0 by assumption, Lk(F2;R2) 6=0.

Set D2=Z(Y2)6D. For each P∈S (S)>Y2 ,

P >J(P,D2) >J(P,D) >CP (D) >Y (3.1)

by Corollary 2.3 (a) and by the definition of J(P, ·). We must show that for all P>Y2,
P∈R2 if and only if J(P,D2)∈R2. If P∈R2⊆R, then J(P,D)∈R by assumption, so
J(P,D2)∈R by (3.1) since R is an interval, and J(P,D2)∈R2 as J(P,D2)>CP (D2)>Y2.
If P /∈R2, then P /∈R, so J(P,D) /∈R, and J(P,D2) /∈R (and hence J(P,D2) /∈R2) by (3.1)
again and since R is an interval containing Y .

Thus (Γ2, S, Y2,R2, k) is a counterexample to the proposition. Therefore Γ2=Γ and
Y2=Y by the minimality assumption, which contradicts the above claim that Y2>Y . We
conclude that (Γ, S, Y ) is a reduced setup.

Step 4. It remains to prove that Γ/CΓ(D) is generated by quadratic best offenders
on D; the result then follows from Proposition 3.2.

Let Γ3EΓ be such that Γ3>CΓ(D) and Γ3/CΓ(D) is generated by all quadratic best
offenders on D. If Γ3=Γ we are done, so assume Γ3<Γ. Set S3=Γ3∩S and F3=FS3(Γ3).
Set

Q=S (S)>Y \R, Q3 =Q∩S (S3)>Y , and R3 =R∩S (S3)>Y .

Since Lk(F ;R) 6=0, R S (S)>Y by Lemma 1.6 (b), and Q6=∅. The proposition holds
for (Γ3, S3, Y,R3, k) by the minimality assumption, and thus Lk(F3;R3)=0.

For Q∈Q, J(Q,D)>Y , so Q/Y has non-trivial best offenders on D, hence has non-
trivial quadratic best offenders on D by Theorem 2.5, and thus J(Q∩Γ3, D)>Y . So
Q∈Q implies Q∩Γ3∈Q3 by Step 1. In particular, S3∈Q3.

If k=2 (i.e., if p=2), then L1(F ;Q)∼=L2(F ;R) 6=0 and L1(F3;Q3)∼=L2(F3;R3)=0
by Lemma 1.7 (b), which is impossible by Lemma 1.13.

If k=1 (if p is odd), set

Γ∗ =
〈
g ∈Γ | gP ∈Q for some P ∈Q

〉
6Γ,

Γ∗3 =
〈
g ∈Γ3 | gP ∈Q3 for some P ∈Q3

〉
6Γ3.

Then Γ∗36Γ∗, since Γ36Γ and Q3⊆Q. By Lemma 1.7 (b), there are exact sequences

1−!CZ(Y )(Γ)−!CZ(Y )(Γ∗)−!L1(F ;R) 6=1,

1−!CZ(Y )(Γ3)−!CZ(Y )(Γ∗3)−!L1(F3;R3) = 1.
(3.2)
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Also, Γ∗Γ3>NΓ(S3)Γ3=Γ, since S3∈Q3, where the equality follows from the Frattini
argument (Lemma 1.14 (b)), so

CZ(Y )(Γ)=CZ(Y )(Γ∗Γ3) =CZ(Y )(Γ∗)∩CZ(Y )(Γ3).

But this is impossible, since CZ(Y )(Γ)<CZ(Y )(Γ∗)6CZ(Y )(Γ∗3)=CZ(Y )(Γ3) by the exact-
ness in (3.2).

We now have the tools needed to prove the main vanishing result.

Theorem 3.4. For each saturated fusion system F over a p-group S,

lim −
k

Q(Fc)

(ZF ) = 0

for all k>2, and for all k>1 if p is odd.

Proof. As in [Ch2, §6], we choose inductively subgroups X0, X1, ..., XN∈Fc and F-
invariant intervals ∅=Q−1⊆Q0⊆...⊆QN =Fc as follows. Assume Qn−1 has been defined
(n>0), and that Qn−1 Fc. Consider the following sets of subgroups:

U1 =U (n)
1 = {P ∈Fc\Qn−1 | d(P ) maximal},

U2 =U (n)
2 = {P ∈U1 | |J(P )| maximal},

U3 =U (n)
3 = {P ∈U2 |J(P )∈Fc},

U4 =U (n)
4 =

{
{P ∈U3 | |P | minimal}, if U3 6=∅,
{P ∈U2 | |P | maximal}, otherwise.

(See Definition 2.1 (a) for the definition of d(P ).) Let Xn be any subgroup in U4 such
that Xn and J(Xn) are both fully normalized in F .

We first check that there is such an Xn. For each X∈U4 and each Y ∈J(X)F which
is fully normalized in F , there is ϕ∈HomF (NS(J(X)), NS(Y )) such that ϕ(J(X))=Y
(Lemma 1.2), and ϕ(X) is also fully normalized since NS(X)6NS(J(X)). Since U4 is
invariant under F-conjugacy, this shows that Xn∈U4 can be chosen as required.

Let Qn be the union of Qn−1 with the set of all overgroups of subgroups F-conjugate
to Xn. Set Rn=Qn\Qn−1 for each 06n6N . Thus the sets Qn are all closed under
overgroups, and the Rn are intervals. By the definition of U4, Xn=J(Xn) if J(Xn)∈Fc,
while Rn=XF

n if J(Xn) /∈Fc. Note also that X0=J(S) and R0=Q0=S (S)>J(S).
We will show, for each n, that

Lk(F ;Rn) = 0 for all k> k(p). (3.3)
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Then, by Lemma 1.7 (a), for all k>k(p), Lk(F ;Qn−1)=0 implies Lk(F ;Qn)=0. The
theorem now follows by induction on n.

Case 1. Assume n is such that J(Xn) /∈Fc, and hence that Rn=XF
n . Since J(Xn) is

fully normalized and not F-centric, CS(J(Xn)) 66J(Xn). Then XnCS(J(Xn))>Xn, since
J(Xn) is centric in Xn. Hence NXnCS(J(Xn))(Xn)>Xn by Lemma 1.14 (a), so there is
g∈NS(Xn)\Xn such that [g, J(Xn)]=1. Then g acts trivially on Z(Xn)6J(Xn), so the
kernel of the OutF (Xn)-action on Z(Xn) has order which is a multiple of p, and

Λ∗(OutF (Xn);Z(Xn))= 0

by Proposition 1.11 (b). Thus (3.3) holds by Proposition 1.9.

Case 2. Assume that n is such that J(Xn)∈Fc, and hence Xn=J(Xn) by the
definition of U4. By the definitions of U1 and U2, for each P>Xn in Rn, d(P )=d(Xn)
and J(P )=Xn. Hence

P ∈Rn =⇒ J(P ) is the unique subgroup of P which is F-conjugate to Xn. (3.4)

Set T=NS(Xn) and E=NF (Xn). Then E is a saturated fusion system over T (cf.
[AKO, Theorem I.5.5]), and contains Xn as a normal centric subgroup. Hence there is a
model for E (cf. [AKO, Theorem III.5.10]): a finite group Γ such that T∈Sylp(Γ), XnEΓ,
CΓ(Xn)6Xn, and FT (Γ)=E .

Let R be the set of all P∈Rn such that P>Xn. Then (Γ, T,Xn) is a general setup,
and R is an E-invariant interval containing Xn. If P∈R and Y 6P is F-conjugate to Xn,
then Y =Xn by (3.4). Also, each subgroup in Rn is F-conjugate to a subgroup in R by
(3.4) and Lemma 1.2 (recall that Xn is fully normalized). The hypotheses of Lemma 1.12
thus hold, and hence

L∗(F ;Rn)∼=L∗(E ;R). (3.5)

Set D=Z(Xn). We claim that for each P∈S (T )>Xn ,

P ∈R ⇐⇒ J(P,D)∈R. (3.6)

Fix such a P . By Corollary 2.3 (b), J(P,D)>J(P ), and Xn>J(Xn, D)>J(Xn)=Xn.
If P∈R, then J(P,D)∈R since Xn=J(Xn, D)6J(P,D)6P and R is an interval. If
P /∈R, then P∈Ri for some 06i6n−1. By the definitions of U (i)

1 and U (i)
2 , either d(P )=

d(Xi)>d(Xn), or d(P )=d(Xi)=d(Xn) and J(P )>J(Xn)=Xn, or J(P )=Xn∈J(Xi)F .
The latter is not possible since by the definition of U (i)

4 , either J(Xi)=Xi or J(Xi) /∈Fc. If
d(P )>d(Xn), then d(J(P,D))=d(P )>d(Xn) since J(P )6J(P,D)6P , and J(P,D) /∈R
since d(R)=d(Xn) for all R∈R. If J(P )>Xn, then J(P ) /∈R since J(R)=Xn for all
R∈R, and hence J(P,D) /∈R since J(P,D)>J(P ) andR is an interval. This proves (3.6).

Thus, by Proposition 3.3, Lk(E ;R)=0 for all k>k(p). Together with (3.5), this
finishes the proof of (3.3), and hence of the theorem.
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4. Proof of Proposition 3.2

It remains to prove Proposition 3.2, which we restate here as follows.

Proposition 4.1. Let (Γ, S, Y ) be a reduced setup, set D=Z(Y ), and assume that
Γ/CΓ(D) is generated by quadratic best offenders on D. Set F=FS(Γ), and let R⊆Fc

be the set of all R>Y such that J(R,D)=Y . Then Lk(p)(F ;R)=0.

It is in this section that we use the classification of offenders by Meierfrankenfeld
and Stellmacher [MS], and through that the classification of finite simple groups. The
following theorem is a summary of those parts of [MS, Theorems 1 and 2] which we
need here. The complete results in [MS] give a much more precise description of all
representations of groups containing elementary abelian best offenders.

We adopt the notation in [GLS], and let Lie(p) denote the class of groups

G=Op′(C	G(σ)),

where 
G is a connected, (quasi)simple algebraic group over �Fp, and σ∈End(
G) is an
algebraic endomorphism with finite fixed subgroup. Most of these groups are quasisimple,
with a few exceptions such as SL2(2), SL2(3), and G2(2). Note that SO±

2m(2k) /∈Lie(2)
(m>3), since SO2m(�F2) is not connected.

When G∼=An or G∼=Σn, the “natural module for G” in characteristic 2 is the simple
F2[G]-module of rank n−1 (n odd) or n−2 (n even) which is a subquotient of the
permutation module of rank n.

A CK-group is a finite group all of whose composition factors are known simple
groups.

Theorem 4.2. Fix a finite CK-group G such that Op(G)=1, and a faithful finite-
dimensional Fp[G]-module V . Assume that G is generated by elementary abelian p-
groups which are best offenders on V . Let J be the set of all subgroups 1 6=KEG which
are minimal with the property that [K,G]=K. Set W=[J , V ]CV (J )/CV (J ). Then

(a) Op(G)=〈J 〉=×J ;
(b) W is a faithful, semisimple Fp[G]-module;
(c) each elementary abelian best offender on V is a best offender on W ;
(d) If W is a simple Fp[G]-module, then either
(d.1) G∈Lie(p) (G is possibly one of the non-quasisimple groups SL2(2), SL2(3),

Sp4(2), G2(2));
(d.2) G∼=SO±

2m(2k), where p=2, m>3, and V is the natural module for G;
(d.3) G∼=3A6 or G∼=A7, and p=2; or
(d.4) G∼=An (n>6, n even) or G∼=Σn (n>3, n 6=4), p=2, and V is the natural

module for G.
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Proof. Points (a)–(c) are points (c)–(e) in [MS, Theorem 1], while (d) follows from
[MS, Theorem 2] (which gives a much more explicit list). Note that we have dropped
the group SO−

4 (2)∼=Σ5 from point (d.2), since its natural module is isomorphic to that
of Σ5 (case (d.4)).

When H16H26...6Hk are subgroups of a group G, we let NG(H1, ...,Hk) denote
the intersection of their normalizers.

Definition 4.3. Let G be a finite group.
(a) A radical p-subgroup of G is a p-subgroup P6G such that Op(NG(P ))=P ; i.e.,

Op(NG(P )/P )=1.
(b) A radical p-chain of length k in G is a sequence of p-subgroups P0<P1<...<

Pk6G such that P0 is radical in G, Pi is radical in NG(P0, ..., Pi−1) for each i>1, and
Pk∈Sylp(NG(P0, ..., Pk−1)).

The reason for defining this here is the following vanishing result, which involves
only radical p-chains with P0=1.

Proposition 4.4. ([AKO, Lemma III.5.27] and [O2, Proposition 3.5]) Fix a finite
group G, a finite Fp[G]-module M , and k>1 such that Λk(G;M) 6=0. Then there is a
radical p-chain 1=P0<P1<...<Pk of length k such that M contains a copy of the free
module Fp[Pk].

Since the trivial subgroup is a radical p-subgroup of G only if Op(G)=1, Proposi-
tion 4.4 includes the statement that Λk(G;M)=0 if Op(G) 6=1 (Proposition 1.11 (c)). The
reason for defining radical p-chains more generally here—to also allow for chains where
P0 6=1—will be seen in the proof of the next proposition and in that of Proposition 4.1.

Proposition 4.5. Let G be a non-trivial finite group with Op(G)=1, and let V be a
faithful Fp[G]-module. Let U be the set of quadratic best offenders in G on V , and assume
that G=〈U〉. Set G0=Op(G) and W=CV (G0)[G0, V ]/CV (G0). Assume, for some p-
subgroup P06G, some Fp[NG(P0)/P0]-submodule X6CW (P0), and some k>k(p), that
Λk(NG(P0)/P0;X) 6=0. Then each U∈U is G-conjugate to a subgroup of P0.

Proof. Quadratic offenders with faithful action on V are elementary abelian by
Lemma 2.4. So Theorem 4.2 (i.e. [MS, Theorems 1 and 2]) applies. Then Op(G)=〈J 〉 by
Theorem 4.2 (a), and hence W as defined here is the same as W defined in that theorem.

Case 1. Assume V is a simple Fp[G]-module. Thus V =W . Set

H0 =CNG(P0)(CW (P0)).

Then P0EH0, and p - |H0/P0| by Proposition 1.11 (b). By Proposition 1.11 (c), P0 is
radical in G. By Proposition 4.4, there is a radical p-chain 1<R1/H0<...<Rk/H0 of
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length k in NG(P0)/H0 such that X, and hence CW (P0), contains a copy of Fp[Rk/H0].
Thus, by Lemma A.4 (applied with H0/P0ENG(P0)/P0 in the role of HEG), there is a
radical p-chain 1<P1/P0<...<Pk/P0 in NG(P0)/P0 such that PiH0=Ri for each i. Then
P0<P1<...<Pk is a radical p-chain in G. Also, Pk/P0

∼=Rk/H0, so CWi(P0) contains a
copy of Fp[Pk/P0].

By Lemma 4.6, Pk∈Sylp(G). Hence, each quadratic best offender in G on W is
G-conjugate to some U6Pk. By Lemma 2.7 (and since CW (P0) contains a copy of
Fp[Pk/P0]), U6P0.

Case 2. Now assume V is arbitrary. By Theorem 4.2 (b) and (c), W is a semisimple
Fp[G]-module, and each U∈U is a quadratic best offender on W . Set W=W1⊕...⊕Wm,
where each Wi is a simple Fp[G]-module. For 06i6m, set Xi=X∩(W1⊕...⊕Wi). Thus
0=X06X16...6Xm=X are Fp[NG(P0)/P0]-submodules, and Xi/Xi−1 is isomorphic to
a submodule of CWi(P0) for each i>1.

Since Λk(NG(P0)/P0;X) 6=0, the exact sequences for the pairs Xi−16Xi (Propo-
sition 1.11 (d)) imply that Λk(NG(P0)/P0;Xi/Xi−1) 6=0 for some 16i6m. Now set
K=CG(Wi), 
G=G/K, and �H=HK/K6
G for each H6G. The action of NG(P0)/P0

on CWi(P0) factors through

N	G(
P0)/
P0 =NG/K(P0K/K)/(P0K/K)∼=NG(P0K)/P0K,

and NG(P0)/P0 surjects onto N	G(
P0)/
P0 with kernel NP0K(P0)/P0. Then, by Proposi-
tion 1.11 (b), p - |NP0K(P0)/P0| and Λk(N	G(
P0)/
P0;Xi/Xi−1) 6=0. By Lemma 1.14 (a),
P0∈Sylp(P0K).

Since G=〈U〉, where U is the set of quadratic best offenders on W , one has 
G=〈	U〉,
where 	U={
U |U∈U} is a set of quadratic best offenders on Wi by Lemma 2.2 (a). By
assumption, Wi is a faithful, simple Fp[
G]-module. Thus, by case 1, each 
U∈	U is 
G-
conjugate to a subgroup of 
P0=P0K/K. Hence each U∈U is G-conjugate to a subgroup
of P0∈Sylp(P0K).

The following lemma was needed to prove Proposition 4.5. This is where the explicit
list in Theorem 4.2 was needed.

Lemma 4.6. Let G be a non-trivial finite group, let W be a faithful, simple Fp[G]-
module, and assume that G is generated by its quadratic best offenders on W . Let
P0<P1<...<Pk be a radical p-chain in G with k>k(p). Set

H0 =CNG(P0)(CW (P0)),
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and assume also that p - |H0/P0| and that 1<P1H0/H0<...<PkH0/H0 is a radical p-
chain in NG(P0)/H0. Then either

(a) CW (P0), with its induced action of NG(P0)/P0, does not contain a copy of the
free module Fp[Pk/P0]; or

(b) Pk∈Sylp(G).

Proof. Quadratic offenders with faithful action are elementary abelian by Lemma 2.4.
Also, Op(G)=1, since CW (Op(G)) is a non-trivial Fp[G]-submodule of W and G acts
faithfully. So we are in the situation of Theorem 4.2 (d). The cases listed there will be
considered individually.

Assume CW (P0) does contain a copy of F2[Pk/P0]. We must show that Pk∈Sylp(G).
Note that if p=2, then rk(CW (P0))>|Pk/P0|>4 since k>k(2)=2.

Case 1. Assume that G∈Lie(p). The non-trivial radical p-subgroups of G are well
known, namely by a theorem of Borel and Tits (see [GLS, Corollary 3.1.5]), they are
all conjugate to maximal normal unipotent subgroups in parabolic subgroups. Hence
the normalizers NG(P0, ..., Pi) all contain Sylow p-subgroups of G, and the quotients
NG(P0, ..., Pi)/Pi (the Levi complements) are central products of groups in Lie(p) (see
[GLS, Theorem 2.6.5 (f)]). Since Pk∈Sylp(NG(P0, ..., Pk−1)), Pk∈Sylp(G) in this case.

Case 2. Now assume that p=2 and G∼=SO±
2m(q), where 2m>6, q=2a (a>1), and

W is the natural F2[G]-module of rank 2am. Set G0=Ω±
2m(q), so [G:G0]=2.

For any radical 2-subgroup P6G, we have that P∩G0 is a radical 2-subgroup of G0

by Lemma A.2, and hence is either trivial, or is a maximal normal unipotent subgroup
in a parabolic subgroup. If P∩G0=1 and P 6=1, then P=〈t〉 for some involution t∈
SO±

2m(q)\Ω±
2m(q). Set W1=CW (t) and W2=[t,W ]6W1. Then W1⊥W2, so the quadratic

form q on W is linear on W2 with W3
def= Ker(q|W2)6W2 of index at most 2. If W3 6=0,

then by Witt’s theorem (cf. [T, Theorem 7.4]), each α∈AutFq (W1) which induces the
identity on W2 and on W1/W3 extends to some �α∈G, then �α∈O2(NG(P )), so P is not
radical. Thus W3=0, rk(W2)=1, and t is a transvection. By Witt’s theorem again,
restriction to W1 induces an isomorphism NG(P )/P∼=SO2m−1(q)∼=Sp2m−2(q).

Assume first that P0=1. If P1∩G0=1, then P1 is generated by a transvection, so P1

is a quadratic best offender, which contradicts Lemma 2.7. Thus P1∩G0 is a maximal
normal unipotent subgroup of a parabolic subgroup. So |P1|>q2m−3 by Lemma A.5,
|P2|>q2m−2, and q2m−2>rkF2(W )=2am since m>3. Hence this case is impossible.

Next assume P0 6=1 and P0∩G0=1. As noted above, P0 is generated by a transvec-
tion (hence rkFq (CW (P0))=2m−1), and NG(P0)/P0

∼=Sp2m−2(q). By case 1 (applied
with P0=1), Pk/P0∈Syl2(NG(P0)/P0). Hence |Pk/P0|=q(m−1)2 62m−1 (cf. [T, p. 70]),
which is impossible since m>3. (Alternatively, NG(P0)\P0 and hence Pk\P0 contains a
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transvection, which contradicts Lemma 2.7.)
Finally, assume that P0∩G0 6=1, and hence that it is a maximal normal unipotent

subgroup of a parabolic subgroup. Set W0=CW (P0)<W . Then W06CW (P0∩G0) is a
totally isotropic subspace of W of rank at most m, and

NG(P0)/P0
∼=GL(W0)×NSO(W⊥

0 /W0)(P0)/P0

acts on it via projection to the first factor. Thus NG(P0)/H0
∼=GL(W0), and

Pk/P0
∼=PkH0/H0 ∈Syl2(NG(P0)/H0)

by case 1 (applied with G=SL(W0) and P0=1). Set r=rk(W0); then

|Pk/P0|=2r(r−1)/2 6 r

implies r62, which contradicts the above observation that r>4.

Case 3. Assume that p=2, and G∼=3A6 or G∼=A7. Then the Sylow 2-subgroups
of G have order 8, the non-trivial radical 2-subgroups have order 4 or 8, and hence are
normal in Sylow 2-subgroups, and thus Pk∈Syl2(G) (k>2).

Case 4. Assume that p=2, G∼=Σm or G∼=Am, and W is a natural module for G. Set
m={1, 2, ...,m}, with the canonical action of G. Set V =F2(m), the F2-vector space with
basis m, and G-action induced by that on m. Set ∆=CV (G), the subgroup generated
by the sum of all elements in m. Identify W=V/∆ if m is odd (so rk(W )=m−1), and
W6V/∆ with index 2 if m is even (so rk(W )=m−2). Since rk(W )>4, m>5.

For any H6G, let m/H be the set of orbits of H acting on m (with induced action
of NG(H)/H), and let F2(m/H) be the permutation module with basis m/H. Since
CV (H) is the group of elements of V =F2(m) whose coefficients are constant on each
H-orbit, we can identify CV (H) with F2(m/H) as F2[NG(H)/H]-modules.

If P0 acts on m with more than one orbit, then we have CV/∆(P0)=CV (P0)/∆ by
Lemma A.8 (a). Thus CW (P0)6CV (P0)/∆, so CV (P0) also contains a copy of the free
module F2[Pk/P0], and its basis m/P0 contains a free (Pk/P0)-orbit by Lemma A.1. Since
k>2, m/P0 contains |Pk/P1|>2 free (P1/P0)-orbits, which contradicts Lemma A.7 (i).

Now assume that P0 acts transitively on m. Let U6V be such that

U/∆ =CV/∆(P0) >CW (P0).

Each g∈NG(P0) normalizes U/∆, so NG(P0)6NG(U), and P0<...<Pk is also a radical
p-chain in NG(U). Moreover, U/∆ contains a copy of F2[Pk/P0], and in particular,
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Pk∩CG(U)=P0∩CG(U). By Lemma A.3, applied with CG(U)ENG(U) in the role of
HEG, CP0(U)∈Sylp(CG(U)).

By Lemma A.8 (b), one has NG(P0)/H0
∼=GL(U/∆) with the canonical action on

U/∆=CV/∆(P0). Hence CW (P0)=U/∆. By case 1 (applied with G=SL(CW (P0))
and P0=1), one has Pk/P0

∼=PkH0/H0∈Syl2(NG(P0)/H0). Set r=rk(CW (P0)). Then
|Pk/P0|=2r(r−1)/26r as CW (P0) contains a copy of F2[Pk/P0]. So r=2 and |Pk/P0|=2,
which is impossible since k>2.

Proof of Proposition 4.1. Fix a reduced setup (Γ, S, Y ), set D=Z(Y ), V =Ω1(D),
and G=Γ/CΓ(D), and assume that G=〈U〉, where

U = {1 6=P 6G |P is a quadratic best offender on D}.

As Op(G)=1 by the definition of a reduced setup, G acts faithfully on V by Lemma 1.15.
Hence U is a set of quadratic best offenders on V by Lemma 2.2 (a).

Recall thatR={P∈Fc |J(P,D)=Y }. By Timmesfeld’s replacement theorem (Theo-
rem 2.5), R is the set of all P∈S (S)>Y such that P/Y =P/CS(D) contains no non-trivial
quadratic best offender on D; i.e., no subgroups in U .

Set D0=1. For each i>1, set Di=Ωi(D)={g∈D|gpi

=1} and Vi=Di/Di−1. Thus
each Vi is an Fp[G]-module, and (x 7!xp) sends Vi injectively to Vi−1 for each i>0.

Set k=k(p). We will show that Λk(OutΓ(R);Z(R))=0 for each R∈R; the proposi-
tion then follows from Corollary 1.10. Here, Z(R)=CD(R) and OutΓ(R)∼=NΓ(R)/R since
R>Y and CS(Y )=Z(Y )=D. So, by Proposition 1.11 (d), it suffices to show, for each
R and i, that Λk(NΓ(R)/R;CDi(R)/CDi−1(R))=0. Also, for each i, CDi(R)/CDi−1(R)
can be identified with an NΓ(R)-invariant subgroup of CVi(R)6CV (R). It thus suffices
to show that

Λk(NΓ(R)/R;X) = 0 for all R∈R and all NΓ(R)-invariant X 6CV (R). (4.1)

Set W1=CV (Op(G)), W2=W1[Op(G), V ], and W=W2/W1. Hence the G-actions
on W1 and on V/W2 factor through the quotient p-group G/Op(G). So by Proposi-
tion 1.11 (a)–(c), for each R∈R and each X6CV (R) as in (4.1),

Λk(NΓ(R)/R;X∩W1) = 0 and Λk(NΓ(R)/R;X/(X∩W2))= 0.

By the exact sequences of Proposition 1.11 (d), we are now reduced to showing that
Λk(NΓ(R)/R; (X∩W2)/(X∩W1))=0 for all such X; or more generally that

Λk(NΓ(R)/R;X) = 0 for all R∈R and all NΓ(R)-invariant X 6CW (R). (4.2)

Since R∈R, no U∈U is contained in R, and hence (4.2) follows from Proposition 4.5.
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Appendix A. Radical p-chains and free submodules

We collect here some lemmas needed in the proofs in §4.

Lemma A.1. Let P be a p-group, and let V be an Fp[P ]-module. Assume that V
has an Fp-basis B which is permuted by P , and also contains a copy of the free module
Fp[P ]. Then B contains a free P -orbit.

Proof. Write V =V1⊕...⊕Vn, where each Vi has as basis one P -orbit Bi⊆B. For
each i, let pri:V!Vi be the projection.

Let F6V be a submodule isomorphic to Fp[P ]. Then CF (P )∼=Fp. Choose i such
that CF (P ) 66Ker(pri). Then Ker(pri|F )=0 (otherwise it contains non-trivial elements
fixed by P ), so pri sends F injectively into Vi. Thus |P |6rk(Vi)=|Bi|, so Bi is a free
orbit.

Lemma A.2. Assume that HEG are finite groups, and let P6G be a radical p-
subgroup. Then P∩H is a radical p-subgroup of H.

Proof. Set Q=Op(NH(P∩H)). Then NG(P ) normalizes Q, so NQP (P )ENG(P ). It
follows that NQP (P )6Op(NG(P ))=P , so Q6P by Lemma 1.14 (a), and P∩H is radical
in H.

The next two lemmas are useful when manipulating radical p-chains. The first was
suggested by one of the referees.

Lemma A.3. Fix a finite group G and a normal subgroup HEG. Let P0<P1<...<

Pk be a radical p-chain in G such that P0∩H=Pk∩H. Then P0∩H∈Sylp(H).

Proof. Choose S∈Sylp(G) such that S>Pk, and set Q=S∩H∈Sylp(H). Then Q>

Pk∩H=P0∩H. We must show that Q=P0∩H.
Assume on the contrary that Q>P0∩H. By construction, Q is normalized by S and

hence by each of the Pi. Set Q=Q−1, and define recursively Qi=Qi−1∩NPiQi−1(Pi) for
each 06i6k. Since Pk normalizes Q and each Pi, it normalizes each Qi (so the PiQi−1

are subgroups of G). By Lemma 1.14 (a), if Qi−1>P0∩H=Pi∩H, then NPiQi−1(Pi)>Pi

so that Qi>Pi∩H=P0∩H. Thus PkQk>Pk and Qk6NG(P0, P1, ..., Pk−1), and this is
impossible since Pk∈Sylp(NG(P0, P1, ..., Pk−1)) by the definition of a radical p-chain.

Lemma A.4. Let G be a finite group, and let HEG be a normal subgroup of order
prime to p. Set 
G=G/H, and set �X=XH/H for each X6G.

(a) If P6G is a p-subgroup such that 
P is radical in 
G, then P is radical in G.
(b) If 1<R1/H<...<Rk/H is a radical p-chain in 
G, then there is a radical p-

chain 1<P1<...<Pk in G such that 
Pi=Ri/H for each i6k.
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Proof. For each p-subgroup P6G, the Frattini argument (Lemma 1.14 (b)), applied
with P6PHENG(PH) in the role of T6HEG, implies that

NG(PH) =PH·(NNG(PH)(P ))=HNG(P ).

(a) By assumption,

PH/H =Op(NG(PH)/H) =Op(NG(P )H/H).

Set Q=Op(NG(P )); then QH/H6PH/H, and Q=P since p - |H|. So P is radical in G.

(b) Choose Pk∈Sylp(Rk), and set Pi=Ri∩Pk∈Sylp(Ri) for each i<k (recall that
RiERk). Thus PiH=Ri for each i6k (and hence 
Pi=Ri/H), since Ri/H is a p-group
and p - |H|.

Since NG(PiH)=NG(Pi)H for each i, NG(R1, ..., Ri)=NG(P1, ..., Pi)H. Since 
Pi

is radical in N	G(
P1, ..., 
Pi−1) for each i, Pi is radical in NG(P1, ..., Pi−1) by (a). Also,

Pk∈Sylp(NG(R1, ..., Rk−1)/H), so Pk∈Sylp(NG(P1, ..., Pk−1)). Thus 1<P1<...<Pk is a
radical p-chain in G.

We need the following lower bounds for orders of radical subgroups of Ω±
2m(q).

Lemma A.5. Let P be a radical 2-subgroup of G=Ω±
2m(q), where m>2 and q=2a.

Then |P |>q2m−3, and |P |>q2m−2 if m>4.

Proof. By a theorem of Borel and Tits (see [GLS, Corollary 3.1.5]), P is conjugate
to the maximal normal unipotent subgroup in a parabolic subgroup N<G. We may
assume that P is minimal, and hence that N is a maximal parabolic subgroup. Thus
P=O2(N), N contains a Borel subgroup and hence a Sylow 2-subgroup of G, and N is
the stabilizer of a totally isotropic subspace of dimension l for some 16l6m (see [GL,
pp. 100–101]). Let L∼=N/O2(N) be a Levi factor for N ; then O2′(L)∼=SLl(q)×Ω±

2m−2l(q)
([GLS, Example 3.2.3]).

Thus G has Sylow 2-subgroups of order qm(m−1), while N/O2(N) has Sylow 2-
subgroups of order ql(l−1)/2q(m−l)(m−l−1). So |P |=ql(4m−3l−1)/2. Since m>l>1,

1
2 l(4m−3l−1) = (2m−3)+

(
2m(l−1)− 3

2 l
2− 1

2 l+3
)

> (2m−3)+
(

1
2 l(l−5)+3

)
> 2m−3,

with equality only when l=m∈{2, 3}.

The remaining lemmas involve symmetric and alternating groups. For any m>0,
we set m={1, ...,m}, and regard Am<Σm as the alternating and symmetric groups on
the set m.
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Lemma A.6. Assume that 4|m, let {X1, X2} be a partition of m, and let σ∈Σm

be a permutation which exchanges X1 and X2. Set σ2=τiτ2, where τi is a permutation
of Xi for i=1, 2. Then σ and the τi have the same parity.

Proof. Assume that σ is a product of disjoint cycles of length 2k1, 2k2, ..., 2kr (and
thus m=

∑r
i=1 2ki). Then τ1 and τ2 are each products of cycles of length k1, ..., kr. Hence

sgn(σ)=
∏r

i=1(−1)2ki−1=(−1)m−r, while sgn(τi)=
∏r

i=1(−1)ki−1=(−1)m/2−r. Since m
and 1

2m are both even, sgn(σ)=(−1)r=sgn(τi).

In the next two lemmas, when a group G acts on a set X, X/G denotes the set of
G-orbits in X.

Lemma A.7. Assume that G=Σm or G=Am for some m>2. Let QEP6G be
2-subgroups such that Q<P , and either

(i) Q is radical in G and P is radical in NG(Q), or
(ii) P is radical in G.
Then the action of P/Q on m/Q contains at most one free orbit.

Proof. Assume otherwise. Let X1, ..., Xr⊆m be the orbits under the action of P ,
arranged so that P/Q acts freely on X1/Q and X2/Q. For each X⊆m, let AX EΣX

be the alternating and symmetric groups on X, regarded as subgroups of Σm (groups
of permutations of m which leave m\X pointwise fixed). Set �H=ΣX1×...×ΣXr 6Σm.
Thus P6�H.

For each i=1, ..., r, let Qi6Pi6ΣXi be the images of Q<P under the ith projection.
Set 
P=P1 ... Pr, 
Q=Q1 ... Qr, P ∗=
P∩G, and Q∗=
Q∩G. Thus Q6Q∗6
Q, P6P ∗6
P ,
and 
QE
P6�H.

In case (ii), one has NP∗(P )ENG(P ), so NP∗(P )6O2(NG(P ))=P , and P ∗=P by
Lemma 1.14 (a). In case (i), Q=Q∗EP ∗ by a similar argument,

NP∗(Q,P ) =NP∗(P ) ENG(Q,P ) =⇒ NP∗(P ) 6O2(NG(Q,P ))=P,

and again P ∗=P by Lemma 1.14 (a).
Let I⊆{1, ..., r} be the set of all i such that Pi 66Q, and choose σi∈Pi\Q for i∈I. For

each i∈I and σ∈Pi\Q, σ /∈P since it acts trivially on at least one of the sets X1 and X2

(and P/Q acts freely on (X1∪X2)/Q), and hence σ is an odd permutation. Since P/Q
acts non-trivially on Xi/Q for i=1, 2, we have 1, 2∈I. If i∈I for i>3, then σ1σi∈P ∗=P
since it is an even permutation, but it acts trivially on X2/Q, which is a contradiction.
Thus I={1, 2}. Also, G=Am.

For i∈I, we have that Pi∩Q=Pi∩AXi has index 2 in Pi, while Pi6Q6Am and
hence Pi=Qi6AXi for i /∈I. Hence for i∈I, Qi=Pi or Qi=Pi∩Q. Since Q6G=Am,
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either Qi6AXi for each i or Qi 66AXi for at least two indices i. In the latter case, Qi=Pi

for i=1, 2, so Q∗=P ∗=P>Q, which would imply that the projections of Q into ΣXi

for i=1, 2 are Q∩Pi<Qi, a contradiction. Thus Qi6Q for each i, so Q=
Q=Q∗. Then
[
P :Q]=

∏r
i=1[Pi:Qi]=4, so [P :Q]=2, and P=Q〈σ〉 where σ=σ1σ2.

For i=1, 2, let Yi1 and Yi2 be the two orbits under the action of Qi on Xi. Set
σ2

i =τi1τi2, where τij∈ΣYij . By Lemma A.6 and since σi is an odd permutation, either
|Xi|=2, or τi1 and τi2 are also odd. Since Qi〈τi1〉ENΣXi

(Qi), and Qi=1 if |Xi|=2, we
get [O2(NΣXi

(Qi)):Qi]>2 in either case. Hence

[O2(NΣm(Q)):Q]> [O2(NΣX1
(Q1)):Q1][O2(NΣX2

(Q2)):Q2]> 4,

Q is not radical in Am, and (i) does not hold. So P is radical in G=Am.
Now, O2(NΣX1

(P1)NΣX2
(P2))6O2(NΣm(P )). Since P is radical in Am,

[O2(NΣm(P )):P ]6 2 and [
P :P ] = 2 =⇒ O2(NΣXi
(Pi))=Pi for i=1, 2.

So Pi is radical in ΣXi for i=1, 2. Let RiEPi be the subgroup of elements of Qi which
act via even permutations on Yi1 and on Yi2. If |Xi|>2, then τi1 and τi2 are odd as
just shown, so σ2

i =τi1τi2 /∈Ri, and Pi/Ri
∼=C4. But by [AF, Proposition 2A], each radical

2-subgroup of ΣXi is an iterated wreath product of elementary abelian 2-groups, and
hence Pi/[Pi, Pi] is elementary abelian. This is a contradiction, and we conclude that
|X1|=|X2|=2.

Thus P=Q〈σ〉, where Q acts trivially on X1∪X2, and σ acts on it as a product of
two transpositions. Also, for each i>3, Pi contains only even permutations of Xi since
Pi6Q (i /∈I). Hence each element of NG(P ) sends X1∪X2 to itself,

O2(NG(P ))>O2(AX1∪X2)> 〈σ〉,

and P is not radical in G.

We thank two of the referees for suggesting the following lemma and proof, both
simpler than those in the original version. Whenever X is a set with G-action, F2(X)
denotes the permutation module over the group ring F2[G] with F2-basis X.

Lemma A.8. Let G=Σm or G=Am, and set V =F2(m). Let ∆=CV (Σm)6V be
the 1-dimensional submodule generated by the sum of the elements in m. Let P6G be
a radical 2-subgroup, and let U6V be such that U/∆=CV/∆(P ).

(a) If P is not transitive on m, then U=CV (P ).
(b) If P is transitive on m and P0 is the stabilizer of some point in m, then

U/∆∼=(P/Fr(P )P0)∗. If, in addition, CP (U)∈Sylp(CG(U)) and m>8, then NG(P ) acts
on U/∆ via its full general linear group GL(U/∆).
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Proof. We identify V with the power set of m, with addition given by symmetric
difference. Thus ∆=〈m〉. If X∈U\CV (P ), then |X|= 1

2m and P acts transitively on the
partition {X,X+m}.

(b) If m>8 and P is transitive on m, then CV (P )=∆, so all elements of U\∆
are partitions as just described. The map R 7!m/R defines a bijection from the set of
subgroups of index 2 in P containing P0 to the set of partitions of order 2 on which P

acts transitively, and thus a natural bijection

Ψ: (P/Fr(P )P0)∗
∼=−−!CV/∆(P ) =U/∆.

If ϕ1, ϕ2, ϕ3∈(P/Fr(P )P0)∗ are non-zero elements such that ϕ3=ϕ1+ϕ2, then Ker(ϕi)
are the three subgroups of index 2 which contain some fixed subgroup R0 of index 4, so
the Ψ(ϕi) are the three partitions into sets of order 1

2m refined by m/R0, and Ψ(ϕ3)=
Ψ(ϕ1)+Ψ(ϕ2). Thus Ψ is an isomorphism.

We claim that

AutP (U) = {α∈Aut(U) | [α,U ]6∆}, (A.1)

AutG(U/∆) =GL(U/∆). (A.2)

By definition, U/∆=CV/∆(P ), and thus AutP (U) is contained in the right-hand side of
(A.1). For each g∈P\Fr(P )P0, there is R<P of index 2 which contains P0 but not g,
and g exchanges the two orbits of R on m. Thus CP (U)6Fr(P )P0 so

|AutP (U)|> |P/Fr(P )P0|= |U/∆|.

Since the right-hand side of (A.1) has order |U/∆|, this proves (A.1).
To see (A.2), fix α∈GL(U/∆), and let β∈Aut(P/Fr(P )P0) be such that β∗=Ψ−1αΨ.

Choose an orbit X∈m/Fr(P )P0, and choose any σ∈Σm such that σ(g(X))=β(g)(X) for
each g∈P/Fr(P )P0. For each ϕ∈(P/Fr(P )P0)∗, β sends Ker(β∗(ϕ)) to Ker(ϕ), so σ

sends Ψ(β∗(ϕ))=α(Ψ(ϕ)) to Ψ(ϕ). Thus σ normalizes U and induces the automorphism
α−1 on U/∆. So AutΣm(U/∆)=GL(U/∆). If |X|>2, then we can always arrange that
σ∈Am6G. If |X|=1, then m=|U/∆|>8, so rk(U/∆)>3, and GL(U/∆) has no subgroup
of index 2. Thus (A.2) holds in either case.

Now assume CP (U)∈Sylp(CG(U)). By the definition of U , NG(P )6NG(U), and in
particular, P normalizes CG(U). So P∈Sylp(PCG(U)). By (A.1) (and since each element
of AutG(U) fixes ∆), AutP (U) is normal in AutG(U). Hence PCG(U)ENG(U). By the
Frattini argument (Lemma 1.14 (b)), NG(U)=PCG(U)·NNG(U)(P )=CG(U)·NG(P ). So,
by (A.2),

AutNG(P )(U/∆) =AutG(U/∆) =GL(U/∆).
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(a) Now assume that U>CV (P ); i.e., that CV/∆(P )>CV (P )/∆. Then there is a
partition {X,X ′} of m upon which P acts transitively. Let Q<P be the subgroup of
index 2 which stabilizes X and X ′. Then P/Q acts freely on m/Q, so it acts transitively
on m/Q by Lemma A.7 (ii), and P acts transitively on m.
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LAGA, UMR 7539 du CNRS
99, Av. J-B Clément
FR-93430 Villetaneuse
France
bobol@math.univ-paris13.fr

Received August 25, 2011
Received in revised form January 26, 2013

mailto:Bob Oliver <bobol@math.univ-paris13.fr>

	Existence and uniqueness of linking systems:
Chermak’s proof via obstruction theory
	1 Notation and background
	2 The Thompson subgroup and offenders
	3 Proof of the main theorem
	4 Proof of Proposition 3.2
	Appendix A. Radical p-chains and free submodules
	References




