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84 g. cortiñas and a. thom

7.2. Second proof of Rosenberg’s conjecture . . . . . . . . . . . . . . 119

7.3. The homotopy invariance theorem . . . . . . . . . . . . . . . . . 120

7.4. A vanishing theorem for homology theories . . . . . . . . . . . . 122

8. Applications of the homotopy invariance and vanishing homology
theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1. K-regularity for commutative C∗-algebras . . . . . . . . . . . . 123

8.2. Hochschild and cyclic homology of commutative C∗-algebras . 124

8.3. The Farrell–Jones isomorphism conjecture . . . . . . . . . . . . 126

8.4. Adams operations and the decomposition of rational K-theory 127

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

1. Introduction

In his foundational paper [39], Jean-Pierre Serre asked whether all finitely generated pro-
jective modules over the polynomial ring k[t1, ..., tn] over a field k are free. This question,
which became known as Serre’s conjecture, remained open for about twenty years. An
affirmative answer was given independently by Daniel Quillen [35] and Andrei Suslin [41].
Richard G. Swan observed in [45] that the Quillen–Suslin theorem implies that all finitely
generated projective modules over the Laurent polynomial ring k[t1, t−1

1 , ..., tn, t
−1
n ] are

free. This was later generalized by Joseph Gubeladze [19], [20], who proved, among other
things, that if M is an abelian, cancellative, torsion-free, semi-normal monoid, then ev-
ery finitely generated projective module over k[M ] is free. Quillen–Suslin’s theorem and
Swan’s theorem are the special cases M=Nn

0 and M=Zn of Gubeladze’s result. On the
other hand, it is classical that if X is a contractible compact Hausdorff space, then all
finitely generated projective modules over the algebra C(X) of complex-valued continu-
ous functions on X—which by another theorem of Swan, are the same thing as locally
trivial complex vector bundles on X—are free. In this paper we prove the following result
(see Theorem 6.3).

Theorem 1.1. Let X be a contractible compact space and M be a countable, can-
cellative, torsion-free, semi-normal, abelian monoid. Then every finitely generated pro-
jective module over C(X)[M ] is free.

Moreover we show (Theorem 6.10) that bundles of finitely generated free C[M ]-
modules over a not necessarily contractible, compact Hausdorff space X which are direct
summands of trivial bundles, are locally trivial. The case M=Nn

0 of Theorem 1.1 gives
a parameterized version of Quillen–Suslin’s theorem. The case M=Zn is connected with
a conjecture of Jonathan Rosenberg [38] which predicts that the negative algebraic K-
theory groups of C(X) are homotopy invariant for compact Hausdorff spaces X. Indeed,
if R is any ring, then the negative algebraic K-theory group K−n(R) is defined as a
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certain canonical direct summand of K0(R[Zn]); the theorem above thus implies that
K−n(C(X))=0 if X is contractible. Using this and excision, we derive the following
result (see Theorem 6.5).

Theorem 1.2. Let Comp be the category of compact Hausdorff spaces and let n>0.
Then the functor

Comp−!Ab,

X 7−!K−n(C(X)),

is homotopy invariant.

A partial result in the direction of Theorem 1.2 was obtained by Eric Friedlander and
Mark E. Walker in [15]. They proved that K−n(C(∆p))=0 for p>0, n>0. In §7.2 we give
a second proof of Theorem 1.2 which uses the Friedlander–Walker result. Elaborating
on their techniques, and combining them with our own methods, we obtain the following
general criterion for homotopy invariance (see Theorem 7.6).

Theorem 1.3. Let F be a functor on the category Comm/C of commutative C-
algebras with values in the category Ab of abelian groups. Assume that the following
three conditions are satisfied :

(i) F is split-exact on C∗-algebras;
(ii) F vanishes on coordinate rings of smooth affine varieties;
(iii) F commutes with filtering colimits.
Then the functor

Comp−!Ab,

X 7−!F (C(X)),

is homotopy invariant and F (C(X))=0 for X contractible.

Observe that K−n satisfies all the hypothesis of the theorem above (n>0). This
gives a third proof of Theorem 1.2. We also use Theorem 1.3 to prove the following
vanishing theorem for homology theories (see Theorem 7.7). In this paper a homology
theory on a category C of algebras is simply a functor E:C!Spt to the category of
spectra which preserves finite products up to homotopy.

Theorem 1.4. Let E:Comm/C!Spt be a homology theory of commutative C-
algebras and let n0∈Z. Assume that the following three conditions are satisfied :

(i) E satisfies excision on commutative C∗-algebras;
(ii) En commutes with filtering colimits for n>n0;
(iii) En(O(V ))=0 for each smooth affine algebraic variety V for n>n0.
Then En(A)=0 for every commutative C∗-algebra A for n>n0.
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Recall that a ring R is called K-regular if

coker(Kn(R)!Kn(R[t1, ..., tp]))= 0, p> 1, n∈Z.

As an application of Theorem 1.4 to the homology theory

F p(A) =hocofiber(K(A⊗CO(V ))!K(A⊗CO(V )[t1, ..., tp])),

where V is a smooth algebraic variety, we obtain the following result (Theorem 8.1).

Theorem 1.5. Let V be a smooth affine algebraic variety over C, R=O(V ) and A

be a commutative C∗-algebra. Then A⊗CR is K-regular.

The case R=C of the previous result was discovered by Jonathan Rosenberg, see
Remark 8.2.

We also give an application of Theorem 1.4 which concerns the algebraic Hochschild
and cyclic homology of C(X). We use the theorem in combination with the celebrated
results of Gerhard Hochschild, Bertram Kostant and Alex Rosenberg [24] and of Daniel
Quillen and Jean-Louis Loday [30] on the Hochschild and cyclic homology of smooth affine
algebraic varieties, and the spectral sequence of Christian Kassel and Arne Sletsjøe [27],
to prove the following result (see Theorem 8.6 for a full statement of our result and for
the appropriate definitions).

Theorem 1.6. Let k⊂C be a subfield. Write HH∗( ·/k), HC∗( ·/k), Ω∗
·/k, d and

H∗
dR( ·/k) for algebraic Hochschild and cyclic homology, algebraic Kähler differential

forms, exterior differentiation, and algebraic de Rham cohomology, all taken relative to
the field k. Let X be a compact Hausdorff space. Then, for n∈Z,

HHn(C(X)/k) =Ωn
C(X)/k,

HCn(C(X)/k) =
Ωn

C(X)/k

dΩn−1
C(X)/k

⊕
⊕

262p6n

Hn−2p
dR (C(X)/k).

We also apply Theorem 1.4 to the K-theoretic isomorphism conjecture of Farrell–
Jones and to the Bĕılinson–Soulé conjecture. The K-theoretic isomorphism conjecture
for the group Γ with coefficients in a ring R asserts that a certain assembly map

AΓ(R): HΓ(EVC(Γ),K(R))−!K(R[Γ])

is an equivalence. Applying Theorem 1.4 to the cofiber of the assembly map, we obtain
that if AΓ(O(V )) is an equivalence for each smooth affine algebraic variety V over C, then
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AΓ(A) is an equivalence for any commutative C∗-algebra A. The (rational) Bĕılinson–
Soulé conjecture concerns the decomposition of the rational K-theory of a commutative
ring into the sum of eigenspaces of the Adams operations

Kn(R)⊗Q =
⊕
i>0

K(i)
n (R).

The conjecture asserts that if R is regular noetherian, then

K(i)
n (R) = 0 for n>max{1, 2i}.

It is well known that the validity of the conjecture for R=C would imply that it also
holds for R=O(V ) whenever V is a smooth algebraic variety over C. We use Theorem 1.4
to show that the validity of the conjecture for C would further imply that it holds for
every commutative C∗-algebra.

Next we give an idea of the proofs of our main results, Theorems 1.1 and 1.3.
The basic idea of the proof of Theorem 1.1 goes back to Rosenberg’s article [36] and

ultimately to the usual proof of the fact that locally trivial bundles over a contractible
compact Hausdorff space are trivial. It consists of translating the question of the freedom
of projective modules into a lifting problem:

GL(C[M ])

π

��

X e
//

44

Pn(C[M ])
GL(C[M ])

GL[1,n](C[M ])×GL[n+1,∞)(C[M ])
.

ι
oo

(1.1)

Here we think of a projective module of constant rank n over C(X) as a map e to
the set of all rank-n idempotent matrices, which by Gubeladze’s theorem is the same as
the set Pn(C[M ]) of those matrices which are conjugate to the diagonal matrix 1n⊕0∞.
Thus g 7!g(1n⊕0∞)g−1 defines a surjective map GL(C[M ])!Pn(C[M ]) which identifies
the latter set with the quotient of GL(C[M ]) by the stabilizer of 1n⊕0∞, which is precisely
the subgroup GL[1,n](C[M ])×GL[n+1,∞)(C[M ]). For this setup to make sense we need
to equip each set involved in (1.1) with a topology in such a way that all maps in the
diagram are continuous. Moreover for the lifting problem to have a solution, it will suffice
to show that ι is a homeomorphism and that π is a compact fibration, i.e. that it restricts
to a fibration over each compact subset of the base.

In §4 we show that any countable-dimensional R-algebra R is equipped with a canon-
ical compactly generated topology which makes it into a topological algebra. A subset
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F⊂R is closed in this topology if and only if F∩B⊂B is closed for every compact semi-
algebraic subset B of every finite-dimensional subspace of R. In particular this applies
to M∞(R). The subset Pn(R)⊂M∞(R) carries the induced topology, and the map e of
(1.1) is continuous for this topology. The group GL(R) also carries a topology, generated
by the compact semi-algebraic subsets GLn(R)B . Here B⊂Mn(R) is any compact semi-
algebraic subset as before, and GLn(R)B consists of those n×n invertible matrices g for
which both g and g−1 belong to B. The subgroup GL[1,n](R)×GL[n+1,∞)(R)⊂GL(R)
turns out to be closed, and we show in §4.2—with the aid of Gregory Brumfiel’s theorem
on quotients of semi-algebraic sets (see Theorem 3.4)—that for a topological group G

of this kind, the quotient G/H by a closed subgroup H is again compactly generated
by the images of the compact semi-algebraic subsets defining the topology of G, and
these images are again compact, semi-algebraic subsets. Moreover the restriction of the
projection π:G!G/H over each compact semi-algebraic subset S⊂G is semi-algebraic.

We also show (Theorem 4.19) that π is a compact fibration. This boils down
to showing that if S⊂G is compact semi-algebraic, and T=f(S), then we can find
an open covering of T such that π has a section over each open set in the covering.
Next we observe that if U is any space, then the group map(U,G) acts on the set
map(U,G/H), and a map U!G/H lifts to U!G if and only if its class in the quo-
tient F (U)=map(U,G/H)/map(U,G) is the class of the trivial element: the constant
map u 7!H (u∈U). For example the class of the composition of π with the inclusion
S⊂G is the trivial element of F (S). Hence if p=π|S :S!T , then F (p) sends the inclu-
sion T⊂G/H to the trivial element of F (S).

In §2 we introduce a notion of (weak) split-exactness for contravariant functors of
topological spaces with values in pointed sets; for example the functor F introduced
above is split-exact (Lemma 2.2). The key technical tool for proving that π is a fibration
is the following result (see Theorem 3.14); its proof uses the good topological properties
of semi-algebraic sets and maps, especially Hardt’s triviality theorem (Theorem 3.10).

Theorem 1.7. Let T be a compact semi-algebraic subset of Rk. Let S be a semi-
algebraic set and let f :S!T be a proper continuous semi-algebraic surjection. Then,
there exists a semi-algebraic triangulation of T such that for every weakly split-exact
contravariant functor F from the category Pol of compact polyhedra to the category
Set− of pointed sets, and every simplex ∆n in the triangulation, we have

ker(F (∆n)!F (f−1(∆n)))= ∗.

Here ker is the kernel in the category of pointed sets, i.e. the fiber over the base point.
In our situation Theorem 1.7 applies to show that there is a triangulation of T⊂G/H such
that the projection π has a section over each simplex in the triangulation. A standard
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argument now shows that T has an open covering (by open stars of a subdivision of the
previous triangulation) such that π has section over each open set in the covering. Thus
in diagram (1.1) we have that π is a compact fibration and that e is continuous. The
map

ι:
GL(R)

GL[1,n](R)×GL[n+1,∞)(R)
−!Pn(R)

is continuous for every countable-dimensional R-algebra R (see §5.1). We show in Propo-
sition 5.5 that it is a homeomorphism whenever the map

K0(`∞(R))−!
∏
n>1

K0(R) (1.2)

is injective. Here `∞(R) is the set of all sequences N!R whose image is contained in
one of the compact semi-algebraic subsets B⊂R which define the topology of R; it is iso-
morphic to `∞(R)⊗R (Lemma 5.4). The algebraic compactness theorem (Theorem 5.9)
says that if R is a countable-dimensional C-algebra such that

K0(O(V )) ∼−!K0(O(V )⊗CR) for all smooth affine V, (1.3)

then (1.2) is injective. A theorem of Swan (see Theorem 6.2) implies that R=C[M ]
satisfies (1.3). Thus the map ι of diagram (1.1) is a homeomorphism. This concludes the
sketch of the proof of Theorem 1.1.

The proof of the algebraic compactness theorem uses the following result (see The-
orem 5.7).

Theorem 1.8. Let F and G be functors from commutative C-algebras to sets. As-
sume that both F and G preserve filtering colimits. Let τ :F!G be a natural trans-
formation. Assume that τ(O(V )) is injective (resp. surjective) for each smooth affine
algebraic variety V over C. Then τ(`∞(C)) is injective (resp. surjective).

The proof of Theorem 1.8 uses a technique which we call algebraic approximation,
which we now explain. Any commutative C-algebra is the colimit of its subalgebras of
finite type, which form a filtered system. If the algebra contains no nilpotent elements,
then each of its subalgebras of finite type is of the form O(Y ) for an affine variety Y ,
by which we mean a reduced affine scheme of finite type over C. If C[f1, ..., fn]⊂`∞(C)
is the subalgebra generated by f1, ..., fn, and C[f1, ..., fn]∼=O(Y ), then Y is isomorphic
to a closed subvariety of Cn, and f=(f1, ..., fn) defines a map from N to a precompact
subset of the space Yan of closed points of Y equipped with the topology inherited by the
euclidean topology on Cn. The space Yan is equipped with the structure of a (possibly
singular) analytic variety, whence the subscript. Summing up, we have

`∞(C) = colim
N!Yan

O(Y ), (1.4)
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where the colimit runs over all affine varieties Y and all maps with precompact image.
The proof of Theorem 1.8 consists of showing that in (1.4) we can restrict to maps N!V
with V smooth. This uses Hironaka’s desingularization [23] to lift a map f : N!V with
V affine and singular, to a map f ′: N!Ṽ with Ṽ smooth and possibly non-affine, and
Jouanoulou’s device [25] to further lift f ′ to a map f ′′: N!W with W smooth and affine.

The idea of algebraic approximation appears in the work of Rosenberg [36], [37],
[38], and later in the article of Friedlander and Walker [15]. One source of inspiration is
the work of Suslin [42]. In [42], Suslin studies an inclusion of algebraically closed fields
L⊂K and analyzes K successfully in terms of its finitely generated L-subalgebras.

Next we sketch the proof of Theorem 1.3. The first step is to reduce to the polyhedral
case. For this we use Theorem 1.9 below, proved in Theorem 7.2. Its proof uses another
algebraic approximation argument, together with a result of Allan Calder and Jerrold
Siegel, which says that the right Kan extension to Comp of a homotopy invariant functor
defined on Pol is homotopy invariant on Comp.

Theorem 1.9. Let F :Comm!Ab be a functor. Assume that F satisfies each of the
following conditions:

(i) F commutes with filtered colimits;
(ii) F is split-exact on C∗-algebras;
(iii) the functor Pol!Ab, D 7!F (C(D)), is homotopy invariant.
Then the functor

Comp−!Ab,

X 7−!F (C(X)),

is homotopy invariant.

Next, Proposition 2.3 says that we can restrict to showing that F vanishes on con-
tractible polyhedra. Since any contractible polyhedron is a retract of its cone, which is a
starlike polyhedron, we further reduce to showing that F vanishes on starlike polyhedra.
Using excision, we may restrict once more, to proving that F (∆p)=0 for all p. For this
we follow the strategy used by Friedlander–Walker in [15]. To start, we use algebraic
approximation again. We write

C(∆p) = colim
∆p!Yan

O(Y ), (1.5)

where the colimit runs over all continuous maps from ∆p to affine algebraic varieties,
equipped with the euclidean topology. Since F is assumed to vanish on O(V ) for smooth
affine V, it would suffice to show that any map ∆p!Yan factors as ∆p!Van!Yan with
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V smooth and affine. Actually using excision again we may restrict to showing this for
each simplex in a sufficiently fine triangulation of ∆p. As in the proof of Theorem 1.1,
this is done using Hironaka’s desingularization, Jouanoulou’s device and Theorem 1.7.

The rest of this paper is organized as follows. In §2 we give the appropriate definitions
and first properties of split-exactness. We also recall some facts about algebraic K-theory
and cyclic homology, such as the key results of Andrei Suslin and Mariusz Wodzicki on
excision for algebraic K-theory and algebraic cyclic homology. In §3, we recall some
facts from real algebraic geometry, and prove Theorem 1.7 (Theorem 3.14). Large semi-
algebraic groups and their associated compactly generated topological groups are the
subject of §4. The main result of this section is the fibration theorem (Theorem 4.19)
which says that the quotient map of such a group by a closed subgroup is a compact
fibration. Then, §5 is devoted to algebraic compactness, that is, to the problem of giving
conditions on a countable-dimensional algebra R so that the map

ι:
GL(R)

GL[1,n](R)×GL[n+1,∞)(R)
−!Pn(R)

be a homeomorphism. The connection between this problem and the algebra `∞(R) of
bounded sequences is established by Proposition 5.5. Theorem 1.8 is proved in Theo-
rem 5.7. Theorem 5.9 establishes that the map (1.2) is injective whenever (1.3) holds.
§6 contains the proofs of Theorems 1.1 and 1.2 (Theorems 6.3 and 6.5). We also show
(Theorem 6.10) that if M is a monoid as in Theorem 1.1 then any bundle of finitely gen-
erated free C[M ] modules over a compact Hausdorff space which is a direct summand of
a trivial bundle is locally trivial. In §7 we deal with homotopy invariance. Theorems 1.9,
1.3 and 1.4 (Theorems 7.2, 7.6 and 7.7) are proved in this section, where also a second
proof of Rosenberg’s conjecture, using a result of Friedlander and Walker, is given (see
§7.2). Finally, §8 is devoted to applications of the homotopy invariance and vanishing
homology theorems, including Theorems 1.5 and 1.6 (Theorems 8.1 and 8.6) and also
to the applications to the conjectures of Farrell–Jones (Theorems 8.7 and 8.10) and of
Bĕılinson–Soulé (Theorem 8.14).

2. Split-exactness, homology theories and excision

2.1. Set-valued split-exact functors on the category of compact
Hausdorff spaces

In this section we consider contravariant functors from the category of compact Hausdorff
topological spaces to the category Set− of pointed sets. Recall that if T is a pointed set
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and f :S!T is a map, then

ker f = {s∈S : f(s) = ∗}.

We say that a functor F :Comp!Set− is split-exact if for each push-out square

X12
ι1 //

ι2

��

X1

��

X2
// X

(2.1)

of topological spaces with ι1 or ι2 split-injective, the map

F (X)−!F (X1)×F (X12)F (X2)

is a surjection with trivial kernel. We say that F is weakly split-exact if the map above
has trivial kernel. In case the functor takes values in abelian groups, the notion of split-
exactness above is equivalent to the usual one. For more details on split-exact functors
taking values in the category Ab of abelian groups, see §2.4.

In the next lemma and elsewhere, if X and Y are topological spaces, we write

map(X,Y ) = {f :X!Y continuous}

for the set of continuous maps from X to Y .

Lemma 2.1. Let (Y, y) be a pointed topological space. The contravariant functor

X 7−!map(X,Y ),

from compact Hausdorff topological spaces to pointed sets, is split-exact.

Proof. Note that map(X,Y ) is naturally pointed by the constant map taking the
value y∈Y . Let (2.1) be a push-out of compact Hausdorff topological spaces and assume
that ι1 is a split-injection. It is sufficient to show that the diagram

map(X12, Y ) map(X1, Y )oo

map(X2, Y )

OO

map(X,Y )

OO

oo

is a pull-back. But this is immediate from the universal property of a push-out.
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Lemma 2.2. Let H⊂G be an inclusion of topological groups. Then the pointed set
map(X,G/H) carries a natural left action of the group map(X,G), and the functor

X 7−! map(X,G/H)
map(X,G)

is split-exact.

Proof. We need to show that the map

map(X,G/H)
map(X,G)

−! map(X1, G/H)
map(X1, G)

×map(X12,G/H)/map(X12,G)
map(X2, G/H)

map(X2, G)
(2.2)

is a surjection with trivial kernel. Let f :X!G/H be a map such that its pull-backs
fi:Xi!G/H admit continuous lifts f̂i:Xi!G. Although the pull-backs of f̂1 and f̂2 to
X12 might not agree, we can fix this problem. Let σ be a continuous splitting of the
inclusion X12 ↪!X1. Define the map

γ:X1−!H,

x 7−! (f̂1|X12(σ(x)))−1(f̂2|X12(σ(x))).

Note that f̂1γ is still a lift of f1 and agrees with f̂2 on X12; hence they define a map
f̂ :X!G which lifts f . This proves that (2.2) has trivial kernel. Let now f1:X1!G/H
and f2:X2!G/H be such that there exists a function θ:X12!G with θ(x)f1(x)=f2(x)
for all x∈X12. Using the splitting σ of the inclusion X12 ↪!X1 again, we can extend θ to
X1 to obtain f ′1(x)=θ(σ(x))f1(x) for x∈X1. Note that f ′1 is just another representative
of the class of f1. Since f ′1 and f2 agree onX12, we conclude that there exists a continuous
map f :X!G/H which pulls back to f ′1 on X1 and to f2 on X2. This proves that (2.2)
is surjective.

Proposition 2.3. Let C be either the category Comp of compact Hausdorff spaces
or the full subcategory Pol of compact polyhedra. Let F :C!Ab be a split-exact functor.
Assume that F (X)=0 for contractible X∈C. Then F is homotopy invariant.

Proof. We have to prove that if X∈C and 1X×0:X!X×[0, 1] is the inclusion, then
F (1X×0):F (X×[0, 1])!F (X) is a bijection. Since it is obviously a split-surjection it
remains to show that this map is injective. Consider the push-out diagram

X

��

1X×0
// X×[0, 1]

��

∗ // cX.

By split-exactness, the map F (cX)!P :=F (∗)×F (X)F (X×[0, 1]) is onto. Since we are
also assuming that F vanishes on contractible spaces, we further have F (∗)=F (cX)=0,
whence P=ker(F (1X×0))=0.
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2.2. Algebraic K-theory

In the previous subsection we considered contravariant functors on spaces; now we turn
our attention to the dual picture of covariant functors from categories of algebras to
pointed sets or abelian groups. The most important example for us is algebraic K-
theory. Before we go on, we want to quickly recall some definitions and results. Let R
be a unital ring. The abelian group K0(R) is defined to be the Grothendieck group of
the monoid of isomorphism classes of finitely generated projective R-modules with direct
sum as addition. We define

Kn(R) =πn(BGL(R)+), ∗) for all n> 1,

where X 7!X+ denotes Quillen’s plus-construction [34]. Bass’ nil K-groups of a ring are
defined as

NKn(R) = coker(Kn(R)!Kn(R[t])). (2.3)

The so-called fundamental theorem gives an isomorphism

Kn(R[t, t−1])=Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R) for all n> 1, (2.4)

which holds for all unital rings R. One can use this to define K-groups and nil groups in
negative degrees. Indeed, if one puts

Kn−1(R) = coker(Kn(R[t])⊕Kn(R[t−1])!Kn(R[t, t−1])),

negative K-groups can be defined inductively. There is a functorial spectrum K(R), such
that

Kn(R) =πnK(R), n∈Z. (2.5)

This spectrum can be constructed in several equivalent ways (see e.g. [17], [32], [33, §5],
[49, §6] and [50]). Functors from the category of algebras to spectra and their properties
will be studied in more detail in the next subsection.

A ring R is calledKn-regular if the mapKn(R)!Kn(R[t1, ..., tm]) is an isomorphism
for all m; it is called K-regular if it is Kn-regular for all n. It is well known that if R is
a regular noetherian ring then R is K-regular and KnR=0 for n<0. In particular this
applies when R is the coordinate ring of a smooth affine algebraic variety over a field. We
think of the Laurent polynomial ring R[t1, t−1

1 , ..., tn, t
−1
n ] as the group ring R[Zn] and

use the fact that if the natural map K0(R)!K0(R[Zn]) is an isomorphism for all n∈N,
then all negative algebraic K-groups and all (iterated) nil K-groups in negative degrees
vanish. This can be proved with an easy induction argument.
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Remark 2.4. Iterating the nil-group construction, one obtains the following formula
for the K-theory of the polynomial ring in m-variables

Kn(R[t1, ..., tm])=
m⊕

p=0

NpKn(R)⊗
∧p Zm. (2.6)

Here
∧p is the exterior power and NpKn(R) denotes the iterated nil group defined using

the analogue of formula (2.3). Thus a ring R is Kn-regular if and only if NpKn(R)=0 for
all p>0. In [1] Hyman Bass raised the question of whether the condition that NKn(R)=0
is already sufficient for Kn-regularity. This question was settled in the negative in [9,
Theorem 4.1], where an example of a commutative algebra R of finite type over Q was
given such that NK0(R)=0 but N2K0(R) 6=0. On the other hand, it was proved [8,
Corollary 6.7] (see also [21]) that if R is of finite type over a large field such as R or
C, then NKn(R)=0 does imply that R is Kn-regular. This is already sufficient for
our purposes, since the rings this paper is concerned with are algebras over R. For
completeness let us remark further that if R is any ring such that NKn(R)=0 for all n
then R is K-regular, i.e. Kn-regular for all n∈Z. As observed by Jim Davis in [11,
Corollary 3] this follows from Frank Quinn’s theorem that the Farrell–Jones conjecture
is valid for the group Zn (see also [8, Theorem 4.2]).

2.3. Homology theories and excision

We consider functors and homology theories of associative, not necessarily unital algebras
over a fixed field k of characteristic zero. In what follows, C will denote either the category
Ass/k of associative k-algebras or the full subcategory Comm/k of commutative algebras.
A homology theory on C is a functor E:C!Spt to the category of spectra which preserves
finite products up to homotopy. That is, E

(∏
i∈I Ai

)
!

∏
i∈I E(Ai) is a weak equivalence

for finite I. If A∈C and n∈Z, we write En(A)=πnE(A) for the nth stable homotopy
group. Let E be a homology theory and let

0−!A−!B−!C −! 0 (2.7)

be an exact sequence (or extension) in C. We say that E satisfies excision for (2.7), if
E(A)!E(B)!E(C) is a homotopy fibration. The algebra A is E-excisive if E satisfies
excision on any extension (2.7) with kernel A. If A⊂C is a subcategory, and E satisfies
excision for every sequence (2.7) in A, then we say that E satisfies excision on A.

Remark 2.5. If we have a functor E which is only defined on the subcategory C1⊂C

of unital algebras and unital homomorphisms, and which preserves finite products up to
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homotopy, then we can extend it to all of C by setting

E(A) =hofiber(E(A+
k )!E(k)).

Here A+
k denotes the unitalization of A as a k-algebra. The restriction of the new functor

E to unital algebras is not the same as the old one, but it is homotopy equivalent to it.
Indeed, for A unital, we have A+

k
∼=A⊕k as k-algebras. Since E preserves finite products,

this implies the claim. In this article, whenever we encounter a homology theory defined
only on unital algebras, we shall implicitly consider it extended to non-unital algebras
by the procedure just explained. Similarly, if F :C1!Ab is a functor to abelian groups
which preserves finite products, it extends to all of C by

F (A) =ker(F (A+
k )!F (k)).

In particular this applies when F=En is the homology functor associated with a homology
theory as above.

The main examples of homology theories we are interested in are K-theory, Hoch-
schild homology and the various variants of cyclic homology. A milestone in understand-
ing excision in K-theory is the following result of Suslin and Wodzicki [43], [44].

Theorem 2.6. (Suslin–Wodzicki) A Q-algebra R is K-excisive if and only if for the
Q-algebra unitalization R+

Q=R⊕Q we have

Tor
R+

Q
n (Q, R) = 0 for all n> 0.

For example it was shown in [44, Theorem C] that any ring satisfying a certain
“triple factorization property” is K-excisive; since any C∗-algebra has this property,
([44, Proposition 10.2]) we have the following result.

Theorem 2.7. (Suslin–Wodzicki) C∗-algebras are K-excisive.

Excision for Hochschild and cyclic homology of k-algebras, denoted respectively by
HH( ·/k) and HC( ·/k), has been studied in detail by Wodzicki in [52]; as a particular
case of his results, we cite the following theorem.

Theorem 2.8. (Wodzicki) The following are equivalent for a k-algebra A:
(1) A is HH( ·/k)-excisive;
(2) A is HC( ·/k)-excisive;

(3) TorA+
k

∗ (k,A)=0.

Note that it follows from (2.6) and (2.8) that a k-algebra A is K-excisive if and only
if it is HH( ·/Q)-excisive.

Remark 2.9. Wodzicki has proved (see [53, Theorems 1 and 4]) that if A is a C∗-
algebra then A satisfies the conditions of Theorem 2.8 for any subfield k⊂C.



algebraic geometry of topological spaces i 97

2.4. Milnor squares and excision

We now record some facts about Milnor squares of k-algebras and excision.

Definition 2.10. A square of k-algebras

A //

��

B

f

��

C
g

// D

(2.8)

is said to be a Milnor square if it is a pull-back square and either f or g is surjective. It
is said to be split if either f or g has a section.

Let F be a functor from C to abelian groups and let

0 // A // B // C
vv

// 0 (2.9)

be a split-extension in C. We say that F is split-exact on (2.9) if

0 // F (A) // F (B) // F (C) // 0

is (split-)exact. If A⊂C is a subcategory and F is split-exact on all split-exact sequences
contained in A, then we say that F is split-exact on A.

Lemma 2.11. Let E:C!Spt be a homology theory and (2.8) be a Milnor square.
Assume that ker(f) is E-excisive. Then E maps (2.8) to a homotopy cartesian square.

Lemma 2.12. Let F :C!Ab be a functor, A⊂C be a subcategory closed under kernels
and (2.8) be a split Milnor square in A. Assume that F is split-exact on A. Then the
sequence

0−!F (A)−!F (B)⊕F (C)−!F (D)−! 0

is split-exact.

3. Real algebraic geometry and split-exact functors

In this section, we recall several results from real algebraic geometry and prove a theorem
on the behavior of weakly split-exact functors with respect to proper semi-algebraic
surjections (see Theorem 3.14). Recall that a semi-algebraic set is a priori a subset of
Rn which is described as the solution set of a finite number of polynomial equalities
and inequalities. A map between semi-algebraic sets is semi-algebraic if its graph is a
semi-algebraic set. For general background on semi-algebraic sets, consult [2].
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3.1. General results about semi-algebraic sets

Let us start with recalling the following two propositions.

Proposition 3.1. (See [2, Proposition 3.1]) The closure of a semi-algebraic set is
semi-algebraic.

Proposition 3.2. (See [2, Proposition 2.83]) Let S and T be semi-algebraic sets,
S′⊂S and T ′⊂T be semi-algebraic subsets and f :S!T be a semi-algebraic map. Then
f(S′) and f−1(T ′) are semi-algebraic.

Note that a semi-algebraic map does not need to be continuous. Moreover, within
the class of continuous maps, there are surjective maps f :S!T for which the quotient
topology induced by S does not agree with the topology on T . An easy example is
the projection map from {(0, 0)}∪{(t, t−1):t>0} to [0,∞). This motivates the following
definition.

Definition 3.3. Let S and T be semi-algebraic sets. A continuous semi-algebraic
surjection f :S!T is said to be topological, if for every semi-algebraic map g:T!Q the
composition g�f is continuous if and only if g is continuous.

Brumfiel proved the following result, which says that (under certain conditions)
semi-algebraic equivalence relations lead to good quotients.

Theorem 3.4. (See [5, Theorem 1.4]) Let S be a semi-algebraic set and let R⊂S×S
be a closed semi-algebraic equivalence relation. If π1:R!S is proper, then there exists
a semi-algebraic set T and a topological semi-algebraic surjection f :S!T such that

R= {(s1, s2)∈S×S : f(s1) = f(s2)}.

Remark 3.5. Note that the properness assumption in the previous theorem is auto-
matically fulfilled if S is compact. This is the case we are interested in.

Corollary 3.6. Let S, S′ and T be compact semi-algebraic sets and f :T!S and
f ′:T!S′ be continuous semi-algebraic maps. Then, the topological push-out S∪T S

′ car-
ries a canonical semi-algebraic structure such that the natural maps σ:S!S∪T S

′ and
σ′:S′!S∪T S

′ are semi-algebraic.

For semi-algebraic sets, there is an intrinsic notion of connectedness, which is given
by the following definition.

Definition 3.7. A semi-algebraic set S⊂Rk is said to be semi-algebraically connected
if it is not a non-trivial union of semi-algebraic subsets which are both open and closed
in S.
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One of the first results on connectedness of semi-algebraic sets is the following the-
orem.

Theorem 3.8. (See [2, Theorem 5.20]) Every semi-algebraic set S is the disjoint
union of a finite number of semi-algebraically connected semi-algebraic sets which are
both open and closed in S.

Next we come to aspects of semi-algebraic sets and continuous semi-algebraic maps
which differ drastically from the expected results for general continuous maps. In fact,
there is a far-reaching generalization of Ehresmann’s theorem about local triviality of
submersions. Let us consider the following definition.

Definition 3.9. Let S and T be two semi-algebraic sets and f :S!T be a continuous
semi-algebraic function. We say that f is a semi-algebraically trivial fibration if there
exist a semi-algebraic set F and a semi-algebraic homeomorphism θ:T×F!S such that
f �θ is the projection onto T .

A seminal theorem is Hardt’s triviality result, which says that away from a subset
of T of smaller dimension, every map f :S!T looks like a semi-algebraically trivial
fibration.

Theorem 3.10. ([2] or [22, §4]) Let S and T be two semi-algebraic sets and f :S!T
be a continuous semi-algebraic function. Then there exists a closed semi-algebraic subset
V ⊂T with dimV <dimT , such that f is a semi-algebraically trivial fibration over every
semi-algebraic connected component of T \V .

We shall also need the following result about semi-algebraic triangulations.

Theorem 3.11. ([2, Theorem 5.41]) Let S⊂Rk be a compact semi-algebraic set,
and let S1, ..., Sq be semi-algebraic subsets. There exists a simplicial complex K and a
semi-algebraic homeomorphism h: |K|!S such that each Sj is the union of images of
open simplices of K.

Remark 3.12. In the preceding theorem, the case where the subsets Sj are closed
is of special interest. Indeed, if the subsets Sj are closed, the theorem implies that the
triangulation of S induces triangulations of Sj for each j∈{1, ..., q}.

The following proposition is an application of Theorems 3.10 and 3.11.

Proposition 3.13. Let T⊂Rm be a compact semi-algebraic subset, S be a semi-
algebraic set and f :S!T be a continuous semi-algebraic map. Then there exist a semi-
algebraic triangulation of T and a finite sequence of closed subcomplexes

∅ =Vr+1⊂Vr ⊂Vr−1⊂ ...⊂V1⊂V0 =T
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such that the following conditions are satisfied :
(i) for each k∈{0, ..., r} we have dimVk+1<dimVk and the map

f |f−1(Vk\Vk+1): f
−1(Vk\Vk+1)−!Vk\Vk+1

is a semi-algebraically trivial fibration over every semi-algebraic connected component ;
(ii) each simplex in the triangulation lies in some Vk and has at most one face of

codimension 1 which intersects Vk+1.

Proof. We set n=dimT . By Theorem 3.10, there exists a closed semi-algebraic
subset V1⊂T , with dimV1<n, such that f is a semi-algebraic trivial fibration over every
semi-algebraic connected component of T \V1. Consider now f |f−1(V1): f

−1(V1)!V1 and
proceed as before to find V2⊂V1. By induction, we find a chain

∅⊂Vr ⊂Vr−1⊂ ...⊂V1⊂V0 =T

such that Vk⊂Vk−1 is a closed semi-algebraic subset and

f |f−1(Vk−1\Vk): f−1(Vk−1\Vk)−!Vk−1\Vk

is a semi-algebraically trivial fibration over every semi-algebraic connected component,
for all k∈{1, ..., r}. Using Theorem 3.11, we may now choose a semi-algebraic triangula-
tion of T such that the subsets Vk are subcomplexes. Taking a barycentric subdivision,
each simplex lies in Vk for some k∈{0, ..., r} and has at most one face of codimension 1
which intersects the set Vk+1.

3.2. The theorem on split-exact functors and proper maps

The following is our main technical result. It is the key to the proofs of Theorems 4.19
and 7.6.

Theorem 3.14. Let T be a compact semi-algebraic subset of Rk. Let S be a semi-
algebraic set and let f :S!T be a proper continuous semi-algebraic surjection. Then,
there exists a semi-algebraic triangulation of T such that for every weakly split-exact
contravariant functor F :Pol!Set− and every simplex ∆n in the triangulation, we have

ker(F (∆n)!F (f−1(∆n)))= ∗.

Proof. Choose a triangulation of T and a sequence of subcomplexes Vk⊂T as in
Proposition 3.13. We shall show that ker(F (∆n)!F (f−1(∆n)))=∗ for each simplex in
the chosen triangulation. The proof is by induction on the dimension of the simplex. The
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statement is clear for zero-dimensional simplices, since f is surjective. Let ∆n be an n-
dimensional simplex in the triangulation. By assumption, f is a semi-algebraically trivial
fibration over ∆n\∆n−1 for some face ∆n−1⊂∆n. Hence, there exists a semi-algebraic
set K and a semi-algebraic homeomorphism

θ: (∆n\∆n−1)×K −! f−1(∆n\∆n−1)

over ∆n\∆n−1. Consider the inclusion f−1(∆n−1)⊂f−1(∆n). Since f−1(∆n−1) is an
absolute neighborhood retract, there exists a compact neighborhood N of f−1(∆n−1)
in f−1(∆n) which retracts onto f−1(∆n−1). We claim that the set f(N) contains some
standard neighborhood A of ∆n−1. Indeed, assume that f(N) does not contain standard
neighborhoods. Then there exists a sequence in the complement of f(N) converging
to ∆n−1. Lifting this sequence, one can choose a convergent sequence in the complement
of N converging to f−1(∆n−1). This contradicts the fact that N is a neighborhood,
and hence there exists a standard compact neighborhood A of ∆n−1 in ∆n such that
f−1(A)⊂N . Since (∆n\∆n−1)×K∼=f−1(∆n\∆n−1), any retraction of ∆n onto A yields
a retraction of f−1(∆n) onto f−1(A). We have that f−1(A)⊂N , and thus we can con-
clude that f−1(∆n−1) is a retract of f−1(∆n).

By Corollary 3.6, the topological push-out

f−1(∆n−1) //

��

f−1(∆n)

��

∆n−1 // Z

carries a semi-algebraic structure. Moreover, by weak split-exactness, we have

ker(F (Z)!F (∆n−1)×F (f−1(∆n−1))F (f−1(∆n)))= ∗. (3.1)

Note that f−1(∆n\∆n−1)⊂Z by the definition of Z. We claim that the natural map
σ:Z!∆n is a semi-algebraic split-surjection. Indeed, identify

f−1(∆n\∆n−1) = (∆n\∆n−1)×K,

pick k∈K, and consider

Gk = {(d, (d, k))∈∆n×Z : d∈∆n\∆n−1}.

Then Gk is semi-algebraic by Proposition 3.1, and therefore defines a continuous semi-
algebraic map %k:∆n!Z which splits σ. Thus F (σ):F (∆n)!F (Z) is injective, whence

ker(F (∆n)!F (∆n−1)×F (f−1(∆n−1))F (f−1(∆n)))= ∗, (3.2)

by (3.1). But the kernel of F (∆n−1)!F (f−1(∆n−1)) is trivial by induction, so the same
must be true of F (∆n)!F (f−1(∆n)), by (3.2).
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4. Large semi-algebraic groups and the compact fibration theorem

4.1. Large semi-algebraic structures

Recall that a partially ordered set (poset) Λ is filtered if for any λ, γ∈Λ there exists µ such
that µ>λ and µ>γ. We shall say that a filtered poset Λ is archimedian if there exists
a monotone map φ: N!Λ, from the ordered set of natural numbers, which is cofinal, i.e.
it is such that for every λ∈Λ there exists an n∈N such that φ(n)>λ. If X is a set, we
write P (X) for the partially ordered set of all subsets of X, ordered by inclusion.

A large semi-algebraic structure on a set X consists of the following:
(i) an archimedian filtered partially ordered set Λ;
(ii) a monotone map X: Λ!P (X), λ 7!Xλ, such that X=

⋃
λXλ;

(iii) a compact semi-algebraic structure on each Xλ such that if λ6µ then the
inclusion Xλ⊂Xµ is semi-algebraic and continuous.

We think of a large semi-algebraic structure on X as an exhaustive filtration {Xλ}λ

by compact semi-algebraic sets. We say that a structure {Xγ :γ∈Γ} is finer than a struc-
ture {Xλ :λ∈Λ} if for every γ∈Γ there exists λ∈Λ such that Xγ⊂Xλ and the inclusion
is continuous and semi-algebraic. Two structures are equivalent if each of them is finer
than the other. A large semi-algebraic set is a set X together with an equivalence class
of semi-algebraic structures on X. If X is a large semi-algebraic set, then any large
semi-algebraic structure {Xλ}λ in the equivalence class defining X is called a defining
structure for X. If X=(X,Λ) and Y =(Y,Γ) are large semi-algebraic sets, then a set map
f :X!Y is called a morphism if for every λ∈Λ there exists γ∈Γ such that f(Xλ)⊂Yγ

and such that the induced map f :Xλ!Yγ is semi-algebraic and continuous. We write
V∞ for the category of large semi-algebraic sets.

Remark 4.1. If f :X!Y is a morphism of large semi-algebraic sets, then we may
choose structures {Xn}n∈N and {Yn}n∈N such that f strictly preserves filtrations, i.e.
f(Xn)⊂Yn for all n. However, if X=Y , then there may not exist a structure {Xλ}λ such
that f(Xλ)⊂Xλ.

Remark 4.2. Consider the category Vs,b of compact semi-algebraic sets with contin-
uous semi-algebraic mappings and its ind-category ind-Vs,b. The objects are functors

T : (XT ,6)−!Vs,b,

where (XT ,6) is a filtered partially ordered set. We set

hom(T, S) = lim
d∈XT

colim
e∈XS

homVs,b
(T (d), S(e)).
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The category of large semi-algebraic sets is equivalent to the subcategory of those
ind-objects whose structure maps are injective and whose index posets are archimedean.
In particular, a filtering colimit of an archimedian system of injective homomorphisms
of large semi-algebraic sets is again a large semi-algebraic set.

If X and Y are large semi-algebraic sets with structures {Xλ :λ∈Λ} and {Yγ :γ∈Γ}
then the cartesian product X×Y is again a large semi-algebraic set, with structure
{Xλ×Yγ :(λ, γ)∈Λ×Γ}. A large semi-algebraic group is a group object G in V∞. Thus
G is a group which is a large semi-algebraic set and each of the maps defining the
multiplication, unit and inverse are homomorphisms in V∞. We shall additionally assume
that G admits a structure {Gλ}λ such that G−1

λ ⊂Gλ. This hypothesis, although not
strictly necessary, is satisfied by all the examples we shall consider, and makes proofs
technically simpler. We shall also need the notions of large semi-algebraic vector space
and of large semi-algebraic ring, which are defined similarly.

Example 4.3. Any semi-algebraic set S can be considered as a large semi-algebraic
set, with the structure defined by its compact semi-algebraic subsets, which is equivalent
to the structure defined by any exhaustive filtration of S by compact semi-algebraic
subsets. In particular this applies to any finite-dimensional real vector space V ; moreover
the vector space operations are semi-algebraic and continuous, so that V is a (large)
semi-algebraic vector space. Any linear map between finite-dimensional vector spaces is
semi-algebraic and continuous, whence it is a homomorphism of semi-algebraic vector
spaces. Moreover, the same is true of any multilinear map f :V1×...×Vn!Vn+1 between
finite-dimensional vector spaces.

Definition 4.4. Let V be a real vector space of countable dimension. The fine large
semi-algebraic structure F(V ) is that given by all the compact semi-algebraic subsets of
all the finite-dimensional subspaces of V .

Remark 4.5. The fine large semi-algebraic structure is reminiscent of the fine locally
convex topology which makes every complex algebra of countable dimension into a locally
convex algebra. For details, see [4, §II.2, Exercise 5].

Lemma 4.6. Let n>1, V1, ..., Vn+1 be countable-dimensional R-vector spaces and
f :V1×...×Vn!Vn+1 be a multilinear map. Equip each Vi with the fine large semi-
algebraic structure and V1×...×Vn with the product large semi-algebraic structure. Then
f is a morphism of large semi-algebraic sets.

Proof. In view of the definition of the fine large semi-algebraic structure, the general
case is immediate from the finite-dimensional case.
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Proposition 4.7. Let A be a countable-dimensional R-algebra, equipped with the
fine large semi-algebraic structure.

(i) A is a large semi-algebraic ring.
(ii) Assume that A is unital. Then the group GLn(A) together with the structure

F(GLn(A))= {{g ∈GLn(A) : g, g−1 ∈F} :F ∈F(Mn(A))}

is a large semi-algebraic group, and if A!B is an algebra homomorphism, then the
induced group homomorphism GLn(A)!GLn(B) is a homomorphism of large semi-
algebraic sets.

Proof. Part (i) is immediate from Lemma 4.6. If F∈F(Mn(A)), write

GLn(A)F = {g ∈GLn(A) : g, g−1 ∈F}. (4.1)

We will show that GLn(A)F is a compact semi-algebraic set.
Write m,πi:Mn(A)×Mn(A)!Mn(A) for the multiplication and projection maps,

i=1, 2, and τ :Mn(A)×Mn(A)!Mn(A)×Mn(A) for the permutation of factors. If A is
unital, then

GLn(A)F =π1((m|F×F )−1(1)∩τ(m|F×F )−1(1)),

which is compact semi-algebraic, by Proposition 3.2.

We will also study the large semi-algebraic group GLS(A) for a subset S⊂Z. This
is understood to be the group of matrices g indexed by Z, where gi,j =δi,j if i /∈S or j /∈S.

Corollary 4.8. If A is unital and S⊂Z, then GLS(A) carries a natural large
semi-algebraic group structure, namely that of the colimit GLS(A)=

⋃
T GLT (A), where

T runs among the finite subsets of S.

Remark 4.9. If A is any not necessarily unital ring, and a, b∈Mn(A), then

a?b= a+b+ab

is an associative operation, with the zero matrix as neutral element; the group GLn(A)
is defined as the set of all matrices which are invertible under ?. If A happens to be
unital, the resulting group is isomorphic to that of invertible matrices via g 7!g+1. If
A is any countable-dimensional R-algebra, then part (ii) of Proposition 4.7 still holds if
we replace g−1 by the inverse of g under the operation ? in the definition of GLn(A)F .
Corollary 4.8 also remains valid in the non-unital case, and the proof is the same.
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4.2. Construction of quotients of large semi-algebraic groups

Lemma 4.10. Let X⊂Y be an inclusion of large semi-algebraic sets. The following
are equivalent :

(i) there exists a defining structure {Yλ}λ of Y such that {Yλ∩X}λ is a defining
structure for X;

(ii) for each defining structure {Yλ}λ of Y, {Yλ∩X}λ is a defining structure for X.

Definition 4.11. Let X⊂Y be an inclusion of large semi-algebraic sets. We say that
X is compatible with Y if the equivalent conditions of Lemma 4.10 are satisfied.

Proposition 4.12. Let H⊂G be an inclusion of large semi-algebraic groups, {Gλ}λ

be a defining structure for G and π:G!G/H be the projection. Assume that the in-
clusion is compatible in the sense of Definition 4.11. Then (G/H)λ=π(Gλ) is a large
semi-algebraic structure, and the resulting large semi-algebraic set G/H is the categorical
quotient in V∞.

Proof. The map Gλ!(G/H)λ is the set-theoretical quotient modulo the relation
Rλ={(g1, g2):g−1

1 g2∈H}⊂Gλ×Gλ. Let µ be such that the product mapm sendsGλ×Gλ

into Gµ; write inv:G!G for the map inv(g)=g−1. Then

Rλ =(m�(inv, id))−1(H∩Gµ).

Because H⊂G is compatible, H∩Gµ⊂Gµ is closed and semi-algebraic, whence the same
is true of Rλ. By Theorem 3.4, (G/H)λ is semi-algebraic and Gλ!(G/H)λ is semi-
algebraic and continuous. It follows that the (G/H)λ define a large semi-algebraic struc-
ture on G/H and that the projection is a morphism in V∞. The universal property of
the quotient is straightforward.

Example 4.13. Let R be a unital, countable-dimensional R-algebra. The set

Pn(R) = {g(1n⊕0∞)g−1 : g ∈GL(R)}

of all finite idempotent matrices which are conjugate to the n×n identity matrix can be
written as a quotient of a compatible inclusion of large semi-algebraic groups. We have

Pn(R) =
GL(R)[1,∞)

GL[1,n](R)×GL[n+1,∞)(R)
.

On the other hand, since Pn(R)⊂M∞(R), it also carries another large semi-algebraic
structure, induced by the fine structure on M∞(R). Since g 7!g(1n⊕0∞)g−1 is semi-
algebraic, the universal property of the quotient (Proposition 4.12) implies that the
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quotient structure is finer than the subspace structure. Similarly, we may write the set
of those idempotent matrices which are stably conjugate to 1n⊕0∞ as

P∞n (R) = {g(1∞⊕1n⊕0∞)g−1 : g ∈GLZ(R)}=
GL(−∞,∞)(R)

GL(−∞,n](R)×GL[n+1,∞)(R)
.

Again this carries two large semi-algebraic structures: the quotient structure, and that
coming from the inclusion P∞n (R)⊂M2(M∞(R)+) into the 2×2 matrices of the unital-
ization of M∞(R).

4.3. Large semi-algebraic sets as compactly generated spaces

A topological spaceX is said to be compactly generated if it carries the inductive topology
with respect to its compact subsets, i.e. a map f :X!Y is continuous if and only if its
restriction to any compact subset of X is continuous. In other words, a subset U⊂X
is open (resp. closed) if and only if U∩K is open (resp. closed) in K for every compact
K⊂X. Observe that any filtering colimit of compact spaces is compactly generated.
In particular, if X is a large semi-algebraic set, with defining structure {Xλ}λ, then
X=

⋃
λXλ equipped with the colimit topology is compactly generated, and this topology

depends only on the equivalence class of the structure {Xλ}λ. In what follows, whenever
we regard a large semi-algebraic set as a topological space, we will implicitly assume
it equipped with the compactly generated topology just defined. Note further that any
morphism of large semi-algebraic sets is continuous for the compactly generated topology.
Lemma 4.14 characterizes those inclusions of large semi-algebraic sets which are closed
subspaces, and Lemma 4.15 concerns quotients of large semi-algebraic groups with the
compactly generated topology. Both lemmas are straightforward.

Lemma 4.14. An inclusion X⊂Y of large semi-algebraic sets is compatible if and
only if X is a closed subspace of Y with respect to the compactly generated topologies.

Lemma 4.15. Let H⊂G be a compatible inclusion of large semi-algebraic groups.
View G and H as topological groups equipped with the compactly generated topologies.
Then the compactly generated topology associated with the quotient large semi-algebraic
set G/H is the quotient topology.

We shall be concerned with large semi-algebraic groups which are Hausdorff for the
compactly generated topology. The main examples are countable-dimensional R-vector
spaces and groups such as GLS(A), for some subset S⊂Z and some countable-dimensional
unital R-algebra A.
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Lemma 4.16. Let F be either R or C, V be a countable-dimensional F-vector space,
A be a countable-dimensional F-algebra, S⊂Z, X be a compact Hausdorff topological
space and C(X)=map(X,F). Equip V, A and GLS(A) with the compactly generated
topologies. Then the natural homomorphisms

C(X)⊗FV −!map(X,V ) and GLS(map(X,A))−!map(X,GLS(A))

are bijective.

Proof. It is clear that both homomorphisms are injective. The image of the first
one consists of those continuous maps whose image is contained in a finitely generated
subspace of V . But since X is compact and V has the inductive topology of all closed
balls in a finitely generated subspace, every continuous map is of that form. Next note
that

GLS(A) =
⋃

S′,F

GLS′(A)F ,

where the union runs among the finite subsets of S and the compact semi-algebraic sets
of the form F=MS′(B), with B being a compact semi-algebraic subset of some finitely
generated subspace of A. Hence any continuous map f :X!GLS(A) sends X into some
MS′(B), and thus each of the entries f(x)i,j , i, j∈S′, is a continuous function. Hence
f(x) comes from an element of GLS(map(X,A)).

4.4. The compact fibration theorem for quotients of large semi-algebraic
groups

Recall that a continuous map f :X!Y of topological spaces is said to have the homotopy
lifting property (HLP) with respect to a space Z if for any solid arrow diagram

Z

id×0

��

// X

f

��

Z×[0, 1] //

;;

Y

of continuous maps, the continuous dotted arrow exists and makes both triangles com-
mute. The map f is a (Hurewicz) fibration if it has the HLP with respect to any space Z,
and is a Serre fibration if it has the HLP with respect to all disks Dn, n>0.

Definition 4.17. Let X and Y be topological spaces and f :X!Y be a continuous
map. We say that f is a compact fibration if for every compact subspace K, the map
f−1(K)!K is a fibration.
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Remark 4.18. Note that every compact fibration is a Serre fibration. Also, since
every map p:E!B, with compact B, which is a locally trivial bundle is a fibration, any
map f :X!Y , such that the restriction f−1(K)!K to any compact subspace K⊂Y is a
locally trivial bundle, is a compact fibration. The notion of compact fibration comes up
naturally in the study of homogenous spaces of infinite-dimensional topological groups.

Theorem 4.19. Let H⊂G be a compatible inclusion of large semi-algebraic groups.
Then the quotient map π:G!G/H is a compact fibration.

Proof. Choose defining structures {Hp}p and {Gp}p indexed over N and such that
Hp=Gp∩H; let {(G/H)p}p be as in Proposition 4.12. As any compact subspaceK⊂G/H
is contained in some (G/H)p, it suffices to show that the projection

πp =π|π−1((G/H)p):π−1((G/H)p)−! (G/H)p

is a locally trivial bundle. By a well-known argument (see e.g. [47, Theorem 4.13]), if the
quotient map of a group by a closed subgroup admits local sections, then it is a locally
trivial bundle; the same argument applies in our case to show that if πp admits local
sections then it is a locally trivial bundle. Consider the functor

F :Comp−!Set−,

X 7−! map(X,G/H)
map(X,G)

.

By Lemma 2.2, F is split-exact. By Theorem 3.14 applied to F and to the proper
semi-algebraic surjection Gp!(G/H)p, there is a triangulation of (G/H)p such that

ker(F (∆n)!F (π−1
p (∆n)))= ∗ (4.2)

for each simplex ∆n in the triangulation. The diagram

π−1(∆n)∩Gp
//

��

Gp //

πp

��

G

π

��

∆n // (G/H)p
// G/H

shows that the class of the inclusion ∆n⊂G/H is an element of that kernel, and therefore
it can be lifted to a continuous map ∆n!G, by (4.2). Thus πp admits a continuous
section over every simplex in the triangulation. Therefore, using split-exactness of F ,
it admits a continuous section over each of the open stars sto(x) of the vertices of the
barycentric subdivision. As the open stars of vertices form an open covering of (G/H)p,
we conclude that πp admits local sections. This finishes the proof.
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5. Algebraic compactness, bounded sequences and algebraic approximation

5.1. Algebraic compactness

Let R be a countable-dimensional unital R-algebra, equipped with the fine large semi-
algebraic structure. Consider the large semi-algebraic sets

M∞(R)⊃Pn(R) =
GL(R)[1,∞)

GL[1,n](R)×GL[n+1,∞)(R)
, (5.1)

M2(M∞(R)+)⊃P∞n (R) =
GL(−∞,∞)(R)

GL(−∞,n](R)×GL[n+1,∞)(R)
(5.2)

introduced in Example 4.13. Recall that each of Pn(R) and Pn(R)∞ carries two large
semi-algebra structures: the homogenous ones, coming from the quotients, and those
induced by the inclusions above. As the homogeneous structures are finer than the
induced ones, the same is true of the corresponding compactly generated topologies;
they agree if and only if the corresponding large semi-algebraic structures are equivalent,
or, in other terms, if every subset which is compact in the homogeneous topology is also
compact in the induced one. This motivates the following definition.

Definition 5.1. Let R be a countable-dimensional unital R-algebra equipped with
the fine large semi-algebraic structure. We say that R has the algebraic compactness
property if for every n>1 the homogeneous and the induced large semi-algebraic structure
of P∞n (R) agree.

We show in Proposition 5.3 below that if R satisfies algebraic compactness, then
the two topologies in (5.1) also agree. For this we need some properties of compactly
generated topological groups. All topological groups under consideration are assumed to
be Hausdorff.

Lemma 5.2. Let H and H ′ be closed subgroups of a Hausdorff compactly generated
group G. Then the quotient topology on H/(H∩H ′) is the subspace topology inherited
from the quotient topology on G/H ′.

Proof. First of all, it is clear that the canonical inclusion map ι:H/(H∩H ′)!G/H ′

is continuous. Indeed, let π :G!G/H ′ be the projection; identify H!H/(H∩H ′) with
the restriction of π. A subset A⊂G/H ′ is closed if and only if π−1(A)∩K is closed for
every compact K⊂G. Hence, π−1(A)∩H∩K=π−1(A∩π(H))∩K is closed and the claim
follows since compact subsets of H are also compact in G. Let now A⊂H/(H∩H ′) be
closed, i.e. π−1(A)∩K ′ is closed for every compact K ′⊂H. For compact K⊂G, the set
K ′=K∩H is compact in H and we get that π−1(A)∩K is closed in H and hence in G.
This finishes the proof.
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Proposition 5.3. Let R be a unital, countable-dimensional R-algebra, equipped
with the fine large semi-algebraic structure. Assume that R has the algebraic compactness
property. Then the homogeneous and induced large semi-algebraic structures of Pn(R)
agree.

Proof. Consider the diagram

GL(−∞,n](R)×GL[n+1,∞)(R) // GL(−∞,∞)(R) // P∞n (R)

GL[1,n](R)×GL[n+1,∞)(R)

OO

// GL[1,∞)(R) //

OO

Pn(R).

OO

Now apply Lemma 5.2.

5.2. Bounded sequences, algebraic compactness and K0-triviality

Let X be a large semi-algebraic set and let {Xλ}λ be a defining structure. The space of
bounded sequences in X is

`∞(X) = `∞(N, X) = {z: N!X such that there exists λ with z(N)⊂Xλ}.

Note that with our definition, the objects `∞(R) and `∞(C) coincide with the well-known
spaces of bounded sequences.

Lemma 5.4. Let F be either R or C and V be a countable-dimensional F-vector
space equipped with the fine large semi-algebraic structure. Then the natural map

`∞(F)⊗FV −! `∞(V )

is an isomorphism.

Proof. Choose a basis {vq}q of V . Every element of `∞(F)⊗FV can be written
uniquely as a finite sum

∑
q λq⊗vq; this gets mapped to the sequence

{∑
q λq(n)vq

}
n
,

which vanishes if and only if all the λq are zero. This proves the injectivity statement.
Let z∈`∞(V ); by definition, there is a finite-dimensional subspace W⊂V and a bounded
closed semi-algebraic subset S⊂W such that z(N)⊂S. We may assume that S is a
closed ball centered at zero, and that W is the smallest subspace containing z(N). Hence
there exist i1<...<ip∈N such that B={zi1 , ..., zip} is a basis of W . The map W!Rp,
w 7![w]B , which sends a vector w to the p-tuple of its coordinates with respect to B, is
linear and therefore bounded. In particular there exists C>0 such that ‖[w]B‖∞<C for
all w∈S. Thus we may write z=

∑p
j=1 λjzij with λj∈`∞(F). This proves the surjectivity

assertion of the lemma.
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Proposition 5.5. Let R be a unital, countable-dimensional R-algebra equipped with
the fine large semi-algebraic structure. Then the following are equivalent :

(i) R has the algebraic compactness property ;
(ii) for every n, the map

P∞n (`∞(R))−! `∞(P∞n (R)) (5.3)

is surjective;
(iii) the map

K0(`∞(R))−!
∏
r>1

K0(R)

is injective.

Proof. Choose countable indexed structures {Gn}n on G=GLZ(R) and {Xn}n on
X=M2(M∞(R)+). Let π:G!G/H=P∞n (R) be the projection. We know already (see
Example 4.13) that the induced structure on P∞n (R) is coarser than the homogeneous
one, i.e. each (G/H)r=π(Gr) is contained in some Xm. Assertion (i) is therefore equiv-
alent to saying that each P∞n (R)∩Xm is contained in some π(Gr). Negating this, we
obtain a bounded sequence e={er}r of idempotent matrices, i.e. e∈`∞(P∞n (R)) with
respect to the induced large semi-algebraic structure on P∞n (R), each er is equivalent
to 1∞⊕(1n⊕0∞) in M2(M∞(R)+), but there is no sequence {gr}r of invertible matri-
ces in GL2(M∞(R)+) such that grerg

−1
r =1∞⊕(1n⊕0∞) and both {gr}r and {g−1

r }r are
bounded. In other words, e is not in P∞n (`∞(R)). We have shown that (i) is equiva-
lent to (ii). Next note that every element x∈K0(`∞(R)) can be written as a difference
x=[e]−[1∞⊕0∞] with e∈M2(M∞(R)+) idempotent and e≡1∞⊕0∞ modulo the ideal
M2(M∞(R)). The idempotent e is determined, up to conjugation, by GL2(M∞(R)+).
The element x goes to zero in

∏
r>1K0(R) if and only if each er is conjugate to 1∞⊕0∞.

Hence condition (iii) is satisfied if (ii) is. The converse follows easily. Indeed, for
any sequence {er}r as above, we see that the image of the classes [e]−[1∞⊕0∞] and
[1∞⊕(1n⊕0∞)]−[1∞⊕0∞] in

∏
p>1K0(R) coincide. Hence, by injectivity of the com-

parison map, e is conjugate to 1∞⊕(1n⊕0∞), and we get a sequence of invertible elements
{gr}r in GL2(M∞(R)+) such that gr conjugates er to 1∞⊕(1n⊕0∞) and the sequences
{gr}r and {g−1

r }r are bounded. This completes the proof.

Example 5.6. Both R and C have the algebraic compactness property since the third
condition is well known to be satisfied. Indeed, `∞(R) and `∞(C) are (real) C∗-algebras,
and one can easily compute that

K0(`∞(C))= `∞(Z)⊂
∏
n>1

Z =
∏
n>1

K0(C).

The same computation applies to R in place of C.
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5.3. Algebraic approximation and bounded sequences

Theorem 5.7. Let F and G be functors from commutative C-algebras to sets. As-
sume that both F and G preserve filtering colimits. Let τ :F!G be a natural trans-
formation. Assume that τ(O(V )) is injective (resp. surjective) for each smooth affine
algebraic variety V over C. Then τ(`∞(C)) is injective (resp. surjective).

Proof. Let F⊂`∞(C) be a finite subset. Put AF=C〈F〉⊂`∞(C) for the unital sub-
algebra generated by F . Because AF is reduced, it corresponds to an affine algebraic
variety VF , and the inclusion AF⊂`∞(C) is dual to a map ιF : N!(VF )an, with precom-
pact image, to the analytic variety associated with VF . Thus we may write `∞(C) as the
filtering colimit

`∞(C) = colim
N!Van

O(V ). (5.4)

Here the colimit is taken over all maps ι: N!Van whose codomain is the associated
analytic variety of the closed points of some affine algebraic variety V, and which have
precompact image in the euclidean topology. We claim that every such map factors
through a map V ′

an!Van, with V ′ smooth and affine. Note that the claim implies that
we may write (5.4) as a colimit of smooth algebras; the theorem is immediate from
this. Recall that Hironaka’s desingularization (see [23]) provides a proper surjective
homomorphism of algebraic varieties π: Ṽ!V from a smooth quasi-projective variety.
Thus the induced map πan: Ṽan!Van between the associated analytic varieties is proper
and surjective for the usual euclidean topologies. It follows from this that we can lift ι
along πan. Next, Jouanoulou’s device (see [25]) provides a smooth affine vector bundle
torsor σ:V ′!Ṽ ; the associated map σan is also a bundle torsor, and in particular a
fibration and weak equivalence. Because Ṽan is a CW -complex, σan admits a continuous
section. Thus ιF finally factors through the smooth affine variety V ′

F .

Remark 5.8. The proof above does not work in the real case, since a desingular-
ization Ṽ!V of real algebraic varieties need not induce a surjective map between the
corresponding real analytic (or semi-algebraic) varieties. For example, consider

R=
R[x, y]

〈x2+y2−x3〉
.

The homomorphism

f :R−!R[t],

p(x, y) 7−! p(t2+1, t(t2+1)),
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is injective and R[t] is integral over R. Thus, the induced scheme homomorphism

f#: A1
R =Spec R[t]−!V =SpecR.

is a desingularization; it is finite (whence proper) and surjective, and an isomorphism
outside of the point zero, represented by the maximal ideal M=〈x, y〉∈V. But note that
the preimage of M consists just of the maximal ideal 〈t2+1〉, which has residue field C;
this means that the preimage of zero has no real points. Therefore the restriction of f#
to real points is not surjective.

5.4. The algebraic compactness theorem

Theorem 5.9. Let R be a countable-dimensional unital C-algebra. Assume that
the map K0(O(V ))!K0(O(V )⊗R) is an isomorphism for every affine smooth algebraic
variety V over C. Then R has the algebraic compactness property.

Proof. We have a commutative diagram

K0(`∞(R)) //
∏

p>1K0(R)

K0(`∞(C))

OO

//
∏

p>1K0(C).

OO

The bottom row is a monomorphism by Example 5.6. Our hypothesis on R together
with Theorem 5.7 applied to the natural transformation K0( ·)!K0( · ⊗CR) imply that
both columns are isomorphisms. It follows that the top row is injective, which by Propo-
sition 5.5 says that R satisfies algebraic compactness.

6. Applications: projective modules, lower K-theory and bundle theory

6.1. Parametrized Gubeladze’s theorem and Rosenberg’s conjecture

All monoids considered are commutative, cancellative and torsion-free. If M is cancella-
tive then it embeds into its total quotient group G(M). A cancellative monoid M is said
to be semi-normal if for every element x of the total quotient group G(M) for which 2x
and 3x are contained in the monoid M, it follows that x is contained in the monoid M .

The following is a particular case of a theorem of Gubeladze, which in turn general-
ized the celebrated theorem of Quillen [35] and Suslin [41] which settled Serre’s conjecture:
every finitely generated projective module over a polynomial ring over a field is free.
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Theorem 6.1. (See [19] and [20]) Let D be a principal ideal domain and M be a
commutative, cancellative, torsion-free, semi-normal monoid. Then every finitely gener-
ated projective module over the monoid algebra D[M ] is free.

We shall also need the following generalization of Gubeladze’s theorem, due to Swan.
Recall that if R!S is a homomorphism of unital rings and M is an S -module, then we
say that M is extended from R if there exists an R-module N such that M∼=S⊗RN as
S -modules.

Theorem 6.2. (See [46]) Let R=O(V ) be the coordinate ring of a smooth affine
algebraic variety over a field, and let d=dimV . Also let M be a torsion-free, semi-
normal, cancellative monoid. Then all finitely generated projective R[M ]-modules of
rank n>d are extended from R.

In the next theorem and elsewhere below, we shall consider only the complex case;
thus, in what follows, C(X) shall always mean map(X,C).

Theorem 6.3. Let X be a contractible compact space and M be an abelian, count-
able, torsion-free, semi-normal, cancellative monoid. Then every finitely generated pro-
jective module over C(X)[M ] is free.

Proof. The assertion of the theorem is equivalent to the assertion that every idem-
potent matrix with coefficients in C(X)[M ] is conjugate to a diagonal matrix with only
zeroes and ones in the diagonal. By Lemma 4.16, an idempotent matrix with coeffi-
cients in C(X)[M ] is the same as a continuous map from X to the space Idem∞(C[M ])
of all idempotent matrices in M∞(C[M ]), equipped with the induced topology. Now
observe that, since the trace map M∞(C[M ])!C[M ] is continuous, so is the rank map
Idem∞(C[M ])!N0. Hence, by Theorem 6.1, the space Idem∞(C[M ]) is the topological
coproduct

Idem∞(C[M ])=
∐
n

Pn(C[M ]),

and thus any continuous map e:X!Idem∞(C[M ]) factors through a map

e:X!Pn(C[M ]).

By Theorems 6.2 and 5.9, the induced topology of

Pn(C[M ])=
GL(C[M ])

GL[1,n](C[M ])×GL[n+1,∞)(C[M ])

coincides with the quotient topology. By Theorem 4.19, e lifts to a continuous map
g:X!GL(C[M ]). By Lemma 4.16, g∈GL(C(X)[M ]) and conjugates e to 1n⊕0∞. This
concludes the proof.
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Theorem 6.4. The functor

Comp−!Ab,

X 7−!K0(C(X)[M ]),

is homotopy invariant.

Proof. This is immediate from Theorem 6.3 and Proposition 2.3.

Theorem 6.5. (Rosenberg’s conjecture) The functor

Comp−!Ab,

X 7−!K−n(C(X)),

is homotopy invariant for n>0.

Proof. Because of the isomorphism (2.4), K−n(C(X)) is naturally a direct summand
of K0(C(X)[Zn]), whence it is homotopy invariant by Theorem 6.4.

Remark 6.6. Let X be a compact topological space, S1 be the circle and j>0. By
(2.4), Theorem 6.5 and excision, we have

K−j(C(X×S1))=K−j(C(X))⊕K−j−1(C(X))=K−j(C(X)[t, t−1]).

Thus, the effect on negative K-theory of the cartesian product of the maximal ideal
spectrum X=Max(C(X)) with S1 is the same as that of taking the product of the prime
ideal spectrum Spec (C(X)) with the algebraic circle Spec (C[t, t−1]). More generally, for
the C∗-algebra tensor product ⊗min and any commutative C∗-algebra A, we have

K−j(A⊗minC(S1))=K−j(A⊗CC[t, t−1]), j > 0.

Remark 6.7. Theorem 6.5 was stated by Jonathan Rosenberg in [36, Theorem 2.4]
and again in [37, Theorem 2.3] for the real case. Later, in [38], Rosenberg acknowledges
that the proof was faulty, but conjectures the statement to be true. Indeed, a mistake
was pointed out by Walker (see [15, p. 799, line 8] or [38, p. 26, line 12]). In their work
on semi-topological K-theory, Friedlander and Walker prove [15, Theorem 5.1] that the
negative algebraic K-theory of the ring C(∆n) of complex-valued continuous functions
on the simplex vanishes for all n. We show in §7.2 how another proof of Rosenberg’s
conjecture can be obtained using the Friedlander–Walker result.



116 g. cortiñas and a. thom

Remark 6.8. The proof of Theorem 6.5 does not need the detour of the proof of
our main results in the case n=1. Indeed, the ring of germs of continuous functions at
a point in X is a Hensel local ring with residue field C, and Vladimir Drinfeld proves
that K−1 vanishes for Hensel local rings with residue field C, see [12, Theorem 3.7]. This
solves the problem locally and reduces the remaining complications to bundle theory.
(This was observed by the second author in discussions with Charles Weibel at Institut
Henri Poincaré, Paris, in 2004.) No direct approach like this is known for K−2 or in
lower dimensions.

Already in [36], Rosenberg computed the values of negative algebraic K-theory on
commutative unital C∗-algebras, assuming the homotopy invariance result.

Corollary 6.9. (Rosenberg, [38]) Let X be a compact topological space. Let bu
denote the connective K-theory spectrum. Then,

K−i(C(X))= bui(X) = [ΣiX,bu], i> 0.

The fact that connective K-theory shows up in this context was further explored
and clarified in the thesis of the second author [48], which was also partially built on the
validity of Theorem 6.5.

6.2. Application to bundle theory: local triviality

Let R be a countable-dimensional R-algebra. Any finitely generated R-module M is a
countable-dimensional vector space, and thus it can be regarded as a compactly gen-
erated topological space. We consider not necessarily locally trivial bundles of finitely
generated free R-modules over compact spaces, such that each fiber is equipped with
the compactly generated topology just recalled. We call such a gadget a quasi-bundle of
finitely generated free R-modules.

Theorem 6.10. Let X be a compact space and M be a countable, torsion-free,
semi-normal, cancellative monoid. Let E!X be a quasi-bundle of finitely generated free
C[M ]-modules. Assume that there exist n>1, another quasi-bundle E′ and a quasi-bundle
isomorphism E⊕E′∼=X×C[M ]n. Then E is locally trivial.

Proof. Put R=C[M ]. The isomorphism E⊕E′∼=X×Rn gives a continuous function
e:X!Pn(R); E is locally trivial if e is locally conjugate to an idempotent of the form
1r⊕0∞, i.e. if it can be lifted locally along the projection GL(R)!Pn(R) to a continuous
map X!GL(R). Our hypothesis on M together with Theorems 6.3, 5.9, 6.2 and 4.19
imply that such local liftings exist.
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7. Homotopy invariance

7.1. From compact polyhedra to compact spaces: a result of Calder–Siegel

Consider the category Comp of compact Hausdorff topological spaces with continuous
maps and its full subcategory Pol⊂Comp formed by those spaces which are compact
polyhedra. In this subsection we show that for a functor which commutes with filtering
colimits and is split-exact on C∗-algebras, homotopy invariance on Pol implies homotopy
invariance on Comp. For this, we shall need a particular case of a result of Calder and
Siegel [6], [7] that we recall below. We point out that the Calder–Siegel results have
been further generalized by Armin Frei in [14]. For each object X∈Comp we consider
the comma category (X#Pol), whose objects are morphisms f :X!cod(f), where the
codomain cod(f) is a compact polyhedron. Morphisms are commutative diagrams as
usual. Let G:Pol!Ab be a (contravariant) functor to the category of abelian groups.
Its right Kan extension GPol:Comp!Ab is defined by

GPol(X) = colim
f∈(X#Pol)

G(cod(f)) for all X ∈Comp.

Note that Pol has finite products so that (X#Pol) is a filtered category. The result of
Calder–Siegel (see Corollary 2.7 and Theorem 2.8 in [7]) gives that homotopy invariance
properties of G give rise to homotopy invariance properties of GPol. More precisely, we
have the following result.

Theorem 7.1. (Calder-Siegel) If G:Pol!Ab is a (contravariant) homotopy in-
variant functor, then the functor GPol:Comp!Ab is homotopy invariant.

We want to apply the theorem when G is of the form D 7!E(C(D)), the functor E
commutes with (algebraic) filtering colimits and is split-exact on C∗-algebras. For this
we have to compare E with the right Kan extension of G; we need some preliminaries.
Let X∈Comp and D⊂C be the unit disk. Since X is compact, for each f∈C(X) there
is an n∈N such that f/n∈C(X,D). Thus any finitely generated subalgebra A⊂C(X)
is generated by a finite subset F⊂C(X,D). Let F be the set of all finite subsets of
C(X,D). As C(X) is the colimit of its finitely generated subalgebras C〈F 〉, we have

colim
F∈F

C〈F 〉=C(X).

For F∈F , write YF⊂CF for the Zariski closure of the image of the map

αF :X −!CF ,

x 7−! {f(x)}f∈F .
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The image of αF is contained in the compact semi-algebraic set

PF =D∩YF

In particular, PF is a compact polyhedron. Note that αF induces an isomorphism be-
tween the ring O(YF ) of regular polynomial functions and the subalgebra C〈F 〉⊂C(X)
generated by F . Hence the inclusion PF⊂YF induces a homomorphism βF which makes
the diagram

C〈F 〉

βF
��

;;
;;

;;
;

// C(X)

C(PF )

AA�������

commute. Taking colimits, we obtain

C(X)

β ��
==

==
==

=
C(X)

colim
F∈F

C(PF ).

π

@@�������
(7.1)

Thus the map π is a split surjection.

Theorem 7.2. Let E:Comm!Ab be a functor. Assume that E satisfies each of the
following conditions:

(1) E commutes with filtered colimits;
(2) Pol!Ab, D 7!E(C(D)), is homotopy invariant.
Then the functor

Comp−!Ab,

X 7−!E(C(X)),

is homotopy invariant on the category of compact topological spaces.

Proof. By (7.1) and the first hypothesis, the map E(β) is a right inverse of the map

E(π):E
(

colim
F∈F

C(PF )
)

=colim
F∈F

E(C(PF ))−!E(C(X)).

On the other hand, we have a commutative diagram

colim
F∈F

E(C(PF )) θ //

E(π)

''OOOOOOOOOOOOOOOOOO
colim

f∈(X#Pol)
E(C(cod(f)))

π′

��

E(C(X)).

(7.2)
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Hence the map π′ in the diagram above is split by the composite θE(β), and therefore
E(C( ·)) is naturally a direct summand of the functor

GPol:Comp−!Ab,

X 7−! colim
f∈(X#Pol)

E(C(cod(f))).
(7.3)

But (7.3) is the right Kan extension of the functor G:Pol!Ab, K 7!E(C(K)), and thus
it is homotopy invariant by the second hypothesis and Calder–Siegel’s theorem. It follows
that E(C( ·)) is homotopy invariant, as we had to prove.

Remark 7.3. If in Theorem 7.2 the functor E is split-exact, then A 7!E(A) is homo-
topy invariant on the category of commutative C∗-algebras. Indeed, since every commu-
tative unital C∗-algebra is of the form C(X) for some compact space X, it follows that F
is homotopy invariant on unital commutative C∗-algebras. Using this and split-exactness,
we get that it is also homotopy invariant on all commutative C∗-algebras.

Remark 7.4. In general, one cannot expect that the homomorphism π′ in (7.2)
be an isomorphism. For the injectivity one would need the following implication: if
D is a compact polyhedron, and f :X!D and s:D!C are continuous maps such that
0=s�f :X!C, then there exist a compact polyhedron D′ and continuous maps g:X!D′

and h:D′!D such that h�g=f :X!D and 0=h�s:D′!C. But this is too strong if X
is a pathological space. To give a concrete example: let X be a Cantor set inside [0, 1],
f be the natural inclusion and s be the distance function to the Cantor set, and suppose
that g and h as above exist. If 0=h�s:D′!C, then the image of D′ in [0, 1] has to be
contained in X. But the image has only finitely many connected components, since D′

has this property. Hence, since X is totally disconnected, the image of D′ in [0, 1] cannot
be all of X. This is a contradiction.

7.2. Second proof of Rosenberg’s conjecture

A second proof of Rosenberg’s conjecture (Theorem 6.5) can be obtained by combining
Theorem 7.2 with the following theorem, which is due to Friedlander and Walker.

Theorem 7.5. ([15, Theorem 5.1]) If n>0 and q>0, then

K−n(C(∆q))= 0.

Second proof of Rosenberg’s conjecture (Theorem 6.5). By Proposition 2.3 and The-
orem 7.2 it suffices to show that Kn(C(D))=0 for contractible D∈Pol. If D is con-
tractible, then the identity 1D:D!D factors over the cone cD. Hence, it is sufficient
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to show that Kn(C(cD))=0. The cone cD is a star-like simplicial complex and for any
subcomplexes A,B⊂D with A∪B=D, we get a Milnor square

C(cD) //

��

C(cA)

��

C(cB) // C(c(A∩B)).

Since cA is contractible, it retracts onto c(A∩B), and therefore the square above is split.
Using excision, we obtain the split-exact sequence of abelian groups

0−!Kn(C(cD))−!Kn(C(cA))⊕Kn(C(cB))−!Kn(C(c(A∩B)))−! 0.

Decomposing cD like this, we see that the result of Theorem 7.5 is sufficient for the
vanishing of Kn(C(cD)).

7.3. The homotopy invariance theorem

The aim of this subsection is to prove the following result.

Theorem 7.6. Let F be a functor on the category of commutative C-algebras with
values in abelian groups. Assume that the following three conditions are satisfied :

(i) F is split-exact on C∗-algebras;
(ii) F vanishes on coordinate rings of smooth affine varieties;
(iii) F commutes with filtering colimits.
Then the functor

Comp−!Ab,

X 7−!F (C(X)),

is homotopy invariant on the category of compact Hausdorff topological spaces and

F (C(X))= 0

for contractible X.

Proof. Note that, since a point is a smooth algebraic variety, our hypotheses imply
that F (C)=0. Thus, if F is homotopy invariant and X is contractible, then we have
F (X)=F (C)=0. Let us prove then that X 7!F (C(X)) is homotopy invariant on the
category of compact Hausdorff topological spaces. Proceeding as in the proof of Theo-
rem 7.5, we see that it is sufficient to show that F (C(∆n))=0 for all n>0. Any finitely
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generated subalgebra of C(∆n) is reduced, and hence corresponds to an algebraic variety
over C. Since F commutes with filtered colimits, we obtain

F (C(∆n))= colim
∆n!Yan

F (O(Y )),

where the colimit runs over all continuous maps from ∆n to the analytic variety Yan

equipped with the usual euclidean topology. For ease of notation, we will from now on
just write Y for both the algebraic variety and the analytic variety associated with it. Let
ι:∆n!Y be a continuous map. As in the proof of the algebraic approximation theorem
(Theorem 5.7), we consider Hironaka’s desingularization π: Ỹ!Y and Jouanoulou’s affine
bundle torsor σ:Y ′!Ỹ . Let T⊂Y be a compact semi-algebraic subset such that ι(∆n)⊂
T . Since π is a proper morphism, T̃=π−1(T ) is compact and semi-algebraic. By definition
of vector bundle torsor ([51]), there is a Zariski cover of Ỹ such that the pull-back of σ
over each open subscheme U⊂Ỹ of the covering is isomorphic, as a scheme over U , to
an algebraic trivial vector bundle. Thus σ is a locally trivial fibration for the euclidean
topologies, and the trivialization maps are (semi-)algebraic. Hence, as T̃ , being compact,
is locally compact, we may find a finite covering {T̃i}i of T̃ by closed semi-algebraic
subsets such that σ is a trivial fibration over each T̃i, and compact semi-algebraic subsets
Si⊂Y ′ such that σ(Si)=T̃i. Put S=

⋃
i Si. Then S is compact semi-algebraic, and

f=(π�σ)|S :S!T is a continuous semi-algebraic surjection. By Theorem 3.14, there
exists a semi-algebraic triangulation of T such that ker(F (∆m)!F (f−1(∆m)))=0 for
each simplex ∆m in the triangulation. Consider the diagram

F (C(f−1(∆m))) F (C(S))oo F (O(Y ′))oo

F (C(∆m))

OO

F (C(T ))

OO

oo F (O(Y )).oo

OO

If α∈F (O(Y )), then its image in F (C(f−1(∆m))) vanishes since f−1(∆m)!∆m factors
through the smooth affine variety Y ′, and F (O(Y ′))=0. Hence, by Theorem 3.14, we
have α|∆m =0 for each simplex in the triangulation. Coming back to the map ι:∆n!Y ,
we have the diagram

∆n ι //



!!CC
CC

CC
CC

Y

∆m
θ

// T.

OO

Here θ:∆m!T is the inclusion of a simplex in the triangulation and  is the corestriction
of ι. We need to conclude that ι∗(α)=0, knowing only that θ∗(α)=0 for each simplex
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in a triangulation of T . This is done using split-exactness and barycentric subdivisions.
Indeed, we perform the barycentric subdivision of ∆n sufficiently many times so that
each n-dimensional simplex is mapped to the closed star st(x) of some vertex x in the
triangulation of T . Since ∆n is star-like, the reduction argument of the proof of Theo-
rem 5.7 shows that it is enough to show the vanishing of ι∗(α) for the (top-dimensional)
simplices in this subdivision of ∆n. If (∆′)n is one of these top-dimensional simplices,
and ∆m⊂st(x), we can complete the diagram above to a diagram

(∆′)n //

##GGGGGGGG ∆n ι //



!!B
BB

BB
BB

BB
Y

∆m // st(x) // T.

OO

Hence, it suffices to show that the pull-back of α to st(x) vanishes. But since st(x) is
star-like, then, by the same reduction argument as before, the vanishing of the pull-back
of α to each of the top simplices ∆m⊂st(x) is sufficient to conclude that α|st(x)=0. This
finishes the proof.

As an application, we obtain the following proof.

Third proof of Rosenberg’s conjecture (Theorem 6.5). If n<0 then Kn is split-exact
and vanishes on coordinate rings of smooth affine algebraic varieties. By Theorem 7.6,
this implies that X 7!Kn(C(X)) is homotopy invariant.

7.4. A vanishing theorem for homology theories

Theorem 7.7. Let E:Comm/C!Spt be a homology theory of commutative C-
algebras and let n0∈Z. Assume that

(i) E is excisive on commutative C∗-algebras;
(ii) En commutes with algebraic filtering colimits for n>n0;
(iii) En(O(V ))=0 for each smooth affine algebraic variety V for n>n0.
Then En(A)=0 for every commutative C∗-algebra A and every n>n0.

Proof. Let n>n0. We have to show that we have En(A)=0 for every commutative
C∗-algebra A. Because, by (i), each En is split-exact on commutative C∗-algebras, it
suffices to show that En(A)=0 for unital A, i.e. for A=C(X), X∈Comp. Since, by (ii),
En preserves filtering colimits, the proof of Theorem 7.2 shows that En(C(X)) is a direct
summand of

colim
f∈(X#Pol)

E(C(cod(f))).
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Hence it suffices to show that En(C(D))=0 for every compact polyhedron D. By (iii) and
excision, this is true if dimD=0. Let m>1 and assume that the assertion of the theorem
holds for compact polyhedra of dimension less than m. By Theorem 7.6, D 7!En(C(D))
is homotopy invariant; in particular En(C(∆m))=0. If dimD=m and D is not a simplex,
write D=∆m∪D′ as the union of an m-simplex and a subcomplex D′ which has fewer m-
dimensional simplices. Put L=∆m∩D′; then dimL<m, and we have the exact sequence

En+1(C(L))−!En(C(D))−!En(C(∆m))⊕E(C(D′))−!En(C(L)).

We have seen above that En(C(∆m))=0; moreover En(C(L))=En+1(C(L))=0 because
dimL<m, and En(C(D′))=0 because D′ has fewer m-dimensional simplices than D.
This concludes the proof.

8. Applications of the homotopy invariance
and vanishing homology theorems

8.1. K-regularity for commutative C∗-algebras

Theorem 8.1. Let V be a smooth affine algebraic variety over C, R=O(V ) and A

be a commutative C∗-algebra. Then A⊗CR is K-regular.

Proof. For each fixed p>1 and i∈Z, write

F p(A) =hocofiber(K(A⊗R)!K(A[t1, ..., tp]⊗R))

for the homotopy cofiber. It suffices to prove that the homology theory

F p:Comm/C−!Spt

satisfies the hypotheses of Theorem 7.7. By [52, Corollary 9.7], A[t1, ..., tp]⊗CR is K-
excisive for every C∗-algebra A and every p>1. It follows that the homology theory
F p:Ass/C!Spt is excisive on C∗-algebras. In particular, its restriction to Comm/C is
excisive on commutative C∗-algebras. Moreover, if W is any smooth affine algebraic vari-
ety, then R⊗CO(W )=O(V ×W ) is regular noetherian, and therefore K-regular. Finally,
F p
∗ preserves filtering colimits, because both K∗ and ( ·)⊗Z[t1, ..., tp]⊗R do.

Remark 8.2. The case R=C of the previous theorem was discovered by Jonathan
Rosenberg. Unfortunately, the two proofs he has given, in [37, Theorem 3.1] and [38,
p. 866] turned out to be problematic. A version of Theorem 8.1 for A=C(D), D∈Pol,
was given by Friedlander and Walker in [15, Theorem 5.3]. Furthermore, Rosenberg
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acknowledges in [38, p. 24] that Walker also found a proof of this in the general case,
but that he did not publish it. Anyhow, as Rosenberg observed in [37, p. 91], in this
situation, the polyhedral case implies the general case by a short reduction argument
(this also follows from Theorem 7.2 above). Hence, an essentially complete argument for
the proof of Theorem 8.1 existed already in the literature, although it was scattered in
various sources.

The following result compares Quillen’s algebraic K-theory with Weibel’s homotopy
algebraic K-theory, KH, introduced in [51].

Corollary 8.3. If A is a commutative C∗-algebra, then the map K∗(A)!KH∗(A)
is an isomorphism.

Proof. Weibel proved in [51, Proposition 1.5] that if A is a unital K-regular ring,
then K∗(A) ∼−!KH∗(A). Using excision, it follows that this is true for all commutative
C∗-algebras. Now apply Theorem 8.1.

8.2. Hochschild and cyclic homology of commutative C∗-algebras

In the following paragraph we recall some basic facts about Hochschild and cyclic ho-
mology that we shall need; the standard reference for these topics is Loday’s book [29].

Let k be a field of characteristic zero. Recall that a mixed complex of k-vector spaces
is a graded vector space {Mn}n>0 together with maps

b:M∗−!M∗−1 and B:M∗!M∗+1

satisfying b2=B2=bB+Bb=0. One can associate various chain complexes with a mixed
complex M, giving rise to the Hochschild, cyclic, negative cyclic and periodic cyclic
homologies of M, respectively denoted by HH∗, HC∗, HN∗ and HP∗. For example,
HH∗(M)=H∗(M, b). A map of mixed complexes is a homogeneous map which commutes
with both b and B. It is called a quasi-isomorphism if it induces an isomorphism at
the level of Hochschild homology; this automatically implies that it also induces an
isomorphism for HC and all the other homologies mentioned above. For a k-algebra A
there is defined a mixed complex (C(A/k), b, B), with

Cn(A/k) =
{
Ãk⊗kA

⊗kn, if n> 0,
A, if n=0.

We write HH∗(A/k), HC∗(A/k), etc. for HH∗(C(A/k)), HC∗(C(A/k)), etc. If further-
more A is unital and Ā=A/k, then there is also a mixed complex 
C(A/k) with


Cn(A/k) =A⊗k Ā
⊗kn,
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and the natural surjection C(A/k)!
C(A/k) is a quasi-isomorphism. Note also that

ker(
C(Ãk/k)! 
C(k/k))=C(A/k). (8.1)

If A is commutative and unital, we have a third mixed complex (ΩA/k, 0, d) given in
degree n by Ωn

A/k, the module of n-Kähler differential forms, where d is the exterior
derivation of forms. A natural map of mixed complexes µ: 
C(A/k)!ΩA/k is defined by

µ(a0⊗k ā1⊗k ...⊗k ān) =
1
n!
a0 da1∧...∧dan. (8.2)

It was shown by Loday and Quillen in [30] (using a classical result of Hochschild–Kostant–
Rosenberg [24]) that µ is a quasi-isomorphism if A is a smooth k-algebra, i.e. A=O(V )
for some smooth affine algebraic variety over k. It follows from this (see [29]) that for
ZΩn

A/k=ker(d: Ωn
A/k!Ωn+1

A/k ) and H∗
dR(A/k)=H∗(ΩA/k, d), we have, for n∈Z,

HHn(A/k) =Ωn
A/k,

HCn(A/k) =
Ωn

A/k

dΩn−1
A/k

⊕
⊕

062i<n

Hn−2i
dR (A/k),

HNn(A/k) =ZΩn
A/k⊕

∏
p>0

Hn+2p
dR (A/k),

HPn(A/k) =
∏
p∈Z

H2p−n
dR (A/k).

(8.3)

For arbitrary commutative unital A, there is a decomposition

Cn(A/k) =
n⊕

p=0

C(p)(A/k)

such that b maps C(p) to itself, while B(C(p))⊂C(p+1) (see [29]). One defines

HH(p)
n (A/k) =HnC

(p)(A/k).

We have

HH(p)
q (A/k) =

{
0, for q <p,
Ωp

A/k, for q= p,

but in general, for q>p, HH(p)
q (A/k) 6=0. The map (8.2) is still a quasi-isomorphism if A

is smooth over a field F⊃k; this follows from the Loday–Quillen result using the base
change spectral sequence of Kassel–Sletsjøe, which we recall below.
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Lemma 8.4. (Kassel–Sletsjøe, [27, Special cases 4.3a]) Let k⊆F be fields of charac-
teristic zero. For each p>1 there exists a bounded second-quadrant homological spectral
sequence, for 06i<p and j>0,

pE
1
−i,i+j =Ωi

F/k⊗F HH(p−i)
p−i+j(R/F ) =⇒HH(p)

p+j(R/k).

Corollary 8.5. If A is a smooth F-algebra, then (8.2) is a quasi-isomorphism.

Theorem 8.6. Let X be a compact topological space, A=C(X) and k⊂C be a
subfield. Then the map (8.2) is a quasi-isomorphism, and we have the identities (8.3).

Proof. Extend C(p)( ·/k) (and HH(p)
n ( ·/k)) to non-unital algebras by

C(p)(A/k) =ker(C(p)(Ãk/k)!C(p)(k/k)).

Let E(p)(A/k) be the spectrum associated with C(p)(A/k) by the Dold–Kan correspon-
dence. Regard E(p) as a homology theory of C-algebras. Then E(p) is excisive on
C∗-algebras, by Remark 2.9 and naturality. Furthermore, E(p)

n (A/k)=HH(p)
n (A/k)=0

whenever n>p and A is smooth over C, by Corollary 8.5. It is also clear that HH(p)
∗ ( ·/k)

preserves filtering colimits, since HH∗( ·/k) does. Thus, we may apply Theorem 7.7 to
conclude the proof.

8.3. The Farrell–Jones isomorphism conjecture

Let A be a ring, Γ be a group and q60. Put

WhA
q (Γ)= coker(Kq(A)!Kq(A[Γ]))

for the cokernel of the map induced by the natural inclusion A⊂A[Γ]. Recall [31, p. 708,
Conjecture 1] that the Farrell–Jones conjecture with coefficients for a torsion-free group
implies that if Γ is torsion-free and A is a noetherian regular unital ring, then

WhA
q (Γ)= 0, q6 0. (8.4)

Note that the conjecture in particular implies that Kq(A[Γ])=0 for q<0 if A is noetherian
regular, for in this case we have Kq(A)=0 for q<0.

Theorem 8.7. Let Γ be a torsion-free group which satisfies (8.4) for every commu-
tative smooth C-algebra A. Also let q60. Then the functor A 7!WhA

q (Γ) is homotopy
invariant on commutative C∗-algebras.

Proof. It follows from Theorem 7.6 applied to A 7!WhA
q (Γ).
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Corollary 8.8. Let Γ be as above and X be a contractible compact space. Then
K0(C(X)[Γ])=Z and Kq(C(X)[Γ])=0 for q<0.

Corollary 8.9. Let Γ be as above. Then, the functor

X 7−!Kq(C(X)[Γ])

is homotopy invariant on the category of compact topological spaces for q60.

Proof. This follows directly from Proposition 2.3 and the preceding corollary.

The general case of the Farrell–Jones conjecture predicts that for any group Γ and
any unital ring R, the assembly map

AΓ(R): HΓ(EVC(Γ),K(R))−!K(R[Γ]) (8.5)

is an equivalence. Here HΓ( · ,K(R)) is the equivariant homology theory associated with
the spectrum K(R) and EVC(Γ) is the classifying space with respect to the class of
virtually cyclic subgroups (see [31] for definitions of these objects).

We also get the following result.

Theorem 8.10. Let Γ be a group such that the map (8.5) is an equivalence for every
smooth commutative C-algebra A. Then (8.5) is an equivalence for every C∗-algebra A.

Proof. It follows from Theorem 7.7 applied to E(R)=hocofiber(AΓ(R)).

Remark 8.11. We have

Kq(C(X)[Γ]) =πS
q (map−(X−,KD(C[Γ]))), q6 0,

where KD(C[Γ]) denotes the diffeotopy K-theory spectrum, see [10, Definition 4.1.3].
This follows from the study of a suitable coassembly map and is not carried out in
detail here. The homotopy groups of KD(C[Γ]) can be computed from the equivariant
connective K-homology of EΓ using the Farrell–Jones assembly map.

8.4. Adams operations and the decomposition of rational K-theory

The rational K-theory of a unital commutative ring A carries a natural decomposition

Kn(A)⊗Q =
⊕
i>0

Kn(A)(i).

Here
Kn(A)(i) =

⋂
k 6=0

{x∈Kn(A) :ψk(x) = kix},
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where ψk is the Adams operation. For example, K(0)
0 (A)=H0(SpecA,Q) is the rank

component, and K
(0)
n (A)=0 for n>0 ([28, Corollaire 6.8]). A conjecture of Alexander

Bĕılinson and Christophe Soulé (see [3] and [40]) asserts that

K(i)
n (A) = 0 for n>max{1, 2i}. (8.6)

The conjecture as stated was proved wrong for non-regular A (see [16] and [13, Re-
mark 7.5.6]), but no regular counterexamples have been found. Moreover, the original
statement has been formulated in terms of motivic cohomology (with rational, torsion
and integral coefficients) and generalized to regular noetherian schemes [26, §4.3.4]. For
example, if X=SpecR is smooth then K(i)

n (R)=H2i−n(X,Q(i)) is the motivic cohomol-
ogy of X with coefficients in the twisted sheaf Q(i).

We shall need the well-known fact that the validity of (8.6) for C implies its validity
for all smooth C-algebras; this is Proposition 8.13 below. In turn this uses the also well-
known fact that rational K-theory sends field inclusions to monomorphisms. We include
proofs of both facts for the sake of completeness.

Lemma 8.12. Let F⊂E be fields. Then K∗(E)⊗Q!K∗(F )⊗Q is injective.

Proof. Since K-theory commutes with filtering colimits, we may assume that E/F
is a finitely generated field extension, which we may write as a finite extension of a
finitely generated purely transcendental extension. If E/F is purely transcendental,
then, by induction, we are reduced to the case E=F (t), which follows from [18, Theo-
rem 1.3]. If d=dimF E is finite, then the transfer map K∗(E)!K∗(F ) [34, p. 111] splits
K∗(F )!K∗(E) up to d-torsion.

Proposition 8.13. If (8.6) holds for C, then it holds for all smooth C-algebras.

Proof. The Gysin sequence argument at the beginning of [26, §4.3.4] shows that
if (8.6) is an isomorphism for all finitely generated field extensions of C, then it is an
isomorphism for all smooth R. If E⊃C is a finitely generated field extension, then we
may write E=F [α] for some purely transcendental field extension F∼=C(t1, ..., tn)⊃C
and some algebraic element α. From this and the fact that C is algebraically closed and
of infinite transcendence degree over Q, we see that E is isomorphic to a subfield of C.
Now apply Lemma 8.12.

Theorem 8.14. Assume that (8.6) holds for the field C. Then it also holds for all
commutative C∗-algebras.

Proof. By Proposition 8.13, our current hypotheses imply that (8.6) is true for
smooth A. In particular, we have that the homology theory K(i) vanishes on smooth
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A for n>n0=max{2i, 1}. Because K-theory satisfies excision for C∗-algebras and com-
mutes with algebraic filtering colimits, the same is true of K(i). Hence, we may apply
Theorem 7.7, concluding the proof.
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