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1. Introduction

Consider a 2-dimensional inviscid incompressible fluid acted on by gravity and with a
free surface. If we denote by D(t)⊂R2 the domain occupied by the fluid at time t, then
the dynamics of the fluid is described by the Euler equations for the vector velocity field

G. S. Weiss has been partially supported by the Grant-in-Aid 15740100/18740086 of the Japanese
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(u(t, ·), v(t, ·)):D(t)!R2 and the scalar pressure field P (t, ·):D(t)!R:

ut+uux+vuy =−Px in D(t),

vt+uvx+vvy =−Py−g in D(t),

ux+vy =0 in D(t),

where subscripts denote partial derivatives and g is the gravity constant. The boundary
∂D(t) of the fluid domain contains a part, denoted by ∂aD(t), which is free and in contact
with the air region. The equations of motion are supplemented by the standard kinematic
boundary condition

V =(u, v)·ν on ∂aD(t),

where V is the normal speed of ∂aD(t) and ν is the outer normal vector, and the dynamic
boundary condition

P is locally constant on ∂aD(t).

We further assume that the flow is irrotational:

uy−vx =0 in D(t).

While recent years have seen great progress in the study of the initial-value prob-
lem (see [40] for large-time well-posedness for small data, and the references therein for
short-time well-posedness for arbitrary data), in the present paper we confine ourselves
to traveling-wave solutions of the above problem, for which there exists D⊂R2, c∈R,
(ũ, ṽ):D!R2 and P̃ :D!R such that

D(t) =D+ct(1, 0) for all t∈R,

and for all t∈R and (x, y)∈D(t),

u(x, y, t) = ũ(x−ct, y)+c, v(x, y, t) = ṽ(x−ct, y) and P (x, y, t) = P̃ (x−ct, y).

Consequently the following equations are satisfied:

ũũx+ṽũy =−P̃x in D,

ũṽx+ṽṽy =−P̃y−g in D,

ũx+ṽy =0 in D,

ũy−ṽx =0 in D,

(ũ, ṽ)·ν=0 on ∂aD,

P̃ is locally constant on ∂aD.
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The above problem describes both water waves, in which case we would add ho-
mogeneous Neumann boundary conditions on a flat horizontal bottom y=−d combined
with periodicity in the x-direction or some condition at x=±∞, and the equally physi-
cal problem of the equilibrium state of a fluid when pumping in water from one lateral
boundary and sucking it out at the other lateral boundary. In the latter setting we would
consider a bounded domain with an inhomogeneous Neumann boundary condition at the
lateral boundary, and the bottom could be a non-flat surface.

In both cases, the incompressibility and the kinematic boundary condition imply
that there exists a stream function ψ in D, defined up to a constant by

ψx =−ṽ and ψy = ũ in D.

It follows that
ψ is locally constant on ∂aD.

The irrotationality condition shows that

ψ is a harmonic function in D,

and then Bernoulli’s principle gives that

P̃+ 1
2 |∇ψ|

2+gy is constant in D.

The dynamic boundary condition implies therefore the Bernoulli condition

|∇ψ|2+2gy is locally constant on ∂aD.

A stagnation point is one at which the relative velocity field (ũ, ṽ) is zero, and a
wave with stagnation points on the free surface will be referred to as an extreme wave.
Consideration of extreme waves goes back to Stokes, who in 1880 made the famous
conjecture that the free surface of an extreme wave is not smooth at a stagnation point,
but has symmetric lateral tangents forming an angle of 120�. Stokes [27] gave a formal
argument in support of his conjecture, which can be found at the end of this introduction,
but a rigorous proof has not been given until 1982, when Amick, Fraenkel and Toland [3]
and Plotnikov [20] proved the conjecture independently in brilliant papers. These proofs
use an equivalent formulation of the problem as a non-linear singular integral equation
due to Nekrasov (derived via conformal mapping), and are based on rather formidable
estimates for this equation. In addition, Plotnikov’s proof uses ordinary differential
equations in the complex plane. Moreover, Plotnikov and Toland proved convexity of
the two branches of the free surface [21]. Prior to these works on the Stokes conjecture,
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the existence of extreme periodic waves, of finite and infinite depth, had been established
by Toland [28] and McLeod [18], building on earlier existence results for large-amplitude
smooth waves by Krasovskĭı [17] and by Keady and Norbury [16]. Also, the existence of
large-amplitude smooth solitary waves and of extreme solitary waves had been shown by
Amick and Toland [4].

In the present paper we confine ourselves to the case when

∆ψ=0 in D,

ψ=0 on ∂aD,

|∇ψ(x, y)|2 =−y on ∂aD,

and we investigate the shape of the free surface ∂aD close to stagnation points for extreme
waves which a priori satisfy minimal regularity assumptions. Note that, since (ũ, ṽ)=
(ψy,−ψx), the Bernoulli condition implies that the free surface is contained in the lower
half-plane and that the stagnation points on the free surface necessarily lie on the real
axis and are points of maximal height.

Weak solutions of the above free-boundary problem have been studied by Shar-
gorodsky and Toland [25] and Varvaruca [31], who consider solutions for which the free
surface ∂aD is a locally rectifiable curve, ψ∈C2(D)∩C0(
D) is harmonic and satisfies the
zero Dirichlet boundary condition in the classical sense, while the Bernoulli condition
is satisfied almost everywhere with respect to the 1-dimensional Hausdorff measure by
the non-tangential limits of ∇ψ. They prove that the set S of stagnation points on the
free surface is a set of zero 1-dimensional Hausdorff measure, that ∂aD\S is a union of
real-analytic arcs, and that ψ has a harmonic extension across ∂aD\S which satisfies all
free-boundary conditions in the classical sense outside stagnation points.

The main objectives of the present paper are to give affirmative answers to the
following two questions:

(i) Does the set S consist only of isolated points?
(ii) Is the Stokes conjecture valid at each point of S?
Prior to our work, Question (i) has been completely open, while the answer to

Question (ii) has been known only partially: from [3] and [20] which have recently been
simplified in [30] and [32], we know (ii) to be true at those points of S which satisfy the
following conditions in a neighborhood of the stagnation point: the stagnation point is
isolated, the free surface is symmetric with respect to the vertical line passing through
the stagnation point, it is a monotone graph on each side of that point, and ψ is strictly
decreasing in the y -direction in D. All of these conditions are essential for the proofs
in the cited results. Let us mention that from the point of view of applications, the
requirement of symmetry is most inconvenient, as numerical results indicate the existence
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of non-symmetric extreme waves [7], [29], [41]. Also, for waves with non-zero vorticity,
ψ need not be monotone in the y -direction [10], [34].

Similarly to [25] and [31], we consider weak solutions which are roughly speaking
solutions in the sense of distributions. The precise notion will be given in Definition 3.2.
We assume that ψ>0 in D, and we extend ψ by the value 0 to the air region so that
the fluid domain can be identified with the set {(x, y):ψ(x, y)>0} (in short, {ψ>0}).
Since our arguments are local, we work in a bounded domain Ω which has a non-empty
intersection with the real axis and on which is defined a continuous function ψ such that,
within Ω, {ψ>0} corresponds to the fluid region and {ψ=0} to the air region, the part
of Ω in the upper half-plane being occupied by air.

In the case of only a finite number of connected components of the air region, we
recover the Stokes conjecture by geometric methods (Theorem 11.2), without assuming
isolatedness, symmetry or any monotonicity.

Theorem A. Let ψ be a weak solution of

∆ψ=0 in Ω∩{ψ> 0},

|∇ψ|2 =−y on Ω∩∂{ψ> 0},

and suppose that
|∇ψ|2 6−y in Ω∩{ψ> 0}.

Suppose moreover that {ψ=0} has locally only finitely many connected components. Then
the set S of stagnation points is locally in Ω a finite set. At each stagnation point (x0, y0)
the scaled solution converges to the Stokes corner flow, that is,

ψ((x0, y0)+r(x, y))
r3/2

!
√

2
3
%3/2 cos

(
3
2

(
min

{
max

{
θ,−5π

6

}
,−π

6

}
+
π

2

))
as r& 0,

strongly in W 1,2
loc (R2) and locally uniformly on R2, where (x, y)=(% cos θ, % sin θ), and in

an open neighborhood of (x0, y0) the topological free boundary ∂{ψ>0} is the union of
two C1-graphs with right and left tangents at (x0, y0).

Let us remark that the assumption

|∇ψ|2 6−y in {ψ> 0}

has been verified in [31, Proof of Theorem 3.6] for weak solutions, in the sense of [25] and
[31] described earlier, of the water-wave problem in all its classical versions: periodic and
solitary waves of finite depth (in which the fluid domain has a fixed flat bottom y=−d,
at which ψ is constant), and periodic waves of infinite depth (in which the fluid domain
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extends to y=−∞ and the condition limy!−∞∇ψ(x, y)=(0,−c) holds, where c is the
speed of the wave). The proof is merely an extension of that of Spielvogel [26, Proof of
Theorem 3b] for classical solutions, which is based on the Bernstein technique.

In the case of an infinite number of connected components of the air region, we
obtain the following result (cf. Theorem 11.1).

Theorem B. Let ψ be a weak solution of

∆ψ=0 in Ω∩{ψ> 0},

|∇ψ|2 =−y on Ω∩∂{ψ> 0},

and suppose that
|∇ψ|2 6−y in Ω∩{ψ> 0}.

Then the set S of stagnation points is a finite or countable set. Each accumulation point
of S is a point of the locally finite set Σ described in more detail in the following lines.

At each point (x0, y0) of S\Σ,

ψ((x0, y0)+r(x, y))
r3/2

!
√

2
3
%3/2 cos

(
3
2

(
min

{
max

{
θ,−5π

6

}
,−π

6

}
+
π

2

))
as r& 0,

strongly in W 1,2
loc (R2) and locally uniformly on R2, where (x, y)=(% cos θ, % sin θ). The

scaled free surface converges to that of the Stokes corner flow in the sense that, as r&0,

L2

(
B1∩

(
{(x, y) :ψ((x0, y0)+r(x, y))> 0}4

{
(x, y) :−5π

6
<θ<−π

6

}
! 0.

At each point (x0, y0) of Σ there exists an integer N=N(x0, y0)>2 such that

ψ((x0, y0)+r(x, y))
rβ

! 0 as r& 0,

strongly in L2
loc(R

2) for each β∈[0, N), and

ψ((x0, y0)+r(x, y))√
r−1

∫
∂Br((x0,y0))

ψ2 dH1
! %N |sin(N min{max{θ,−π}, 0})|√∫ 0

−π
sin2(Nθ) dθ

as r& 0,

strongly in W 1,2
loc (B1\{0}) and weakly in W 1,2(B1), where (x, y)=(% cos θ, % sin θ).

Although the new dynamics suggested by Theorem B at degenerate points cannot
happen in the case of a finite number of air components, there seems to be no obvious
reason precluding the scenario in Figure 1 with an infinite number of air components,
and the situation is even less clear in the case of inhomogeneous Neumann boundary
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stagnation point

water

Figure 1. A degenerate point.

conditions. Note that multiple air components without surface tension have previously
been considered in [13]. It is noteworthy that while the water-wave problem has a
variational structure, the solutions of interest are not minimizers of the energy functional.
Consequently, standard methods in free-boundary problems based on non-degeneracy,
which would in the present case be the estimate∫

∂B1((0,0))

ψ((x0, y0)+r(x, y))
r3/2

dH1 > c1> 0 for all r∈ (0, r0),

do not apply.
As far as the water-wave problem is concerned, the new perspective of our approach is

that we work with the original variables (ũ, ṽ) and use geometric methods, as for example
a blow-up analysis, in order to show that the scaled solution is close to a homogeneous
function. This part of the blow-up analysis works in n dimensions and does not require
ad hoc methods previously applied to classify global solutions (see for example [32]).
This also means that we do not require isolated singularities, symmetry or monotonicity,
which had been assumed in all previous results. Original tools in the present paper
include the new frequency formula (Theorem 7.1) which allows a blow-up analysis at
degenerate points, where the scaling of the solution is different from the invariant scaling
of the equation, and leads in combination with the result [12] by Evans and Müller to
concentration compactness (Theorem 10.1).

Large parts of the paper are written down for the non-physical but mathematically
interesting free-boundary problem in n dimensions; see for example the partial regular-
ity result Proposition 5.8 showing that non-degenerate stagnation points form a set of
dimension less than or equal to n−2.

Our methods can still be applied when dropping the condition of irrotationality of
the flow (see [32], the forthcoming papers [33] and [23], and [8] and [9] for a background
on water waves with vorticity). Part of the methods extend even to water waves with
surface tension (see the forthcoming paper [39]).
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It is interesting to observe that in his formal proof of the conjecture, Stokes worked
with the original variables (ũ, ṽ) and approximated the velocity potential (the harmonic
conjugate of −ψ) by a homogeneous function. This is very close in spirit to what we
do on a rigorous level in the monotonicity formula (Theorem 3.5) and the frequency
formula (Theorem 7.1), so let us close our introduction with a quotation taken from [27,
pp. 226–227]:

Reduce the wave motion to steady motion by superposing a velocity
equal and opposite to that of propagation. Then a particle at the surface
may be thought of as gliding along a fixed smooth curve: this follows
directly from physical considerations, or from the ordinary equation of
steady motion. On arriving at a crest the particle must be momentarily
at rest, and on passing it must be ultimately in the condition of a particle
starting from rest down an inclined or vertical plane. Hence the velocity
must vary ultimately as the square root of the distance from the crest.

Hitherto the motion has been rotational or not, let us now confine
ourselves to the case of irrotational motion. Place the origin at the crest,
refer the function φ to polar coordinates r and θ; θ being measured from
the vertical, and consider the value of φ very near the origin, where φ
may be supposed to vanish, as the arbitrary constant may be omitted.
In general φ will be of the form

∑
Anr

n sinnθ+
∑
Bnr

n cosnθ. In the
present case φ must contain sines only on account of the symmetry
of the motion, as already shown (p. 212), so that retaining only the
most important term we may take φ=Arn sinnθ. Now for a point in
the section of the profile we must have dφ/dθ=0, and dφ/dθ varying
ultimately as r1/2. This requires n= 3

2 , and for the profile that 3
2θ=

1
2π,

so that the two branches are inclined at angles of ±60� to the vertical,
and at an angle of 120� to each other, not of 90� as supposed by Rankine.

Acknowledgment. We are very grateful to Stefan Müller, Pavel Plotnikov, John
Toland and Yoshihiro Tonegawa for helpful suggestions and discussions.

2. Notation

We denote by χA the characteristic function of the set A, and by A4B the set (A\B)∪
(B\A). For any real number a, the notation a+ stands for max{a, 0}. We denote by
x·y the Euclidean inner product in Rn×Rn, by |x| the Euclidean norm in Rn and by
Br(x0):={x∈Rn :|x−x0|<r} the ball of center x0 and radius r. We will use the notation
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Br forBr(0), and denote by ωn the n-dimensional volume ofB1. Also, Ln shall denote the
n-dimensional Lebesgue measure and Hs the s-dimensional Hausdorff measure. By ν we
will always refer to the outer normal on a given surface. We will use functions of bounded
variation BV(U), i.e. functions f∈L1(U) for which the distributional derivative is a
vector-valued Radon measure. Here |∇f | denotes the total variation measure (cf. [15]).
Note that for a smooth open set E⊂Rn, |∇χE | coincides with the surface measure on ∂E.
Last, we will use the notation r&0 for r!0+ and r%0 for r!0−.

3. Notion of solution and monotonicity formula

Throughout the rest of the paper we work with an n-dimensional generalization of the
problem described in the introduction. Let Ω be a bounded domain in Rn which has a
non-empty intersection with the hyperplane {xn=0}, in which to consider the combined
problem for fluid and air. We study solutions u, in a sense to be specified, of the problem

∆u=0 in Ω∩{u> 0},

|∇u|2=xn on Ω∩∂{u> 0}.
(3.1)

(Note that, compared with the introduction, we have switched notation from ψ to u

and we have “reflected” the problem at the hyperplane {xn=0}.) Since our results are
completely local, we do not specify boundary conditions on ∂Ω.

We begin by introducing our notion of a variational solution of the problem (3.1).

Definition 3.1. (Variational solution) We define u∈W 1,2
loc (Ω) to be a variational so-

lution of (3.1) if u∈C0(Ω)∩C2(Ω∩{u>0}), u>0 in Ω, u≡0 in Ω∩{xn60}, and the first
variation with respect to domain variations of the functional

J(v) :=
∫

Ω

(|∇v|2+xnχ{v>0}) dx

vanishes at v=u, i.e.

0 =− d

dε
J(u(x+εφ(x)))

∣∣∣∣
ε=0

=
∫

Ω

(|∇u|2 div φ−2∇uDφ∇u+xnχ{u>0} div φ+χ{u>0}φn) dx

for any φ∈C1
0 (Ω;Rn).

The assumption u∈C0(Ω)∩C2(Ω∩{u>0}) is necessary in that it cannot be deduced
from the other assumptions in Definition 3.1 by regularity theory, but it is rather mild
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in the sense that it can be verified without effort for “reasonable” solutions, for example
solutions obtained by a diffuse interface approximation. Also we like to emphasize that
regularity properties of the free boundary, like for example finite perimeter, are not
required at all. Note for future reference that the fact that u is continuous and non-
negative in Ω, as well as harmonic in {u>0}, implies that ∆u is a non-negative Radon
measure in Ω with support on Ω∩∂{u>0}.

We will also use weak solutions of (3.1), i.e. solutions in the sense of distributions.
For a comparison of variational and weak solutions see Lemma 3.4.

Definition 3.2. (Weak solution) We define u∈W 1,2
loc (Ω) to be a weak solution of (3.1)

if the following are satisfied: u∈C0(Ω), u>0 in Ω, u≡0 in Ω∩{xn60}, u is harmonic
in {u>0}∩Ω and, for every τ>0, the topological free boundary ∂{u>0}∩Ω∩{xn>τ}
can be locally decomposed into an (n−1)-dimensional C2,α-surface, relatively open to
∂{u>0} and denoted by ∂red{u>0}, and a singular set of vanishing Hn−1-measure; for
an open neighborhood V of each point x0∈Ω∩{xn>τ} of ∂red{u>0}, u∈C1(V ∩{u>0} )
satisfies

|∇u(x)|2 =xn on V ∩∂red{u> 0}.

Remark 3.3. (i) By [2, Theorem 8.4], the weak solutions in [2] with Q(x)=x+
n satisfy

Definition 3.2.
(ii) By [31, Theorem 3.5], the weak solutions in [25] and [31] satisfy Definition 3.2.

Lemma 3.4. Any weak solution of (3.1) such that

|∇u|2 6Cx+
n locally in Ω,

is a variational solution of (3.1). Moreover, χ{u>0} is locally in {xn>0} a function of
bounded variation, and the total variation measure |∇χ{u>0}| satisfies

r1/2−n

∫
Br(y)

√
xn |∇χ{u>0}| dx6C0

for all Br(y)bΩ such that yn=0.

The proof follows [35, Theorem 5.1] and will be given in the appendix.
A first tool in our analysis is an extension of the monotonicity formula in [36] and

[35, Theorem 3.1] to the boundary case. The roots of those monotonicity formulas are
harmonic mappings ([22], [24]) and blow-up ([19]).

Theorem 3.5. (Monotonicity formula) Let u be a variational solution of (3.1), let
x0∈Ω and let δ := 1

2 dist(x0, ∂Ω).
(i) Interior case x0

n>0. The function

Φint
x0,u(r) := r−n

∫
Br(x0)

(|∇u|2+xnχ{u>0}) dx−r−n−1

∫
∂Br(x0)

u2 dHn−1,
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defined in (0, δ), satisfies the formula

Φint
x0,u(σ)−Φint

x0,u(%) =
∫ σ

%

r−n

∫
∂Br(x0)

2
(
∇u·ν− u

r

)2
dHn−1 dr

+
∫ σ

%

r−n−1

∫
Br(x0)

(xn−x0
n)χ{u>0} dx dr

for any 0<%<σ<δ. The absolute value of the second term in the right-hand side is
estimated by σ−% and is therefore O(σ).

(ii) Boundary case x0
n=0. The function

Φbound
x0,u (r) := r−n−1

∫
Br(x0)

(|∇u|2+xnχ{u>0}) dx−
3
2
r−n−2

∫
∂Br(x0)

u2 dHn−1,

defined in (0, δ), satisfies the formula

Φbound
x0,u (σ)−Φbound

x0,u (%) =
∫ σ

%

r−n−1

∫
∂Br(x0)

2
(
∇u·ν− 3

2
u

r

)2

dHn−1 dr

for any 0<%<σ<δ.

Remark 3.6. Let us assume that x0=0. Then the integrand on the right-hand side
of the monotonicity formula is a scalar multiple of

(
∇u(x)·x− 3

2u(x)
)2, and therefore

vanishes if and only if u is a homogeneous function of degree 3
2 .

Proof. We start with a general observation: for any u∈W 1,2
loc (Ω) and α∈R, the

following identity holds a.e. on (0, δ), where wr(x)=u(x0+rx),

d

dr

(
rα

∫
∂Br(x0)

u2 dHn−1

)
=

d

dr

(
rα+n−1

∫
∂B1

w2
r dHn−1

)
=(α+n−1)rα−1

∫
∂Br(x0)

u2 dHn−1+rα+n−1

∫
∂B1

2wr∇u(x0+rx)·x dHn−1

=(α+n−1)rα−1

∫
∂Br(x0)

u2 dHn−1+rα

∫
∂Br(x0)

2u∇u·ν dHn−1.

(3.2)

Suppose now that u is a variational solution of (3.1). For small positive τ and
ητ (t):=max{0,min{1, (r−t)/τ}}, we take after approximation

φτ (x) := ητ (|x−x0|)(x−x0)
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as a test function in the definition of a variational solution. We obtain

0 =
∫

Ω

(|∇u|2+xnχ{u>0})(nητ (|x−x0|)+η′τ (|x−x0|)|x−x0|) dx

−2
∫

Ω

(
|∇u|2ητ (|x−x0|)+∇u· x−x

0

|x−x0|
∇u· x−x

0

|x−x0|
η′(|x−x0|)|x−x0|

)
dx

+
∫

Ω

ητ (|x−x0|)(xn−x0
n)χ{u>0} dx.

Passing to the limit as τ!0, we obtain, for a.e. r∈(0, δ),

0 =n

∫
Br(x0)

(|∇u|2+xnχ{u>0}) dx−r
∫

∂Br(x0)

(|∇u|2+xnχ{u>0}) dHn−1

+2r
∫

∂Br(x0)

(∇u·ν)2 dHn−1−2
∫

Br(x0)

|∇u|2 dHn−1+
∫

Br(x0)

(xn−x0
n)χ{u>0} dx.

(3.3)

Observe that letting ε!0 in∫
Br(x0)

∇u·∇max{u−ε, 0}1+ε dx=
∫

∂Br(x0)

max{u−ε, 0}1+ε∇u·ν dHn−1

for a.e. r∈(0, δ), we obtain the integration by parts formula∫
Br(x0)

|∇u|2 dx=
∫

∂Br(x0)

u∇u·ν dHn−1 (3.4)

for a.e. r∈(0, δ).
Now let for all r∈(0, δ),

Uint(r) := r−n

∫
Br(x0)

(|∇u|2+xnχ{u>0}) dx,

Wint(r) := r−n−1

∫
∂Br(x0)

u2 dHn−1,

so that Φint
x0,u=Uint−Wint. Note that, for a.e. r∈(0, δ),

U ′
int(r) =−nr−n−1

∫
Br(x0)

(|∇u|2+xnχ{u>0}) dx

+r−n

∫
∂Br(x0)

(|∇u|2+xnχ{u>0}) dHn−1.

It follows, using (3.3) and (3.4), that for a.e. r∈(0, δ),

U ′
int(r) = 2r−n

∫
∂Br(x0)

(∇u·ν)2 dHn−1−2r−n−1

∫
∂Br(x0)

u∇u·ν dHn−1

+r−n−1

∫
Br(x0)

(xn−x0
n)χ{u>0} dx.

(3.5)
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On the other hand, plugging α:=−n−1 into (3.2), we obtain that for a.e. r∈(0, δ),

W ′
int(r) = 2r−n−1

∫
∂Br(x0)

u∇u·ν dHn−1−2r−n−2

∫
∂Br(x0)

u2 dHn−1. (3.6)

Combining (3.5) and (3.6) yields (i).
Next, let for all r∈(0, δ),

Ubound(r) := r−n−1

∫
Br(x0)

(|∇u|2+xnχ{u>0}) dx,

Wbound(r) := r−n−2

∫
∂Br(x0)

u2 dHn−1,

so that Φbound
x0,u =Ubound− 3

2Wbound. Now observe that, in the case when x0
n=0, formula

(3.3) means that

0 = (n+1)
∫

Br(x0)

(|∇u|2+xnχ{u>0}) dx−r
∫

∂Br(x0)

(|∇u|2+xnχ{u>0}) dHn−1

+2r
∫

∂Br(x0)

(∇u·ν)2 dHn−1−3
∫

Br(x0)

|∇u|2 dx.
(3.7)

Also, for a.e. r∈(0, δ),

U ′
bound(r) =−(n+1)r−n−2

∫
Br(x0)

(|∇u|2+xnχ{u>0}) dx

+r−n−1

∫
∂Br(x0)

(|∇u|2+xnχ{u>0}) dHn−1.

It follows, using (3.7) and (3.4), that for a.e. r∈(0, δ),

U ′
bound(r) = 2r−n−1

∫
∂Br(x0)

(∇u·ν)2 dHn−1−3r−n−2

∫
∂Br(x0)

u∇u·ν dHn−1. (3.8)

On the other hand, plugging α:=−n−2 into (3.2), we obtain that for a.e. r∈(0, δ),

W ′
bound(r) = 2r−n−2

∫
∂Br(x0)

u∇u·ν dHn−1−3r−n−3

∫
∂Br(x0)

u2 dHn−1. (3.9)

Combining (3.8) and (3.9) yields (ii).

4. Densities

From Theorem 3.5 we infer that the functions Φint
x0,u and Φbound

x0,u have right limits

Φint
x0,u(0+) = lim

r&0
Φint

x0,u(r)∈ [−∞,∞) and Φbound
x0,u (0+) = lim

r&0
Φbound

x0,u (r)∈ [−∞,∞).
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In this section we derive structural properties of these “densities”

Φint
x0,u(0+) and Φbound

x0,u (0+).

The term “density” is justified somewhat by Lemma 4.2 (i) and (ii).
Note that most of the statements concerning Φint

x0,u will not be used in subsequent
sections but serve to illustrate differences between the boundary and the interior case.

Lemma 4.1. Let u be a variational solution of (3.1) and suppose that

|∇u|2 6Cx+
n locally in Ω.

(i) Let x0∈Ω be such that x0
n>0. Then Φint

x0,u(0+) is finite if u(x0)=0, and is −∞
otherwise.

(ii) Let x0∈Ω be such that x0
n=0. Then Φbound

x0,u (0+) is finite. (Note that u=0 in
{xn=0} by assumption.)

(iii) Let x0∈Ω be such that x0
n>0 and u(x0)=0, and let 0<rm&0 as m!∞ be a

sequence such that the blow-up sequence

um(x) :=
u(x0+rmx)

rm

converges weakly in W 1,2
loc (Rn) to a blow-up limit u0. Then u0 is a homogeneous function

of degree 1, i.e. u0(λx)=λu0(x).
(iv) Let x0∈Ω be such that x0

n=0, and let 0<rm&0 as m!∞ be a sequence such
that the blow-up sequence

um(x) :=
u(x0+rmx)

r
3/2
m

converges weakly in W 1,2
loc (Rn) to a blow-up limit u0. Then u0 is a homogeneous function

of degree 3
2 , i.e. u0(λx)=λ3/2u0(x).

(v) Let um be a converging sequence of (iii) or (iv). Then um converges strongly
in W 1,2

loc (Rn).

Proof. (i), (ii) If u(x0)=0, the finiteness claims follow directly from the growth
assumption |∇u|26Cx+

n. If x0
n>0 and u(x0)>0, then, since |∇u|26Cx+

n by assumption,
we obtain that Φint

x0,u(r)6C1−C2r
−2 for r6r0, implying that Φint

x0,u(0+)=−∞.

(iii), (iv) For each 0<σ<∞ the sequence um is by assumption bounded in C0,1(Bσ).
From the monotonicity formula (Theorem 3.5) we infer therefore, setting α=1 in the
interior case and α= 3

2 in the boundary case, that for all 0<%<σ<∞,∫ σ

%

∫
∂Br

(∇um(x)·x−αum(x))2 dHn−1 dr! 0 as m!∞,
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which yields the desired homogeneity of u0.
(v) The proof follows [6, Lemma 7.2]. In order to show strong convergence of um in

W 1,2
loc (Rn), it is sufficient, in view of the weak L2-convergence of ∇um, to show that

lim sup
m!∞

∫
Rn

|∇um|2η dx6
∫
Rn

|∇u0|2η dx

for each η∈C1
0 (Rn). Using the uniform convergence, the continuity of u0, as well as the

fact that u0 is harmonic in {u0>0}, we obtain as in the proof of (3.4) that∫
Rn

|∇um|2η dx=−
∫
Rn

um∇um ·∇η dx!−
∫
Rn

u0∇u0 ·∇η dx=
∫
Rn

|∇u0|2η dx

as m!∞. It follows that um converges to u0 strongly in W 1,2
loc (Rn) as m!∞.

Lemma 4.2. Let u be a variational solution of (3.1) and suppose that

|∇u|2 6Cx+
n locally in Ω.

(i) Let x0∈Ω be such that x0
n>0 and u(x0)=0. Then

Φint
x0,u(0+) =x0

n lim
r&0

r−n

∫
Br(x0)

χ{u>0} dx,

and in particular Φint
x0,u(0+)∈[0,∞). Moreover, Φint

x0,u(0+)=0 implies that u0=0 in Rn

for each blow-up limit u0 of Lemma 4.1 (iii).
(ii) Let x0∈Ω be such that x0

n=0. Then

Φbound
x0,u (0+) = lim

r&0
r−n−1

∫
Br(x0)

x+
nχ{u>0} dx,

and in particular Φbound
x0,u (0+)∈[0,∞). Moreover, Φbound

x0,u (0+)=0 implies that u0=0 in
Rn for each blow-up limit u0 of Lemma 4.1 (iv).

(iii) The function x 7!Φint
x,u(0+) is upper semicontinuous in {xn>0}.

(iv) The function x 7!Φbound
x,u (0+) is upper semicontinuous in {xn=0}.

(v) Let um be a sequence of variational solutions of (3.1) which converges strongly
to u0 in W 1,2

loc (Rn) and such that χ{um>0} converges weakly in L2
loc(R

n) to χ0. Then u0

is a variational solution of (3.1) and satisfies the monotonicity formula, but with χ{u0>0}

replaced by χ0. Moreover, for each x0∈Ω, and all instances of χ{u0>0} replaced by χ0,

Φint
x0,u0

(0+) > lim sup
m!∞

Φint
x0,um

(0+)

in the interior case x0
n>0, and

Φbound
x0,u0

(0+) > lim sup
m!∞

Φbound
x0,um

(0+)

in the boundary case x0
n=0.
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Proof. (i), (ii) Take a sequence rm&0 such that um defined in Lemma 4.1 (iii)
and (iv) converges weakly in W 1,2

loc (Rn) to a function u0. Using Lemma 4.1 (v) and the
homogeneity of u0, in the interior case we obtain that

lim
m!∞

Φint
x0,u(rm) =

∫
B1

|∇u0|2 dx−
∫

∂B1

u2
0 dHn−1+x0

n lim
r&0

r−n

∫
Br(x0)

χ{u>0} dx

=x0
n lim

r&0
r−n

∫
Br(x0)

χ{u>0} dx,

(the limit here exists because limr&0 Φint
x0,u(r) exists), while in the boundary case we

obtain that

lim
m!∞

Φbound
x0,u (rm) =

∫
B1

|∇u0|2 dx−
3
2

∫
∂B1

u2
0 dHn−1+lim

r&0
r−n−1

∫
Br(x0)

x+
nχ{u>0} dx

= lim
r&0

r−n−1

∫
Br(x0)

x+
nχ{u>0} dx.

Thus Φint
x0,u(0+)>0 in the interior case, Φbound

x0,u (0+)>0 in the boundary case, and equality
in either case implies that for each τ>0, um converges to 0 in measure in the set {xn>τ}
as m!∞, and consequently u0=0 in Rn.

(iii), (iv) For each δ>0 and K<∞ we obtain from the monotonicity formula (The-
orem 3.5) that in the interior case

Φint
x,u(0+) 6Φint

x,u(r) 6Φint
x0,u(r)+

δ

2
6

{
Φint

x0,u(0+)+δ, if Φint
x0,u(0+)>−∞,

−K , if Φint
x0,u(0+) =−∞,

and in the boundary case

Φbound
x,u (0+) 6Φbound

x,u (r) 6Φbound
x0,u (r)+

δ

2
6Φbound

x0,u (0+)+δ,

if we choose for fixed x0 first r>0 and then |x−x0| small enough.
(v) The fact that u0 is a variational solution of (3.1) and satisfies the monotonicity

formula in the sense indicated follows directly from the convergence assumption. The
proof of the rest of the claim follows by the same argument as in (iii) and (iv).

Lemma 4.3. Let u be a variational solution of (3.1) and suppose that

|∇u|2 6Cx+
n locally in Ω.

Then Φint
x0,u(0+)=0 implies that u≡0 in some open n-dimensional ball containing x0.
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Proof. By the upper semicontinuity (Lemma 4.2 (iii)), Φint
x,u(0+)6ε in Bδ(x0)⊂Ω for

some δ∈(0, x0
n). Suppose towards a contradiction that u 6≡0 in Bδ(x0). Then there exist

a ball A⊂{u>0}∩Bδ(x0) and z∈∂A∩{u=0}. It follows that

Φint
z,u(0+) = zn lim

r&0
r−n

∫
Br(z)

χ{u>0} dx> zn
ωn

2
,

a contradiction for sufficiently small ε.

Unfortunately, a boundary version of Lemma 4.3, stating that boundary density 0
at x0 implies the solution being 0 in an open n-dimensional ball with center x0, cannot
be obtained in the same way. Instead we prove the following result in the 2-dimensional
case.

Lemma 4.4. Let n=2, let u be a weak solution of (3.1) and suppose that

|∇u|2 6x+
2 in Ω.

Then Φbound
x0,u (0+)=0 implies that u≡0 in some open 2-dimensional ball containing x0.

Proof. Suppose towards a contradiction that x0∈∂{u>0}, and let us take a blow-up
sequence

um(x) :=
u(x0+rmx)

r
3/2
m

converging weakly in W 1,2
loc (Rn) to a blow-up limit u0. Lemma 4.2 (iv) shows that u0=0

in R2. Consequently,

0 ∆um(B2) >
∫

B2∩∂red{um>0}

√
x2 dH1 as m!∞. (4.1)

(Recall that ∆u is a non-negative Radon measure in Ω.) On the other hand, there is at
least one connected component Vm of {um>0} touching the origin and containing, by
the maximum principle, a point xm∈∂A, where A=(−1, 1)×(0, 1). If

max{x2 :x∈Vm∩∂A} 6! 0 as m!∞,

we immediately obtain a contradiction to (4.1). If

max{x2 :x∈Vm∩∂A}! 0,

we use the free-boundary condition as well as |∇u|26x+
2 to obtain

0 =∆um(Vm∩A) 6
∫

Vm∩∂A

√
x2 dH1−

∫
A∩∂redVm

√
x2 dH1.

However
∫

Vm∩∂A

√
x2 dH1 is the unique minimizer of

∫
∂D

√
x2 dH1 with respect to all

open sets D with D=Vm on ∂A. So Vm cannot touch the origin, a contradiction.
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Remark 4.5. Note that we have not really used the full information contained in the
weak formulation. What we have used is the inequality ∆u>

√
x2H|∂red{u>0} (which is

true for any limit of the singular perturbation considered in [37]) and the fact that we
can locate a non-empty portion of ∂red{u>0} touching x0.

In higher dimensions it is not so clear whether cusps can be excluded. Of course
that does not happen for Lipschitz free boundaries.

Lemma 4.6. Let u be a variational solution of (3.1) and suppose that

|∇u|2 6Cx+
n locally in Ω,

and that {u>0} is locally a Lipschitz set. Then Φbound
x0,u (0+)=0 implies that u≡0 in some

open n-dimensional ball containing x0.

Proof. This is an immediate consequence of Lemma 4.2 (ii) and the Lipschitz conti-
nuity.

Proposition 4.7. (2-dimensional case) Let n=2, let u be a variational solution of
(3.1), and suppose that

|∇u|2 6Cx+
2 locally in Ω.

Let x0∈Ω be such that u(x0)=0, and suppose that

r−1

∫
Br(x0)

|∇χ{u>0}| dx6C0

for all r>0 such that Br(x0)bΩ in the interior case, and that

r−3/2

∫
Br(x0)

√
x2 |∇χ{u>0}| dx6C0

for all r>0 such that Br(x0)bΩ in the boundary case.
(i) Interior case x0

2>0. The only possible blow-up limits are

u0(x) =
√
x0

2 max{x·e, 0} and u0(x) = γ|x·e|,

where e is a unit vector and γ is a non-negative constant. If u0(x)=
√
x0

2 max{x·e, 0}
then the corresponding density value is 1

2ω2, if u0(x)=γ|x·e| with γ>0 then the density
is ω2, while if u0=0 the density may be either 0 or ω2.

(ii) Boundary case x0
2=0. The only possible blow-up limits are

u0(%, θ) =
√

2
3
%3/2 cos

(
3
2

(
min

{
max

{
θ,
π

6

}
,
5π
6

}
− π

2

))
,
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with the corresponding density ∫
B1

x+
2χ{x:π/6<θ<5π/6} dx,

and u0(x)=0, with possible values of the density∫
B1

x+
2 dx and 0.

Proof. Consider a blow-up sequence um as in Lemma 4.1, where rm&0, with blow-
up limit u0. Because of the strong convergence of um to u0 in W 1,2

loc (R2) and the compact
embedding from BV into L1, u0 is a homogeneous solution of

0 =
∫
R2

(|∇u0|2 div φ−2∇u0Dφ∇u0) dx+x0
2

∫
R2
χ0 div φdx (4.2)

for any φ∈C1
0 (R2;R2) in the interior case, and of

0 =
∫
R2

(|∇u0|2 div φ−2∇u0Dφ∇u0) dx+
∫
R2

(x2χ0 div φ+χ0φ2) dx (4.3)

for any φ∈C1
0 (R2;R2) in the boundary case, where χ0 is the strong L1

loc-limit of χ{um>0}

along a subsequence. The values of the function χ0 are almost everywhere in {0, 1},
and the locally uniform convergence of um to u0 implies that χ0=1 in {u0>0}. The
homogeneity of u0 and its harmonicity in {u0>0} show that each connected component
of {u0>0} is a half-plane passing trough the origin in the interior case, and a cone with
vertex at the origin and of opening angle 120� in the boundary case. Also, (4.2) and (4.3)
imply that χ0 is constant in the connected set {u0=0}�, i.e. the interior of {u0=0}.

Consider first the case when {u0>0} has exactly one connected component. Let
z be an arbitrary point in ∂{u0=0}\{0}. Note that the normal to ∂{u0=0} has the
constant value ν(z) in Bδ(z) for some δ>0. Plugging in φ(x):=η(x)ν(z) into (4.2) and
(4.3), where η∈C1

0 (Bδ(z)) is arbitrary, and integrating by parts, it follows that

0 =
∫

∂{u0>0}
(−|∇u0|2+x0

2(1−χ̄0))η dH1 (4.4)

in the interior case, and that

0 =
∫

∂{u0>0}
(−|∇u0|2+x2(1−χ̄0))η dH1 (4.5)

in the boundary case. Here χ̄0 denotes the constant value of χ0 in {u0=0}�. Note that by
Hopf’s principle, ∇u0 ·ν 6=0 on Bδ(z)∩∂{u0>0}. In both the interior and boundary case
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it follows therefore that χ̄0 6=1, and hence necessarily χ̄0=0. We deduce from (4.4) and
(4.5) that |∇u0|2=x0

2 on ∂{u0>0} in the interior case, and that |∇u0|2=x2 on ∂{u0>0}
in the boundary case. Computing the solution u0 of the ordinary differential equation
on ∂B1 yields the statement of the proposition in the case under consideration.

Consider now the case u0=0. In the interior case, (4.2) shows that χ0 is constant
on R2, with value either 0 or 1. In the boundary case, (4.3) shows that χ0 is constant in
the upper half-plane, with value either 0 or 1, and that χ0 is constant with the value 0
in the lower half-plane.

Last, consider the situation when, in the interior case, the set {u0>0} has two
connected components. The argument for (4.4) now yields that the constant values of
|∇u0|2 on either side of ∂{u0>0} are equal. This completes the proof.

5. Partial regularity of non-degenerate solutions

Definition 5.1. (Stagnation points) Let u be a variational solution of (3.1). We call
Su :={x∈Ω:xn=0 and x∈∂{u>0}} the set of stagnation points.

Definition 5.2. (Non-degeneracy and density condition) Let u be a variational solu-
tion of (3.1).

(i) We say that a point x0∈Ω∩∂{u>0}∩{xn=0} satisfies property (N) if

lim inf
r&0

r−n−3

∫
Br(x0)

u2 dx> 0.

Moreover we define for each τ>0 and ς>0 the set

Nu
ς,τ :=

{
x0 ∈Ω∩∂{u> 0}∩{xn =0} : r−n−3

∫
Br(x0)

u2 dx> τ for r∈ (0, ς]
}
.

(ii) We say that a point x0∈Ω∩∂{u>0}∩{xn=0} satisfies property (D) if

0< lim inf
r&0

r−n−1

∫
Br(x0)

x+
nχ{u>0} dx6 lim sup

r&0
r−n−1

∫
Br(x0)

x+
nχ{u>0} dx<

∫
B1

x+
n dx.

Note that
⋃

ς,τ N
u
ς,τ is the set of all points satisfying property (N).

Lemma 5.3. Let u be a variational solution of (3.1) and suppose that

|∇u|2 6Cx+
n locally in Ω

and that
r1/2−n

∫
Br(y)

√
xn |∇χ{u>0}| dx6C0

for all Br(y)bΩ such that yn=0. Then properties (N) and (D) are equivalent.
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Proof. (D)⇒ (N) Consider a blow-up limit u0 of the sequence

um(x) :=
u(x0+rmx)

r
3/2
m

,

where rm&0, and suppose towards a contradiction that u0=0. Passing to the limit in
the domain variation equation we obtain

0 =
∫
Rn

(|∇u0|2 div φ−2∇u0Dφ∇u0+xnχ0 div φ+χ0φn) dx=
∫
Rn

(xnχ0 div φ+χ0φn) dx

for any φ∈C1
0 (Rn;Rn), where χ0 is the limit of χ{um>0} with respect to a subsequence.

This implies that χ0 is a constant function. On the other hand, the condition on
|∇χ{u>0}| implies that the values of χ0 are almost everywhere in {0, 1}, and then condi-
tion (D) shows that the function χ0 is not constant, a contradiction.

(N)⇒ (D) The proof draws on [37, Proof of Proposition 9.1]. Let us again consider
a blow-up limit u0 of the sequence

um(x) :=
u(x0+rmx)

r
3/2
m

,

and suppose towards a contradiction that χ0 :=limm!∞ χ{um>0}≡1. By the monotonic-
ity formula (which holds for u0 with χ{u0>0} replaced by χ0) and the growth estimate
we obtain for each point x such that xn=0,

0 Φbound
x,u0

(σ)−Φbound
0,u0

(σ) =Φbound
x,u0

(σ)−Φbound
0,u0

(0+)

=Φbound
x,u0

(σ)−Φbound
x,u0

(0+) =
∫ σ

0

r−n−1

∫
∂Br(x)

2
(
∇u·ν− 3

2
u

r

)2

dHn−1 dr

as σ!∞. But this means that u0 is homogeneous of degree 3
2 with respect to each

point x such that xn=0. It follows that u0 depends only on the xn-variable. Thus
u0(x)=α(x+

n)3/2 for some α>0, a contradiction to the definition of variational solution
unless α=0.

Proposition 5.4. (2-dimensional case) Let n=2, let u be a variational solution of
(3.1), and suppose that

|∇u|2 6Cx+
2 locally in Ω

and that
r−3/2

∫
Br(y)

√
x2 |∇χ{u>0}| dx6C0

for all Br(y)bΩ such that yn=0. At each non-degenerate stagnation point x0, the density
Φbound

x0,u (0+) has the value ∫
B1

x+
2χ{x:π/6<θ<5π/6} dx
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and

u(x0+rx)
r3/2

!
√

2
3
%3/2 cos

(
3
2

(
min

{
max

{
θ,
π

6

}
,
5π
6

}
− π

2

))
as r& 0,

strongly in W 1,2
loc (R2) and locally uniformly on R2, where x=(% cos θ, % sin θ). Moreover,

L2

(
B1∩

(
{x :u(x0+rx)> 0}4

{
x :

π

6
<θ<

5π
6

}))
! 0 as r& 0,

and, for each δ>0,

r−3/2∆u
(

(x0+Br)\
{
x :min

{∣∣∣∣θ− π6
∣∣∣∣, ∣∣∣∣θ− 5π

6

∣∣∣∣}<δ

})
! 0 as r& 0.

(Recall that ∆u is a non-negative Radon measure in Ω.)

Proof. The value of the density and the uniqueness of the blow-up limit follow di-
rectly from Proposition 4.7 (ii) and the non-degeneracy assumption.

Let rm&0 be an arbitrary sequence, let us consider once more the blow-up sequence
um defined in Lemma 4.1 (iv), and let

u0(%, θ) =
√

2
3
%3/2 cos

(
3
2

(
min

{
max

{
θ,
π

6

}
,
5π
6

}
− π

2

))
.

By the proof of Proposition 4.7, χ{um>0} converges strongly in L1(B1) to χ{u0>0} along
a subsequence. Since this is true for all sequences rm&0, it follows that

χ{x:u(x0+rx)>0}!χ{u0>0} strongly in L1(B1) as r& 0,

which is exactly the first measure estimate. The convergence of um to u0 implies the
weak convergence of the sequence of non-negative Radon measures ∆um to ∆u0. As u0

is harmonic in

B1\
{
x :min

{∣∣∣∣θ− π6
∣∣∣∣, ∣∣∣∣θ− 5π

6

∣∣∣∣}<
δ

2

}
,

it follows that

∆um

(
B1\

{
x :min

{∣∣∣∣θ− π6
∣∣∣∣, ∣∣∣∣θ− 5π

6

∣∣∣∣}<δ

})
! 0

as m!∞. Since this is true for all sequences rm&0, the second measure estimate
follows.

Proposition 5.5. (Partial regularity in two dimensions) Let n=2, let u be a vari-
ational solution of (3.1), and suppose that

|∇u|2 6Cx+
2 locally in Ω
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and that

r−3/2

∫
Br(y)

√
x2 |∇χ{u>0}| dx6C0

for all Br(y)bΩ such that y2=0. Let x0∈Su be a non-degenerate point. Then in some
open neighborhood, x0 is the only non-degenerate stagnation point.

Proof. Suppose towards a contradiction that there exists a sequence xm of non-
degenerate points converging to x0, with xm 6=x0 for all m. Choosing rm :=|xm−x0|,
there is no loss of generality in assuming that the sequence (xm−x0)/rm is constant,
with value z∈{(−1, 0), (1, 0)}. Consider the blow-up sequence

um(x) =
u(x0+rmx)

r
3/2
m

.

Since xm is a non-degenerate point for u, it follows that z is a non-degenerate point for
um, and therefore Proposition 5.4 shows that

Φbound
z,um (0+) =

∫
B1

x+
2χ{x:π/6<θ<5π/6} dx.

By Lemma 4.1 (v) and the proof of Proposition 4.7 (ii), the sequence um converges
strongly in W 1,2

loc (R2) to the homogeneous solution

u0(%, θ) =
√

2
3
%3/2 cos

(
3
2

(
min

{
max

{
θ,
π

6

}
,
5π
6

}
− π

2

))
,

where x=(% cos θ, % sin θ), while χ{um>0} converges strongly in L1
loc(R

2) to χ{u0>0}. It
follows from Lemma 4.2 (v) that

Φbound
z,u0 (0+) > lim sup

m!∞
Φbound

z,um (0+) =
∫

B1

x+
2χ{x:π/6<θ<5π/6} dx

contradicting the fact that

Φbound
z,u0 (0+) = 0.

Remark 5.6. It follows that in two dimensions Su can be decomposed into a count-
able set of “Stokes points” with the asymptotics as in Proposition 5.4, accumulating (if at
all) only at “degenerate stagnation points”, and a set of “degenerate stagnation points”
which will be analyzed in the following sections.

The following lemma will be used in order to prove the partial regularity result
(Proposition 5.8).
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Lemma 5.7. Let u be a variational solution of (3.1), and suppose that

|∇u|2 6Cx+
n locally in Ω,

and that
r1/2−n

∫
Br(y)

√
xn |∇χ{u>0}| dx6C0

for all Br(y)bΩ such that yn=0. Suppose that x0∈Su and let u0 be a blow-up limit of
the sequence

um(x) :=
u(x0+rmx)

r
3/2
m

.

Then for each compact set K⊂Rn and each open set U⊃K∩Nu0
ς,τ there exists m0<∞

such that Num
ς,τ ∩K⊂U for m>m0.

Proof. Suppose towards a contradiction that Num
ς,τ ∩(K\U) contains a sequence xm

converging to x̄ as m!∞. Then x̄n=0, and by the locally uniform Lipschitz continuity
of um, x̄∈{u0=0}∩(K\U). But this contradicts the assumption U⊃K∩Nu0

ς,τ by the
uniform convergence of um.

Proposition 5.8. (Partial regularity in higher dimensions) Let u be a variational
solution of (3.1) and suppose that

|∇u|2 6Cx+
n locally in Ω,

and that
r1/2−n

∫
Br(y)

√
xn |∇χ{u>0}| dx6C0

for all Br(y)bΩ such that yn=0. Then the Hausdorff dimension of the set
⋃

ς,τ N
u
ς,τ of

all non-degenerate points is less than or equal to n−2.

The proof uses standard tools of geometric measure theory and will be given in the
appendix.

Remark 5.9. It follows that the Hausdorff dimension of the set of non-degenerate
stagnation points is less than or equal to n−2. From Lemma 5.3 we infer that the set of
stagnation points satisfying the density condition also has dimension at most n−2.

6. Degenerate points

Definition 6.1. Let u be a variational solution of (3.1). We define

Σu :=
{
x0 ∈Su : Φbound

x0,u (0+) =
∫

B1

x+
n dx

}
.
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Remark 6.2. The set Σu is closed, as a consequence of the upper semicontinuity
Lemma 4.2 (iv).

Remark 6.3. In the case of two dimensions and a weak solution u, we infer from
Lemmas 5.3 and 4.4 that the set Su\Σu equals the set of non-degenerate stagnation
points and is, according to Proposition 5.4, a finite or countable set.

The following lemma is drawn from [37, Theorem 11.1].

Lemma 6.4. Let u be a variational solution of (3.1), let x0∈Σu and let

δ := 1
2 dist(x0, ∂Ω).

(i) The mean frequency satisfies, for all r∈(0, δ),

r

∫
Br(x0)

|∇u|2 dx∫
∂Br(x0)

u2 dHn−1
− 3

2
> r

∫
Br(x0)

x+
n(1−χ{u>0}) dx∫

∂Br(x0)
u2 dHn−1

> 0.

(ii) The function

r 7−! r−n−2

∫
∂Br(x0)

u2 dHn−1 (6.1)

is non-decreasing on (0, δ) and has the right limit 0 at 0.
(iii) The function

r 7−! r−n−2

∫
Br(x0)

x+
n(1−χ{u>0}) dx (6.2)

is integrable on (0, δ).

Proof. (i) The inequality

Φbound
x0,u (0+) 6Φbound

x0,u (r)

can be rearranged into

r−n−1

∫
Br(x0)

|∇u|2 dx− 3
2
r−n−2

∫
∂Br(x0)

u2 dHn−1 > r−n−1

∫
Br(x0)

x+
n(1−χ{u>0}) dx,

and the right-hand side is clearly non-negative.
(ii) Plugging in α:=−n−2 into (3.2) and using (3.4), it follows that

d

dr

(
r−n−2

∫
∂Br(x0)

u2 dHn−1

)
=

2
r

(
r−n−1

∫
Br(x0)

|∇u|2 dx− 3
2
r−n−2

∫
∂Br(x0)

u2 dHn−1

)
> 2r−n−2

∫
Br(x0)

x+
n(1−χ{u>0}) dx.

Hence the function (6.1) is non-decreasing on (0, δ). Using Lemma 5.3 we obtain that its
right limit at 0 is 0.

(iii) The above inequality implies that the function (6.2) is in L1(0, δ).
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7. The frequency formula

Theorem 7.1. (Frequency formula) Let u be a variational solution of (3.1), let x0

be a point of the closed set Σu and let δ := 1
2 dist(x0, ∂Ω). The function

Fx0,u(r) := r

∫
Br(x0)

(|∇u|2+x+
n(χ{u>0}−1)) dx∫

∂Br(x0)
u2 dHn−1

satisfies, for a.e. r∈(0, δ), the identity

d

dr
Fx0,u(r) =

2
r

(∫
∂Br(x0)

u2 dHn−1

)−2[∫
∂Br(x0)

(∇u·(x−x0))2 dHn−1

∫
∂Br(x0)

u2 dHn−1

−
(∫

∂Br(x0)

u∇u·(x−x0) dHn−1

)2]
+2

∫
Br(x0)

x+
n(1−χ{u>0}) dx∫

∂Br(x0)
u2 dHn−1

(
r

∫
Br(x0)

|∇u|2 dx∫
∂Br(x0)

u2 dHn−1
− 3

2

)
.

The function r 7!Fx0,u(r) is non-decreasing on (0, δ) and the following limit exists

Fx0,u(0+) := lim
r&0

Fx0,u(r)∈
[
3
2 ,∞

)
.

Remark 7.2. This formula is based on an analogous formula in the interior case
derived by the second author for a more general class of semilinear elliptic equations
([38]). The root is the classical frequency formula of F. Almgren for Q-valued harmonic
functions [1]. Almgren’s formula has subsequently been extended to various perturbations
(see [14] for a recent extension). Note however that while our formula may look like a
perturbation of the “linear” formula for Q-valued harmonic functions, it is in fact a truly
non-linear formula. This fact will be become more obvious in the paper [38] for more
general semilinearities.

Proof. Assuming the validity of the claimed identity, the monotonicity of Fx0,u fol-
lows from combining the Cauchy–Schwarz inequality∫

∂Br(x0)

(∇u·(x−x0))2 dHn−1

∫
∂Br(x0)

u2 dHn−1 >

(∫
∂Br(x0)

u∇u·(x−x0) dHn−1

)2

with Lemma 6.4 (i). The same lemma also shows that r 7!Fx0,u(r) is bounded below
by 3

2 . Thus it remains to prove the claimed identity.
Note that

Fx0,u(r) =
U(r)−

∫
B1
x+

n dx

W (r)
,
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where U :=Ubound and W :=Wbound are the functions in the proof of Theorem 3.5. Hence

d

dr
Fx0,u(r) =

U ′(r)W (r)−W ′(r)
(
U(r)−r−n−1

∫
Br(x0)

x+
n dx

)
W 2(r)

.

Using (3.8) and (3.9), it follows that

d

dr
Fx0,u(r) =

(
r−n−2

∫
∂Br(x0)

u2 dHn−1

)−2

×
[(

2r−n−1

∫
∂Br(x0)

(∇u·ν)2 dHn−1−3r−n−2

∫
∂Br(x0)

u∇u·ν dHn−1

)
×

(
r−n−2

∫
∂Br(x0)

u2 dHn−1

)
−

(
r−n−1

∫
Br(x0)

(|∇u|2+x+
n(χ{u>0}−1)) dx

)
×

(
2r−n−2

∫
∂Br(x0)

u∇u·ν dHn−1−3r−n−3

∫
∂Br(x0)

u2 dHn−1

)]
.

Using (3.4), we obtain

d

dr
Fx0,u(r) =

(∫
∂Br(x0)

u2 dHn−1

)−2

×
[
2r

∫
∂Br(x0)

(∇u·ν)2 dHn−1

∫
∂Br(x0)

u2 dHn−1

−2r
(∫

∂Br(x0)

u∇u·ν dHn−1

)2

+
(∫

Br(x0)

x+
n(1−χ{u>0}) dx

)
×

(
2r

∫
∂Br(x0)

u∇u·ν dHn−1−3
∫

∂Br(x0)

u2 dHn−1

)]
,

which, upon rearranging and using again (3.4) (this time in the reverse direction), gives
the required result.

Corollary 7.3. Let u be a variational solution of (3.1), let x0 be a point of the
closed set Σu, and let δ := 1

2 dist(x, ∂Ω). Let us consider, for r∈(0, δ), the functions

D(r) := r

∫
Br(x0)

|∇u|2 dx∫
∂Br(x0)

u2 dHn−1
and V (r) := r

∫
Br(x0)

x+
n(1−χ{u>0}) dx∫

∂Br(x0)
u2 dHn−1

,

so that Fx0,u(r)=D(r)−V (r).
(i) For every r∈(0, δ), the following inequalities hold

(D−V )′(r) >
2
r
V (r)

(
D(r)− 3

2

)
>

2
r
V 2(r).

(ii) The function r 7!2V 2(r)/r is integrable on (0, δ).
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Proof. The inequalities follow from Lemma 6.4 and Theorem 7.1. The integrability
of r 7!2V 2(r)/r is a consequence of the inequalities.

Corollary 7.4. (Density) Let u be a variational solution of (3.1). The function

x 7−!Fx,u(0+)

is upper semicontinous on the closed set Σu.

Proof. For each δ>0, we have that

Fx,u(0+) 6Fx,u(r) 6Fx0,u(r)+ 1
2δ6Fx0,u(0+)+δ,

if we choose for fixed x0∈Σu first r>0 and then |x−x0| small enough.

The next result is an improvement of Lemma 6.4 at those points of Σu at which the
frequency is greater than 3

2 .

Lemma 7.5. Let u be a variational solution of (3.1), let x0∈Σu and let

δ := 1
2 dist(x0, ∂Ω).

Suppose that Fx0,u(0+)> 3
2 and let γ :=Fx0,u(0+).

(i) For all r∈(0, δ),

r

∫
Br(x0)

|∇u|2 dx∫
∂Br(x0)

u2 dHn−1
−γ> r

∫
Br(x0)

x+
n(1−χ{u>0}) dx∫

∂Br(x0)
u2 dHn−1

> 0.

(ii) The function r 7!r1−n−2γ
∫

∂Br(x0)
u2 dHn−1 is non-decreasing on (0, δ).

(iii) The function r 7!r1−n−2γ
∫

Br(x0)
x+

n(1−χ{u>0}) dx is integrable on (0, δ).
(iv) For each β∈[0, γ),

u(x0+rx)
rβ

! 0 strongly in L2
loc(R

n) as r& 0.

Proof. Part (i) follows from the fact that Fx0,u(r)>γ for all r∈(0, δ). Parts (ii) and
(iii) follow by the same arguments as for the corresponding statements in Lemma 6.4. It
is a consequence of part (ii) that r 7!r−n−2γ

∫
Br(x0)

u2 dx is non-decreasing on (0, δ), and
therefore, for each β∈[0, γ),

r−n−2β

∫
Br(x0)

u2! 0 as r& 0.

This implies part (iv) of the lemma.
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8. Blow-up limits

The frequency formula allows passing to blow-up limits.

Proposition 8.1. Let u be a variational solution of (3.1) and let x0∈Σu.
(i) The limits limr&0 V (r)=0 and limr&0D(r)=Fx0,u(0+) exist.
(ii) For any sequence rm&0 as m!∞, the sequence

vm(x) :=
u(x0+rmx)√

r1−n
m

∫
∂Brm (x0)

u2 dHn−1
(8.1)

is bounded in W 1,2(B1).
(iii) For each sequence rm&0 as m!∞ such that the sequence vm in (8.1) con-

verges weakly in W 1,2(B1) to a blow-up limit v0, the function v0 is continuous and
homogeneous of degree Fx0,u(0+) in B1, and satisfies v0>0 in B1, v0≡0 in B1∩{xn60}
and

∫
∂B1

v2
0 dHn−1=1.

Proof. The key step in the proof is statement (8.5), which we prove first. We start
by writing the right-hand side of the frequency formula in a more convenient form, using
a simple algebraic identity. For any real inner-product space (H, 〈· , ·〉) with norm ‖ · ‖,
any vectors u and v and any scalar α,

1
‖u‖4

(‖v‖2‖u‖2−〈v, u〉2) =
∥∥∥∥ v

‖u‖
− 〈v, u〉
‖u‖2

u

‖u‖

∥∥∥∥2

=
∥∥∥∥ v

‖u‖
− 〈v, u〉
‖u‖2

u

‖u‖
+α

u

‖u‖

∥∥∥∥2

−α2,

where we have used a cancellation due to orthogonality. Using the notation introduced
in Corollary 7.3, we apply the above identity in the space L2(∂Br(x0)), with u:=u,
v :=r(∇u·ν) and α:=V (r), after also taking into account (3.4) in the form

〈v, u〉
‖u‖2

=D(r),

to obtain from the frequency formula that

d

dr
Fx0,u(r) =

2
r

∫
∂Br(x0)

(
v

‖u‖
−D(r)

u

‖u‖
+V (r)

u

‖u‖

)2

dHn−1

− 2
r
V 2(r)+

2
r
V (r)

(
D(r)− 3

2

)
.

This formula can be rewritten as
d

dr
Fx0,u(r)

=
2
r

∫
∂Br(x0)

[
r(∇u·ν)(∫

∂Br(x0)
u2 dHn−1

)1/2
−Fx0,u(r)

u(∫
∂Br(x0)

u2 dHn−1
)1/2

]2

dHn−1

+
2
r
V (r)

(
Fx0,u(r)− 3

2

)
. (8.2)
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Since Fx0,u(r)> 3
2 for all r∈(0, δ), we obtain therefore that for all 0<%<σ<δ,

∫ σ

%

2
r

∫
∂Br(x0)

[
r(∇u·ν)(∫

∂Br(x0)
u2 dHn−1

)1/2
−Fx0,u(r)

u(∫
∂Br(x0)

u2 dHn−1
)1/2

]2

dHn−1 dr

6Fx0,u(σ)−Fx0,u(%). (8.3)

Let us consider now an arbitrary sequence rm such that rm&0 as m!∞, and let
vm be the sequence defined in (8.1). It follows by scaling from (8.3) that, for every m

such that rmδ<1 and for every 0<%<σ<1,∫ σ

%

2
r

∫
∂Br

[
r(∇vm ·ν)(∫

∂Br
v2

m dHn−1
)1/2

−Fx0,u(rmr)
vm(∫

∂Br
v2

m dHn−1
)1/2

]2

dHn−1 dr

6Fx0,u(rmσ)−Fx0,u(rm%)! 0 as m!∞,

since Fx0,u has a finite limit at 0. The above implies that

∫ σ

%

2
r

∫
∂Br

[
r(∇vm ·ν)(∫

∂Br
v2

m dHn−1
)1/2

−Fx0,u(0+)
vm(∫

∂Br
v2

m dHn−1
)1/2

]2

dHn−1 dr! 0 (8.4)

as m!∞. Now note that, for every r∈(%, σ)⊂(0, 1) and all m as before, it follows by
Lemma 6.4 that ∫

∂Br

v2
m dHn−1 =

∫
∂Brmr(x0)

u2 dHn−1∫
∂Brm (x0)

u2 dHn−1
6 rn+2 6 1.

Therefore (8.4) implies that∫
Bσ\B%

|x|−n−3[∇vm(x)·x−Fx0,u(0+)vm(x)]2 dx! 0 as m!∞. (8.5)

We can now prove all parts of the proposition.
(i) Suppose towards a contradiction that (i) is not true. Let sm&0 be a sequence

such that V (sm) is bounded away from 0. From the integrability of r 7!2V 2(r)/r, we
obtain that

min
r∈[sm,2sm]

V (r)! 0 as m!∞.

Let tm∈[sm, 2sm] be such that V (tm)!0 as m!∞. For the choice rm :=tm for each m,
the sequence vm given by (8.1) satisfies (8.5). The fact that V (rm)!0 implies that
D(rm) is bounded, and hence vm is bounded in W 1,2(B1). Let v0 be any weak limit of
vm along a subsequence. Note that v0 has norm 1 on L2(∂B1), since this is true for vm
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for all m. It follows from (8.5) that v0 is homogeneous of degree Fx0,u(0+). Note that,
by Lemma 6.4 (ii),

V (sm) =
s−n−1

m

∫
Bsm (x0)

x+
n(1−χ{u>0}) dx

s−n−2
m

∫
∂Bsm (x0)

u2 dHn−1
6
s−n−1

m

∫
Brm (x0)

x+
n(1−χ{u>0}) dx

(rm/2)−n−2
∫

∂Brm/2(x0)
u2 dHn−1

6
1
2

∫
∂Brm (x0)

u2 dHn−1∫
∂Brm/2(x0)

u2 dHn−1
V (rm) =

1
2

∫
∂B1/2

v2
m dHn−1

V (rm).

(8.6)

Since, at least along a subsequence,∫
∂B1/2

v2
m dHn−1!

∫
∂B1/2

v2
0 dHn−1> 0,

(8.6) leads to a contradiction. It follows that indeed V (r)!0 as r&0. This implies that
D(r)!Fx0,u(0+).

(ii) Let rm be an arbitrary sequence with rm&0. The boundedness of the sequence
vm in W 1,2(B1) is equivalent to the boundedness of D(rm), which is true by (i).

(iii) Let rm&0 be an arbitrary sequence such that vm converges weakly to v0. The
homogeneity of degree Fx0,u(0+) of v0 follows directly from (8.5). The homogeneity of v0,
together with the fact that v0 belongs to W 1,2(B1), imply that v0 is continuous. The fact
that

∫
∂B1

v2
0 dHn−1=1 is a consequence of

∫
∂B1

v2
m dHn−1=1 for all m, and the remaining

claims of the proposition are obvious.

9. Concentration compactness in two dimensions

In the 2-dimensional case we prove concentration compactness which allows us to preserve
variational solutions in the blow-up limit at degenerate points and excludes concentration.
In order to do so, we combine the concentration compactness result of Evans and Müller
[12] with information gained by our frequency formula. In addition, we obtain strong
convergence of our blow-up sequence which is necessary in order to prove our main
theorems. The question whether the following theorem holds in any dimension seems to
be a hard one.

Theorem 9.1. Let n=2, let u be a variational solution of (3.1) and let x0∈Σu. Let
rm&0 be such that the sequence vm given by (8.1) converges weakly to v0 in W 1,2(B1).
Then vm converges to v0 strongly in W 1,2

loc (B1\{0}), and v0 satisfies v0∆v0=0 in the
sense of Radon measures on B1.

Proof. Note first that, since v0 is by Proposition 8.1 a non-negative continuous
function, v0∆v0 is well defined as a non-negative Radon measure on B1.
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Let σ and % with 0<%<σ<1 be arbitrary. We know that

∆vm > 0 and ∆vm(B(σ+1)/2) 6C1 for all m.

In order to apply the concentrated compactness result [12], we regularize each vm to

ṽm := vm∗φm ∈C∞(B1),

where φm is a standard mollifier such that

∆ṽm > 0 and
∫

Bσ

∆ṽm dx6C2<∞ for all m,

and
‖vm−ṽm‖W 1,2(Bσ)! 0 as m!∞.

From [11, Chapter 4, Theorem 3] we know that ∇ṽm converges a.e. to the weak limit
∇v0, and the only possible problem is concentration of |∇ṽm|2. By [12, Theorems 1.1
and 3.1], we obtain that

∂1ṽm∂2ṽm! ∂1v0∂2v0

and
(∂1ṽm)2−(∂2ṽm)2! (∂1v0)2−(∂2v0)2

in the sense of distributions on Bσ as m!∞. It follows that

∂1vm∂2vm! ∂1v0∂2v0 (9.1)

and
(∂1vm)2−(∂2vm)2! (∂1v0)2−(∂2v0)2

in the sense of distributions on Bσ as m!∞. Let us remark that this alone would allow
us to pass to the limit in the domain variation formula for vm in the set {x2>0}.

Observe now that (8.5) shows that

∇vm(x)·x−Fx0,u(0+)vm(x)! 0

strongly in L2(Bσ\B%) as m!∞. It follows that

∂1vmx1+∂2vmx2! ∂1v0x1+∂2v0x2

strongly in L2(Bσ\B%) as m!∞. But then∫
Bσ\B%

(∂1vm∂1vmx1+∂1vm∂2vmx2)η dx!
∫

Bσ\B%

(∂1v0∂1v0x1+∂1v0∂2v0x2)η dx
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for each η∈C0
0 (Bσ\
B%) as m!∞. Using (9.1), we obtain that∫

Bσ\B%

(∂1vm)2x1η dx!
∫

Bσ\B%

(∂1v0)2x1η dx

for each 06η∈C0
0 ((Bσ\
B%)∩{x1>0}) and each 0>η∈C0

0 ((Bσ\
B%)∩{x1<0}) as m!∞.
Repeating the above procedure three times for rotated sequences of solutions (by 45�)
yields that ∇vm converges strongly in L2

loc(Bσ\
B%). Since σ and % with 0<%<σ<1 were
arbitrary, it follows that ∇vm converges to ∇v0 strongly in L2

loc(B1\{0}).
As a consequence of the strong convergence, we see that∫

B1

∇(ηv0)·∇v0 dx=0 for all η ∈C1
0 (B1\{0}).

Combined with the fact that v0=0 in B1∩{x260}, this proves that v0∆v0=0 in the
sense of Radon measures on B1.

10. Degenerate points in two dimensions

Theorem 10.1. Let n=2 and let u be a variational solution of (3.1). Then at each
point x0 of the set Σu there exists an integer N(x0)>2 such that

Fx0,u(0+) =N(x0)

and

u(x0+rx)√
r−1

∫
∂Br(x0)

u2 dH1
! %N(x0)|sin(N(x0) min{max{θ, 0}, π})|√∫ π

0
sin2(N(x0)θ) dθ

as r& 0,

strongly in W 1,2
loc (B1\{0}) and weakly in W 1,2(B1), where x=(% cos θ, % sin θ).

Proof. Let rm&0 be an arbitrary sequence such that the sequence vm given by
(8.1) converges weakly in W 1,2(B1) to a limit v0. By Proposition 8.1 (iii) and Theo-
rem 9.1, v0 6≡0, v0 is homogeneous of degree Fx0,u(0+)> 3

2 , v0 is continuous, v0>0, v0≡0
in {x260}, v0∆v0=0 in B1 as a Radon measure, and the convergence of vm to v0 is
strong in W 1,2

loc (B1\{0}). Moreover, the strong convergence of vm and the fact proved in
Proposition 8.1 (i) that V (rm)!0 as m!∞ imply that

0 =
∫

B1

(|∇v0|2 div φ−2∇v0Dφ∇v0) dx
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for every φ∈C1
0 (B1∩{x2>0};R2). It follows that at each polar coordinate point (1, θ)∈

∂B1∩∂{v0>0},
lim
τ&θ

∂θv0(1, τ) =− lim
τ%θ

∂θv0(1, τ).

Computing the solution of the ordinary differential equation on ∂B1, using the homo-
geneity of degree Fx0,u(0+) of v0 and the fact that

∫
∂B1

v2
0 dH1=1, yields that Fx0,u(0+)

must be an integer N(x0)>2 and that

v0(%, θ) =
%N(x0)|sin(N(x0) min{max{θ, 0}, π})|√∫ π

0
sin2(N(x0)θ) dθ

. (10.1)

The desired conclusion follows from Proposition 8.1 (ii).

Theorem 10.2. Let n=2 and let u be a variational solution of (3.1). Then the set
Σu is locally in Ω a finite set.

Proof. Suppose towards a contradiction that there is a sequence of points xm∈Σu

converging to x0∈Ω, with xm 6=x0 for all m. The upper semicontinuity (Lemma 4.2 (iv))
implies that x0∈Σu. Choosing rm :=2|xm−x0|, there is no loss of generality in assuming
that the sequence (xm−x0)/rm is constant, with value z∈

{(
− 1

2 , 0
)
,
(

1
2 , 0

)}
. Consider

the blow-up sequence vm given by (8.1), and also the sequence

um(x) =
u(x0+rmx)

r
3/2
m

.

Note that each um is a variational solution of (3.1), and vm is a scalar multiple of um.
Since xm∈Σu, it follows that z∈Σum . Therefore, Lemma 6.4 shows that, for each m,

r

∫
Br(z)

|∇vm|2 dx>
3
2

∫
∂Br(z)

v2
m dH1 for all r∈

(
0,

1
2

)
.

Theorem 10.1 implies that the sequence vm converges strongly in W 1,2(B1/4(z)) to v0

given by (10.1), and hence

r

∫
Br(z)

|∇v0|2 dx>
3
2

∫
∂Br(z)

v2
0 dH1 for all r∈

(
0,

1
4

)
.

But this contradicts the fact, which can be checked directly, that

lim
r&0

r

∫
Br(z)

|∇v0|2 dx∫
∂Br(z)

v2
0 dH1

=1.
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11. Conclusion

Theorem 11.1. Let n=2, let u be a weak solution of (3.1), and suppose that

|∇u|2 6x+
2 in Ω.

Then the set Su of stagnation points is a finite or countable set. Each accumulation
point of Su is a point of the locally finite set Σu.

At each point x0 of Su\Σu,

u(x0+rx)
r3/2

!
√

2
3
%3/2 cos

(
3
2

(
min

{
max

{
θ,
π

6

}
,
5π
6

}
− π

2

))
as r& 0,

strongly in W 1,2
loc (R2) and locally uniformly on R2, where x=(% cos θ, % sin θ). Moreover,

L2

(
B1∩

(
{x :u(x0+rx)> 0}4

{
x :

π

6
<θ<

5π
6

}))
! 0 as r& 0,

and, for each δ>0,

r−3/2∆u
(

(x0+Br)\
{
x :min

{∣∣∣∣θ− π6
∣∣∣∣, ∣∣∣∣θ− 5π

6

∣∣∣∣}<δ

})
! 0 as r& 0.

At each point x0 of Σu there exists an integer N(x0)>2 such that

u(x0+rx)
rβ

! 0 as r& 0,

strongly in L2
loc(R

2) for each β∈[0, N(x0)), and

u(x0+rx)√
r−1

∫
∂Br(x0)

u2 dH1
! %N(x0)|sin(N(x0) min{max{θ, 0}, π})|√∫ π

0
sin2(N(x0)θ) dθ

as r& 0,

strongly in W 1,2
loc (B1\{0}) and weakly in W 1,2(B1), where x=(% cos θ, % sin θ).

Proof. By Lemma 3.4, u is a variational solution of (3.1) and satisfies

r−3/2

∫
Br(y)

√
x2 |∇χ{u>0}| dx6C0

for all Br(y)bΩ such that yn=0. Combining Proposition 5.4, Lemmas 5.3 and 4.4,
Proposition 5.5, Lemma 7.5 and Theorems 10.2 and 10.1, we obtain that the set Su is a
finite or countable set with asymptotics as in the statement, and that the only possible
accumulation points are elements of Σu.
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Theorem 11.2. Let n=2, let u be a weak solution of (3.1) and suppose that

|∇u|2 6x+
2 in Ω.

Suppose moreover that {u=0} has locally only finitely many connected components. Then
the set Su of stagnation points is locally in Ω a finite set. At each stagnation point x0,

u(x0+rx)
r3/2

!
√

2
3
%3/2 cos

(
3
2

(
min

{
max

{
θ,
π

6

}
,
5π
6

}
− π

2

))
as r& 0,

strongly in W 1,2
loc (R2) and locally uniformly on R2, where x=(% cos θ, % sin θ), and in

an open neighborhood of x0 the topological free boundary ∂{u>0} is the union of two
C1-graphs with right and left tangents at x0.

Proof. We first show that the set Σu is empty. Suppose towards a contradiction that
there exists x0∈Σu. From Theorem 10.1 we infer that there exists an integer N(x0)>2
such that

u(x0+rx)√
r−1

∫
∂Br(x0)

u2 dH1
! |sin(N(x0) min{max{θ, 0}, π})|√∫ π

0
sin2(N(x0)θ) dθ

as r& 0,

strongly in W 1,2
loc (B1\{0}) and weakly in W 1,2(B1), where x=(% cos θ, % sin θ). But then

the assumption about connected components implies that ∂red{x:u(x0+rx)>0} contains
the image of a continuous curve converging, as r&0, locally in {x2>0} to a half-line
{αz :α>0} where z2>0. It follows that

H1
({
x2>

1
2

}
∩∂red{x :u(x0+rx)> 0}

)
> c1> 0,

contradicting

0 ∆
u(x0+rx)
r3/2

(B1) =
∫

B1∩∂red{x:u(x0+rx)>0}

√
x2 dH1.

Hence Σu is indeed empty.
Let x0∈Su. Theorem 11.1 shows that

u(x0+rx)
r3/2

!
√

2
3
%3/2 cos

(
3
2

(
min

{
max

{
θ,
π

6

}
,
5π
6

}
− π

2

))
as r& 0,

strongly in W 1,2
loc (R2) and locally uniformly on R2, where x=(% cos θ, % sin θ). To prove

the last statement we use flatness-implies-regularity results in the vein of [2, Theorem 8.1].
More precisely, for each σ6σ0 and y0∈Bδ(x0)∩∂{u>0}∩{y0

1<x
0
1}, u∈F (σ, 0;σ0σ

2) in
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Br/2(y0) in the direction η=
(
− 1

2 ,−
1
2

√
3
)

(cf. [5, Definition 4.1]) provided that δ has
been chosen small enough, meaning that u is a weak solution and satisfies

u(x) = 0 in {x∈Br(y0) :x·η>σr}

and

|∇u|6
√
y0
2(1+σ0σ

2) in Br(y0).

From the proof of [5, Theorem 8.4] (with the proviso that the parabolic monotonicity
formula in [5] is replaced by the local elliptic formula in Theorem 3.5 (i) and the solution
has been extended to a constant function of the time variable) we infer that

Br/2(x0)∩∂{u> 0}∩{y0
1 <x

0
1}

is the graph of a C1,α-function and that the outer normal ν satisfies |ν(y0)−η|6σ. It
follows that Bδ(x0)∩∂{u>0}∩{y0

16x0
1} is the graph of a C1-function. The same holds

for Bδ(x0)∩∂{u>0}∩{y0
1>x0

1}.

12. Appendix

Proof of Lemma 3.4. For any φ∈C1
0 (Ω∩{xn>τ};Rn) and a small positive δ we find

a covering
∞⋃

i=1

Bri(x
i)⊃ supp φ∩(∂{u> 0}\∂red{u> 0})

satisfying
∑∞

i=1 ri
n−16δ, and by the fact that supp φ∩(∂{u>0}\∂red{u>0}) is a com-

pact set we may pass to a finite subcovering

Nδ⋃
i=1

Bri(x
i)⊃ supp φ∩(∂{u> 0}\∂red{u> 0})

satisfying
∑Nδ

i=1 ri
n−16δ.

We also know that u∈C1
(
{u>0}∩

(
suppφ\

⋃Nδ

i=1Bri(x
i)

))
and that u satisfies the

free-boundary condition

|∇u|2 =xn on ∂red{u> 0}∩
(
suppφ\

⋃Nδ

i=1Bri(x
i)

)
.

Formally integrating by parts in {u>0}\
⋃Nδ

i=1Bri(x
i) (this can be justified rigorously ap-

proximating
⋃Nδ

i=1Bri(x
i) from above by Aε such that ∂({u>0}\Aε) is locally in supp φ
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a C3-surface) we therefore obtain∣∣∣∣∫
Ω

(|∇u|2 div φ−2∇uDφ∇u+xnχ{u>0} div φ+χ{u>0}φn) dx
∣∣∣∣

6

∣∣∣∣∫⋃Nδ
i=1 Bri

(xi)

(|∇u|2 div φ−2∇uDφ∇u+xnχ{u>0} div φ+χ{u>0}φn) dx
∣∣∣∣

+
∣∣∣∣∫

∂
(⋃Nδ

i=1 Bri
(xi)

)
∩{u>0}

(|∇u|2φ·ν−2∇u·ν∇u·φ+xnφ·ν) dHn−1

∣∣∣∣
+

∣∣∣∣∫
∂{u>0}\

⋃Nδ
i=1 Bri

(xi)

(xn−|∇u|2)φ·ν dHn−1

∣∣∣∣
6C1

Nδ∑
i=1

ri
n+C2

Nδ∑
i=1

ri
n−1+0,

and letting δ!0, we realize that u is a variational solution of (3.1) in the set Ω∩{xn>τ}.
Note that the above extends to Lipschitz functions φ. Next, let us take φ∈C1

0 (Ω;Rn)
and η :=min{1, xn/τ}, plug in the product ηφ into the already obtained result, and use
the assumption |∇u|26Cx+

n,

0 =
∫

Ω

η(|∇u|2 div φ−2∇uDφ∇u+xnχ{u>0} div φ+χ{u>0}φn) dx

+
1
τ

∫
Ω∩{0<xn<τ}

φ·(|∇u|2en−2∂nu∇u+xnχ{u>0}en) dx

= o(1)+
∫

Ω

(|∇u|2 div φ−2∇uDφ∇u+xnχ{u>0} div φ+χ{u>0}φn) dx as τ! 0.

Last, let us prove that

r1/2−n

∫
Br(y)

√
xn |∇χ{u>0}| dx6C0

for all Br(y)bΩ such that yn=0. Let us consider such a y, and the family of scaled
functions

ur(x) :=
u(y+rx)
r3/2

.

Using the assumption
|∇u|2 6Cx+

n locally in Ω

and the weak solution property, it follows that

C0 >
∫

∂B1

∇ur(x)·x dHn−1 =∆ur(B1)

=
∫

B1∩∂red{ur>0}

√
xn dHn−1 = r1/2−n

∫
Br(y)∩∂red{u>0}

√
xn dHn−1,

as required.
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Proof of Proposition 5.8. The proof is a standard dimension reduction argument
following [15, §11]. In each step, blowing up once transforms the free boundary into a
cone, blowing up a second time at a point different from the origin transforms the free
boundary into a cylinder, and passing to a codimension-1 cylinder section reduces the
dimension of the whole problem by 1.

Let us do this in some more detail: Suppose that there exists s>n−2, ς>0 and
τ>0 such that Hs(Nu

ς,τ )>0. Then we may use [15, Proposition 11.3], Lemma 5.7 as
well as [15, Lemma 11.5] at Hs-a.e. point of Nu

ς,τ to obtain a blow-up limit u0 satisfying
Hs,∞(Nu0

ς,τ )>0. According to Lemma 4.1, u0 is a homogeneous variational solution on
Rn, where χ{u>0} has to be replaced by χ0 :=limm!∞ χ{um>0} in Definition 3.1. We
proceed with the dimension reduction: By [15, Lemma 11.2] we find a point x̄∈Nu0

ς,τ \{0}
at which the density in [15, Proposition 11.3] is estimated from below. Now each blow-
up limit u00 with respect to x̄ (and with respect to a subsequence m!∞ such that the
limit superior in [15, Proposition 11.3] becomes a limit) again satisfies the assumptions
of Lemma 4.1. In addition, we obtain from the homogeneity of u00 as in [36, Lemma 3.1]
that the rotated u00 is constant in the direction of the nth unit vector. Defining ū as
the restriction of this rotated solution to Rn−1, it follows therefore that Hs−1(N ū

ς,τ )>0.
Repeating the whole procedure n−2 times, we obtain a non-trivial homogeneous solution
u? in R2, satisfying Hs−(n−2)(Nu?

ς,τ )>0, by Proposition 4.7 a contradiction.
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