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1. Introduction

Consider a 2-dimensional inviscid incompressible fluid acted on by gravity and with a
free surface. If we denote by D(t)CR? the domain occupied by the fluid at time ¢, then
the dynamics of the fluid is described by the Euler equations for the vector velocity field

G. S. Weiss has been partially supported by the Grant-in-Aid 15740100/18740086 of the Japanese
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(u(t,-),v(t,-)): D(t)—R? and the scalar pressure field P(t,-):D(t)—R:
U+ Uy +VUy = — Py, in D(t),
vt uvg+vvy =—Py—g in D(t),
Uy +vy =0 in D(t),
where subscripts denote partial derivatives and g is the gravity constant. The boundary
0D(t) of the fluid domain contains a part, denoted by 9, D(t), which is free and in contact
with the air region. The equations of motion are supplemented by the standard kinematic

boundary condition
V=(u,v)-v on 9,D(t),

where V is the normal speed of 9, D(t) and v is the outer normal vector, and the dynamic
boundary condition
P is locally constant on 9, D(t).

We further assume that the flow is irrotational:
uy—vy, =0 in D(¢).

While recent years have seen great progress in the study of the initial-value prob-
lem (see [40] for large-time well-posedness for small data, and the references therein for
short-time well-posedness for arbitrary data), in the present paper we confine ourselves
to traveling-wave solutions of the above problem, for which there exists DCR?, c€R,
(@,7): D—R? and P: D—R such that

D(t)=D+ct(1,0) forallteR,
and for all teR and (z,y)€D(t),
u(z,y,t) =a(z—ct,y)+c, v(z,yt)=v(z—ct,y) and P(z,y,t)=P(z—ct,y).
Consequently the following equations are satisfied:
iy +Dily = — P, in D,

Wy +00y=—P,—g in D,

i+, =0 in D,
iy — Ty =0 in D,
(4,0)-v=0 on 0,D,

Pis locally constant on 0, D.
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The above problem describes both water waves, in which case we would add ho-
mogeneous Neumann boundary conditions on a flat horizontal bottom y=—d combined
with periodicity in the x-direction or some condition at z==+o00, and the equally physi-
cal problem of the equilibrium state of a fluid when pumping in water from one lateral
boundary and sucking it out at the other lateral boundary. In the latter setting we would
consider a bounded domain with an inhomogeneous Neumann boundary condition at the
lateral boundary, and the bottom could be a non-flat surface.

In both cases, the incompressibility and the kinematic boundary condition imply
that there exists a stream function v in D, defined up to a constant by

$y=— and ¢y =i in D.

It follows that
1 is locally constant on 9, D.

The irrotationality condition shows that
1) is a harmonic function in D,
and then Bernoulli’s principle gives that
15+%|V1/J|2+gy is constant in D.
The dynamic boundary condition implies therefore the Bernoulli condition
|Vep|242gy s locally constant on d,D.

A stagnation point is one at which the relative velocity field (@, ) is zero, and a
wave with stagnation points on the free surface will be referred to as an extreme wave.
Consideration of extreme waves goes back to Stokes, who in 1880 made the famous
conjecture that the free surface of an extreme wave is not smooth at a stagnation point,
but has symmetric lateral tangents forming an angle of 120°. Stokes [27] gave a formal
argument in support of his conjecture, which can be found at the end of this introduction,
but a rigorous proof has not been given until 1982, when Amick, Fraenkel and Toland [3]
and Plotnikov [20] proved the conjecture independently in brilliant papers. These proofs
use an equivalent formulation of the problem as a non-linear singular integral equation
due to Nekrasov (derived via conformal mapping), and are based on rather formidable
estimates for this equation. In addition, Plotnikov’s proof uses ordinary differential
equations in the complex plane. Moreover, Plotnikov and Toland proved convexity of
the two branches of the free surface [21]. Prior to these works on the Stokes conjecture,
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the existence of extreme periodic waves, of finite and infinite depth, had been established
by Toland [28] and McLeod [18], building on earlier existence results for large-amplitude
smooth waves by Krasovskii [17] and by Keady and Norbury [16]. Also, the existence of
large-amplitude smooth solitary waves and of extreme solitary waves had been shown by
Amick and Toland [4].

In the present paper we confine ourselves to the case when

AY=0 in D,
=0 on J,D,
|V¢($7y)‘2:*y on aaDa

and we investigate the shape of the free surface 9, D close to stagnation points for extreme
waves which a priori satisfy minimal regularity assumptions. Note that, since (@, )=
(vy, =), the Bernoulli condition implies that the free surface is contained in the lower
half-plane and that the stagnation points on the free surface necessarily lie on the real
axis and are points of maximal height.

Weak solutions of the above free-boundary problem have been studied by Shar-
gorodsky and Toland [25] and Varvaruca [31], who consider solutions for which the free
surface 9, D is a locally rectifiable curve, ¥ € C?(D)NC?(D) is harmonic and satisfies the
zero Dirichlet boundary condition in the classical sense, while the Bernoulli condition
is satisfied almost everywhere with respect to the 1-dimensional Hausdorff measure by
the non-tangential limits of V1. They prove that the set S of stagnation points on the
free surface is a set of zero 1-dimensional Hausdorff measure, that 9,D\S is a union of
real-analytic arcs, and that 1 has a harmonic extension across 9, D\ S which satisfies all
free-boundary conditions in the classical sense outside stagnation points.

The main objectives of the present paper are to give affirmative answers to the
following two questions:

(i) Does the set S consist only of isolated points?

(ii) Is the Stokes conjecture valid at each point of S?

Prior to our work, Question (i) has been completely open, while the answer to
Question (ii) has been known only partially: from [3] and [20] which have recently been
simplified in [30] and [32], we know (ii) to be true at those points of S which satisfy the
following conditions in a neighborhood of the stagnation point: the stagnation point is
isolated, the free surface is symmetric with respect to the vertical line passing through
the stagnation point, it is a monotone graph on each side of that point, and v is strictly
decreasing in the y-direction in D. All of these conditions are essential for the proofs
in the cited results. Let us mention that from the point of view of applications, the

requirement of symmetry is most inconvenient, as numerical results indicate the existence
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of non-symmetric extreme waves [7], [29], [41]. Also, for waves with non-zero vorticity,
¥ need not be monotone in the y-direction [10], [34].

Similarly to [25] and [31], we consider weak solutions which are roughly speaking
solutions in the sense of distributions. The precise notion will be given in Definition 3.2.
We assume that >0 in D, and we extend 1 by the value 0 to the air region so that
the fluid domain can be identified with the set {(z,y):¢(x,y)>0} (in short, {¢p>0}).
Since our arguments are local, we work in a bounded domain 2 which has a non-empty
intersection with the real axis and on which is defined a continuous function v such that,
within Q, {¢)>0} corresponds to the fluid region and {¢)=0} to the air region, the part
of © in the upper half-plane being occupied by air.

In the case of only a finite number of connected components of the air region, we
recover the Stokes conjecture by geometric methods (Theorem 11.2), without assuming

isolatedness, symmetry or any monotonicity.
THEOREM A. Let ¥ be a weak solution of
AYp=0 in QN{yY >0},
V|2 =—y  on QNO{y >0},
and suppose that
IVy|> < —y in QN{y>0}.

Suppose moreover that {1)=0} has locally only finitely many connected components. Then
the set S of stagnation points is locally in Q a finite set. At each stagnation point (x°,1°)

the scaled solution converges to the Stokes corner flow, that is,
w(($07y0)+r(xay)) \/§ 3/2 3 . 57T ™ T
372 — 3 0°/“ cos 5 min< maxs< 6, 3 O + 3 as 1\, 0,

strongly in Wlif (R?) and locally uniformly on R?, where (x,y)=(0cosb, osin®), and in

an open neighborhood of (x°,9y°) the topological free boundary 9{1>0} is the union of
two C-graphs with right and left tangents at (x°,4°).

Let us remark that the assumption
Vy|?<—y in {¢>0}

has been verified in [31, Proof of Theorem 3.6] for weak solutions, in the sense of [25] and
[31] described earlier, of the water-wave problem in all its classical versions: periodic and
solitary waves of finite depth (in which the fluid domain has a fixed flat bottom y=—d,
at which ¢ is constant), and periodic waves of infinite depth (in which the fluid domain
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extends to y=—o0 and the condition lim,_,_ V¥ (z,y)=(0, —c) holds, where c is the
speed of the wave). The proof is merely an extension of that of Spielvogel [26, Proof of
Theorem 3b] for classical solutions, which is based on the Bernstein technique.

In the case of an infinite number of connected components of the air region, we
obtain the following result (cf. Theorem 11.1).

THEOREM B. Let 1 be a weak solution of
AYp=0 in QN{yY >0},
VY|P =—y  on QNO{Y >0},
and suppose that
VY2 < —y in QN{y >0},

Then the set S of stagnation points is a finite or countable set. Fach accumulation point
of S is a point of the locally finite set ¥ described in more detail in the following lines.
At each point (2°,y°) of S\,

¢((x0,y:§;r(x,y)) — g@m cos(i (min{max{ﬁ,—i?—}, —W}-&-W)) as 70,

6 2

strongly in Wé’f(Rz) and locally uniformly on R2, where (z,y)=(ocos®, osinf). The

scaled free surface converges to that of the Stokes corner flow in the sense that, as r\,0,
9 0 0 om T
L Bin{ {(z,y): (2", y")+r(z,y)) >0}A (x,y):—F<9<—E —0.

At each point (z°,4°) of ¥ there exists an integer N=N(2°,y)>2 such that

P((2°,9°)+r(x,y))
rﬂ

—0 as r\(0,

strongly in L2 _(R?) for each B€[0,N), and

loc
Y@y +r(@,y) | oMsin(N min{max{§, —7},0})|
\/r_l faBT((EOﬂO)) '(/}2 dH?! fi)ﬂ Sin2(N9) df

as r\,0,

strongly in Wli’cz(Bl\{O}) and weakly in W2(By), where (x,y)=(0cos®, gsin®).

Although the new dynamics suggested by Theorem B at degenerate points cannot
happen in the case of a finite number of air components, there seems to be no obvious
reason precluding the scenario in Figure 1 with an infinite number of air components,

and the situation is even less clear in the case of inhomogeneous Neumann boundary
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stagnation point

Figure 1. A degenerate point.

conditions. Note that multiple air components without surface tension have previously
been considered in [13]. It is noteworthy that while the water-wave problem has a
variational structure, the solutions of interest are not minimizers of the energy functional.
Consequently, standard methods in free-boundary problems based on non-degeneracy,
which would in the present case be the estimate

/ ¢(($0’yog/—12—r(x,y)) dH' >¢; >0 for all r € (0,70),
9B1((0,0)) T
do not apply.

As far as the water-wave problem is concerned, the new perspective of our approach is
that we work with the original variables (@, ) and use geometric methods, as for example
a blow-up analysis, in order to show that the scaled solution is close to a homogeneous
function. This part of the blow-up analysis works in n dimensions and does not require
ad hoc methods previously applied to classify global solutions (see for example [32]).
This also means that we do not require isolated singularities, symmetry or monotonicity,
which had been assumed in all previous results. Original tools in the present paper
include the new frequency formula (Theorem 7.1) which allows a blow-up analysis at
degenerate points, where the scaling of the solution is different from the invariant scaling
of the equation, and leads in combination with the result [12] by Evans and Miiller to
concentration compactness (Theorem 10.1).

Large parts of the paper are written down for the non-physical but mathematically
interesting free-boundary problem in n dimensions; see for example the partial regular-
ity result Proposition 5.8 showing that non-degenerate stagnation points form a set of
dimension less than or equal to n—2.

Our methods can still be applied when dropping the condition of irrotationality of
the flow (see [32], the forthcoming papers [33] and [23], and [8] and [9] for a background
on water waves with vorticity). Part of the methods extend even to water waves with
surface tension (see the forthcoming paper [39]).
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It is interesting to observe that in his formal proof of the conjecture, Stokes worked
with the original variables (@, ¥) and approximated the velocity potential (the harmonic
conjugate of —1) by a homogeneous function. This is very close in spirit to what we
do on a rigorous level in the monotonicity formula (Theorem 3.5) and the frequency
formula (Theorem 7.1), so let us close our introduction with a quotation taken from [27,
pp- 226-227]:

Reduce the wave motion to steady motion by superposing a velocity
equal and opposite to that of propagation. Then a particle at the surface
may be thought of as gliding along a fixed smooth curve: this follows
directly from physical considerations, or from the ordinary equation of
steady motion. On arriving at a crest the particle must be momentarily
at rest, and on passing it must be ultimately in the condition of a particle
starting from rest down an inclined or vertical plane. Hence the velocity
must vary ultimately as the square root of the distance from the crest.
Hitherto the motion has been rotational or not, let us now confine
ourselves to the case of irrotational motion. Place the origin at the crest,
refer the function ¢ to polar coordinates r and 6; 6 being measured from
the vertical, and consider the value of ¢ very near the origin, where ¢
may be supposed to vanish, as the arbitrary constant may be omitted.
In general ¢ will be of the form > A,r"sinnd+> B,r™ cosnf. In the
present case ¢ must contain sines only on account of the symmetry
of the motion, as already shown (p.212), so that retaining only the
most important term we may take ¢=Ar"sinnf. Now for a point in
the section of the profile we must have d¢/d6=0, and d¢/df varying
ultimately as /2. This requires n:%, and for the profile that %9:%7{,
so that the two branches are inclined at angles of +60° to the vertical,

and at an angle of 120° to each other, not of 90° as supposed by Rankine.

Acknowledgment. We are very grateful to Stefan Miiller, Pavel Plotnikov, John

Toland and Yoshihiro Tonegawa for helpful suggestions and discussions.

2. Notation

We denote by x4 the characteristic function of the set A, and by AA B the set (A\B)U
(B\A). For any real number a, the notation a* stands for max{a,0}. We denote by
x-y the Euclidean inner product in R™ xR™, by |z| the Euclidean norm in R™ and by
B,(2°):={zeR":|x—2°|<r} the ball of center 2° and radius r. We will use the notation
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B, for B,.(0), and denote by w,, the n-dimensional volume of By. Also, L™ shall denote the
n-dimensional Lebesgue measure and H® the s-dimensional Hausdorff measure. By v we
will always refer to the outer normal on a given surface. We will use functions of bounded
variation BV (U), i.e. functions feL'(U) for which the distributional derivative is a
vector-valued Radon measure. Here |V f| denotes the total variation measure (cf. [15]).
Note that for a smooth open set ECR”, |Vxg| coincides with the surface measure on OF.
Last, we will use the notation r\,0 for r—0" and r 70 for r—0".

3. Notion of solution and monotonicity formula

Throughout the rest of the paper we work with an n-dimensional generalization of the
problem described in the introduction. Let € be a bounded domain in R™ which has a
non-empty intersection with the hyperplane {z,, =0}, in which to consider the combined

problem for fluid and air. We study solutions u, in a sense to be specified, of the problem

Au=0 in QN{u>0}, 51)
3.1
[Vul>=z, on QNd{u>0}.

(Note that, compared with the introduction, we have switched notation from v to u
and we have “reflected” the problem at the hyperplane {x,,=0}.) Since our results are
completely local, we do not specify boundary conditions on 0f).

We begin by introducing our notion of a variational solution of the problem (3.1).

Definition 3.1. (Variational solution) We define uGWli)CQ(Q) to be a variational so-
lution of (3.1) if ueC*(Q)NC?(QN{u>0}), u=0 in Q, u=0 in QN{x, <0}, and the first

variation with respect to domain variations of the functional

J(v):= /Q(\VU|2+$nX{v>o}) dx

vanishes at v=u, i.e.

4

0= de

J(u(z+ed(x)))

e=0

_ /Q (IVuf? div ¢ —2VuDPVu+ 20 X {us0) iV S+ X (uso} $n) d

for any ¢p€CJ (4 R™).

The assumption u€C?(Q2)NC?(Q2N{u>0}) is necessary in that it cannot be deduced
from the other assumptions in Definition 3.1 by regularity theory, but it is rather mild
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in the sense that it can be verified without effort for “reasonable” solutions, for example
solutions obtained by a diffuse interface approximation. Also we like to emphasize that
regularity properties of the free boundary, like for example finite perimeter, are not
required at all. Note for future reference that the fact that w is continuous and non-
negative in 2, as well as harmonic in {u>0}, implies that Au is a non-negative Radon
measure in Q with support on QNo{u>0}.

We will also use weak solutions of (3.1), i.e. solutions in the sense of distributions.

For a comparison of variational and weak solutions see Lemma 3.4.

Definition 3.2. (Weak solution) We define uGW&)S(Q) to be a weak solution of (3.1)
if the following are satisfied: ©€C%(2), u>0 in Q, u=0 in QN{z, <0}, u is harmonic
in {u>0}NQ and, for every 7>0, the topological free boundary 9{u>0}NQN{z,>7}
can be locally decomposed into an (n—1)-dimensional C*“-surface, relatively open to
0{u>0} and denoted by 9,q{u>0}, and a singular set of vanishing H"~!-measure; for
an open neighborhood V' of each point 2°€Qn{z, >7} of drea{u>0}, ueC*(VN{u>0})
satisfies

|Vu(z)]? =2, on VNoea{u>0}.

Remark 3.3. (i) By [2, Theorem 8.4], the weak solutions in [2] with Q(z)=x satisfy
Definition 3.2.

(if) By [31, Theorem 3.5], the weak solutions in [25] and [31] satisfy Definition 3.2.

LEMMA 3.4. Any weak solution of (3.1) such that
|Vu? < Cx, locally in Q,

is a variational solution of (3.1). Moreover, X{y>o} is locally in {x,>0} a function of

bounded variation, and the total variation measure |Vxy>0y| satisfies

pl/2=n / VZn VX {usoy| dz < Co
Br(y)

for all B.(y) €N such that y,=0.

The proof follows [35, Theorem 5.1] and will be given in the appendix.
A first tool in our analysis is an extension of the monotonicity formula in [36] and
[35, Theorem 3.1] to the boundary case. The roots of those monotonicity formulas are

harmonic mappings ([22], [24]) and blow-up ([19]).

THEOREM 3.5. (Monotonicity formula) Let u be a variational solution of (3.1), let
1€ and let §:=1 dist(2°, 09).

(i) Interior case x2>0. The function

O, (r) =7 " / (IVu 420X (us0y) da—r """ / u? A,
’ B,.(z0) 9B, (z°)
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defined in (0,9), satisfies the formula

. . o 2
@;%t,u(a)—‘b;%t,u(é’):/ 1"7"/ Q(VU'V—E) dH" "t dr
0 9B, (z°) r
_l’_

/ r_”_l/ (:cn—asg)x{u>0} dx dr

e B (z0)

for any 0<p<o<d. The absolute value of the second term in the right-hand side is
estimated by o—p and is therefore O(o).

(ii) Boundary case x2=0. The function

3
Pbgund ;- ::r‘"‘l/ (|Vu\2+xnx{u>0})dx—fr_"_2/ u? dH" 1,
’ B, (a°) 2 9B, (a0)

defined in (0,9), satisfies the formula

o 3 2
@Eﬁfu“d(o)—éigfid(g)z/ ol /aB ( 0)2(Vu~1/—2z) dH™ ' dr
o T

for any 0<p<o<é.

Remark 3.6. Let us assume that z°=0. Then the integrand on the right-hand side
of the monotonicity formula is a scalar multiple of (Vu(a:)-x—%u(x)f, and therefore

vanishes if and only if u is a homogeneous function of degree %

Proof. We start with a general observation: for any uGI/Vli)C2 (Q) and aeR, the
following identity holds a.e. on (0, §), where w,(z)=u(z°+rx),

da <Ta / u? dHn1>
dr 9B, (20)
_ 4 <ra+"1 / w? dH”l)
d’l" 8B,

(3.2)
:(a+n71)r0‘*1/ u? dH”flJrrOﬁ”*l/ 2w, Vu(x® +rz) -z dH™ !

8B, (z0) o8,
=(a+n—1)ro‘71/ u? dH"71+7’O‘/ 2uVu-vdH" .
8B, (z°) 9B, (x0)

Suppose now that w is a variational solution of (3.1). For small positive 7 and
N (t):=max{0, min{1, (r—t)/7}}, we take after approximation

(br(x) 5:777(|$—$0|)(9U—370)
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as a test function in the definition of a variational solution. We obtain

0= [ (Val? +xguso) (e (=) (o=l —a") do
.0 .0
72/ |Vu|277¢(\xf:c0|)+Vu~m xo Va2 0 (|Jz—2°))|z—2°| | dz
0 lz—20 " |o—af

4 / e (2= 2%]) (@ —20) X {us0) .

Passing to the limit as 7—0, we obtain, for a.e. r€(0,9),
0=n [ (VuPtaxgso)door [ (Vulbanxgso) dH
B, (z9) 0B, (z°)

+2r/ (Vu-v)? dH"fl—Z/ |Vul|? dHn71+/ (0 —20) X {u>0} dz.
9B, (20) B, () B,.(2%)

(3.3)

Observe that letting e—0 in
/ Vu-V max{u—e, 0} ¢ dx:/ max{u—e, 0} Vu-v dH" !
B, (z°) OB, (z0)

for a.e. r€(0,6), we obtain the integration by parts formula
/ |Vu|? dx :/ uVu-v dH" (3.4)
B, (x9) 9By (2°)
for a.e. r€(0,9).

Now let for all r€(0,4),
Uint(r) =r " / (|vu|2+an{u>O}) dIE,
B, (z0)
Wing(r) =771 / u? dH" 1,
OB, (x0)

so that @;‘}{u: int — Wing. Note that, for a.e. r€(0,6),
Una(r) == [ (Wl 4axusoy) do
B, (z9)
Jrr*"/ (|Vu|2+xnx{u>0})d7'[”71.

OB, (x0)

It follows, using (3.3) and (3.4), that for a.e. r€(0,9),

Ul(ry=2r—" / (Vu-v)?dH" =21 / uNVu-vdH" !
OB, (z9) OB, (z9)

(3.5)
Jrr*"*l/ (xnfxg)x{uw} dx.
B, (z9)
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On the other hand, plugging a:=—n—1 into (3.2), we obtain that for a.e. r€(0,d),
e(r)=2r7"71 / uVu-vdH"t—2r "2 / u? dH" (3.6)
OB, (z0) OB (z9)

Combining (3.5) and (3.6) yields (i).
Next, let for all r€(0,9),

Upouna(r) ="~ / (Vul>+ Enx usoy) d2,
By (%)

Whouna (1) := rn2 / w2 dH L,
9B, (z0)

so that q)BSH;d:Ubound— %Wbound. Now observe that, in the case when :C%:O, formula
(3.3) means that

0=(n+1) / (Va4 2ax usoy) du—r / (V42X usoy) -
B,.(z9) OB, (z9)

+27’/ (Vu-v)? dHn7173/ |Vu|? d.
9B (20) B, ()

Also, for a.e. 7€(0,9),

(3.7)

Ulauna )=~ 02 [ (9 o) do
[ (P s
OB, ()
It follows, using (3.7) and (3.4), that for a.e. r€(0,0),

U ound (T) :27°_"_1/ (Vu-v)? d’l—["_l—3r_"_2/ uVu-vdH" ' (3.8)
OB, (z0) OB (z9)

On the other hand, plugging a:=—n—2 into (3.2), we obtain that for a.e. r€(0, ),

W ouna(r) =2r7"72 / uVu-vdH" ™t —3p7 "3 / u? dH" 1 (3.9)
9B (z°) 9B, (x0)
Combining (3.8) and (3.9) yields (ii). O

4. Densities

From Theorem 3.5 we infer that the functions @;%tu and @28‘1““‘1 have right limits

B, (07) = lim @3, (1) € [~00,00) and BE5(0°) = lim @522 (r) €[00, 00).



376 E. VARVARUCA AND G. S. WEISS

In this section we derive structural properties of these “densities”
O, (07) and  ®PRUI(07).

2

The term “density” is justified somewhat by Lemma 4.2 (i) and (ii).

Note that most of the statements concerning @;%t will not be used in subsequent

U

sections but serve to illustrate differences between the boundary and the interior case.

LEMMA 4.1. Let u be a variational solution of (3.1) and suppose that
|Vu? < Cx, locally in Q.

(i) Let 2°€Q be such that 2°>0. Then q);%t’u(Oﬂ is finite if u(x°)=0, and is —co
otherwise.

(i) Let 2°€Q be such that x2=0. Then <I>gg}1jd(o+) is finite. (Note that u=0 in
{z,=0} by assumption.)

(iii) Let 2°€Q be such that 2% >0 and u(z°)=0, and let 0<r,,\,0 as m—00 be a

sequence such that the blow-up sequence

w(x®+r,7)

U () 1= -

converges weakly in WIECQ (R™) to a blow-up limit ug. Then ug is a homogeneous function
of degree 1, i.e. up(Ax)=Auo(x).
(iv) Let 2°€Q be such that 9 =0, and let 0<r,\0 as m—o00 be a sequence such

that the blow-up sequence
w(x®+r,,x)

U (X) 1= T

converges weakly in Wéf (R™) to a blow-up limit ug. Then ug is a homogeneous function
of degree 3, i.e. up(Ax)=X\3"?uy(z).

(v) Let un, be a converging sequence of (iii) or (iv). Then u,, converges strongly
in WE2(R™).

loc

Proof. (i), (ii) If u(2°)=0, the finiteness claims follow directly from the growth
assumption |Vu[?<Cz;. If 20 >0 and u(2?)>0, then, since |Vu|?<Cx;. by assumption,
we obtain that @;%t7u(r)<01 —Cyr~2 for r<ry, implying that @;%tM(O*):—oo.

(iii), (iv) For each 0<o <oo the sequence u,, is by assumption bounded in C%(B,).
From the monotonicity formula (Theorem 3.5) we infer therefore, setting a=1 in the

interior case and a:% in the boundary case, that for all 0<p<o <00,

// (Vg (2) -2 — 0ttt () dH* P dr =0 as m— oo,
o JOB,
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which yields the desired homogeneity of uyg.
(v) The proof follows [6, Lemma 7.2]. In order to show strong convergence of u,, in
W&)CQ (R™), it is sufficient, in view of the weak L2-convergence of Vu,,, to show that

hmsup/ |Vum\277d$</ [Vuo|*n da

m—0o0

for each neC}(R™). Using the uniform convergence, the continuity of ug, as well as the
fact that ug is harmonic in {ug>0}, we obtain as in the proof of (3.4) that

upVug-Vn dx:/ |Vu0\277 dx

n

/ \Vum|2ndx:—/ U, VU -V de — —

R’!L
as m—oo. It follows that wu,, converges to ug strongly in Wlif (R™) as m—o0. O

LEMMA 4.2. Let u be a variational solution of (3.1) and suppose that
\Vul?> <Cx!  locally in Q.

(i) Let 2°€Q be such that 22 >0 and u(x®)=0. Then

<I>“‘t 07) =22 lim 7~ "/ dz,
«(07) n lim BT(wO)X{u>O}

and in particular ®%F (07)€[0,00). Moreover, ®%f (07)=0 implies that ug=0 in R"
for each blow-up limit uy of Lemma 4.1 (iii).
(i) Let 2°€Q be such that 28=0. Then

(I)bound 0+ =i 777,71/ + d ,
( ) rl\r‘l(l)?" B (x0) $71X{u>0} xz

and in particular @28}‘5%0*)6[0,00). Moreover, @;’S}g‘d(O*):O implies that uo=0 in
R™ for each blow-up limit uy of Lemma 4.1 (iv).

(iii) The function x> (0%) is upper semicontinuous in {x,>0}.

(iv) The function x»—><I>b°““d(O+) is upper semicontinuous in {x,=0}.

(v) Let u, be a sequence of variational solutions of (3.1) which converges strongly
to ug in I/Vﬁ)f(R") and such that X{u,,>0} converges weakly in LIOC(R”) to xo. Then ug
is a variational solution of (3.1) and satisfies the monotonicity formula, but with X {u,>0}
replaced by xo. Moreover, for each x°€€Q, and all instances of X{uo>0} Teplaced by Xo,

oy, (07) >limsup &, (07)

m—0o0

in the interior case z9>0, and

(I)bound (0+> > lim sup (I)bound (O+)

z9,u0
m— 00

in the boundary case x2=0.
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Proof. (i), (ii) Take a sequence 71,0 such that u,, defined in Lemma 4.1 (iii)
and (iv) converges weakly in Wlif (R™) to a function ug. Using Lemma 4.1 (v) and the

homogeneity of ug, in the interior case we obtain that

lim @;%ﬁu(rm) :/ | Vg |? dm—/ ud dH" " 422 lim " / X{u>0} dv
B, 9B, ™0 B, (z9)

m—o0

(URH -n
=z, limr dx,
n N0 /Br(xf’) X{u>0}
(the limit here exists because lim,~ o @ (r) exists), while in the boundary case we
obtain that

m—0o0

lim ®Pgund(y, )= / |wol2dac—§ / ug dH" A lim / Ty X {u>0} A
5 B 2 8B, ™0 B,.(z9)

zlimrfnflf T X rus01 dx.
™0 B, (29) nX{u>0}

Thus @;%t,u(OJ“)}O in the interior case, @28}3“1(0’) >0 in the boundary case, and equality
in either case implies that for each 7>0, u,, converges to 0 in measure in the set {z,,>7}
as m— 00, and consequently ug=0 in R".

(iii), (iv) For each 6>0 and K <oo we obtain from the monotonicity formula (The-

orem 3.5) that in the interior case

. . . 5
B (07) < 0 ) < 2+ < |

o (07)+4, if @1 (0%) > —oo,
-K, if @ (07) = —o0,

and in the boundary case

| >

@Lou(07) < BE(r) < BERU (1) + 5 < DEEUA(07) 45,

if we choose for fixed 20 first 7>0 and then |z —2°| small enough.
(v) The fact that ug is a variational solution of (3.1) and satisfies the monotonicity
formula in the sense indicated follows directly from the convergence assumption. The

proof of the rest of the claim follows by the same argument as in (iii) and (iv). O

LEMMA 4.3. Let u be a variational solution of (3.1) and suppose that

|Vul? < Cx, locally in Q.

n

Then ®1F (0%)=0 implies that u=0 in some open n-dimensional ball containing z°.



A GEOMETRIC APPROACH TO GENERALIZED STOKES CONJECTURES 379

Proof. By the upper semicontinuity (Lemma 4.2 (iii)), 1%, (0*) <e in Bs(2°) € for
some 6€(0,2Y). Suppose towards a contradiction that u#0 in Bs(z?). Then there exist
a ball AC{u>0}NBs(z") and 2€9AN{u=0}. It follows that

. L w
@;?Z(O*’):Zn 71‘1{‘1(1)’]" nLT(Z) X{u>0} dﬂ:}zn?’n’,
a contradiction for sufficiently small €. O

Unfortunately, a boundary version of Lemma 4.3, stating that boundary density 0
at 20 implies the solution being 0 in an open n-dimensional ball with center z°, cannot

be obtained in the same way. Instead we prove the following result in the 2-dimensional

case.

LEMMA 4.4. Let n=2, let u be a weak solution of (3.1) and suppose that
|Vul|> <xg  in Q.
Then @28“;%0*):0 implies that u=0 in some open 2-dimensional ball containing z°.

Proof. Suppose towards a contradiction that 2°€d{u>0}, and let us take a blow-up

sequence

w(x®+rp,x)

U () 1= 33

'm
converging weakly in Wllof(R") to a blow-up limit up. Lemma 4.2 (iv) shows that ug=0
in R2. Consequently,
OeAum(Bg)E/ VT dH'  as m — 0. (4.1)
B2NOreda{um >0}

(Recall that Awu is a non-negative Radon measure in €2.) On the other hand, there is at
least one connected component V,,, of {u,, >0} touching the origin and containing, by

the maximum principle, a point z™€90A, where A=(—1,1)x(0,1). If
max{zy:x €V,,NIA} A0 as m— oo,
we immediately obtain a contradiction to (4.1). If
max{zy:x € V,,N0A} — 0,

we use the free-boundary condition as well as |[Vu|?<x3 to obtain
0= Aup(V;NA) < NG dHl—/ Vg dH.
VimnNOA ANOrea Vi

However fv noA VT2 dH' is the unique minimizer of faD Tz dH' with respect to all

open sets D with D=V, on 0A. So V,, cannot touch the origin, a contradiction. O
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Remark 4.5. Note that we have not really used the full information contained in the
weak formulation. What we have used is the inequality Au> /T3 H|s,,u>01 (Which is
true for any limit of the singular perturbation considered in [37]) and the fact that we

can locate a non-empty portion of 9yeq{u>0} touching x°.

In higher dimensions it is not so clear whether cusps can be excluded. Of course
that does not happen for Lipschitz free boundaries.

LEMMA 4.6. Let u be a variational solution of (3.1) and suppose that

|Vul? < Cx, locally in 9,

n

and that {u>0} is locally a Lipschitz set. Then ®25"4(0")=0 implies that u=0 in some

open n-dimensional ball containing x°.

Proof. This is an immediate consequence of Lemma 4.2 (ii) and the Lipschitz conti-

nuity. O

PROPOSITION 4.7. (2-dimensional case) Let n=2, let u be a variational solution of
(3.1), and suppose that
|Vul? <Cxgd locally in Q.

Let 2°€Q be such that u(x°)=0, and suppose that
rot / IVX{us0y| dz < Co
B, ()
for all r>0 such that B,.(z°)€Q in the interior case, and that

P32 VT2 VX fuso0y] dz < Co
B, (z%)
for all ¥>0 such that B,.(z")€Q in the boundary case.
(i) Interior case x3>0. The only possible blow-up limits are

up(x) = /2 max{z-e,0} and uo(z)="|z-e€l,

where e is a unit vector and v is a non-negative constant. If ug(x)=+/x9max{z-e,0}
then the corresponding density value is twa, if ug(z)="|z-e| with v>0 then the density
1S wa, while if ug=0 the density may be either 0 or ws.

(i) Boundary case 3=0. The only possible blow-up limits are

‘/53/2 3( . m) 5w T
uo(@ﬁ)—?g cos<2<mln{max{0,6},6}_2>>’
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with the corresponding density

/ ‘rgx{z:w/6<9<5‘n’/6} de,

B,

and ug(z)=0, with possible values of the density

/xgd:c and 0.
By

Proof. Consider a blow-up sequence u,, as in Lemma 4.1, where r,,, \,0, with blow-
up limit ug. Because of the strong convergence of u,, to ug in I/Vli)f (R?) and the compact

embedding from BV into L', ug is a homogeneous solution of

0= / (|Vuo|* div ¢ —2Vug DpVug) da+19 / Xo div ¢ dz (4.2)
R2 R2
for any ¢p€C}(R?;R?) in the interior case, and of

0:/ (|Vuo|® div ¢p—2Vug DpVug) dz—|—/ (zax0 div ¢+ x0¢2) dx (4.3)
R2 R2

1
loc

for any p€C} (R?; R?) in the boundary case, where X is the strong L -limit of X {um >0}
along a subsequence. The values of the function yo are almost everywhere in {0, 1},
and the locally uniform convergence of u,, to uo implies that xo=1 in {ug>0}. The
homogeneity of uy and its harmonicity in {uy>0} show that each connected component
of {up>0} is a half-plane passing trough the origin in the interior case, and a cone with
vertex at the origin and of opening angle 120° in the boundary case. Also, (4.2) and (4.3)
imply that o is constant in the connected set {uo=0}", i.e. the interior of {ug=0}.

Consider first the case when {ug>0} has exactly one connected component. Let
z be an arbitrary point in 9{ug=0}\{0}. Note that the normal to d{up=0} has the
constant value v(z) in Bs(z) for some §>0. Plugging in ¢(x):=n(z)v(z) into (4.2) and
(4.3), where n€C}(Bs(z)) is arbitrary, and integrating by parts, it follows that

0:/ (—=|Vuo*+a5(1—x0))n dH* (4.4)
{uo>0}
in the interior case, and that
0=/ (—=IVuo* +22(1—x0))n dH' (4.5)
8{u0>0}

in the boundary case. Here Yo denotes the constant value of x¢ in {ug=0}°. Note that by
Hopf’s principle, Vug-v#0 on Bs(z)Nd{ug>0}. In both the interior and boundary case
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it follows therefore that yo#1, and hence necessarily yo=0. We deduce from (4.4) and
(4.5) that |Vug|?=x3 on 8{uo>0} in the interior case, and that |Vug|?=z2 on d{ue>0}
in the boundary case. Computing the solution ug of the ordinary differential equation
on 0B yields the statement of the proposition in the case under consideration.

Consider now the case ug=0. In the interior case, (4.2) shows that xo is constant
on R?, with value either 0 or 1. In the boundary case, (4.3) shows that xq is constant in
the upper half-plane, with value either 0 or 1, and that yg is constant with the value 0
in the lower half-plane.

Last, consider the situation when, in the interior case, the set {ug>0} has two
connected components. The argument for (4.4) now yields that the constant values of
|Vug|? on either side of d{ug>0} are equal. This completes the proof. O

5. Partial regularity of non-degenerate solutions
Definition 5.1. (Stagnation points) Let u be a variational solution of (3.1). We call
St*:={zxeN:x,=0 and £€d{u>0}} the set of stagnation points.

Definition 5.2. (Non-degeneracy and density condition) Let u be a variational solu-
tion of (3.1).
(i) We say that a point 2°€QNd{u>0}N{x, =0} satisfies property (N) if

liminf "3 / w2 dz > 0.
B,-(z9)

\0

Moreover we define for each 7>0 and ¢>0 the set

N = {xo € Qnd{u>0}N{x, =0}: r_"_3/

Br("EO)

u?dr =7 for re (0,{]}.
(i) We say that a point z°€QNd{u>0}N{x,, =0} satisfies property (D) if

0<liminfr—""! / m;x{u>0} de <limsupr "1 / I;X{u>0} dx < / x} dw.
™0 B, (20) ™0 B,.(z9) B

Note that |J. . N, is the set of all points satisfying property (N).
LEMMA 5.3. Let u be a variational solution of (3.1) and suppose that
|Vul> < Oz, locally in Q

and that
pt/2=n / VT [VXiusoy| dz < Co
B, (y)

for all B,.(y)€Q such that y,=0. Then properties (N) and (D) are equivalent.
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Proof. (D)= (N) Consider a blow-up limit ug of the sequence

w(@®+r,x)

um () = 32
m

where 7., \\0, and suppose towards a contradiction that ug=0. Passing to the limit in
the domain variation equation we obtain

O:/ (|Vu0|2div¢—2Vu0D¢Vuo+an0div¢+X0¢n)dx:/ (Znxo div o+ X0dn) dz

n

for any ¢p€C}(R™; R"™), where Yo is the limit of X{un >0} With respect to a subsequence.
This implies that yo is a constant function. On the other hand, the condition on
|VX{u>0}| implies that the values of xo are almost everywhere in {0,1}, and then condi-
tion (D) shows that the function xo is not constant, a contradiction.

(N)= (D) The proof draws on [37, Proof of Proposition 9.1]. Let us again consider
a blow-up limit ug of the sequence
w(x®+r,x)

)= )

and suppose towards a contradiction that xo:=limm, o X{u,, >0} =1. By the monotonic-
ity formula (which holds for ug with Xx{u,>0} replaced by xo) and the growth estimate

we obtain for each point x such that x, =0,

0 B2 (o) — @p o (o) = @b () — B (0°)

o 3 2
=P (o) — Yo (07) = / ront / 2 (V-2 dn tdr
0 &B,.(z) 2r

as o—o00. But this means that ug is homogeneous of degree % with respect to each
point x such that x,=0. It follows that wg depends only on the z,-variable. Thus
uo(z)=a(x})?? for some a>0, a contradiction to the definition of variational solution

unless a=0. O

PROPOSITION 5.4. (2-dimensional case) Let n=2, let u be a variational solution of
(3.1), and suppose that
|Vul? <Cxzj  locally in

and that
r=3/2 V2 VX {usoy| dz < Co

Br(y)
for all B,(y) €N such that y,=0. At each non-degenerate stagnation point x°, the density
®beund(0+) has the value

/ ISX{QZ:W/6<0<5#/6} dx

1
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and

w(z®+rz) V2 3/2 3/ . ) 7] w
“ar gt Te)) w

strongly in VVlif (R?) and locally uniformly on R?, where x=(pcosf, psinf). Moreover,

6 6

}<(5}) —0 as 7\/0.

(Recall that Au is a non-negative Radon measure in €2.)

£2<B1ﬂ<{$lu($0+7"$>>0}A{.’L‘Z7r<9<577})) =0 as r\0,

and, for each §>0,

™

7«—3/2Au<(3¢0+3r>\{x 1 min{‘9_6

5T
g—=
6

)

Proof. The value of the density and the uniqueness of the blow-up limit follow di-
rectly from Proposition 4.7 (ii) and the non-degeneracy assumption.
Let 7, (0 be an arbitrary sequence, let us consider once more the blow-up sequence

Uy, defined in Lemma 4.1 (iv), and let

wo(0,0) = gg“’/? cos@ <min{max{9, g} 56”}_727»

By the proof of Proposition 4.7, x{,,>0} converges strongly in LY(B) to X{uo>0} along

a subsequence. Since this is true for all sequences 1, \[0, it follows that

X{z:u(zO+rz)>0} —7 X{uog>0} strongly in Ll(Bl) asr \,loa

which is exactly the first measure estimate. The convergence of u,, to ug implies the
weak convergence of the sequence of non-negative Radon measures Au,, to Aug. As ug

is harmonic in

. 5 )
Bl\{x:mm{‘ﬁ—g , 9—% }<2}7
it follows that
Aum(Bl\{x:min{‘H—g , 9—5% }<5}) —0

as m—o00. Since this is true for all sequences r,,\0, the second measure estimate
follows. O

PROPOSITION 5.5. (Partial regularity in two dimensions) Let n=2, let u be a vari-

ational solution of (3.1), and suppose that

|Vul? <Cx3  locally in Q
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and that
r3/2 / VT2 VX {us0y| dr < Co
B (y)

for all B,(y)€N such that yo=0. Let 2°€S" be a non-degenerate point. Then in some

open neighborhood, z° is the only non-degenerate stagnation point.

Proof. Suppose towards a contradiction that there exists a sequence z™ of non-
degenerate points converging to 20, with 2™#a° for all m. Choosing r,:=|z™—20|,
there is no loss of generality in assuming that the sequence (x™—x°)/r™ is constant,

with value z€{(—1,0), (1,0)}. Consider the blow-up sequence

w(x®+r,x)

U () = rg/g

Since =™ is a non-degenerate point for u, it follows that z is a non-degenerate point for
Um, and therefore Proposition 5.4 shows that

@E?ﬁgd(m):/ ng{m:ﬂ-/6<9<57r/6} dzx.
B,

By Lemma 4.1(v) and the proof of Proposition 4.7 (ii), the sequence w,, converges

strongly in I/Vli)c2 (R?) to the homogeneous solution

\/§ 3 3 T 5% 1
_ VY2 3/2 hd ; i G
’LL()(Q,Q)— 3 0 cos<2<m1n{max{9, 6}, 6 } 2)),

where x=(pcosf, gsinf), while xy,, >0} converges strongly in Li _(R?) to X{uo>0}- 1t

loc
follows from Lemma 4.2 (v) that

q’giﬁnd(m) > lim sup ®25m4(0%) :/ T3 X {wim/6<0<5m )6} AT
m—»00 B

contradicting the fact that
Lod(0") =0. O

Remark 5.6. It follows that in two dimensions S* can be decomposed into a count-
able set of “Stokes points” with the asymptotics as in Proposition 5.4, accumulating (if at
all) only at “degenerate stagnation points”, and a set of “degenerate stagnation points”

which will be analyzed in the following sections.

The following lemma will be used in order to prove the partial regularity result
(Proposition 5.8).
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LEMMA 5.7. Let u be a variational solution of (3.1), and suppose that
|Vul> < Cxz,  locally in Q,

and that
pl/2=n / Vi VX {us0y| dv < Co
B, (y)

for all B,(y)€Q such that y,=0. Suppose that x°€S* and let ug be a blow-up limit of

the sequence
w(@®+rp,x)
m
Then for each compact set KCR" and each open set UDKNN!S there exists mo<oo
such that NYmNKCU for m>mqg.

g
Proof. Suppose towards a contradiction that N7 N(K\U) contains a sequence ™
converging to  as m—o00. Then z,,=0, and by the locally uniform Lipschitz continuity
of Um, T€{ug=0}N(K\U). But this contradicts the assumption UDKNN!9 by the
uniform convergence of u,,. O
PROPOSITION 5.8. (Partial regularity in higher dimensions) Let u be a variational
solution of (3.1) and suppose that

|Vul? < Cx, locally in 9,

n

and that
pl/2mn / VT VX fusoy dz < Co
B (y)
for all B,.(y)€Q such that y,=0. Then the Hausdorff dimension of the set Ugﬁ N, of
all non-degenerate points is less than or equal to n—2.

The proof uses standard tools of geometric measure theory and will be given in the

appendix.

Remark 5.9. Tt follows that the Hausdorff dimension of the set of non-degenerate
stagnation points is less than or equal to n—2. From Lemma 5.3 we infer that the set of

stagnation points satisfying the density condition also has dimension at most n—2.

6. Degenerate points

Definition 6.1. Let u be a variational solution of (3.1). We define

Y= {xo €S @0 (0) :/ T dm}.
B
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Remark 6.2. The set X" is closed, as a consequence of the upper semicontinuity

Lemma 4.2 (iv).

Remark 6.3. In the case of two dimensions and a weak solution u, we infer from
Lemmas 5.3 and 4.4 that the set S*\X" equals the set of non-degenerate stagnation

points and is, according to Proposition 5.4, a finite or countable set.
The following lemma is drawn from [37, Theorem 11.1].
LEMMA 6.4. Let u be a variational solution of (3.1), let z°€X* and let
§ =1 dist(2?,0).
(i) The mean frequency satisfies, for all r€(0,0),
fB,,,(;EO) |Vu\2dx 3 rfBT(IO)xZ(le{qoo})dx

T - >0.
faB,,(IO) w?dHrt 2 faB,,(mO) u? dH"
(ii) The function
r»—>r7"72/ u? dH" 1 (6.1)
8B, (x°)
is non-decreasing on (0,0) and has the right limit 0 at 0.
(iii) The function
r—sp "2 / xt(1 —X{u>0}) dT (6.2)
B,.(z%)

is integrable on (0,0).
Proof. (i) The inequality
@ (0%) < 2L (r)

can be rearranged into

WH/ |vu|2dx_§fn*2/ u? dH"*m*"*l/ Tn(1=X{u>0) dz,
By (20) 2 9B, (a) Br(a%)

and the right-hand side is clearly non-negative.

(ii) Plugging in a:=—n—2 into (3.2) and using (3.4), it follows that

i <,',,—n—2/ U2 dHn—l)
dr 8B, (x0)

2 3
:(r_"_l/ |Vu\2da:—fr_"_2/ u? d’H"_1>
r B (20) 2 8B, ()

>2r "2 / zy (1=Xqusoy) de.
Br(xo)

Hence the function (6.1) is non-decreasing on (0, §). Using Lemma 5.3 we obtain that its
right limit at 0 is 0.
(iii) The above inequality implies that the function (6.2) is in L(0,§). O
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7. The frequency formula

THEOREM 7.1. (Frequency formula) Let u be a variational solution of (3.1), let z°
be a point of the closed set X" and let §:=3 dist(z°,09). The function

Fuo () TfBT(xO)(|VU|2+$Z(X{u>o}—1))dﬂC
20 = —
fBBT(a:O) u? dHrt

satisfies, for a.e. r€(0,9), the identity

d 2 -2
7Fz0,u(7") == (/ w2 dHn—l) |:/ (VU-(LL'—:EO))Q dHn—l/ w2 dH" 1
dr 7 \JoB, ") OB, (20) 9B, (20)

2
- (/ uVu-(z—2°) d’H”l) ]
OB, (z9)

J5, @0 Tn(l=X(us0y) dx [ [5 0y [Vul?dz 3
Bz - _9Bu(a) 3
faBT(xO) u? dH ! faBT(xU) u2dH—1 2

The function 1+ Fyo (1) is non-decreasing on (0,0) and the following limit exists
Fo.,,(0%) ::li{r(l) Frou(r)e[3,00).

Remark 7.2. This formula is based on an analogous formula in the interior case
derived by the second author for a more general class of semilinear elliptic equations
([38]). The root is the classical frequency formula of F. Almgren for @-valued harmonic
functions [1]. Almgren’s formula has subsequently been extended to various perturbations
(see [14] for a recent extension). Note however that while our formula may look like a
perturbation of the “linear” formula for @-valued harmonic functions, it is in fact a truly
non-linear formula. This fact will be become more obvious in the paper [38] for more

general semilinearities.

Proof. Assuming the validity of the claimed identity, the monotonicity of Fjo ,, fol-

lows from combining the Cauchy—Schwarz inequality

2
/ (Vu~(:r—x0))2d7-[”_1/ wrdH" > (/ uVu-(x—xo)dH"_l>
9B, (zV) OB, (z0) 0B, (z9)

with Lemma 6.4 (i). The same lemma also shows that r~— Fo ,(r) is bounded below
by % Thus it remains to prove the claimed identity.

Note that
U(T)*fBl xt dx

FwO,u(T) = W(T) ,
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where U:=Upouna and W:=Wypoung are the functions in the proof of Theorem 3.5. Hence
d U'rw(r)—-w'(r)(U(r)—r—1 fBr(acO) z} dz)

%Fxo,u(r) = W2(r) :

Using (3.8) and (3.9), it follows that

d -2
—Fpo,(r)= (r_"_Q/ u? dH"_1>
dr aBT(gCO)
X [(27“_”_1/ (Vu-v)? dH”_l—Br_”_Q/ uVu-l/dH"_1>
OB (x0) 0B, (x°)

X (r_"_2/ u? d’H"_l)
9B, (z°)

_(T—n—l / (|Vu|2+xZ(X{u>0}—1))dl‘)
B, (z9)

X (27‘_"_2/ uVu~udH”_1—3r_"_3/ u? dH"_lﬂ.
OB, (z9) 9B, (z°)

Using (3.4), we obtain

d 2
7Fx07u(r) — </ ’LL2 dHnl)
dr 8B,.(20)
X {27"/ (Vu-v)? dH”fl/ u? dH™ !
OB, (29) OB, (x0)
2
—2r (/ uVu-udH"_1> + (/ xZ(l—x{u>0}) dx)
OB, (z9) B, (z%)
X <2r/ uVu-udH"_l—S/ u? dHn_l)],
OB.(2) OB, (20)

which, upon rearranging and using again (3.4) (this time in the reverse direction), gives

the required result. O

COROLLARY 7.3. Let u be a variational solution of (3.1), let x° be a point of the
closed set X%, and let 6:=%dist(x,8Q). Let us consider, for r€(0,6), the functions

Vul|? dz
D)= r 222tz V!

fB,,.(:pO) (1 *X{u>o}) dx
=T =r
Jon, oy 0? dH"1

faB,,.(IO) urdHrt

and V(r):

so that Fyy . (r)=D(r)=V(r).
(i) For every re(0,9), the following inequalities hold

D-vY() 2V (D)~ 3) > 2V,

(ii) The function r—2V2(r)/r is integrable on (0,46).
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Proof. The inequalities follow from Lemma 6.4 and Theorem 7.1. The integrability

of r—2V?2(r)/r is a consequence of the inequalities. O

COROLLARY 7.4. (Density) Let u be a variational solution of (3.1). The function
z— F,,(07)

s upper semicontinous on the closed set ¥*.

Proof. For each §>0, we have that
Fp(07) S Fpu(r) < Fpo (1) + 36 < Fro,(0%) 46,

if we choose for fixed z°€X® first 7>0 and then |z—2°| small enough. O

The next result is an improvement of Lemma 6.4 at those points of X% at which the

frequency is greater than %

LEMMA 7.5. Let u be a variational solution of (3.1), let z°€X* and let
§ =1 dist(2?,0).

Suppose that Fyo ,,(07)>3 and let y:=F0,(0%).
(i) For all r€(0,9),

fBT(IO) |Vu|2 dx fBT(gEO)$Z(1_X{u>O})d$

T —y=r >0.
Jom, (zoy u? dH" ! ! Jom, (zoy w2 dH !

1 e function r—r—"" oy U 7 18 non-aecreasing on (U,0).
. Thf : 1-n—2vy 6Br(x)2dHn1. d 1 0.6
(iii) The function resri=n=27 fBT(xO) x) (1= X{u>0y) dx is integrable on (0,6).
(iv) For each B€[0,7),

u(x®+rz)

3 —0  strongly in L3 (R"™) as r\,0.
r

Proof. Part (i) follows from the fact that F,, ,(r)>~ for all r€(0,0). Parts (ii) and
(iii) follow by the same arguments as for the corresponding statements in Lemma 6.4. It
is a consequence of part (ii) that rsr—""27 fBT(IO) u? dz is non-decreasing on (0, ), and

therefore, for each S€(0,7),
r*"*w/ u? =0 as 7 \0.
B, (x9)

This implies part (iv) of the lemma. O
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8. Blow-up limits
The frequency formula allows passing to blow-up limits.

PROPOSITION 8.1. Let u be a variational solution of (3.1) and let 2°€X®.
(i) The limits lim~ o V(r)=0 and lim,~ o D(r)=Fo ,,(07) exist.
(ii) For any sequence 1, \0 as m—00, the sequence

w(x®+r,x)

\/Trln_n Jos,,, @0y u? dH"

vm () := (8.1)
is bounded in W12 (By).

(iii) For each sequence 1, \0 as m—o0 such that the sequence vy, in (8.1) con-
verges weakly in W12(By) to a blow-up limit vg, the function vy is continuous and
homogeneous of degree Fyo ,,(07) in By, and satisfies vo=>0 in By, vo=0 in ByN{x,<0}
and faBl vidH" =1,

Proof. The key step in the proof is statement (8.5), which we prove first. We start
by writing the right-hand side of the frequency formula in a more convenient form, using
a simple algebraic identity. For any real inner-product space (H, (-, -)) with norm || -||,

any vectors v and v and any scalar «,

2
2
- )

v (v,u) u v ({v,u) u u
lall Nl Jfull

where we have used a cancellation due to orthogonality. Using the notation introduced

2
(ol = (v, w)®) = ‘

1
— —— —+a
] [ Jull el ol flul
in Corollary 7.3, we apply the above identity in the space L?(0B,(2°)), with u:=u,

v:=r(Vu-v) and a:=V (r), after also taking into account (3.4) in the form

et pir),

lull>

to obtain from the frequency formula that

d 2 v u u W
P =2 [ (oD ) e
D=5 o Tl ™ PO Y O

2 2 3
—Zv? V() D) —= ).
2v2+ 2vin) (D)3 )
This formula can be rewritten as
d
%FIO’U(T)
2
2 r(Vu-v) u ne
:;/ [ g~ Fuo(r) 1/2] M
0B | (fop, (g0y u* dH™ 1) (Jop, (zoy u? dH" 1)

+2v () <Fxo,u(r)—§>. (8.2)

r
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Since Fxo,u(r)>% for all r€(0,0), we obtain therefore that for all 0<p<o <9,

2
72 r(Vu-v) u e
/ 7/ [ ( 75— Faou(r) 1/21 dH 1 dr
o T JoB,(z0) (faBr(mO) u? dH™ 1) (faBr(zo) u? dH" 1)
ngo,u(a)_FmU,uQ))- (83)

Let us consider now an arbitrary sequence r,, such that r,,\0 as m—o00, and let
vm be the sequence defined in (8.1). It follows by scaling from (8.3) that, for every m
such that 7,0 <1 and for every 0<p<o<1,

2
/ g/ r(Vomv) 73 —Fpo y(rmr) Um Ve dH" " dr
o "JoB: | ([op, vi, dH ) (Jom, v dH")

S Fpo o (1m0) = Fpo o (1mo) =0 as m — oo,

since Fyo , has a finite limit at 0. The above implies that
r(Vug, v) U

ag 2/
/Q " JoB. (faBr U danl) (fBBT vp, dH" !

as m—o00. Now note that, for every r€(p,0)C(0,1) and all m as before, it follows by
Lemma 6.4 that

75— Fro.u(07)

2
n—1
)1/2] dH" ™ dr -0 (8.4)

w2 dH 1
/ ,U"%L dHn—l — faBTmT(IO) < rn+2 < 1.
B, faBrm (o) W AH

Therefore (8.4) implies that
/ |2| 7" 3 [ Vo (2) -2 — Fro (0N vy, (2)]* dz — 0 as m — oo. (8.5)
B,\B,

We can now prove all parts of the proposition.

(i) Suppose towards a contradiction that (i) is not true. Let s,,\,0 be a sequence
such that V(s,,) is bounded away from 0. From the integrability of r+—2V?2(r)/r, we
obtain that

min  V(r)—0 asm—oo.

rE[Sm,28m)]
Let t,, €[, 28m] be such that V (¢,,) =0 as m—o0. For the choice 7, :=t,, for each m,
the sequence v, given by (8.1) satisfies (8.5). The fact that V(r,,)—0 implies that
D(r,,) is bounded, and hence v, is bounded in W'2(B;). Let vy be any weak limit of
v, along a subsequence. Note that vy has norm 1 on L?(9B;), since this is true for v,
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for all m. It follows from (8.5) that vy is homogeneous of degree F,o,(0"). Note that,
by Lemma 6.4 (ii),

V(s ) s lfBbm 930) 1 X{u>0})d S lfBrm 930) 1 X{u>0})dx
" " Jop,,, oy W AR (r/2) faBrmm(mO)“den 1 (8.6)
<1 faB o (20) Y S V(rm)= 1 V(rm)

2faB i (xo)u dH"—1 2f831/2 v2, dH 1

Since, at least along a subsequence,

/ v2, dH" ! — vg dH™ >0
dB1/2 0By /2

(8.6) leads to a contradiction. It follows that indeed V(r)—0 as r\,0. This implies that
D(r) =+ Fyo u(0°).

(ii) Let 7., be an arbitrary sequence with r,, \ 0. The boundedness of the sequence
vm in WH2(By) is equivalent to the boundedness of D(r,,), which is true by (i).

(ii) Let r,, (0 be an arbitrary sequence such that v,, converges weakly to vg. The
homogeneity of degree Fyo ,,(0") of vy follows directly from (8.5). The homogeneity of vy,
together with the fact that vy belongs to W12(By), imply that vg is continuous. The fact
that [, vgdH"~'=1is a consequence of [, vy, dH"~'=1 for all m, and the remaining

claims of the proposition are obvious. O

9. Concentration compactness in two dimensions

In the 2-dimensional case we prove concentration compactness which allows us to preserve
variational solutions in the blow-up limit at degenerate points and excludes concentration.
In order to do so, we combine the concentration compactness result of Evans and Miiller
[12] with information gained by our frequency formula. In addition, we obtain strong
convergence of our blow-up sequence which is necessary in order to prove our main
theorems. The question whether the following theorem holds in any dimension seems to
be a hard one.

THEOREM 9.1. Let n=2, let u be a variational solution of (3.1) and let x°€X*. Let
rm \0 be such that the sequence v, given by (8.1) converges weakly to v in W12(By).
Then v, converges to vy strongly in VVéf(Bl\{O})7 and vy satisfies voAvg=0 in the

sense of Radon measures on Bj.

Proof. Note first that, since vy is by Proposition 8.1 a non-negative continuous

function, vgAwg is well defined as a non-negative Radon measure on Bj.
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Let 0 and p with 0<p<o <1 be arbitrary. We know that
Avy, >0 and Avy,(Boy1y/2) <C1 - for all m.
In order to apply the concentrated compactness result [12], we regularize each v, to
Oy i = U %Py, € C*°(By1),
where ¢,,, is a standard mollifier such that

Av,, >0 and / A, dr <Cy < oo for all m,
B,

and

lvm = Omllwi2B,) =0 as m—oco.

From [11, Chapter 4, Theorem 3] we know that Vo, converges a.e. to the weak limit
Vg, and the only possible problem is concentration of |V#,,|?. By [12, Theorems 1.1
and 3.1}, we obtain that

O1 Uy 020y, — 01090219

and

(8117m)2 — (82177”)2 — (61’(]0)2 — (621}0)2
in the sense of distributions on B, as m—oo. It follows that
81Um621}m — 811)0821}0 (91)

and

(O10m)? — (0201 ) — (81v0)? — (D2v0)?

in the sense of distributions on B, as m—00. Let us remark that this alone would allow
us to pass to the limit in the domain variation formula for v,, in the set {z2>0}.
Observe now that (8.5) shows that

V() -2 —Fo ,(07)vp, (x) = 0
strongly in L?(B,\B,) as m—o0. It follows that
01031+ 020 T2 — D101 + 020022

strongly in L?(B,\B,) as m—o0. But then

/ (al’l}malvmﬁcl+alvm821}ml‘2)ﬁ dr — (81U081U0$1+81’0082U0(172)77 dz
B,\B, B,\B,
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for each neCY(B,\B,) as m—oc. Using (9.1), we obtain that

/ (010) 221 d — (01v0)%1n dx

B,\B, B, \B,

for each 0<ne€CY((By\B,)N{x1>0}) and each 0=>1n€CY((B,\B,)N{x1<0}) as m— oo.
Repeating the above procedure three times for rotated sequences of solutions (by 45°)

2 (B,\B,). Since ¢ and g with 0<p<o<1 were

loc

yields that Vv, converges strongly in L
arbitrary, it follows that Vuv,, converges to Vug strongly in L2 _(B1\{0}).

loc

As a consequence of the strong convergence, we see that

V(nvo)-Vugdz =0 for all n€ CL(B1\{0}).

By

Combined with the fact that vo=0 in B;N{x2<0}, this proves that vgAuvg=0 in the

sense of Radon measures on Bj. O

10. Degenerate points in two dimensions

THEOREM 10.1. Let n=2 and let u be a variational solution of (3.1). Then at each
point x° of the set X% there exists an integer N(x°)>2 such that

Fwo,u(0+) :N(IO)

and
u(x®+rx) QN(IO)|sin(N(:cO) min{max{6,0},7})|
\/7"_1 faBT(IO) u? dH?! \/wa Sin2 (N(xo)ﬂ) do

as 7\, 0,

strongly in VV&)CQ(Bl\{O}) and weakly in W2(By), where z=(gcosf, osinf).

Proof. Let r,,\0 be an arbitrary sequence such that the sequence v,, given by
(8.1) converges weakly in W12(Bj) to a limit vyg. By Proposition 8.1 (iii) and Theo-
rem 9.1, vy Z0, vy is homogeneous of degree Fmoyu(OJr)>%7 Vg is continuous, vy =0, vo=0
in {z2<0}, voAvpy=0 in By as a Radon measure, and the convergence of v,, to vy is
strong in W,)?(B1\{0}). Moreover, the strong convergence of v,,, and the fact proved in
Proposition 8.1 (i) that V(r,,)—0 as m— oo imply that

0= [ (9l div 6290006V u0)
B,
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for every ¢ €C}(B1N{z2>0}; R?). It follows that at each polar coordinate point (1,6)€
0B ﬂa{vo >0},
}_i\‘né Opvo(1l,7)=— 11}% Apvo(1,7).

Computing the solution of the ordinary differential equation on 0B, using the homo-
geneity of degree F0,,(07) of vo and the fact that [, vg dH'=1, yields that Fjo ,(0")
must be an integer N(2°)>2 and that

¥ (o) im0, 0} )

vo(p,0) = .
oie:?) V5 sin? (N (1)) db

(10.1)

The desired conclusion follows from Proposition 8.1 (ii). O

THEOREM 10.2. Let n=2 and let u be a variational solution of (3.1). Then the set
¥ 4s locally in Q a finite set.

Proof. Suppose towards a contradiction that there is a sequence of points ™ e X"
converging to z° €, with 2™ #a° for all m. The upper semicontinuity (Lemma 4.2 (iv))
implies that 2°€X%. Choosing 7,,:=2|2™ —2°|, there is no loss of generality in assuming
that the sequence (z™—2°)/r,, is constant, with value ZG{(*%,O), (%,0)} Consider
the blow-up sequence v, given by (8.1), and also the sequence

w(ax®+r,x)
U (T) = 37/2m
m
Note that each u,, is a variational solution of (3.1), and v,, is a scalar multiple of w,,.
Since x™ e X", it follows that z€X"m. Therefore, Lemma 6.4 shows that, for each m,

1
7‘/ |vvm\2dm>§/ v2, dH' for all r € <0, >
B.(2) 2 JoB,.(z) 2

Theorem 10.1 implies that the sequence vy, converges strongly in W'2(By,4(z)) to vg

given by (10.1), and hence

3 1
r/ Vg |? da > 7/ va dH'  for all r € (0, )
B,(2) 2 JoB, () 4

But this contradicts the fact, which can be checked directly, that

lim TLBT(Z) Vo[ dz _
™0 faBT(Z)vgdHl o
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11. Conclusion
THEOREM 11.1. Let n=2, let u be a weak solution of (3.1), and suppose that
|Vul><ag in Q.

Then the set S" of stagnation points is a finite or countable set. FEach accumulation
point of S™ is a point of the locally finite set .
At each point z° of S*\ XY,

0
u(@’+rz) gg?’h COS(; (min{max{@, W}, {W}—W>> as 70,

r3/2 6) 6 2

strongly in VVl}Jf (R?) and locally uniformly on R?, where x=(pcos®, osinf). Moreover,

6

}<6}) =0 as r\/0.

At each point x° of XV there ewists an integer N(x°)>2 such that

£2<Blﬂ<{x:u(xo+rx)>O}A{x:g<9<57T}>) —0 as r\,0,

and, for each 0>0,

b
g—
6

™

T—3/2Au<(xO+Br)\{x:min{‘e_6

)

0
L;m)% as 7,0,
T

strongly in L2 (R?) for each 3€[0,N(x?)), and

loc

u@+re)  @NOjsin(N(2) min{max{6, 0} 7})|

as 7\, 0,
\/7“71 fBBT(ggO) u? dH! \/foTr sin?(N (29)6) do

strongly in I/Vlif(Bl\{O}) and weakly in W12 (By), where x=(pcosf, psinf).
Proof. By Lemma 3.4, u is a variational solution of (3.1) and satisfies

r3/2 VT2 |VX{u>0}| dx < Cy
Br(y)

for all B,.(y)€€ such that y,=0. Combining Proposition 5.4, Lemmas 5.3 and 4.4,
Proposition 5.5, Lemma 7.5 and Theorems 10.2 and 10.1, we obtain that the set S“ is a

finite or countable set with asymptotics as in the statement, and that the only possible

accumulation points are elements of %, O
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THEOREM 11.2. Let n=2, let u be a weak solution of (3.1) and suppose that
Vul?<xy in Q.

Suppose moreover that {u=0} has locally only finitely many connected components. Then

the set S" of stagnation points is locally in 0 a finite set. At each stagnation point z°,

u(z+rz) V2 3/2 3/ . ) br)| T«
T_)?Q cos 3 min< max 0,6 "G 3 as v\, 0,

strongly in VV&)?(RQ) and locally uniformly on R?, where x=(pcosf, psind), and in
an open neighborhood of x° the topological free boundary d{u>0} is the union of two
C'-graphs with right and left tangents at x°.

Proof. We first show that the set X% is empty. Suppose towards a contradiction that
there exists 2°€X%. From Theorem 10.1 we infer that there exists an integer N (z%)>2
such that

w(x®+rz) . sin(N (z%) min{max{6, 0}, 7})|
r Jos, oy v 4 Vi s (N (20)6) o

as r \(0,

strongly in Wﬁ)f (B1\{0}) and weakly in W'2(By), where z=(pcosf, osin ). But then
the assumption about connected components implies that dyeq{z:u(2°+7rz) >0} contains
the image of a continuous curve converging, as r\,0, locally in {x2>0} to a half-line
{az:a>0} where z2>0. It follows that

H! ({IQ > %}ﬁ@red{x (20 +rx) > O}) >c1 >0,

contradicting

0<—A7T3/2 (B1)= vz dH.

Ll NOreda {z:u(xC+rz)>0}

Hence X" is indeed empty.
Let 2°€S". Theorem 11.1 shows that

u(z®+rz) V2 3/2 3/ . w| bmr)
T%?Q cos 3 min< max 9,6 - 5 as r\,0,

strongly in Wﬁj’cz(RQ) and locally uniformly on R?, where z=(0cos@, osinf). To prove
the last statement we use flatness-implies-regularity results in the vein of [2, Theorem 8.1].
More precisely, for each 0<og and y°€ Bs(2?)No{u>0}N{y) <2y}, ue F(o,0;000?) in
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B, /2(y°) in the direction n=(—3%,—3v3) (cf. [5, Definition 4.1]) provided that & has

been chosen small enough, meaning that v is a weak solution and satisfies
w(z)=0 in{xeB.(y°):z-n=or}
and
|Vu| < /y3(1+000?) in B,(y°).

From the proof of [5, Theorem 8.4] (with the proviso that the parabolic monotonicity
formula in [5] is replaced by the local elliptic formula in Theorem 3.5 (i) and the solution

has been extended to a constant function of the time variable) we infer that
B, a(e")nd{u>0}n{y} <t}

is the graph of a C1'®function and that the outer normal v satisfies [v(y°)—n|<o. It
follows that Bs(z%)No{u>0}N{y{ <z} is the graph of a C'-function. The same holds
for Bs(z9)No{u>0}n{y?>x9}. O

12. Appendix

Proof of Lemma 3.4. For any ¢€Cg(QN{x,>7}; R") and a small positive § we find

a covering
U By, (z") Dsupp ¢N(d{u>0}\dreaf{u>0})
i=1
satisfying Y oo, 7"~ 1<, and by the fact that supp ¢N({u>0}\Orea{u>0}) is a com-

pact set we may pass to a finite subcovering

Ns
U By, (x") D supp ¢N(d{u>0}\Orea{u >0})

satisfying Zivzi r;"1<4.
We also know that u€C* ({u>0}N (supp gb\Uf\jl B, (z"))) and that u satisfies the

free-boundary condition
|Vul? =2, on drea{u>0}N (supp (;S\Uﬁv:‘;l B, (z%).

Formally integrating by parts in {u>0}\U1N:“1 By, (z*) (this can be justified rigorously ap-
proximating Uf\fl By, (z*) from above by A, such that ({u>0}\ A¢) is locally in supp ¢
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a C3-surface) we therefore obtain

/Q(|Vu|2 div ¢—2VuD¢Vu+a, X (u>0y iV O+ X {u>0}Pn) dz

< ‘/N (IVul® div ¢ —2VuD¢Vu+n X fus0} div o+ X {us0y dn) da
Ul—&l B'ri (z?)

+ (IVul|*¢-v—2Vu-vVu-dp+xndp-v) dH" "

/<9(U§V61 By, () n{u>0}

+ (xn—|Vu|2)¢~yd7‘("_1

/a{u>0}\uiiﬂ By, (z7)
Ns N

<0y ZTin+C2 Zrin_l—i-(l
=1 =1

and letting §—0, we realize that u is a variational solution of (3.1) in the set QN{z,>7}.
Note that the above extends to Lipschitz functions ¢. Next, let us take ¢€C{(€; R™)
and n:=min{1, z,/7}, plug in the product n¢ into the already obtained result, and use

the assumption |Vu|[>?<Cxz;,

0= / n(|Vul? div ¢ —2VuDOVu+z, X (u>0y iV ¢+ X {u>0y Pn) dz
Q

1
+f/ ¢-(IVulen—20,uVu+z, X {y>0y€n) do
QN{0<z, <7}

p
= o(l)+/ (|Vul?* div ¢—2VuDPVu+r,X (u>0} div ¢+ X{u>0yPn) dz  as 7— 0.
Q

Last, let us prove that
p/2-n / Vo VX {us0y| dv < Co
Br(y)

for all B,.(y)€N such that y,=0. Let us consider such a y, and the family of scaled

functions ( )
u(y+rx
up(x) = —
Using the assumption
|Vu? <Czx] locally in Q

and the weak solution property, it follows that

Co> / Vu, () -z dH" ' = Au,(B;)
0B1

:/ \/xfndanlz,rl/2fn/ \/ﬁd”'{nil,
B1NOrea{ur>0}

Br(y)N0rea{u>0}

as required. O
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Proof of Proposition 5.8. The proof is a standard dimension reduction argument
following [15, §11]. In each step, blowing up once transforms the free boundary into a
cone, blowing up a second time at a point different from the origin transforms the free
boundary into a cylinder, and passing to a codimension-1 cylinder section reduces the
dimension of the whole problem by 1.

Let us do this in some more detail: Suppose that there exists s>n—2, ¢>0 and
7>0 such that H*(N!.)>0. Then we may use [15, Proposition 11.3], Lemma 5.7 as
well as [15, Lemma 11.5] at H*-a.e. point of N, to obtain a blow-up limit uq satisfying
H**(N29)>0. According to Lemma 4.1, ug is a homogeneous variational solution on
R", where x(u~0y has to be replaced by xo:=limm, o0 X{u,,>0} in Definition 3.1. We
proceed with the dimension reduction: By [15, Lemma 11.2] we find a point z€ N9\ {0}
at which the density in [15, Proposition 11.3] is estimated from below. Now each blow-
up limit ugp with respect to z (and with respect to a subsequence m— oo such that the
limit superior in [15, Proposition 11.3] becomes a limit) again satisfies the assumptions
of Lemma 4.1. In addition, we obtain from the homogeneity of ugg as in [36, Lemma 3.1]
that the rotated ugg is constant in the direction of the mth unit vector. Defining @ as
the restriction of this rotated solution to R™~', it follows therefore that H*~! (N )>0.
Repeating the whole procedure n—2 times, we obtain a non-trivial homogeneous solution
w* in R?, satisfying H*~("=2) (N2 )>0, by Proposition 4.7 a contradiction. O
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