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1. Introduction

1.1. Prime and almost prime integral matrices of a given determinant

For integers n>2 and m 6=0 let Vm,n(Z) or Om,n denote the set of n×n integral matrices
of determinant equal to m. We study the points x∈Om,n for which

f(x) =
∏

16i6j6n

xij ,

or more generally any f∈Q[xij ] which is integral on Om,n, has few (or fewest possible)
prime factors. In general, given a set O of integer points in Matn×n and d>1, let Od

denote the reduction of O in Matn×n(Z/dZ). We say that f is weakly primitive for O if

gcd f(O) := gcd{f(x) :x∈O}=1.

If f is not weakly primitive then f/N is, where N=gcd f(O), and we can represent any
weakly primitive f as g/N , with g∈Z[xij ] and N=gcd g(O).

Define the saturation number r0 of the pair (Om,n, f) to be the least r such that the
set of x∈Om,n, for which f(x) has at most r prime factors, is Zariski-dense in the affine
variety Vm,n={x∈Matn×n :det x=m}=Zcl(Om,n). (We denote by Zcl the operation of
taking Zariski closure in affine space; see also [S2] for a further discussion and motivation
for this set up.) It turns out that r0 is finite, though this is by no means obvious.
The coordinate ring Q[xij ]/(det(xij)−m) is a unique factorization domain [Sa], and we
factor f into t=t(f) irreducibles f1 ... ft in this ring. We assume that the fj ’s are distinct
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and for simplicity that they are irreducible in 
Q[xij ]/(det(xij)−m)=
Q[Vm,n]. Clearly
r0(Om,n, f)>t and, if f and the fj ’s have integer coefficients, then r0(Om,n, f)=t if and
only if the set of x∈Om,n for which fj(x) are all prime is Zariski-dense in Vm,n. The
general local-to-global conjectures in [BGS], when applied to the pair (Vm,n(Z), f), assert
that r0(Vm,n(Z), f)=t. In the case that f and the fj ’s are in Z[xij ], we even expect a
“prime number theorem” type of asymptotics as follows.

Let | · | be any norm on the linear space Matn×n(R), and for T >1 set

Nm,n(T ) = |{x∈Om,n : |x|6T}|. (1.1)

It is known [DRS], [Ma], [GW] that

Nm,n(T )∼ c(Om,n)Tn2−n, as T !∞. (1.2)

Here c is a positive constant which is given as a product of local densities associated with
Om,n, and in particular c depends also on the norm. Let

πm,n,f (T ) = |{x∈Om,n : |x|6T and fj(x) is prime for j =1, ..., t}|. (1.3)

Our conjectured asymptotics for πm,n,f is then

πm,n,f (T )∼ c(Om,n, f)Nm,n(T )
(log T )t(f)

, as T !∞, (1.4)

where for a general set of integral points O we define

c(O, f) = c∞(O, f)
∏

p<∞

(
1−

|Of
p |

|Op|

)(
1+

t(f)
p

)
, (1.5)

and Of
p is the subset of Op at which f(x)=0 (mod p), while the positive Archimedean

factor c∞(O, f) is a bit more complicated to describe. We will see that the product
of local densities in (1.5) converges absolutely and each factor is non-zero since we are
assuming that f is weakly primitive.

The main tool that we develop in this paper is an affine linear sieve for homogeneous
spaces and as in the more familiar classical 1-variable sieve [HR], our main results are
upper bounds which are sharp up to a multiplicative constant for πO,f (T ), and lower
bounds which are also sharp up to a constant factor, for points x∈O for which f has at
most a fixed number of large prime factors (“almost primes”).

In particular, for the set Om,n=Vm,n(Z) of integral n×n matrices of determinant m

the upper bound is given by the following result.
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Theorem 1.1. Let Vm,n(Z) be as above and f∈Z[xij ] be weakly primitive with t(f)
irreducible factors in both Q[Vm,n] and 
Q[Vm,n]. Then

πm,n,f (T )� Nm,n(T )
(log T )t(f)

,

the implied constant depending explicitly on m, n and f .

The lower bound is given by the following result.

Theorem 1.2. Let Vm,n(Z) be as above and let f∈Q[xij ] be weakly primitive and
taking integer values on Vm,n(Z). Assume that f has t(f) distinct irreducible factors
in both Q[Vm,n] and 
Q[Vm,n]. Let r be the least integer satisfying r>18t(f)n3ηn deg f .
Then

{x∈Vm,n(Z) : |x|6T and f(x) has at most r prime factors}� Nm,n(T )
(log T )t(f)

. (1.6)

Here

ηn =

 1, if n is odd ,
n

n−1
, if n is even,

and again the implied positive constant depends explicitly on m, n and f .

Corollary 1.3. Under the assumptions and notation in Theorem 1.2, the satura-
tion number satisfies the upper bound r0(Vm,n(Z), f)6r. Namely , the set of x∈Vm,n(Z)
for which f(x) has at most r prime factors, is Zariski-dense in Vm,n.

In the case when f(x)=
∏

16i6j6n xij , Corollary 1.3 can be sharpened considerably.
Exploiting the linearity of the determinant form in the rows and columns of a matrix,
we use the method of Vinogradov [Vi] (see [Va]) for handling one linear equation in
three or more prime variables to show that we can make all coordinates of the matrix
simultaneously prime as long as there is no local obstruction.

Theorem 1.4. We have that

f(x) =
∏

16i6j6n

xij

is weakly primitive for Vm,n(Z) if and only if m≡0 (mod 2n−1), and if this is the case
and n>3 then r0(Vm,n(Z), f)=n2. That is, for n>3 the set of x∈Vm,n(Z) for which
each xij is prime, is Zariski-dense in Vm,n if and only if m≡0 (mod 2n−1).
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Remark 1.5. (1) The proof of Theorem 1.4 provides a lower bound for πm,n,f (T )
which is a power of T but not the one expected in conjecture (1.4).

(2) Theorem 1.4 should hold when n=2 but Vinogradov’s methods do not apply in
this binary case. For m fixed, the infinitude of xij satisfying x11x22−x12x21=2m and
xij prime, is apparently still open. Recent work of Goldston–Graham–Pintz–Yildrim
[GGPY] on small differences of numbers which are products of exactly two primes, shows
that the desired set is infinite for at least one number m in {1, 2, 3}.

(3) An immediate improvement to the upper estimate above for the value of r0

arises by choosing the norm to be invariant under the rotation group. This improvement,
together with much more significant ones, will be considered systematically in §6.

1.2. Prime and almost prime points on principal homogeneous spaces.

Theorems 1.1 and 1.2 are special cases of more general results which are concerned with
finding points on an orbit O of v∈Zn under a subgroup Γ of GLn(Z) at which a given
polynomial f∈Q[x1, ..., xn], which is integral on O, has few prime factors. The approach
is based on the “affine linear sieve” introduced recently in [BGS]. Our purpose here
is to specialize to Γ being a congruence subgroup of an algebraically simply connected
semisimple linear algebraic group G⊂GLn defined over Q and for which the stabilizer
of v in G is trivial. This allows us to make use of the well-developed analytic methods
[DRS], [GN1] for counting points in such orbits in a big Euclidean ball, as well as the
strong bounds towards the general Ramanujan conjectures that are known from the
theory of automorphic forms (see [Cl1] and [S1]). We assume further that G is of non-
compact type, that is the group of real points of any Q-factor of G is non-compact. This
is needed to ensure that there are enough G(Z)-points for our purposes. We restrict
further to principal homogeneous spaces (i.e. the stabilizer of v being trivial) and to G
being algebraically simply connected. Note however that the last two restrictions are not
serious ones, as far as the production of a Zariski-dense set of points x at which f(x)
has few prime factors is concerned. As explained in [BGS], the dominant Q-morphisms
from G to an orbit G/H and from the simply connected cover G̃ of G, to G, reduce (by
pull-back) the basic saturation problem for orbits of more general congruence groups to
the cases that we consider in this paper.

We now describe our results in more detail. Let G⊂GLn(C) be a connected and
algebraically simply connected semisimple algebraic matrix group defined over Q. Let
G(Q) be its rational points and Γ=G(Z)=G(Q)∩GLn(Z) its integral points. Fix v∈Zn

and let V =Gv be the corresponding orbit which we assume is Zariski-closed in An.
Since G is algebraically connected and the stabilizer of v is assumed to be trivial, V is
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an absolutely irreducible affine variety defined over Q and has dimension equal to dim G.
The ring of G-invariants for the action of G on the n-dimensional space An separates
the closed G-orbits [BH]. We can choose generators h1, ..., hν in Q[x1, ..., xn] of this ring
so that V is given by

V = {x :hj(x) =λj , j =1, ..., ν}, with λj ∈Q. (1.7)

Let O=Γv be the Γ-orbit of v in Zn. According to [B], O is Zariski-dense in V . The
coordinate ring of V , Q[x1, ..., xn]/(h1−λ1, ..., hν−λν) is a unique factorization domain
[Sa]. Hence an f∈Q[x1, ..., xn] factors into irreducibles f=f1 ... ft in this ring. We assume
that these fj ’s are distinct and that they are irreducible in


Q[x1, ..., xn]/(h1−λ1, ..., hν−λν),

that f takes integer values on O and that it is O-weakly primitive. The saturation
number r0(O, f) of the pair (O, f) is the least r such that the set of x∈O for which f(x)
has at most r prime factors is Zariski-dense in V (=Zcl(O)).

To order the elements of O we use the following “height” functions. Let ‖ · ‖ be any
norm on the linear space Matn×n(R). For T >0 and v∈Qn,

O(T ) = {γv : ‖γ‖6T and γ ∈Γ} (1.8)

(this depends on v but in an insignificant way).
In many interesting cases the sets O(T ) can be described as {x∈O :|x|6T}, where

| · | is a norm on Rn, but this is not true in general. The main term of the asymptotics
for NO(T )=|O(T )| is known for any norm ([GW], [Ma]) and takes the form

NO(T )∼BO(‖ · ‖)T a(log T )b (1.9)

with BO(‖·‖)>0, a>0 and b∈N being a non-negative integer. The numbers a and b are
given explicitly in terms of the data in Theorem 3.1 below (see the discussion following
that theorem). They do not depend on the norm chosen, unlike BO(‖ · ‖) which does.

Theorem 1.6. Let O and f be as above and assume that fj , j=1, ..., t(f), are
integral on O. Then, for T >2,

|{x∈O(T ) : fj(x) is prime for j =1, ..., t(f)}|� NO(T )
(log T )t(f)

,

the implied constant depending on f and O.
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Theorem 1.7. Let O and f be as above and let r be the least integer satisfying
the condition r>(9t(f)(1+dim G)22ne(Γ) deg f)/a, where ne(Γ) is the integer defined
following Theorem 3.3. Then, as T!∞,

|{x∈O(T ) : f(x) has at most r prime factors}|� NO(T )
(log T )t(f)

,

the implied constant depending on f and O.

Corollary 1.8. Let O and f be as in Theorem 1.7. Then r0(O, f)6r.

Remark 1.9. (i) The integer ne(Γ) is at least 1 and is determined by the extent
to which the representation spaces L2

0(G/Γ(q)) weakly contain non-tempered irreducible
representations of G=G(R). Here L2

0(G/Γ(q)) is the space of functions with zero in-
tegral, and Γ(q) is any congruence subgroup of Γ. The non-temperedness is measured
by the infimum over all p>0 for which the representation space contains a dense sub-
space of matrix coefficients belonging to Lp(G). Thus ne(Γ) is directly connected to the
generalized Ramanujan conjectures for G(A)/G(Q) [S1].

(ii) Theorems 1.1 and 1.2 and Corollary 1.3 are connected to the general Theo-
rems 1.6 and 1.7 and Corollary 1.8 as follows: Γ=SLn(Z) acts on Vn,m(Z) by left mul-
tiplication. This action has finitely many orbits. Set G=SLn⊂GLM , M=n2, and (with
this action) O=Gv, where det v=m. Theorem 1.1 then follows by applying Theorem 1.6
to each orbit separately. For Theorem 1.2, the difference between the individual orbit O
of SLn(Z) and all of Vm,n(Z) raises the issue of the weak primitivity of f on Vm,n(Z). So
one needs to globalize the argument as is explained in §4.

(iii) The assumption of absolute irreducibility of the factors fj will be used in §4.1,
when we estimate the number of their solutions modulo a prime p. However, this as-
sumption is made for convenience and it is possible to discard it by passing to a finite
extension field, along the lines of the argument used in §4.3.

The upper estimate of r0 given in Theorem 1.7 and Corollary 1.8 is by no means
optimal. There are various places where the analysis can be modified to give a far better
bound. First, by using smooth positive weights instead of the sharp cutoff counting
function in (2.9) and Theorem 3.2, we can improve the level of distribution τ in (4.15).
We carry this out in §6 for the case when Γ is co-compact in G=G(R). In Theorem 6.1 we
obtain the sharpest possible remainder for such smooth sums in terms of bounds towards
the Ramanujan conjectures. We call this smooth weighted sum formula for K -bi-invariant
metrics a Poisson summation formula. It constitutes the main ingredient of the spectral
method for counting integral points in the orbit O. This leads to the improvement in the
upper estimate for r0 that is given in (6.6). A further improvement is gotten by using
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a weighted sieve ([HR], [DH]) rather than the simple sieve from §2. This leads to the
improved estimate for r0 given in (6.16). Finally there are cases such as the following for
which very strong bounds on the spectrum of L2

0(G/Γ(q)) are known and which result
in quite a good estimate for r0. Let D be a division algebra over Q of degree n (which
for technical reasons we assume is prime) and for which D⊗R∼=Matn×n(R). Then D(Q)
has dimension M=n2 over Q, and choosing a basis gives a Z-structure for D, that is M

coordinates xij . Consider the reduced norm and let G be the linear algebraic group of
elements of reduced norm 1. Let Γ=G(Z)⊂GLM , where the action is by multiplication
on the left. Let O=Γv, where v∈D(Z) has reduced norm m 6=0, and let f∈Q[xij ] be
integral on O and weakly primitive. Then all the improvements mentioned above apply
to the pair (O, f), and Theorem 1.7 and Corollary 1.8 apply with the following estimate
for r0 (see Theorem 6.4)

r0(O, f) 6 6 deg(f)+t(f) log t(f). (1.10)

This bound is independent of the dimension and it is of the same quality and shape, in
terms of dependence on the degree of f and the number of its irreducible factors, as what
is known for r-almost primes for values of f(x) in the classical case of one variable [HR].

Uniform bounds such as those in (1.10) which are independent of the dimension
are useful when combined with Q-morphisms. Let φ: G!Ak be a Q-morphism of affine
varieties for which O=φ(G(Z))⊂Zk. Then, if f∈Q[x1, ..., xk] is O-integral and weakly
primitive, we have that φ∗(f)=f �φ is G(Z)-integral and weakly primitive. Moreover,
r0(O, f)6r0(G(Z), φ∗(f)). If O is part of a larger set of integral points that can be swept
out by varying φ suitably, then the uniformity allows one to give bounds for saturation
numbers for the larger set. This of course applies also with G=A1, in which case one
can apply the classical 1-variable sieve. For example, Corollary 1.3 can be approached
by this more elementary method. Let y∈Vm,n(Z) and let φy:A1!Vm,n be the morphism

φy:x 7−!



1 0 ... 0 x

0 1 ... 0 0
... ... ... ... ...

0 0 ... 1 0
0 0 ... 0 1


y.

Then O=φy(Z)⊂Vm,n(Z). Apply the classical 1-variable results about almost primes to
the pair (Z, φ∗(f)). For a generic y, the bound for r0 depends only on t and d, and the
set of such y’s is Zariski-dense in Vm,n. In this way one can establish Corollary 1.3 with
r0 comparable to (1.10) above. This approach is possible whenever G has Q-unipotent
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elements. However, in the opposite case when G(R)/G(Z) is compact, such as in the
division algebra examples above, there are no such Q-rational parametric affine curves in
G=G(R), and the general affine linear sieve developed in this paper is the only approach
that we know of to obtain Corollary 1.8. In [LS] this technique is developed for anisotropic
quadratics in three variables.

2. The combinatorial sieve

To begin with we make use of a simple version of the combinatorial sieve, see [IK,
§§6.1–6.4] and [HR, Theorem 7.4]. Later we will use more sophisticated versions. Our
formulation is tailored to the applications.

Let A={ak}k>1 be a finite sequence of non-negative numbers. Denote by X the
sum

X =
∑

k

ak. (2.1)

We think of X as large, tending to infinity as the number of elements of A increases. Fix
a finite set B of “ramified” primes which for the most part will be the empty set. For z

a large parameter (in applications z will be a small power of X), set

P =Pz,B =
∏
p6z

p/∈B

p. (2.2)

Under suitable assumptions about the sums of the ak’s in progressions with moderately
large moduli, the sieve gives upper and lower estimates which are of the same order of
magnitude, for the sums of A over k’s which remain after sifting out numbers with prime
factors in P .

More precisely, let
S(A, P ) :=

∑
(k,P )=1

ak. (2.3)

The assumptions for the sums over progressions that we make are as follows:
(A0) For d square-free and having no prime factors in B (d<X), we assume that

the sum over multiples of d takes the form∑
k≡0 (mod d)

ak =
%(d)
d

X+R(A, d), (2.4)

where %(d) is multiplicative in d and, for p /∈B,

0 6
%(p)
p

6 1− 1
c1

< 1. (2.5)
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The understanding being that (%(d)/d)X is the main term in (2.4) and R(A, d) is smaller,
at least on average.

(A1) A has level distribution D=D(X), that is for some ε>0 there is Cε<∞ such
that ∑

d6D

|R(A, d)|6CεX
1−ε. (2.6)

If this holds with D=Xτ , we say that the level distribution is τ .
(A2) A has sieve dimension t, that is there is C2 fixed such that

−C2 6
∑

(p,B)=1

w6p6z

%(p) log p

p
−t log

z

w
6C2 for 26w 6 z. (2.7)

Assuming (A0), (A1) and (A2), the simple combinatorial sieve that we use asserts
that for s>9t, z=D1/s and X large enough, one has

X

(log X)t
�S(A, P )� X

(log X)t
, (2.8)

where the implied constants depend explicitly on t, ε, C1, C2 and Cε (all of which are
fixed).

For our application, V ⊂An is a principal homogeneous space for G and O=G(Z)v
is an orbit of integral points in V . The polynomial f∈Q[x1, ... xn] is integral on O and
‖ · ‖ is the norm described in §1. For k>0, we let ak=ak(T ) be the number of elements
γ∈G(Z) with norm bounded by T , for which |f(γv)|=k, namely

ak(T ) :=
∑

‖γ‖6T

|f(γv)|=k

1. (2.9)

Under the assumptions (2.4), (2.6) and (2.7) on the level distribution, it follows that

a0(T )� 1
D

X log X, (2.10)

where D is the level and X=
∑

k∈N ak(T ). Hence, for our purposes, we may include k=0
into the sieve analysis without affecting (2.8).

A large part of this paper is concerned with verifying (A0), (A1) and (A2) for the
sequence ak(T ), and determining an admissible level of distribution.



370 a. nevo and p. sarnak

3. Uniform lattice point count

In this and the next section we will identify the main term in the asymptotics of∑
k≡0 (mod d)

ak(T )

(condition (A0)), as well as estimate the level of distribution D (condition (A1)). In §4.1
we will establish the multiplicativity of %(d)/d, the coefficient of the main term, conclud-
ing the proof of (A0) and (A1). The most demanding part is establishing an explicit
bound on the error terms

∑
d6D|R(A, d)| appearing in condition (A1). Here the ba-

sic ingredient will be an error estimate for the lattice points counting problem which is
uniform over all cosets of all congruence groups. This will be established in §3.2 and §3.3.

3.1. Spectral estimates

Let G⊂GLn(C) be a connected semisimple algebraic matrix group defined over Q, with
G=G(R) having no non-trivial compact factors. Fix any norm on the linear space Mn(R).
Let Γ(1)=G(Z) be the group of integral points, which is a lattice subgroup of G [BH]
and a subgroup of GLn(Z). Let Γ(q), q∈N, denote the principal congruence subgroup of
level q, namely

Γ(q) = {γ ∈Γ : γ≡ I (mod q)}.

We begin by stating the following volume asymptotic, established in [GW] and [Ma].

Theorem 3.1. Let G and G be as above and let ‖ · ‖ be any norm on Mn(R). Then
there exists a>0 and a non-negative integer b, both depending only on G, and a constant
B(‖·‖), depending also on the norm, such that

lim
T!∞

vol{g ∈G : ‖g‖6T}
B(‖ · ‖)T a(log T )b

=1.

The exponent a has the following simple algebraic description [GW], [Ma]. Let A

denote a maximally R-split Cartan subgroup of G=G(R), with Lie algebra a. Let C
denote the convex hull of the weights of a associated with the representation of G in
GLn(R). Let 2%G denote the sum of all the positive roots (counted with multiplicities)
of a. Then a is the unique positive real number with the property that 2%G/a∈∂C. The
parameter b+1 is a positive integer, which is at most the R-rank of G, and is equal to
the codimension of a minimal face of the polyhedron C containing the point 2%G/a. In
particular, both a and b are independent of the norm.

We now state the following uniform error estimate for the lattice point counting
problem, which underlies our estimate of the level of distribution.
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Theorem 3.2. Let G, G, Γ(q) and ‖ · ‖ be as above and normalize Haar measure
on G so that vol(G/Γ(1))=1. Then the following uniform error estimate holds (for any
η>0):

|{w∈Γ(q)y : ‖w‖6T}|
vol{g ∈G : ‖g‖6T}

=
1

[Γ : Γ(q)]
+Oη(T−θ/(1+dim G)+η),

where
(i) θ=a/2ne(G, Γ)>0 is explicit and depends only on the bounds towards the gen-

eralized Ramanujan conjecture for the homogeneous spaces G/Γ(q) (see Theorem 3.3
below),

(ii) the estimate holds uniformly over all cosets of all congruence subgroups Γ(q) in
Γ(1), namely the implied constant is independent of q and y∈Γ(1) (it depends only on
η and the chosen norm).

A general approach to the lattice point counting problem with error estimate for S -
algebraic groups is developed in [GN1], based on establishing quantitative mean ergodic
theorems for the Haar-uniform averages supported on the norm balls. In §3.2 and §3.3
we follow this approach and give a short proof of Theorem 3.2, thus establishing the
uniformity of the error term, which is crucial for our considerations. More general results
can be found in [GN2].

Let Bt⊂G, t∈R+, denote the family of subsets

Bt = {g ∈G : ‖g‖6 et},

and let πG/Γ(βt) denote the following averaging operator acting in L2(G/Γ):

πG/Γ(βt)f(x) =
∫

g∈Bt

f(g−1x) dmG.

The subspace L2
0(G/Γ) of functions of zero mean is obviously a G-invariant subspace,

and the representation there is denoted by π0
G/Γ.

The fundamental spectral estimate in our discussion is given by the following result.

Theorem 3.3. Let G, G, Γ(q) and Bt be as above. Then, for θ=a/2ne(G, Γ)>0,
uniformly for every q∈N,∥∥∥∥πG/Γ(q)(βt)f−

∫
G/Γ(q)

f dmG/Γ(q)

∥∥∥∥
L2(G/Γ(q))

6Cηe−(θ−η)t‖f‖L2(G/Γ(q)),

where mG/Γ(q) is the G-invariant probability measure on G/Γ(q). Here η>0 is arbitrary ,
a is the exponent in the rate of exponential volume growth of Bt and ne(G, Γ) is the least
even integer > 1

2p(G, Γ), with p(G, Γ) being the bound towards the Ramanujan conjecture
described in the proof.
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Proof. The proof of Theorem 3.3 consists of two parts. The first part is to note that
the bounds towards the generalized Ramanujan conjecture (see [Cl2] and [S1]) imply
that there exists an explicit p=p(G, Γ) with the property that all the (K-finite) matrix
coefficients occurring in L2

0(G/Γ(q)) are in Lp+η(G) for all η>0, and all q∈N. The second
is to use this information to give an explicit estimate for θ.

For the first part, let us note that our lattice Γ=G(Z) is an irreducible lattice,
and as a result, in the unitary representation of G in L2

0(G/Γ), the matrix coefficients
decay to zero as g!∞ in G, namely the representation is strongly mixing (recall that
we assume that G has no non-trivial compact factors). In particular, if H is an almost-
simple component of G, then H has no invariant unit vectors in L2

0(G/Γ(q)). We now
divide the argument into two cases.

(1) Assume that H has property T . Then there exists p=pH , such that every unitary
representation of H without H-fixed unit vectors has its (K-finite) matrix coefficients
in Lp+η for all η>0 [Co]. Thus we can use as a bound for the automorphic spectrum a
bound valid for all unitary representations of H. Therefore, in this case the integrability
parameter p above depends only on H but not on Γ. In particular, the bound holds
in L2

0(G/Γ(q)) for all finite-index subgroups Γ(q), including the principal congruence
subgroups. However, note that for some lattices Γ one can do better; this applies in
particular to certain uniform arithmetic lattices, as will be discussed further in §6 below.

For a list of pH for classical simple groups H with property T , we refer to [Li], and for
exceptional groups, to [LiZ] and [LoS] (see also [O]). Thus, for example, pSLn(R)=2(n−1),
n>3, and pSp(n,R)=2n, n>2.

(2) G is defined over Q, and so are its simple component subgroups. Let now H

be a simple algebraic Q-subgroup of real rank 1 which does not satisfy property T ,
and let Γ=G(Z). Then there still exists p=p(H,Γ) such that the set of representations
of H obtained as restrictions from the representations of G on L2

0(G/Γ(q)) have their
(K-finite) matrix coefficients in Lp+η(H), η>0, for all q∈N. This fact is established in
most cases in [BS], and in the missing cases by [Cl1]. These results yield the following
explicit estimate. Let %H = 1

2 (m1+2m2), where m1 (resp. m2) is the multiplicity of the
short (resp. long) root in the root system associated with a maximal R-split torus in H.
The parameter s of a non-trivial complementary series representation πs that can occur
in the automorphic spectrum of H is constrained to satisfy s6%H− 1

4 . Now the volume
density on H in radial coordinates is comparable to e2%Ht, and the decay of the spherical
function ϕs is comparable to e−t/4, so that the matrix coefficients are in Lp+η(H), where
p=8%H =4(m1+2m2).

Finally, to conclude the first part of the proof, note that for p=p(G, Γ), we may take
the maximum of p(H,Γ) as H ranges over the almost-simple normal Q-subgroups, since



prime and almost prime integral points on principal homogeneous spaces 373

any (normalized) matrix coefficient has absolute value bounded by 1.
The second part of the proof consists of showing how to derive an explicit estimate

for the decay of the operator norms of π0
G/Γ(q)(βt) from the bound on the automorphic

spectrum. Let p=p(G, Γ) be the minimum value such that every strongly mixing uni-
tary representation weakly contained in L2

0(G/Γ) has its (K-finite) matrix coefficients in
Lp+η(G) for all η>0. Recall that we define ne=ne(Γ) as the least even integer greater
than or equal to 1

2p(G, Γ). By [Ne, Theorem 1],

‖π0
G/Γ(βt)‖L2

0(G/Γ) 6 ‖λG(βt)‖1/ne

L2(G),

where λG is the regular representation of G on L2(G). Now, following [Ne, Theorem 4], by
the Kunze–Stein phenomenon the norm of the convolution operator λG(βt) determined
by βt on L2(G) is bounded by C ′

η vol(Bt)−1/2+η. Taking the volume asymptotics of Bt

stated in Theorem 3.1 into account, we conclude that θ=a/2ne gives the norm bound
stated in Theorem 3.3.

3.2. Averaging operators and counting lattice points

We now turn to the proof of Theorem 3.2, and begin by explicating the connection
between the averaging operators associated with βt and counting lattice points, following
the method developed in [GN1].

Consider a bi-K-invariant Riemannian metric on G covering the Riemannian metric
associated with the Cartan–Killing form on the symmetric spaces S=G/K, and let d

denote the distance function. Let vol denote the Haar measure defined by the volume
form associated with the Riemannian metric. Define

Oε = {g ∈G : d(g, e) <ε}.

Recall that Bt⊂G, t∈R+, is the family of subsets

Bt = {g ∈G : ‖g‖6 et}.

The sets Bt enjoy the following stability and regularity properties.

Proposition 3.4. ([GN1, Theorem 3.15]) The family Bt is admissible, namely there
exist c>0, ε0>0 and t0>0 such that for all t>t0 and 0<ε<ε0,

OεBtOε⊂Bt+cε (3.1)

and
vol(Bt+ε) 6 (1+cε) vol(Bt). (3.2)
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Given the lattice Γ=Γ(1)=G(Z), fix the unique invariant volume form vol=volG on
G satisfying vol(G/Γ)=1. We denote by volG/Γ(q) the volume form induced on G/Γ(q)
by the volume form on G. Then volG/Γ(q)(G/Γ(q))=[Γ:Γ(q)] is the total volume of
the locally symmetric space G/Γ(q). We also let mG/Γ(q) denote the corresponding
probability measure on G/Γ(q), namely volG/Γ(q) /[Γ:Γ(q)].

We note that clearly 1
2εdim G6vol(Oε)62εdim G for 0<ε6ε′0. Let

χε =
χOε

vol(Oε)
.

We now fix a congruence subgroup Γ(q)⊂Γ=Γ(1), and define, for every y∈Γ(1),

φy
ε(gΓ(q))=

∑
γ∈Γ(q)

χε(gγy).

Thus φy
ε is a measurable bounded function on G/Γ(q) with compact support, and∫

G

χε dvol= 1,

so that ∫
G/Γ(q)

φy
ε dvolG/Γ(q) =1,

and ∫
G/Γ(q)

φy
ε dmG/Γ(q) =

1
[Γ : Γ(q)]

.

Clearly, for any δ>0, h∈G and t∈R+, the following are equivalent (for any function
on G/Γ(q)): ∣∣∣∣πG/Γ(βt)φy

ε(hΓ(q))− 1
[Γ : Γ(q)]

∣∣∣∣ 6 δ, (3.3)

and
1

[Γ : Γ(q)]
−δ 6

1
vol(Bt)

∫
Bt

φy
ε(g−1hΓ(q)) dvol(g) 6

1
[Γ : Γ(q)]

+δ. (3.4)

The set where the first inequality holds will be estimated using the quantitative
mean ergodic theorem. The integral in the second expression is connected to lattice
points as follows.

Lemma 3.5. For every t>t0+cε0, 0<ε6ε0, and for every h∈Oε,∫
Bt−cε

φy
ε(g−1hΓ(q)) dvol(g) 6 |Bt∩Γ(q)y|6

∫
Bt+cε

φy
ε(g−1hΓ(q)) dvol(g).
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Proof. If χε(g−1hγy) 6=0 for some g∈Bt−cε, h∈Oε and γy∈Γ(q)y, then, by (3.1),

γy ∈h−1Bt−cε(supp χε)⊂Bt.

Hence,∫
Bt−cε

φy
ε(g−1hΓ(q)) dvol(g) 6

∑
γy∈Bt∩Γ(q)y

∫
Bt

χε(g−1hγy) dvol(g) 6 |Bt∩Γ(q)y|.

In the other direction, for γy∈Bt∩Γ(q)y and h∈Oε,

supp(g 7!χε(g−1hγy))= hγy(suppχε)−1⊂Bt+cε,

and since χε>0, again by (3.1),∫
Bt+cε

φy
ε(g−1hΓ(q)) dvol(g) >

∑
γy∈Bt∩Γ(q)y

∫
Bt+cε

χε(g−1hγy) dvol(g) > |Bt∩Γ(q)y|.

3.3. Uniform error estimates for congruence groups

We now complete the proof of Theorem 3.2, using the method developed in [GN1, §6.6].
For the lattices Γ(q), the action of the operators πG/Γ(q)(βt) on L2

0(G/Γ(q)) satisfies
the spectral estimate stated in Theorem 3.3, uniformly in q. It follows that for the
probability spaces (G/Γ(q),mG/Γ(q)) we have, for all t>0 and every θ′<θ,∥∥∥∥πG/Γ(q)(βt)φy

ε−
∫

G/Γ(q)

φy
ε dmG/Γ(q)

∥∥∥∥
L2(mG/Γ(q))

6Cθ′e
−θ′t‖φy

ε‖L2(mG/Γ(q)).

Therefore, for all δ>0, all t>0 and ε<ε′0,

mG/Γ(q)

{
hΓ(q) :

∣∣∣∣πG/Γ(q)(βt)φy
ε(hΓ(q))− 1

[Γ : Γ(q)]

∣∣∣∣ >δ

}
6C2

θ′δ
−2e−2θ′t‖φy

ε‖2L2(mG/Γ(q))
.

Clearly, we can fix ε′′0 such that if ε<ε′′0 then the translates Oεw are disjoint for
distinct w∈Γ(1). Then the supports of the functions χε(hγy) for γ∈Γ(q) (and a fixed
y∈Γ(1)) do not intersect, and so

‖φy
ε‖2L2(mG/Γ(q))

=
∫

G/Γ(q)

φy
ε(hΓ(q))2 dvolG/Γ(q)/[Γ : Γ(q)]

=
∫

G

χ2
ε(g) dvol(g)/[Γ : Γ(q)]=

1
vol(Oε)[Γ : Γ(q)]

6
2ε− dim G

[Γ : Γ(q)]
.
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We conclude that

mG/Γ(q)

{
hΓ(q) :

∣∣∣∣πG/Γ(q)(βt)φy
ε(hΓ(q))− 1

[Γ : Γ(q)]

∣∣∣∣ >δ

}
6

2C2
θ′δ

−2ε− dim Ge−2θ′t

[Γ : Γ(q)]
. (3.5)

In particular, the measure of the latter set decays exponentially fast with t. Therefore, it
will eventually be strictly smaller than mG/Γ(q)(OεΓ(q)), and for ε<ε′′0 , we clearly have
mG/Γ(q)(OεΓ(q))=vol(Oε)/[Γ:Γ(q)].

For any t such that the measure in (3.5) is sufficiently small, clearly

OεΓ(q)∩
{

hΓ(q) :
∣∣∣∣πG/Γ(q)(βt)φy

ε(hΓ(q))− 1
[Γ : Γ(q)]

∣∣∣∣ 6 δ

}
6= ∅, (3.6)

and thus, for any ht such that htΓ(q) is in the non-empty intersection (3.6), one has

1
vol(Bt)

∫
Bt

φy
ε(g−1htΓ(q)) dvol(g) 6

1
[Γ : Γ(q)]

+δ.

On the other hand, by Lemma 3.5, for any ε6ε0, t>t0+cε0 and h∈Oε,

|Γ(q)y∩Bt|6
∫

Bt+cε

φy
ε(g−1hΓ(q)) dvol(g). (3.7)

Combining the foregoing estimates and using (3.2), we conclude that

|Γ(q)y∩Bt|6
(

1
[Γ : Γ(q)]

+δ

)
vol(Bt+cε) 6

(
1

[Γ : Γ(q)]
+δ

)
(1+cε) vol(Bt).

This estimate holds as soon as (3.6) holds, and so certainly when

2C2
θ′

[Γ : Γ(q)]
δ−2ε− dim Ge−2θ′t 6

1
2

1
2εdim G

[Γ : Γ(q)]
6

1
2

vol(Oε)
[Γ : Γ(q)]

.

Thus we seek to determine the parameters so that 8C2
θ′δ

−2e−2θ′t=ε2 dim G. In order
to balance the two significant parts of the error term, let us take cε=δ, and then

δ =C ′
θ′e

−2θ′t/(2 dim G+2),

and so as soon as δ<1, we have, using also that [Γ:Γ(q)]>1,

|Γ(q)y∩Bt|
vol(Bt)

6

(
1

[Γ : Γ(q)]
+δ

)
(1+cε) 6

1
[Γ : Γ(q)]

+δ+cε+δcε

6
1

[Γ : Γ(q)]
+3C ′

θ′e
−θ′t/(dim G+1).

Note that both the estimate (3.4) as well as the comparison argument in Lemma 3.5,
give a lower bound in addition to the foregoing upper bound. Thus the same arguments
can be repeated to yield also a lower bound for the uniform lattice points count. This
concludes the proof of Theorem 3.2.
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Remark 3.6. When the admissible family of sets Bt consists of bi-K-invariant sets,
namely sets that are invariant under left and right multiplication by a maximal compact
subgroup K of G, two improvements are possible in the previous result.

(i) First, the parameter θ which controls the exponential decay of the operator norm
‖π0

G/Γ(q)(βt)‖ depends only on the spherical spectrum and can be estimated directly by
the spectral theory of spherical functions. The resulting estimate is θ=a/pK , where
pK(G, Γ) is the Lp(G)-integrability parameter associated with the spherical functions in
π0

G/Γ. This estimate eliminates the lack of resolution that can be caused by the tensor
power argument, which gives θ=a/2ne, where ne is the least even integer > 1

2p(G, Γ).
(ii) Second, when Bt are bi-K-invariant, the arguments in the proof of Theorem 3.2

can be applied in the obvious manner to the symmetric space G/K whose dimension is
dim G−dim K , so that the exponent in the resulting error estimate is

a

pK(1+dim G/K)
.

4. Multiplicativity and sieve dimension

As before, let G⊂GL(n, C) be an algebraically connected semisimple algebraic matrix
group defined over Q which we now assume is also simply connected and of non-compact
type. Denote by G(R) the points of G with coefficients in a ring R, and set G=G(R).
Fix v0∈Zn and let V =Gv0 be the corresponding orbit which we assume is Zariski-closed
in the affine n-space An. We assume further that the stabilizer of v0 in G is trivial. Thus
V is a principal homogeneous space for G and it is defined over Q. Since G is connected,
it follows that V is an (absolutely) irreducible affine variety defined over Q and is of
dimension equal to dim G. The ring of G-invariants for the action of G on n-dimensional
space separates the closed G-orbits (see [BH]), and we may choose generators h1, ..., hν

in Q[x1, ..., xn] of this ring so that V is given by

V = {x :hj(x) =λj , j =1, ..., ν}, with λj ∈Q. (4.1)

Let V (Z) and V (Q) denote the points of V with coordinates in Z and Q, respectively.

4.1. Congruential analysis

Let Γ=G(Z)⊂GLn(Z) and O=Γv0 be the corresponding orbit in Zn. Since Zcl(Γ)=G

(see [B]), Zcl(O)=V . For an integer d>1, let Od be the subset of (Z/dZ)n which is
obtained by reducing O modulo d. Similarly, let Γd be the reduction of Γ in GLn(Z/dZ),
and so Od=Γdv0 (mod d).
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For g∈Z[x1, ..., xn], let

Og
d = {x∈Od : g(x)≡ 0 (mod d)}. (4.2)

According to the strong approximation theorem (see [PR] and [MVW]; recall that we are
assuming that G(R) has no compact factors), the diagonal embedding

Γ−!
∏
p

G(Zp) (4.3)

is dense, where Zp are the p-adic integers. Hence, if (d1, d2)=1, then

Γd =Γd1×Γd2 (4.4)

as a subgroup of GLn(Z/dZ)∼=GLn(Z/d1Z)×GLn(Z/d2Z).
It follows that in (Z/dZ)n∼=(Z/d1Z)n×(Z/d2Z)n,

Od =Od1×Od2 (4.5)

and
Og

d =Og
d1
×Og

d2
. (4.6)

Now let f∈Q[x1, ..., xn], with f=g/N , N>1, where g∈Z[x1, ..., xn] with

gcd g(O) =N.

Note that f(O)⊂Z. For d>1, let

%f (d) =
d|Og

dN |
|OdN |

. (4.7)

Proposition 4.1. %f (d) is multiplicative in d and , for p prime, 06%f (p)<p.

Proof. Let d=d1d2 with (d1, d2)=1 and write N=N1N2, with (N1, d2)=(N2, d1)=
(N1, N2)=1. Clearly,

|Od1d2N1N2 |=
|Od1N1N2 | |Od2N2N1 |

|ON |
=
|Od1N | |Od2N |

|ON |
.

Furthermore,

|Og
d1d2N1N2

|= |Og
d1N1

| |Og
d2N2

|=
|Og

d1N1N2
|

|Og
N2
|

|Og
d2N2N1

|
|Og

N1
|

=
|Og

d1N | |O
g
d2N |

|Og
N |

,
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and hence

%f (d1d2) =
|Og

d1d2N |
|Od1d2N |

=
|Og

d1N | |O
g
d2N |

|Og
N |

|ON |
|Od1N | |Od2N |

= %f (d1)%f (d2),

since |Og
N |=|ON |.

For d=p there is x∈O such that

g(x)
N

6≡ 0 (mod p),

as gcd g(O)=N .
Hence x /∈Og

dN and therefore %f (p)<p.

Factoring f∈Q[V ] into t=t(f) irreducibles, we get f=f1 ... ft, where we are assuming
further that each fj is irreducible in C[V ] and that the fj ’s are distinct. According to
E. Noether’s theorem [No], there is a finite set of primes S such that for p /∈S, V is
absolutely irreducible over Z/pZ=Fp. By increasing the set S if necessary, we may
assume that for p /∈S the equations defining G also yield an absolutely irreducible variety
over Fp. According to Lang’s theorem [La], we have that

V (Z/pZ) =V (Fp) = G(Fp)v. (4.8)

By strong approximation we have (again increasing S if needed) that for p /∈S,

G(Z/pZ) =Γp, (4.9)

and hence that
Op =V (Fp) for p /∈S. (4.10)

Also when p does not divide N , we have that

Of
p = {x∈Op : f(x)≡ 0 (mod p)}

is well defined and
|Of

p |
|Op|

=
|Og

pN |
|OpN |

. (4.11)

Finally, for 16j6t(f), let

Wj = {x∈V : fj(x) = 0}. (4.12)

Wj is an (absolutely irreducible) affine variety defined over Q of dimension dim V −1.
Hence again by Noether’s theorem, Wj is absolutely irreducible over Fp for p outside S′,



380 a. nevo and p. sarnak

say. For such p we apply a weak form of the Weil conjectures to Wj (see [LW] or [Sch,
§V.5] for an elementary treatment) to conclude that

|Wj(Fp)|= pdim V−1+O(pdim V−3/2), (4.13)

where the implied constant depends on j only.
Furthermore, since the fj ’s are distinct irreducibles in C[V ], we have for i 6=j,

dim(Wi∩Wj) 6dim V −2. (4.14)

Hence, for p /∈S∪S′, we have

|Of
p |=

t(f)∑
j=1

|Wj(Fp)|+O(pdim V−2) = t(f)pdim V−1+O(pdim V−3/2), (4.15)

and similarly
|Op|= |V (Fp)|= pdim V +O(pdim V−1/2). (4.16)

Combining the above, we have that for p /∈S∪S′,

|Of
p |

|Op|
=

t(f)
p

+O(p−3/2), (4.17)

and hence that
|%f (p)−t(f)|6Cp−1/2, (4.18)

where C depends only on O and f .

4.2. Applying the sieve

We now turn to consider the sequence ak(T ), k>0, defined in (2.9) by

ak(T ) =
∑

γ∈Γ:‖γ‖6T

|f(γv)|=k

1. (4.19)

The sums on progressions are then, for d>1 square free∑
k≡0 (mod d)

ak(T ) =
∑

γ∈Γ:‖γ‖6T

f(γv)≡0 (mod d)

1 =
∑

δ∈Γ/Γ(dN)

g(δv)≡0 (mod dN)

∑
γ∈Γ(dN)

‖δγ‖6T

1, (4.20)

where Γ(q) is the congruence subgroup of Γ of level q and f=g/N as in §4.1.
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According to Theorem 3.2, (4.20) becomes∑
k≡0 (mod d)

ak(T ) =
∑

δ∈Γ/Γ(dN)

g(δv)≡0 (mod dN)

(
vol{‖w‖6T}
[Γ : Γ(dN)]

+Oε(T a−θ/(1+dim G)+ε)
)

=X
∑

δ∈Γ/Γ(dN)

g(δv)≡0 (mod dN)

1
[Γ : Γ(dN)]

+Oε(|Og
dN |T

a−θ/(1+dim G)+ε),

where
X =

∑
k∈N

ak(T ). (4.21)

Now,
OdN =ΓdNv (mod dN),

and hence

|OdN |=
|ΓdN |
|HdN |

, (4.22)

where HdN is the stabilizer of v in ΓdN . Also Γ/Γ(dN)∼=ΓdN , and so

|{δ ∈ΓdN : g(δv)≡ 0 (mod dN)}|= |Og
dN | |HdN |. (4.23)

Thus (4.20) becomes∑
k≡0 (mod d)

ak(T ) =
X|Og

dN | |HdN |
|ΓdN |

+Oε(d dim GT a−θ/(1+dim G)+ε), (4.24)

where we have used |Og
dN |�d dim G, though for later note that, from (4.15) and (4.6),

|Og
dN |� d dim G−1. (4.25)

Hence from (4.22) and (4.24) we have∑
k≡0 (mod d)

ak(T ) =
%f (d)

d
X+R(A, d), (4.26)

with

%f (d) =
d|Og

dN |
|OdN |

(4.27)

and

|R(A, d)|�
ε

d dim GT a(1−θ/a(1+dim G))+ε

�
ε

d dim GX1−θ/a(1+dim G)+ε

�
ε

d dim GX1−1/2ne(1+dim G)+ε,

(4.28)

according to Theorem 3.3, since θ=a/2ne.



382 a. nevo and p. sarnak

By Proposition 4.1, (4.26) establishes axiom (A0) in the case when B is the empty
set. As for the level distribution (A1), we have from (4.28) that∑

d6D

|R(A, d)|�
ε

D1+dim GX1−1/2ne(1+dim G)+ε =O(X1−ζ), (4.29)

as long as

D 6Xτ , with τ <
1

2ne(1+dim G)2
. (4.30)

Finally axiom (A2) follows with a suitable C2=C2(O, f) from (4.18). We apply the
combinatorial sieve in the form (2.8) to conclude that for

z =Xα, with α =
1

9t(f)(1+dim G)22ne
, (4.31)

and for
P =

∏
p6z

p,

with X large enough,

X

(log X)t(f)
�S(A, P )� X

(log X)t(f)
, (4.32)

where the implied constants depend only on f and the orbit O.

4.3. Completion of proofs of Theorems 1.6 and 1.7 and Corollary 1.8

We begin by establishing the following two lemmas.

Lemma 4.2. Assume that h∈Q[x1, ..., xn] does not vanish identically when restricted
to V =Gv. Then there is δ=δ(h)>0 such that

|{γ ∈Γ : ‖γ‖6T and h(γv) = 0}|�T a−δ.

Proof. We may assume that h is not constant on V and hence there is a finite
extension E of Q over which h factors into h=h1 ... hν , where each hj is absolutely
irreducible in E[V ]. For p large enough and a prime ideal P in the ring of integers IE of
E with P|(p), we have, letting N(P) denote the norm of the ideal P,

|{x∈V (IE/P) :hj(x) = 0}|�N(P)dim V−1, (4.33)

the implied constant depending on h.
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Assume further that p splits completely in E so that IE/P∼=Z/pZ. Then

|{x∈V (Z/pZ) :h(x)≡ 0(p)}|� pdim V−1. (4.34)

Let T be the large parameter in the lemma and choose p as above with 1
2Tα6p62Tα

for α>0 small and to be chosen momentarily. Such a p exists by Chebotarev’s density
theorem [Ch]. With this choice, we have that

|{γ ∈Γ : ‖γ‖6T and h(γv) = 0}|6 |{γ ∈Γ : ‖γ‖6T and h(γv)≡ 0 (mod p)}|

=
|Oh

p |
|Op|

X+Oε(T a−θ/(1+dim G)+εpdim G),
(4.35)

on using (4.24).
Coupled with (4.34), this gives

|{γ ∈Γ : ‖γ‖6T and h(γv) = 0}|�
ε

T a+ε

p
+T a−θ/(1+dim G)+εpdim G�T a−δ, (4.36)

where we choose δ=θ/(1+dim G)2.

Lemma 4.3. Let f=f1 ... ft, with fj∈Z[x1, ..., xn] irreducible as in Theorem 1.6,
16j6t(f). Then there is δ1>0 such that for any m∈Z and any 16j6t(f),

|{γ ∈Γ : ‖γ‖6T and fj(γv) =m}|�T a−δ1 ,

the implied constant depending only on f and Γ.

Proof. By assumption, fj is not constant when restricted to V . Hence, by Lemma 4.2
with g=fj−m, we get Lemma 4.3, but potentially the implied constant depends on m.
The only place where this dependence may enter is in (4.33) and for m outside a finite set,
fj−m is irreducible over 
Q. The equations defining fj−m=0 and V will be irreducible
over 
Fp for p outside a fixed finite set and they are of a fixed degree in the variables
(x1, ..., xn). Hence, by [LW, Lemma 1], the upper bound in (4.33), with h=fj−m, is
uniform in m.

Proof of Theorem 1.6. We choose ε1>0 small (but fixed) so that firstly ε1<δ1, where
δ1 is determined by Lemma 4.3. For 16j6t(f) and T large, we have from Lemma 4.3
that

|{γ ∈Γ : ‖γ‖6T and |fj(γv)|6T ε1}|�T a−δ1+ε1 . (4.37)

Now,

{γ ∈Γ : ‖γ‖6T and fj(γv) is prime for all j}

⊂
t(f)⋃
j=1

{γ ∈Γ : ‖γ‖6T and |fj(γv)|6T ε1}

∪{γ ∈Γ : ‖γ‖6T, |fj(γv)|>T ε1 and fj(γv) is prime for each j}.

(4.38)
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By (4.37), the cardinality of the union of the first t(f) sets above is at most
O(T a−δ1+ε1). The last set on the right-hand side of (4.38) is contained in

{γ ∈Γ : ‖γ‖6T and (f(γv), Pz) = 1},

where

Pz =
∏
p6z

z =T ε1 . (4.39)

The cardinality of the last set is S(A, Pz) and if ε1<α, where α is the level distribution
in (4.31), then we may apply (4.32) to conclude that

{γ ∈Γ : ‖γ‖6T and fj(γv) is prime}�T a−δ1+ε1 +
X

(log X)t(f)
� X

(log X)t(f)
,

since X is asymptotic to BT a(log T )b. This completes the proof of Theorem 1.6.

Proof of Theorem 1.7. Taking α as in (4.31) and z=Xα, we have that

∑
‖γ‖6T

(f(γv),Pz)=1

1� X

(log X)t(f)
, (4.40)

where Pz=
∏

p6z p.

Now any point γv∈O which occurs in the sum in (4.40) has |γv|�T (where | · | is
the usual Euclidean norm on Rn) and hence |f(γv)|�T deg f . On the other hand, for
such a point γv∈O in the sum, f(γv) has all its prime factors at least z�Xα�T aα. It
follows that for such a point γv, f(γv) has at most

r =
deg f

aα
=

9t(f)(1+dim G)22ne(Γ) deg f

a

prime factors.

Proof of Corollary 1.8. Suppose, by way of contradiction, that the points γv that
we produced in the previous paragraph are not Zariski-dense in V . Since V is connected,
it follows that there is an h∈Q[x1, ..., xn] which does not vanish identically on V and
such that all our points lie in V ∩{x:h(x)=0}. But by Lemma 4.2 the total number of
points in this intersection with ‖γ‖6T is O(T a−δ) with δ=δ(h)>0. This contradicts the
lower bound of cX/(log X)t(f) (with c>0 fixed) for the number of points with at most r

prime factors that was produced in Theorem 1.7.
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Finally we apply Theorems 1.6 and 1.7 to the case of n×n integral matrices of
determinant m as in the introduction. Let G=SLn, Γ=SLn(Z) and v∈Matn(Z) with
det v=m 6=0. We identify Matn with the affine space AM (M=n2), with G acting by
x 7!gx. We have that Vm,n=Gv and that Vm,n(Z) consists of a finite number of Γ-orbits.
Note that if | · | is a norm on Matn(R) then for a fixed invertible v as above, g 7!|gv|
defines a (vector-space) norm on Matn(R) and we may apply Theorems 1.6 and 1.7 to
this setting, namely to the individual orbits O=Γv with v fixed as above. In this case,
dim G+1=n2 and a=n2−n for any choice of norm as above [DRS], [GW], [Ma], and
the norm balls are admissible [GN1]. Furthermore p(Γ)=2(n−1) (see [DRS]) and so
ne=(n−1) if n is odd, and ne=n if n>4 is even. For n=2 we can take ne=2 by [KiS],
see (6.18). Thus Theorem 1.7 yields that for n odd r need only satisfy

r >
9t(f)n42(n−1) deg f

n(n−1)
=18t(f)n3 deg f, (4.41)

and for n even the previous expression is multiplied by n/(n−1).
Thus, for O=Γv and f primitive on O,

|{x∈O : |x|6T and f(x) has a most r prime factors}|� Tn2−n

(log T )t(f)
. (4.42)

This proves the Γ-orbit version of Theorem 1.2 and Corollary 1.3.
Now, for m 6=0 fixed, Vm,n(Z) consists of a finite number of such Γ-orbits, and

Theorem 1.1 follows from the Γ-orbit version. In order to establish Theorem 1.2 and
Corollary 1.3 for Vm,n(Z), we need to show the following: if f is Vm,n(Z)-weakly primitive,
then for some v∈Vm,n(Z), f is O-weakly primitive on the orbit O=Γv.

As in the theory of Hecke correspondences on n-dimensional lattices (see [T]), we
decompose Vm,n into Γ-orbits

Vm,n(Z) =
k(m)∐
j=1

O(j), (4.43)

with O(j)=Γvj and vj∈Vm,n(Z).
Denote by W the union of the k(m) global Γ-orbits and for d>1 let O(j)

d denote the
reduction of O(j) modulo d, which defines a point in the orbit space

SLn(Z/dZ)\Matn(Z/dZ),

where Matn is the space of n×n matrices. Let Wd denote the reduction of W into this
space. Note that for d=p with a prime p that does not divide m, Wp consists of a single



386 a. nevo and p. sarnak

point, that is to say the orbits O(j) all reduce to the same SLn(Z/dZ)-orbit modulo p.
The key property that we need for these reductions is that if (d1, d2)=1 then the diagonal
embedding

W −! (SLn(Z/d1Z)\Matn(Z/d1Z))×(SLn(Z/d2Z)\Matn(Z/d2Z)) (4.44)

is onto Wd1×Wd2 .
With (4.44), the weak primitivity property that we need is established as follows.

Let f be weakly primitive on Vm,n(Z) and for simplicity of notation assume that N=1
in §1.1 and that m is square free. So f∈Z[xij ] and for each prime p>2 there is an
x∈Vm,n(Z) such that f(x) 6=0 (mod p). We claim that there is a J∈{1, ..., k(m)} such
that f is weakly primitive for O(J). That is, for every prime p>2 there is x∈O(J) with
f(x) 6=0 (mod p).

Call a prime p>2 good for O(j) if such an x exists for p. This property is determined
locally at p. That is by strong approximation for SLn, p is good for O(j) if and only if
the local orbit SLn(Z/pZ)vj in Matn(Z/pZ) contains an x such that f(x) 6≡0 (mod p).
So the condition is one on O(j)

p . Every prime p that does not divide m is good for any
O(j), j=1, ..., k(m), since Vm,n(Z) is good at p and all global orbits reduce to the same
local orbit at such a p. Now write m=p1 ... p`, and then

W −!Wp1×...×Wp`
(4.45)

is onto.
Moreover, by our assumption on f , for each pi, i=1, ..., `, there is jpi such that O(jpi

)
pi

is good at pi. Hence, by (4.45), there is a J∈{1, ..., k(m)} such that O(J)
pi is good for

each i=1, ..., `. Thus, f is weakly primitive for O(J)=ΓvJ .

5. Zariski density of prime matrices

Fix n>3. We say that an n×n integral matrix is prime if all of its coordinates are
prime numbers. For an integer m, Vm,n denotes as usual the affine variety given by
{x∈Matn(R):detx=m}. We are interested in the set of prime matrices being Zariski-
dense in Vm,n. For this to happen we must clearly allow x to have all its coordinates xij

to be odd numbers. Such a matrix x satisfies detx≡0 (mod 2n−1). It turns out that
this is the only obstruction to producing many primes in Vm,n(Z). As an application
of Vinogradov’s methods for analyzing linear equations in primes with three or more
variables, we show the following result.

Theorem 5.1. Fix n>3. Then the set of prime matrices x in Vm,n(Z) is Zariski-
dense in Vm,n if and only if m≡0 (mod 2n−1).
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The proof of Theorem 5.1 can be extended to prove a special case of the general
local to global conjectures for primes in orbits of actions of certain groups [BGS].

To state the result, let Λ be a finite index subgroup of SLn(Z), n>3. For an n×n

integral matrix A with det A=m 6=0, letOA denote the Λ-orbit ΛA. ThusOA is contained
in Vm,n(Z) and is Zariski-dense in Vm,n.

Theorem 5.2. The set of prime matrices x in OA is Zariski-dense in Vm,n if and
only if there are no local congruence obstructions (see the remark below).

Remark 5.3. (A) We are using here that for n>3 every finite-index subgroup of
SLn(Z) is a congruence subgroup ([Me], [BMS]).

(B) The general orbit conjecture for this action asserts that Theorem 5.2 holds for
a subgroup Λ of SLn(Z) which is Zariski-dense in SLn and with the coordinate func-
tions xij , i, j=1, ..., n, replaced by any set f1, ..., ft of primes in the coordinate ring
Q[xij ]/(det(xij)−m). In this setting, the local congruence obstructions that need to be
passed are that for any q>2 there is an x in OA (mod q), the reduction of OA modulo q,
such that f1(x) ... ft(x)∈(Z/qZ)∗.

An example of an orbit in Theorem 5.2 for which there are no local obstructions for
any Γ is

O=Γ



1 1 1 ... 1 1
−1 1 1 ... 1 1
−1 −1 1 ... 1 1

... ... ... ... ... ...

−1 −1 −1 ... 1 1
−1 −1 −1 ... −1 1


⊂V2n−1,n.

This is similar to a=1 (or a=−1) in Dirichlet’s theorem, i.e., there are infinitely many
p≡1 (mod q) for any q.

Proof of necessity of the congruence condition in Theorem 5.1. If the set of matri-
ces with prime entries is Zariski-dense, then of course the set of matrices with odd
entries is Zariski-dense. But then if x is n×n integral and has odd entries, then writing
the columns of x as a1, ..., an, we have

det x=det[a1, ..., an] = det[a1, a2−a1, a3−a1, ..., an−a1] = det[a1, 2b2, ..., 2bn],

with bj integral. Hence detx=2n−1 det[a1, b2, ..., bn]≡0 (mod 2n−1).

To demonstrate the sufficiency of the congruence condition in Theorem 5.1, we
will consider the simplest case when m=2n−1. In general one needs to impose further
congruence conditions in the construction below.
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Lemma 5.4. For n>2 let

Y =




x21 x22 x23 ... x2n

x31 x32 x33 ... x3n

... ... ... ... ...

xn1 xn2 xn3 ... xnn




,

which we identify with the affine A(n−1)n space. We denote by Aj(y) the (n−1)×(n−1)
minor of y gotten by deleting the j-th column. Let G be the set of y∈Y for which

(i) (A1(y), ..., An(y))=2n−2;
(ii) A1(y) ... An(y) 6=0;
(iii) A1(y)+...+An(y)≡0 (mod 2n−1);

and the xij (where (xij)=y) are all prime. Then G is Zariski-dense in Y.

Proof. We use Dirichlet’s theorem repeatedly and proceed by induction on n.
For n=2, y=[x21, x22] and we seek (x21, x22)=1, x21+x22≡0 (mod 2), and x21 and

x22 both prime. Clearly the set G of such vectors is Zariski-dense in A2.
For n>3 we assume the lemma for n−1 and construct the y∈G as follows: for

z =


z2

...

zn

 , ξ =


ξ2

...

ξn


and an (n−1)×(n−2) matrix w, we write

y = [zξw].

By induction, the set of w’s in the space W of such (n−1)×(n−2) matrices, for
which wij are all prime and such that

C2(w)+...+Cn(w)≡ 0 (mod 2n−2) (5.1)

and
(C2(w), ..., Cn(w))= 2n−3, (5.2)

is Zariski-dense in W. Here Ci(w) is the (n−2)×(n−2) minor of w obtained by deleting
the ith row of w. For such a w, we seek ξ satisfying

A1 = ξ2C2−ξ3C3+...+(−1)nξnCn≡ 2n−2 (mod 2n−1) (5.3)

and
(ξj , 2) =1. (5.4)
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In view of (5.1) and (5.2), this amounts to

ξ2C
′
2−ξ3C

′
3+...+(−1)nξnC ′

n≡ 2 (mod 4), (5.5)

where

(C ′
2, ..., C

′
n) = 1 and C ′

2+...+C ′
n≡ 0 (mod 2). (5.6)

According to (5.6), the number ` of C ′
j ’s which are ≡±1 (mod 4) is even and positive.

Collecting these C ′
j ’s on the left, renumbering the indices and replacing ξj by−ξj suitably,

leads to solving

ξ2+...+ξ`+1≡ b (mod 4), (5.7)

where b is either 0 or 2 modulo 4. If b≡0 (mod 4), choose ξj =(−1)j , 26j6`+1, while
if b≡2 (mod 4), choose ξ2=ξ3=1 and ξj =(−1)j for 46j6`+1. Since ` is even, these
choices solve (5.5).

Having found such a ξ (mod 2n−1) satisfying (5.3) and (5.4), we choose ξ integral
satisfying this congruence and for which ξj are all prime. This is possible by Dirichlet’s
theorem and their choice is Zariski-dense in the ξ-space.

For each choice of w and ξ above, we choose z as follows. First, we have

A1≡ 2n−2 (mod 2n−1), (5.8)

and hence A1 6=0. For each odd prime p dividing A1, let

t(p) =


t
(p)
2
...

t
(p)
n



be chosen with t
(p)
j ∈(Z/pZ)∗ and satisfying

A2 := t
(p)
2 C2−t

(p)
3 C3+...+(−1)nt(p)

n Cn 6≡ 0 (mod p). (5.9)

It is clear that such a t(p) can be found, since (C2, ..., Cn)=2n−3 and p>3.
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Next, let q3, ..., qn be distinct primes different from 2, from any prime divisor of A1

and from any entry of w. We choose z to satisfy the following congruences:
z2

...

zn

≡


w2j

...

wnj

 (mod qj), for 3 6 j 6n. (5.10)


z2

...

zn

≡


t
(p)
2
...

t
(p)
n

 (mod p), for p|A1, p odd, (5.11)


z2

...

zn

≡


ξ2

...

ξn

 (mod 2n−1). (5.12)

The conditions (5.10), (5.11) and (5.12) involve distinct prime moduli and the num-
bers on the right are all prime to their moduli, hence by Dirichlet’s theorem we can
choose zj to be prime and to satisfy the congruences (5.10), (5.11) and (5.12). Moreover,
the set of choices for these z’s is Zariski-dense in the space of z’s. This produces matrices
y=[zξw] which we check satisfy the requirement of the lemma. First, by (5.8),

A1(y)≡ 2n−2 (mod 2n−1). (5.13)

Second, by (5.9), A1(y) and A2(y) have no odd prime common factor. Finally, by (5.12),

A2(y)≡A1(y) (mod 2n−2), (5.14)

so we conclude that
(A1(y), A2(y))= 2n−2. (5.15)

Note that, for 36j6n, Aj(y)≡0 (mod 2n−2), since Aj is the determinant of an (n−1)×
(n−1) matrix with odd entries. Hence

A1(y)+...+An(y)≡ 0 (mod 2n−1). (5.16)

Thus, together with (5.13), we deduce that

(A1(y), ..., An(y))= 2n−2. (5.17)

From (5.13) and (5.14) we conclude that A1(y)A2(y) 6=0, while from (5.10) we have that
Aj(y)≡±A1(y) (mod qj) for 36j6n, and hence A3(y) ... An(y) 6=0. All this, coupled with
the fact that the entries of y are prime and that the y’s can be chosen to be Zariski-dense
in Y, completes the proof of Lemma 5.4.
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We now appeal to Vinogradov’s methods [Vi] for studying the solvability of

HA0,...,An = {(s1, ..., sn) :A1s1−A2s2+...+(−1)n+1Ansn−A0 =0}, (5.18)

with sj prime (i.e., (sj) a prime ideal in Z). The treatment in Vaughan [Va, p. 37], shows
that if n>3 and A1 ... An 6=0, then the number of solutions to (5.18), with |sj |6T and sj

prime, satisfies

R(T )�C
Tn−1

(log T )n
+Oν

(
Tn−1

(log T )ν

)
(5.19)

for any fixed (large) ν. Moreover, the critical number C given by the singular series is
non-zero if and only if the following local conditions are satisfied:

(A0, A1, ..., An−1) = (A0, A1, ..., An−2, An) = (A1, A2, ..., An) = (A0, A1, ..., An) (5.20)

and
A0+...+An≡ 0 (mod 2(A0, ..., An)). (5.21)

If any of these conditions fail, for example if there is a prime p and e>1 with
pe|Aj for j=0, ..., n−1 but pe -An, then any solution to (5.18) must have p|sn. Hence
the set of solutions to (5.18) with sn prime is not Zariski-dense in HA0,...,An . Thus the
conditions (5.20) and (5.21) are necessary for the Zariski density of (s1, ..., sn), sj prime,
in HA0,...,An . These conditions are also sufficient. Indeed HA0,...,An is connected and
hence if these points are not Zariski-dense, then there is a polynomial f(s1, ..., sn) which
is non-constant on HA0,...,An such that all the s’s lie in

HA0,...,An
∩{s : f(s) = 0}.

It is elementary that the number of integer points in this intersection and for which
|sj |6T is O(Tn−2). Hence, if C 6=0, then (5.19) gives a contradiction to the points all
lying in {s:f(s)=0}∩HA. We conclude that

{(s1, ..., sn) : sj is prime and s∈HA0,...,An} (5.22)

is Zariski-dense in HA0,...,An if and only if (5.20) and (5.21) hold.
Let Y be the space in Lemma 5.4 and G the set of y’s constructed in that lemma.

Set A0=2n−1. Then, for y∈G,

(A1(y), ..., An(y))= 2n−2

A1(y)+...+An(y)≡ 0 (mod 2n−1),
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and A1(y) ... An(y) 6=0. Hence (A0, A1(y), ..., An(y))=2n−2 and the number of 16j6n

for which 2n−2|Aj(y) is even and positive. It follows that

(A0, A1(y), ..., An−1(y))= (A0, A1(y), ..., An−2(y), An(y))= (A1(y), ..., An(y))= 2n−2

and

A0+A1(y)+...+An(y)≡ 0 (mod 2(A0, A1(y), ..., An(y))).

Thus (5.20) and (5.21) are satisfied and so, by (5.22), it follows that for any y∈G the set
of s∈HA0,A1(y),...,An(y), for which all sj are prime, is Zariski-dense in HA0,A1(y),...,An(y).
For each such y and s, the matrix x given by

[
s1 ... sn

y

]
=


x1 x2 ... xn

z2 ξ2

... ... w

zn ξn


is a prime matrix in V2n−1,n.

To complete the proof of Theorem 5.1 with m=2n−1, we must show that the set of
x’s constructed above is dense in V2n−1,n. Let

Y0 = {y ∈Y :Aj(y) 6=0 for some 1 6 j 6n}.

Y0 is an open irreducible subset of A(n−1)×n and is quasi-affine. Let Υ:Vm,n!Y0 be the
surjective morphism

x 7−!


x21 ... x2n

... ...

xn1 ... xnm

 . (5.23)

If U is a non-empty open subset of Vm,n then, since Vm,n is connected, U is dense and
hence Υ(U) is dense in Υ(Vm,n)=Y0. Also Υ(U) is constructible and contains an open
dense subset of Y0. According to Lemma 5.4, there is a y∈G∩Υ(U). Now U∩Υ−1(y)
is a non-empty open subset of H2n−1,A1(y),...,An(y). According to the analysis above, it
contains a point (p1, ..., pn) all of whose coordinates are prime. Hence

x=
[

p

y

]

is a prime matrix and it is in U . This proves Theorem 5.1.
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6. Spectral estimates for uniform lattices

We now turn to explain an alternative approach to estimating the level of distribution.
Indeed, rather than giving an error term for the number of lattice points in a ball, it
suffices to estimate the deviation of a positive weighted sum over the lattice points. This
allows one to take a smooth weight and to estimate its Fourier transform directly via
a convergent eigenfunction expansion of the corresponding automorphic kernel. This
method gives a sharper result for the level of distribution and the improvement is most
significant when the lattice is co-compact. Since the latter assumption also allows us
to avoid the analysis of Eisenstein series necessary for the estimates of eigenfunction
expansions, we will present the method only for co-compact lattices. In this case it can
be naturally viewed as providing the error estimate in the non-Euclidean version of a
Poisson summation formula for compact locally symmetric spaces. To simplify matters
further, we will assume that the weight functions are radial, allowing us to reduce matters
to spectral estimates associated with spherical functions. We note that the estimate of
the deviation we give below is in fact sharp: it gives the best possible result for a smooth
weighted sum.

We retain the notation of §§3.1-3.3, and again let G be a connected semisimple
Lie group with finite center and no compact factors. S denotes the symmetric space
S=G/K, where K is a maximal compact subgroup. We take the Riemannian structure
on S induced by the Cartan–Killing form on G and let d denote the associated G-invariant
distance. We let Bt(z) denote the ball of radius t and center z. Consider the family of
kernels on S×S given by

Lt(z, w) =χ[0,t](d(z, w)),

where χ[0,t] is the characteristic function of an interval. Fix a smooth function b(w) on S
which is non-negative, positive definite, supported in a ball of radius t0 with center w0,
invariant under Kw0 and with integral 1. Define the following smooth function, which is
supported on the set of points whose distance from w0 is at most t+t0:

Wt(z) =
∫
S

Lt(z, w)b(w) dvol(w). (6.1)

Let Γ be any uniform lattice in G which satisfies, for any z,

|{γ ∈Γ : d(γz, z) 6 1}|6CΓ,

with CΓ fixed. Our version of the error estimate in the Poisson summation formula is as
follows.
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Theorem 6.1. (Poisson summation formula) Let Γ be a uniform irreducible lattice
in G as above. Then for η>0 fixed ,

∑
γ∈Γ

Wt(γz) =
vol(Bt)

vol(Γ\G)
+Oη(vol(Bt)1−1/p+η),

where
(1) the result holds uniformly for arbitrary z and w0;
(2) p=p(G, Γ) is the integrability parameter of the representation in L2

0(Γ\G) as in
Theorem 3.3; in particular ,

1− 1
p

=
1
2

if and only if all representations weakly contained in L2
0(Γ\G) are tempered.

Let us note the following. First, it is indeed the case that p(G, Γ)<∞ for every
irreducible lattice [Cl1] (we refer to [KeS] for discussion and references). Second, Theo-
rem 6.1 holds for general point-pair-invariant kernels.

The proof is based on establishing uniform control on the pointwise spectral ex-
pansion of the smooth function Wt. We will use the spectral expansion associated with
the commutative algebra D of G-invariant differential operators on the symmetric space
(recall that the Laplacian generates this algebra if and only if the real rank of G is 1).
Being G-invariant, these differential operators descend to operators on M=Γ\S, and
admit a joint spectral resolution. The eigenvalues are given by (infinitesimal) characters
ωλ:D!C, parametrized by

λ∈Σ⊂Hom(a, C)/W.

Here G=NAK is an Iwasawa decomposition, a is the Lie algebra of A, W is the Weyl
group of (g, a) and Σ parametrizes the positive-definite spherical functions Ψλ:G!C.
We let ‖ · ‖ denote the Euclidean norm associated with the inner product on a given by
the restriction of the Killing form. Finally recall that every (normalized) joint eigen-
function φ on Γ\S of the algebra D is also a joint eigenfunction of the commutative
convolution algebra L1(K\G/K) of bi-K-invariant kernels on G. The eigenvalue con-
stitutes a complex homomorphism ω̃λ of this algebra, which corresponds uniquely to a
spherical function Ψλ. Thus, if F is bi-K-invariant,

πΓ\G(F )(φ) = ω̃λ(F )φ, where ω̃λ(F ) =
∫

G

F (g)Ψλ(g) dmG(g).

We begin with the following result.
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Proposition 6.2. (The average size of eigenfunctions) Let Γ be any uniform lattice
in G, satisfying the condition preceding Theorem 6.1, and let φj , j∈N, be an orthonormal
basis for L2(M) consisting of joint eigenfunctions of the ring D of G-invariant differ-
ential operators on M . Denote by Ψλj the spherical function associated with φj. Then
there exists a constant C(S), depending only on S and independent of Γ, such that

max
z∈M

∑
‖λj‖6‖λ‖

|φj(z)|2 6C(S)(1+‖λ‖)dim(S).

Proof. Let `ε(z, w) be a smooth non-negative positive-definite kernel on S×S, de-
pending only on d(z, w) and supported in d(z, w)6ε with unit integral. The automorphic
kernel

Aε(Γz,Γw) =
∑
γ∈Γ

`ε(γz, w)

on M×M can be expanded in terms of the joint eigenfunctions φj of D on L1(K\G/K)
as

Aε(Γz,Γw) =
∞∑

j=1

hAε
(λj)φj(Γz)φj(Γw),

where hAε(λj) are the eigenvalues of the operator defined on L2(M) by the automorphic
kernel Aε. As noted above, these eigenvalues are given by the Selberg and Harish-
Chandra spherical transform (normalized at w=w0)

hAε
(λj) =

∫
S

`ε(z, w0)Ψλj (z) dvol(z),

where Ψλj
is the spherical function associated with φλj

, normalized by Ψλ(e)=1, and
viewed as a function on S.

We claim that

|hAε(λ)−1|6
∣∣∣∣∫

z∈Bε(w0)

`ε(z, w0)|Ψλ(z)−1| dvol(z)
∣∣∣∣ 6C1(S)(1+‖λ‖)ε.

Clearly, this estimate follows from the fact that for all H in the unit sphere in a and
|t|61 (say), the first derivative of the normalized positive definite spherical functions Ψλ

satisfy ∣∣∣∣ d

dt
Ψλ(exp(tH))

∣∣∣∣ 6C1(S)(1+‖λ‖).

This estimate is a consequence of the Harish-Chandra power series expansion for the
spherical functions, together with the fact that normalized positive definite spherical
functions are all bounded by 1. The estimate follows from e.g. [GV, Proposition 4.6.2].
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We conclude that if (1+‖λ‖)ε< 1
2C1(S) then hAε

(λ)> 1
2 , and therefore we obtain

the following upper bound on the average size of the eigenfunctions

∑
γ∈Γ

`ε(γz, z) =
∞∑

j=1

hAε(λj)|φj(z)|2 >
1
2

∑
‖λj‖<C2(S)/ε

|φj(z)|2.

On the other hand, we can clearly obtain a pointwise upper bound of the form∑
γ∈Γ

`ε(γz, z) 6C3(S)ε− dimS .

Indeed, this follows when the kernel is defined by a bump function which satisfies the
obvious upper bound of being �ε− dimS , and taking also into account the fact that there
are at most c lattice points in a ball of radius ε61, this coming from our assumption
on Γ. Combining the two estimates, we can conclude that∑

λj<λ=C2(S)/ε

|φj(z)|2 6C3(S)ε− dimS 6C(S)(1+‖λ‖)dimS .

The proof of Proposition 6.2 is now complete.

Proof of Theorem 6.1. Consider the identity

∑
γ∈Γ

∫
S

Lt(γz, w)b(w) dw =
∑
γ∈Γ

Wt(γz) =
∞∑

j=0

hLt(λj)φj(z)
∫
S

Ψλj (w)b(w) dw. (6.2)

The eigenvalue λ0=0 associated with the constant function φ0=1/vol(M) (the unique
∆-eigenfunction with this eigenvalue) gives the main contribution to the infinite sum,
which is vol(Bt)/vol(M)=hLt(0). We must therefore estimate the contribution of all
other terms.

Now note that since the bump function b(w) is a fixed smooth function, and φj is an
eigenfunction of the Laplacian ∆ with eigenvalue ωλj (∆), m integrations by parts give,
for any fixed m and all j∈N,∫

S
b(w)Ψλj

(w) dw 6Cm(1+‖λj‖)−m.

Let us set
b̂(λj) =

∫
S

b(w)Ψλj
(w) dw.

Recall that λj , j 6=0, is a discrete set, and thus have a fixed positive distance from 0, due
to our spectral gap assumption. As a consequence, the spherical functions Ψλj all have
a fixed rate of decay, which can be expressed as a negative power of the volume of Bt.
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Now,

hLt(λ) =
∫
S

Lt(z, w0)Ψλ(z) dz

is the average of the spherical function on a ball of radius t and center w0, which by
Hölder’s inequality is estimated by vol(Bδ

t ), where δ=1−1/p+η.
Therefore, using (6.2), we can write∣∣∣∣ ∑

γ∈Γ

Wt(γz)− vol(Bt)
vol(M)

∣∣∣∣ 6 vol(Bt)δ
∑
j 6=0

|φj(z)| |b̂(λj)|.

Now, |b̂(λj)|6Cm(1+‖λj‖)−m, and by Proposition 6.2,∑
λj6λ

|φj(z)|2 6C(S)(1+‖λ‖)dimS ,

so that, upon choosing k large enough,

∑
j 6=0

|φj(z)| |b̂(λj)|6
( ∑

j 6=0

(1+‖λj‖)−2k|φj(z)|2
)1/2( ∑

j 6=0

(1+‖λj‖)2k|b̂(λj)|2
)1/2

<∞.

This concludes the proof of Theorem 6.1.

Remark 6.3. The error estimate in the Poisson summation formula can be similarly
established when Γ is non-uniform, using the foregoing arguments and the theory of
Eisenstein series.

Next, we apply Theorem 6.1 in the context of sieving as in §§2–4. For the purpose
of the lower bound sieve, we can use the non-negative weight function Wt in (6.1). Using
our previous setup and notation, let us work with the distance parameter T =et, where
t denotes the distance in the symmetric space S. But notice that since we are now
working with symmetric space distance and not with a norm, in general the exponent of
volume growth is now 2‖%G‖, namely the rate of volume growth for Riemannian balls in
S. Recall also that t(f) denotes the number of irreducible factors of the polynomial f .
Now consider

SWT
(A, P ) :=

∑
γ∈Γ

(f(γv),P )=1

WT (γ), (6.3)

where WT (γ):=WT (γz0) for a fixed z0∈Γ\G/K.
We have

0 6WT (γ) 6 1,
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and for T large

WT (γ) =
{

1, if ‖γ‖6 1
2T ,

0, if ‖γ‖> 2T ,
(6.4)

where ‖ · ‖ is a bi-K-invariant norm on G.
Theorem 6.1 (assuming, as we do from now on, that Γ is co-compact) gives the

conclusion that uniformly for y∈Γ,

1
vol(BT )

∑
γ∈Γ(q)

WT (γy) =
1

[Γ : Γ(q)]
+Oε(T−a/p+ε). (6.5)

This corresponds to Theorem 3.2 with θ/(1+dim G)=a/2ne(1+dim G) replaced by
a/p, where p=p(G, Γ). Running the rest of the sieving analysis with this positive smooth
weight WT to the end of §4 yields an improvement in Theorem 1.7 and Corollary 1.8
with the condition on r replaced by

r >
9t(f)p(G, Γ)(dim G) deg f

a
. (6.6)

Note that we have incorporated the small improvement (4.25) of (4.24) as well.
To further improve this value of r, we use the weighted sieve ([HR, Chapter 10]) in

place of the elementary sieve in §2. The form which is convenient for us is as follows:
Let ak>0 be a finite sequence and assume that for d>1,

∑
k≡0 (mod d)

ak =
%(d)
d

X+R(A, d), (6.7)

with R(A, 1)=0, %(1)=1 and % multiplicative, and that %(p) satisfies (2.5) for all p>2.
Concerning the sieve dimension t, assume that for 26z16z we have

∏
z16p<z

(
1− %(p)

p

)−1

6

(
log z

log z1

)t(
1+

A

log z1

)
(6.8)

for some fixed constant A.
Assume that we have a level distribution τ , that is for ε>0,∑

d6Xτ

|R(A, d)|�
ε

X1−ε. (6.9)

Define µ by

max
an∈A

n 6Xτµ. (6.10)
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Let Pr denote the set of positive integers with at most r-prime factors. Then for any
0<ζ<νt (where νt is the sieve limit in dimension t) and for any r satisfying

r >

(
1+ζ− ζ

νt

)
µ−1+(t+ζ) log

νt

ζ
−t+

ζt

νt
, (6.11)

there is δ=δ(t, µ, r, ζ)>0 such that∑
k∈Pr

ak > δ
X

(log X)t
. (6.12)

For more on the sieve limit νt in dimension t see [HR], where a table is given and the
fact that νt64t is established. The latter fact is what we will use below.

We apply this to our sequence

ak(T ) =
∑

|f(γv)|=k

WT (γ). (6.13)

By (6.5) and the analysis in §4, we have

τ =
1

p dim G
, (6.14)

µ=
p(dim G) deg f

a
. (6.15)

Taking ζ=1 in (6.11) for simplicity leads to (6.12) holding for

r >
2p(dim G) deg f

a
−1+(t(f)+1) log 4t(f)−t(f)+

1
4
. (6.16)

In particular, Theorems 1.7 and Corollary 1.8 are valid for such r.
As noted in Remark 6.3, these considerations also apply to the case G/Γ non-

compact. In particular to Γ=SLn(Z) and to Vn,m(Z). In this case p=2(n−1) for n>3
and it is estimated in (6.18) for n=2. Finally a=n(n−1), so that Theorem 1.2 and
Corollary 1.3 are valid with

r > 4n deg f−1+(t(f)+1) log 4t(f)−t(f)+
1
4

(6.17)

for n>2.
Our final improvement comes in the cases where much stronger bounds towards

the Ramanujan conjectures are valid, especially with n large. Let D/Q be a division
algebra of degree n which, for the reasons below, we assume is itself prime. Assume that
D⊗R∼=Matn×n(R) and let Nr denote the reduced norm on D. Let

Vm,D = {x∈D(Z) :Nr(x) =m},
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with m 6=0. Here the Z-structure is given by the defining equations of D/Q in AN , N=n2,
G={x:Nr(x)=1} and Γ is the set of the integral elements of reduced norm equal to 1.
These act on VD,m making it into a principal homogeneous space. Let f∈Q[xij ] which
is weakly primitive on VD,m(Z). The discussion of this section applies to the question of
the saturation number r0(VD,m(Z), f). What is pleasant about such compact quotients
G(R)/Γ(q) coming from these division algebras is that we have very good upper bounds
for their corresponding p’s. Specifically any representation π occuring in L2

0(G(R)/Γ(q))
corresponds to an automorphic representation occuring in L2(D(A)/D(Q)) which in turn,
via the Jacquet–Langlands correspondence [JL] if n=2 and Arthur–Clozel [AC] if n>2,
lifts to an automorphic cuspidal representation π of GLn(A)/ GLn(Q) (it is here that we
assume that n is prime so that π is not a residual Eisenstein series [MW]). Applying
the best known bounds towards the Ramanujan conjectures “at infinity” (see [S1] for a
survey) for such π, we conclude that

pn := p(K\G(R)/Γ(q))6



64
25

, if n =2,

28
9

, if n =3,

2n

n−2
, if n > 4 is even,

2(n+1)
n−1

, if n > 5 is odd.

(6.18)

These follow from (24), (22) and (13) in [S1] by computing p using Theorem 8.48
in [K]. For VD,m(Z) we have a=n2−n and dim G=n2−1. Hence, (6.16) leads to the
following result.

Theorem 6.4. Let VD,m(Z)⊂AN be the set of integral points of norm m in D,
which we assume is non-empty. Let f∈Q[xij ] be of degree d and assume that f factors
into t irreducible factors in the coordinate ring 
Q[VD,m] and that f is VD,m(Z)-weakly
primitive. Then,

r0(VD,m(Z), f) 6 2pn
n+1

n
d+(t+1) log 4t−t.
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un corps de nombres. J. Reine Angew. Math., 327 (1981), 12–80.

[S1] Sarnak, P., Notes on the generalized Ramanujan conjectures, in Harmonic Analysis,
the Trace Formula, and Shimura Varieties, Clay Math. Proc., 4, pp. 659–685.
Amer. Math. Soc., Providence, RI, 2005.

[S2] — Equidistribution and primes. Astérisque, 322 (2008), 225–240.
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