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1. Introduction

In order to exhibit two non-isomorphic II1 factors, Murray and von Neumann defined
in [MN] property Gamma as the existence of a non-trivial sequence of asymptotically
central elements. They showed that the group von Neumann algebra LFn of the free
group Fn, n�2, does not have property Gamma, while the group von Neumann algebra
LS∞ of the group of finite permutations of N has property Gamma.

More precisely, a II1 factor M with trace τ has property Gamma if there exists a
sequence of unitary operators xn in M satisfying τ(xn)=0 for all n and ‖xny−yxn‖2!0
for all y∈M . Here ‖ · ‖2 denotes the L2-norm on M given by ‖x‖2=

√
τ(xx∗).

In [E], Effros aims to express property Gamma for a group von Neumann algebra LG

in terms of a group-theoretic property. In this respect, he introduced the notion of inner
amenability for a countable group G, by requiring the existence of a mean on G\{e}
which is invariant under all inner automorphisms. More precisely, G is inner amenable
if there exists a finitely additive measure m on the subsets of G\{e}, with total mass 1
and satisfying m(gXg−1)=m(X) for all X⊂G\{e} and all g∈G. In [E], Effros proved
that if LG is a II1 factor with property Gamma, then G is inner amenable. He posed
the question whether the converse holds: does LG have property Gamma whenever G is
an inner amenable group with infinite conjugacy classes (icc)? This problem attracted a
lot of attention over the years, see e.g. [H, Problem 2] and the survey [BH]. In attempts
to answer Effros’ question, several groups were first shown to be inner amenable (e.g.
Thompson’s group [J1] and Baumslag–Solitar groups [St]), but later shown to satisfy
property Gamma as well (e.g. [J2]).
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We solve Effros’ question in the negative by providing concrete examples of inner
amenable icc groups G such that LG does not have property Gamma. Our construction is
inspired by [Sc, Example 2.7], which provides examples of strongly ergodic group actions
that do not have spectral gap.

2. Construction of the group G

Fix a sequence of distinct prime numbers pn. We define as follows a countable group G.
Define

Hn :=
(

Z

pnZ

)3

and K :=
∞⊕

n=0

Hn.

Put Λ=SL(3, Z), which acts on Hn by automorphisms in the natural way. We denote this
action by g ·x whenever g∈Λ and x∈Hn. We let Λ act on K diagonally: (g ·x)n=g ·xn

for all g∈Λ and n∈N. For every N∈N, define the subgroup KN <K as

KN :=
∞⊕

n=N

Hn.

We put G0=K�Λ and inductively define GN+1 as the following amalgamated free prod-
uct:

GN
� � �� GN+1 :=GN ∗KN

(KN×Z).

Note here that we view KN as a subgroup of GN by considering KN <K<G0<GN . We
finally define G as the inductive limit of the increasing sequence of groups G0⊂G1⊂... .

Theorem 1. The group G is inner amenable and has infinite conjugacy classes,
while the II1 factor LG does not have property Gamma.

3. Proof of Theorem 1

We denote by LG the group von Neumann algebra of a countable group G, generated
by the unitary operators {ug}g∈G. We denote by {δg}g∈G the canonical orthonormal
basis of �2(G). Then, �2(G) is an LG-LG-bimodule, given by ugδkuh=δgkh. On LG, we
consider the usual trace given by τ(x)=〈δe, xδe〉.

Lemma 2. For every g∈G\K, the set {hgh−1 :h∈Λ} is infinite. Also, G has infinite
conjugacy classes.
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Proof. If g∈G\G0, take N�0 such that g∈GN+1\GN . From the description of
GN+1 as the amalgamated free product GN+1=GN ∗KN

(KN×Z), it follows that the
elements hgh−1, h∈GN , are all distinct. In particular, {hgh−1 :h∈Λ} is infinite. If
g∈G0\K, the set {hgh−1 :h∈Λ} is infinite because Λ has infinite conjugacy classes.

Finally, assume that g �=e has a finite conjugacy class. By the first part of the
proof, g∈K. Taking N large enough, g∈K\KN . So, g∈GN \KN and we arrive at the
contradiction that g has a finite conjugacy class in GN ∗KN

(KN×Z).

Denote by (An, τ) the tracial von Neumann algebra with An
∼=C

2 and with minimal
projections en and 1−en such that τ(en)=p−3

n .

Lemma 3. Define (A, τ):=
⊗∞

n=0(An, τ). There is a unique trace-preserving bijec-
tive isomorphism

α: A−!LG∩(LΛ)′

satisfying

α(en) = p−3
n

∑
h∈Hn

uh for all n.

Moreover, α(en) lies in the center of LGn+1.

Proof. By Lemma 2, LG∩(LΛ)′=LK∩(LΛ)′. Put Bn=�∞(Hn) and define the trace
τ on Bn given by the normalized counting measure. View An⊂Bn in a trace-preserving
way and such that en corresponds to the function χ{0}.

Define Λ
θ
�Bn by (θg(F ))(x)=F (g−1 ·x) for all g∈Λ, x∈Hn and F∈Bn. Define

Λ
σ
�LK by σg(ux)=ug·x for all g∈Λ and x∈K. We have Hn

∼=Ĥn, and the Fourier trans-
form yields a trace-preserving isomorphism αn: Bn!LHn satisfying αn θg=σ(g−1)T αn.
Here, gT denotes the transpose of g∈Λ=SL(3, Z).

Put (B, τ)=
⊗∞

n=1(Bn, τ) and define Λ
θ
�B diagonally. The isomorphisms αn com-

bine into a trace-preserving isomorphism α: B!LK satisfying α θg=σ(g−1)T α for all
g∈Λ. We view A as a von Neumann subalgebra of B. In order to prove that α is an
isomorphism of A onto LK∩(LΛ)′, we have to show that BΛ=A, where, by definition,
BΛ={b∈B :θg(b)=b for all g∈Λ}.

The orbits of the diagonal action Λ�H0×...×HN are precisely the sets U0×...×UN ,
where every Ui is either {0} or Hi\{0}. Hence,

( N⊗
n=0

Bn

)Λ

=
N⊗

n=0

An.

Letting N!∞, we get that BΛ=A.
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Denote by Z(M) the center of a von Neumann algebra M . Observe that

Z(LGm)∩LKm ⊂Z(LGm+1).

Since α(en)∈Z(LG0) and α(en)∈LKm for all m�n, we have α(en)∈Z(LGn+1).

Proof of Theorem 1. We saw in Lemma 2 that G has infinite conjugacy classes.
Embed LG↪!�2(G) by x �!xδe. Define ξn=p

3/2
n α(en)δe. Then, ξn is a sequence

of unit vectors in �2(G) satisfying 〈δe, ξn〉=p
−3/2
n !0. Moreover, by Lemma 3, we have

α(en)∈Z(LGn+1), so that ugξnu∗
g=ξn whenever g∈GN and N�n+1. Hence, for every

g∈G, the sequence ‖ugξnu∗
g−ξn‖2 is eventually zero. It follows that the adjoint repre-

sentation of G on �2(G)
Cδe weakly contains the trivial representation. Hence, G is
inner amenable (see e.g. [BH, Théorème 1]).

Suppose that xn is a sequence of unitary operators in LG, such that ‖xny−yxn‖2!0
for all y∈LG. We have to prove that ‖xn−τ(xn)1‖2!0. Denote by π: G!U(�2(G)) the
adjoint representation, defined by π(g)ξ=ugξu

∗
g. Then ξn :=xnδe is a sequence of almost

π-invariant unit vectors. Denote by P the orthogonal projection of �2(G) onto the closed
subspace of π(Λ)-invariant vectors. Since Λ has property (T), it follows that

‖ξn−P (ξn)‖2! 0.

This means that ‖xn−yn‖2!0, where yn :=ELG∩(LΛ)′(xn) and ELG∩(LΛ)′ denotes the
unique trace-preserving conditional expectation of LG onto LG∩(LΛ)′.

As we have seen in the proof of Lemma 3, we have LG∩(LΛ)′=LK∩(LΛ)′. In
particular, yn belongs to the unit ball of LK. Recall that we inductively defined

GN+1 = GN ∗KN
(KN×Z).

Denote by gN+1 the canonical generator of the copy of Z appearing in this definition of
GN+1. Using the fact that ugN+1 commutes with LKN , we get that

ugN+1ynu∗
gN+1

−yn = ugN+1(yn−ELKN
(yn))u∗

gN+1
+ugN+1ELKN

(yn)u∗
gN+1

−yn

= ugN+1(yn−ELKN
(yn))u∗

gN+1
+ELKN

(yn)−yn.

Because the sets gN+1(K\KN )g−1
N+1 and K are disjoint, we have that the elements

ugN+1

(
yn−ELKN

(yn)
)
u∗

gN+1
and ELKN

(yn)−yn are orthogonal. Hence,

‖ugN+1ynu∗
gN+1

−yn‖2 � ‖ugN+1(yn−ELKN
(yn))u∗

gN+1
‖2 = ‖yn−ELKN

(yn)‖2.

So, for every N , we get that ‖yn−ELKN
(yn)‖2!0 as n!∞.
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Fix N . As yn commutes with LΛ, also ELKN
(yn) commutes with LΛ. By Lemma 3,

take a sequence an in the unit ball of
⊗∞

k=N (Ak, τ) such that ELKN
(yn)=α(an). Since

the sequence p−3
n is summable, the product of the projections 1−en, n�N , converges to

a minimal projection fN in
⊗∞

k=N (Ak, τ), with

τ(fN ) =
∞∏

n=N

(1−p−3
n ).

Put εN =1−τ(fN ). An arbitrary a in the unit ball of
⊗∞

k=N (Ak, τ) then satisfies

‖a−τ(a)1‖2 � 4
√

εN .

Since τ(an)=τ(ELKN
(yn))=τ(yn), it follows that for all N and n we have

‖ELKN
(yn)−τ(yn)1‖2 � 4

√
εN .

As εN!0 when N!∞, and since for every fixed N we have ‖yn−ELKN
(yn)‖2!∞ when

n!∞, we conclude that ‖yn−τ(yn)1‖2!0. So, since ‖xn−yn‖2!0, also

‖xn−τ(xn)1‖2! 0.

4. Concluding remarks

The group G constructed above is not finitely generated. It seems impossible to modify
our construction to provide finitely generated counterexamples G, although we strongly
believe that such examples exist.

The construction in this paper is inspired by the following similar phenomenology in
ergodic theory of group actions, exhibited by Schmidt [Sc, Example 2.7]. Let G�(X, μ)
be a measure-preserving action of a countable group G on a standard non-atomic prob-
ability space (X, μ). The action G�(X, μ) is said to be strongly ergodic if the following
implication holds: whenever Un⊂X is a sequence of almost invariant measurable subsets
(i.e. μ(g ·Un�Un)!0 for all g∈G), then μ(Un)(1−μ(Un))!0. The action G�(X, μ) is
said to have spectral gap if the Koopman representation G!U(L2(X)
C1) does not
weakly contain the trivial representation. It is easy to see (e.g. [BHV, Proposition 6.3.2])
that spectral gap implies strong ergodicity. In [Sc, Example 2.7], Schmidt shows that the
converse can fail.

Finally, we illustrate the subtlety of the difference between inner amenability and
property Gamma. Let G be an icc group and consider the Hilbert space �2(G) as an
LG-LG-bimodule. We denote by C∗

r G the reduced group C∗-algebra of G, viewed as a
weakly dense C∗-subalgebra of LG.
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The following are true:
• G is inner amenable if and only if there exists a sequence ξn of unit vectors in

�2(G) such that ξn(e)=0 for all n and ‖aξn−ξna‖2!0 for all a∈C∗
r G.

This follows from the fact that G is inner amenable if and only if the adjoint rep-
resentation of G on �2(G\{e}) weakly contains the trivial representation (see e.g. [BH,
Théorème 1]).

• LG has property Gamma if and only if there exists a sequence ξn of unit vectors
in �2(G) such that ξn(e)=0 for all n and ‖aξn−ξna‖2!0 for all a∈LG.

This follows from the characterization of property Gamma in [C, Theorem 2.1 (c)].

Acknowledgment. I would like to thank Sorin Popa for pointing me towards [Sc].
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