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1. Introduction

It is a well-known principle in the regularity theory of partial differential equations that
rescaling procedures are very useful in studying potential singularities. For example,
for a minimal surface Σ⊂Rn for which 0∈Σ is a singular point, one should look at the
surfaces λΣ in the limit λ!∞; see for example [15]. This “blow-up” procedure, probably
first introduced by De Giorgi in his study of minimal surfaces, has become indispensable
in the study of singularities of various geometric equations (see for example [16], [27] and
[30]). Analogous ideas were introduced in the study of many other classes of equations,
such as semilinear elliptic and parabolic equations [10], [12], [13], [25], [26], [29], [30],
the Navier–Stokes equations [4], [7] and dispersive equations [18], [31], to name a few.
The blow-up procedure can be compared to infinite magnification and therefore typically
produces solutions of the original equation which are in some sense global. The study
of such global solutions is often a valuable stepping stone towards understanding the
structure of potential singularities (or the absence of singularities). In this paper we
address some of these issues in the context of the Navier–Stokes equations

ut+u∇u+∇p−∆u =0,

div u =0.
(1.1)

The scaling symmetry of the equations is u(x, t) 7!λu(λx, λ2t), p(x, t) 7!λ2p(λx, λ2t) and
can be used to “zoom in” on a solution near a potential singularity. There are some
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free parameters in this process, as we can choose where exactly (in space and time) we
magnify (it does not have to be exactly at a singularity, it can for example be just before
the singularity occurs), and which properties of the rescaled solutions we wish to control.
In this paper we study the situation in which we choose the L∞-norm of the rescaled
velocity on a certain time interval as the parameter we wish to control. The pressure
will play no explicit role in the process. As we will see in §5, this leads naturally to the
following global problem:

Characterize solutions of (1.1) in Rn×(−∞, 0) with (globally) bounded velocity u.

Following [16], we will call solutions defined in Rn×(−∞, 0) ancient solutions.
Stated in this terminology, we are interested in ancient solutions of (1.1) with bounded
velocity. A first guess might be that such solutions should be constant. To make this a
plausible conjecture, one must be slightly more precise. Equation (1.1) has trivial non-
constant solutions of the form u(x, t)=b(t), p(x, t)=−b′(t)x and so we need a definition
of solutions which would eliminate these “parasitic solutions”. The right definition seems
to be that of a mild solution (see §3), which was probably introduced in [17]. (Implicitly
it is already used in Leray’s paper [22].) Another natural definition often used in the
literature is that of a weak solution, also essentially introduced in Leray’s paper [22],
which is defined using divergence-free test functions; see §3. This notion of solution does
allow the parasitic solutions above. In these settings, the best possible result one can
hope for which is consistent with what is known about the equations would be that any
ancient mild solution with bounded velocity is constant and any ancient weak solution
with bounded velocity is of the form u(x, t)=b(t). We will prove that this is indeed the
case in dimension 2 and also in the case of axi-symmetric fields in dimension 3, if some
additional conditions are satisfied (see §5). The case of general 3-dimensional fields is,
as far as we know, completely open. In fact, it is open even in the steady-state case (u
independent of t).

The methods we use in the proofs of these results are elementary. The key component
of the proof in dimension 2 is the use of the vorticity equation:

ωt+u∇ω =∆ω. (1.2)

This is a scalar equation and ω satisfies the Harnack inequality (see e.g. [8]), which can
be used to show that if ω 6=0, then in large areas of space-time ω has to be almost equal to
its maximum/minimum. (In fact, the strong maximum principle, together with standard
compactness results, is sufficient to prove this.) This turns out to be incompatible with
the boundedness of u. (One might speculate that with the condition div u=0, a Liouville
theorem might be true for (1.2) at a linear level, without using the relation between u
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and ω. This, however, appears to be false; see [32].) The ideas behind the proofs of
the results for axi-symmetric fields in dimension 3 are similar. In each case, there is a
scalar quantity satisfying a maximum principle which is used in a way similar to the
2-dimensional case. The quantities we use and the corresponding maximum principles
are all classical.

There is a technical component in the proofs, since one needs to establish that the
solutions we work with have sufficient regularity. This part is more or less standard, and
we use elementary techniques based on explicit representation formulae to establish the
required properties.

In the last section we use the Liouville theorems of §5 to obtain results limiting the
types of singularities which may occur in axi-symmetric solutions of the Navier–Stokes
equations. These results are inspired by the recent paper [4], where a significant progress
in the study of the axi-symmetric case was made using methods quite different from those
presented here. Our results on axi-symmetric singularities address some questions which
were left open in [4]. Very recently we learned that the authors of [4] have independently
proved results similar to those in §6 using their own methods; see [5].

It is known that axi-symmetric solutions with no swirl have to be regular; see [20]
and [34]. (We recall that the “no swirl” condition means that in cylindrical coordinates
(r, θ, z)—see (5.5)—the uθ-component of the velocity vanishes.) However, the case of
non-zero swirl is open at the time of this writing. We will prove that, under natural
assumptions, every potential singularity of an axi-symmetric solution has to be of type
II, in the sense of [16]. We recall that a singularity of a Navier–Stokes solution u at time
T is called type I if

sup
x
|u(x, t)|6 C√

T−t

for some C>0. Any singularity which is not of type I is called type II. A blow up of u

by a type-II singularity is sometimes called slow blow-up, see e.g. [16]. Therefore we can
rephrase our result by saying that if an axi-symmetric solution develops a singularity,
it can only be through slow blow-up. We remark that Leray proved in [22] that if u

develops a singularity at T , then

sup
x
|u(x, t)|> ε1√

T−t

for some ε1>0. Also, the rate 1/
√

T−t would be the blow-up rate of a self-similar
singularity. (It is known that these do not exist; see [23] and [33].)

It is worth mentioning that although our results are obtained by methods which are
more or less elementary, it seems that some of them are out of reach for the usual methods
used in the theory of Navier–Stokes equations, such as energy methods or perturbation
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analyses in various function spaces. This is because some special properties of solutions
of scalar equations, although simple, cannot be detected at the broad level at which the
usual methods used for the Navier–Stokes equations are applied. A similar situation
appears in the proof that Leray’s self-similar singularities do not exist, see [23] and [33],
where a (non-classical) scalar quantity satisfying an elliptic equation is used. At the time
of this writing, there is no known similar quantity for the general 3-dimensional problem.

2. Preliminaries

Let Ω⊂Rn be a bounded domain and let T >0. We consider the parabolic equation in
Ω×(0, T ) of the form

ut+a(x, t)∇u−∆u =0, (2.1)

with a∈L∞x,t(Ω×(0, T )). A suitable notion of solution is for example a weak solution. By
definition, u is a weak solution of (2.1) if u and ∇xu (the distributional derivative) belong
to (L2

x,t)loc(Ω×(0, T )) and the equation is satisfied in the sense of distributions. It then
follows from standard regularity that in fact ut and ∇2

xu belong to (Lp
x,t)loc(Ω×(0, T )) for

every p∈(0,∞), and the equation is satisfied pointwise almost everywhere in Ω×(0, T ).
Moreover, by the local energy estimate, the local L2-norm of ∇u is controlled by the
local L2-norm of u; see for example [21]. Therefore, there is no difference between weak
solutions and strong solutions, and we can just use the term “solution” in the context of
(2.1). We recall that the “parabolic boundary” of Ω×(0, T ) is

∂par(Ω×(0, T ))= (	Ω×{0})∪(∂Ω×[0, T ]).

When x∈Ω, the space-time points (x, T ) belong to the “parabolic interior” of Ω×(0, T )
and u(x, T ) is well defined. We recall that the solutions of (2.1) satisfy the strong max-
imum principle: If u is a bounded solution in Ω×(0, T ) such that u(x̄, T )=supΩ×(0,T ) u

for some x̄∈Ω, then u is constant in Ω×(0, T ). In fact, a much stronger statement is
true: non-negative solutions of (2.1) satisfy the parabolic Harnack inequality; see e.g. [8].
The Harnack inequality immediately implies the strong maximum principle. For our pur-
poses in this paper the strong maximum principle is sufficient—we will not need the full
strength of the Harnack inequality. Our key tool will be the following lemma which es-
sentially says that the statement of the strong maximum principle is in some sense stable
under perturbations. (This stability can be made much more precise with the Harnack
inequality.) The lemma is certainly known in one form or another, but we were unable
to locate in the literature the precise statement we need.
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Lemma 2.1. Let us consider equation (2.1) with bounded measurable coefficient a

in Ω×(0, T ). Let K be a compact subset of Ω, Ω′⊂	Ω′⊂Ω, and τ >0. Then, for each
ε>0, there exists δ=δ(Ω,Ω′,K, T, ‖a‖L∞x,t

, τ, ε)>0 such that if u is a bounded solution
of (2.1) with supΩ×(0,T ) |u|=M and supx∈K u(x, T )>M(1−δ), then u(x, t)>M(1−ε)
in Ω′×(τ, T ).

Proof. We can take M=1 without loss of generality. Assuming the statement fails
for some ε>0, there must exist a sequence of coefficients a(k), solutions u(k) of (2.1)
with a=a(k), and points xk∈K and (yk, tk)∈Ω′×(τ, T ) such that |a(k)|6C, |u(k)|61,
u(k)(xk, T )!1 and u(k)(yk, tk)61−ε. We can assume, after passing to a subsequence,
that a(k) converge weakly∗ in L∞x,t to ā, u(k) converge locally uniformly in Ω×(0, T ) to ū,
xk!x̄∈K and (yk, tk)!(ȳ, t̄)∈	Ω′×[τ, T ]. The regularity properties of solutions of (2.1)
discussed above imply that ū solves (2.1) with a=ā, |ū|61 in Ω×(0, T ), ū(x̄, T )=1 and
ū(ȳ, t̄)61−ε. This, however, is impossible due to the strong maximum principle.

3. Bounded solutions of the linear Stokes problem

Let us first recall some basic facts about the Cauchy problem for the linear Stokes system,
with u=(u1, ..., un):Rn×(0,∞)!Rn and the right-hand side in divergence form:

ut+∇p−∆u =
∂

∂xk
fk

div u =0

 in Rn×(0,∞), (3.1)

u( · , 0) =u0 in Rn. (3.2)

Here fk=(f1k, ..., fnk) for k=1, ..., n. Denoting the Helmholtz projection of vector
fields on div-free fields by P , and the solution operator of the heat equation by S, we
have the well-known representation formula

u(t) =S(t)u0+
∫ t

0

S(t−s)P
∂

∂xk
fk(s) ds, (3.3)

where, as usual, u(t) denotes the function u( · , t), etc.
This can be written more concretely in terms of the kernel

Kij(x, t) =
(
−δij∆+

∂2

∂xi∂xj

)
Φ(x, t),

where the “generating function” Φ is defined in terms of the fundamental solution of the
Laplace operator G and the heat kernel Γ by

Φ(x, t) =
∫
Rn

G(y)Γ(x−y, t) dy, (3.4)
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which is the same as
Φ( · , t) =S(t)G.

See for example [24]. Letting

Kijk =
∂

∂xk
Kij ,

we can rewrite (3.3) as

ui(x, t) =
∫
Rn

Γ(x−y, t)u0i(y) dy+
∫ t

0

∫
Rn

Kijk(x−y, t−s)fjk(y, s) dy ds. (3.5)

Note also the obvious estimates

|Kij(x, t)|6 C

(|x|2+t)n/2
(3.6)

and
|Kijk(x, t)|6 C

(|x|2+t)(n+1)/2
. (3.7)

As a consequence of (3.7), the expression (3.5) is well defined for f∈L∞x,t. We remark
that, in contrast, solutions of

ut+∇p−∆u = f

div u =0

}
in Rn×(0,∞), (3.8)

u( · , 0) =u0 in Rn (3.9)

are not well defined for f∈L∞x,t, although the ambiguity is small. This can also be
seen without using the explicit form of the kernel, in the following way: One can write,
for each t, the Helmholtz decomposition of f(x, t) as f(x, t)=Pf(x, t)+∇xφ(x, t). The
projection P can be naturally defined on L∞(Rn) (which is mapped by P into BMO(Rn))
only modulo constants, which creates an ambiguity. However, if the right-hand side is in
divergence form, this ambiguity is cancelled by the extra derivative.

By definition, a mild solution of the Cauchy problem (3.1) and (3.2) is a function u

defined by the formula (3.5). We note that this definition does not involve the pressure.
One can obtain (formally) an explicit formula for the pressure, but, unlike the formula
for the velocity field u, it defines p only modulo a function of t (constant in x for each t)
when fk is in L∞x,t.

The definition of mild solutions immediately implies their uniqueness. Also, we have
standard estimates for u in terms of f=(f1, ..., fn)=(fij)n

i,j=1. In particular, for u0=0,
we have the estimates

‖u‖Cα
par(Q(z0,R)) 6C(α, R)‖f‖L∞x,t(R

n×(0,T )), (3.10)

‖∇xu‖Lp
x,t(Q(z0,R)) 6C(p, R)‖f‖L∞x,t(R

n×(0,T )) (3.11)
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for any α∈(0, 1) and p∈(1,∞), where Q(z0, R)=Q((x0, t0), R)=B(x0, R)×(t0−R2, t0) is
any parabolic ball contained in Rn×(0, T ). The space Cα

par is defined by means of the
parabolic distance

√
|x−x′|2+|t−t′|.

Taking difference quotients, we see that, for u0=0, we have similar estimates for
spatial derivatives:

‖∇k
xu‖Cα

par(Q(z0,R)) 6C(α, R)‖∇k
xf‖L∞x,t(R

n×(0,T )), (3.12)

‖∇k+1
x u‖Lp

x,t(Q(z0,R)) 6C(p, R)‖∇k
xf‖L∞x,t(R

n×(0,T )). (3.13)

Moreover, a routine inspection of representation formula (3.5) shows that, when u0=0,
the time derivative satisfies, for k=0, 1, ... ,

‖∇k
xut‖L∞x,t(R

n×(0,T )) 6C(T, k)‖∇k+2
x f‖L∞x,t(R

n×(0,T )). (3.14)

We sketch the calculation leading to the last estimate in the case k=0 for the convenience
of the reader: Clearly it is enough to estimate |ut(0, t)|. Let Φ be the generating function
defined in (3.4), which will be considered as a function of Rn×R, with Φ=0 for negative
values of t. We can write

ui =(LijkΦ)∗fjk, (3.15)

where Lijk is a homogeneous constant coefficient operator in x of order 3 and ∗ denotes
space-time convolution. Applying the heat operator to (3.15), we can write, with a slight
abuse of notation,

(∂t−∆)ui =(Lijk(∂t−∆)Φ)∗fjk =(LijkG(x)δ(t))∗fjk, (3.16)

where G is the fundamental solution of the Laplacian and δ(t) is the Dirac distribution
in t. We consider a smooth cut-off function η=η(x) on Rn with η=1 in the unit ball
B(0, 1) and η=0 outside of B(0, 2), and set f ′=ηf and f ′′=(1−η)f . Let us first look
at u′i, the contribution to ui in (3.16) coming from f ′. We can move two derivatives from
Lijk to f ′jk to obtain an estimate of (∂t−∆)u′i(0, t) in terms of the L∞x,t-norm of the second
derivatives of f ′jk. The estimate of (∂t−∆)u′′i (0, t) (with the obvious meaning of u′′i ) is
even simpler, since LijkG is integrable in Rn\B(0, 1) and therefore (∂t−∆)u′′i (0, t) can
be estimated in terms of the L∞x,t-norm of f ′′jk. Once we have the estimate for (∂t−∆)u,
the estimate for ut follows from (3.12).

To define the notion of weak solution of equation (3.1), we follow the standard
procedures and introduce the space VT of smooth compactly supported div-free vec-
tor fields ϕ:Rn×(0, T )!Rn. We then say that a bounded measurable vector field
u:Rn×(0, T )!Rn is a weak solution of (3.1) if div u=0 in Rn×(0, T ) (in the sense
of distributions) and, for each ϕ∈VT ,∫ T

0

∫
Rn

u(ϕt+∆ϕ) dx dt =
∫ T

0

∫
Rn

fk
∂

∂xk
ϕ dx dt.
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Lemma 3.1. For a fixed f∈L∞x,t(R
n×(0, T )) let u∈L∞x,t(R

n×(0, T )) be any weak
solution of (3.1) in Rn×(0, T ), and denote by v the mild solution of the Cauchy problem
(3.1) and (3.2) with u0=0. Then u(x, t)=v(x, t)+w(x, t)+b(t), where w satisfies the heat
equation wt−∆w=0 in Rn×(0, T ) and b is a bounded measurable Rn-valued function
on (0, T ). Moreover , we have the estimates

‖w‖L∞x,t(R
n×(0,T )) 6C(T )‖u‖L∞x,t(R

n×(0,T )), (3.17)

‖b‖L∞(0,T ) 6C(T )‖u‖L∞x,t(R
n×(0,T )). (3.18)

Proof. In view of the estimates (3.10), it is enough to consider only the case f=0.
Let φ:Rn×R!R be a mollifier compactly supported in Rn×(−1, 0). For any ε>0 let
φε(x, t)=ε−(n+1)φ(x/ε, t/ε) and let uε:Rn×(0, T−ε) be defined by uε=φε∗u (space-
time convolution). Let wε be the solution of the heat equation in Rn×(0, T ) with
initial datum wε(x, 0)=uε(x, 0). The (smooth and bounded) function hε=curl(uε−wε)
satisfies the heat equation in Rn×(0, T−ε) with initial datum hε(x, 0)=0 and therefore
it must vanish. Since bounded solutions of the system curl z=0 and div z=0 in Rn

are constant by Liouville’s theorem, we see that uε(x, t)−wε(x, t)=bε(t) for a suitable
bε: (0, T−ε)!Rn. By compactness properties of families of bounded solutions of the
heat equation, we see that if ε!0 along a suitable sequence, the functions bε converge
a.e. to an L∞ function b: (0, T )!Rn. The estimates follow from the constructions.

Remark 3.1. In the above decomposition, the function v is of course uniquely deter-
mined by f , whereas the functions w and b are determined up to a constant (independent
of time). In other words, the (distributional) derivative b′(t) is uniquely determined by
u and f .

4. Bounded solutions of Navier–Stokes

Let us now consider the Cauchy problem for the Navier–Stokes equations:

ut+u∇u+∇p−∆u =0
div u =0

}
in Rn×(0,∞), (4.1)

u( · , 0) =u0 in Rn. (4.2)

The considerations of the previous section can be repeated with fk=−uku. In particular,
a function u∈L∞x,t(R

n×(0, T )) is defined to be (i) a mild solution of the Cauchy problem
(4.1) and (4.2) if (3.5) is valid with fk=−uku and (ii) a weak solution of equation (4.1) in
Rn×(0, T ) if div u=0 in Rn×(0, T ) (in the sense of distributions) and, for each ϕ∈VT ,∫ T

0

∫
Rn

u(ϕt+∆ϕ) dx dt =
∫ T

0

∫
Rn

(
−uku

∂

∂xk
ϕ

)
dx dt.
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Remark 4.1. It is obvious that the notions of weak solution and mild solution are
also well defined under the assumption that u∈L∞x,t(R

n×(0, T ′)) for each T ′<T (with
the possibility that ‖u‖L∞x,t(R

n×(0,T ′))!∞ as T ′%T ). This is a natural setting in which
potential singularities of solutions of the Cauchy problem can be studied. Even if one
considers the Cauchy problem for u0 in spaces other than L∞(Rn), such as Ln(Rn) ([17])
or BMO−1(Rn) ([19]), the local-in-time solution u:Rn×(0, T )!Rn which is constructed
for u0 in these spaces typically belongs to L∞x,t(R

n×(τ, T−τ)) for any τ >0.

The existence and uniqueness of local-in-time mild solutions of the Cauchy problem
(4.1) and (4.2) with u0∈L∞ was addressed in [11]. We briefly outline a slightly modified
approach using standard perturbation theory. We define the bilinear form

B:L∞x,t(R
n×(0, T ))×L∞x,t(R

n×(0, T ))−!L∞x,t(R
n×(0, T ))

by

B(u, v)i(x, t) =
∫ t

0

∫
Rn

(−Kijk(x−y, t−s)uk(y, s)vj(y, s)) dy ds, (4.3)

and we denote by U the heat extension of the initial datum u0. The equation for u then
becomes

u =U+B(u, u), (4.4)

and can be solved in L∞x,t(R
n×(0, T )) for sufficiently small T by a fixed point argument,

since estimate (3.7) easily implies that

‖B(u, v)‖L∞x,t(R
n×(0,T )) 6C

√
T ‖u‖L∞x,t(R

n×(0,T ))‖v‖L∞x,t(R
n×(0,T )). (4.5)

We remark that (3.10) implies that the solutions of (4.4) have enough regularity to
allow us to treat (4.4) as an ordinary differential equation in t, without making assump-
tions about u other than u∈L∞x,t(R

n×(0, T )).

We recall now the regularity properties of mild solutions in L∞x,t(R
n×(0, T )). The

following (optimal) result will not be needed here in its full generality, but we feel it is
still worth mentioning.

Proposition 4.1. Let u∈L∞x,t(R
n×(0, T )) be a mild solution of (4.1) and (4.2)

with u0∈L∞. Then, for k, l=0, 1, ... , the functions tk/2+l∇k
x∂l

tu are bounded and , for
T ′=ε(k, l)‖u0‖−2

L∞(Rn) (where ε(k, l)>0 is a small constant), we have

‖tk/2+l∇k
x∂l

tu‖L∞x,t(R
n×(0,T ′)) 6C(k, l)‖u0‖L∞(Rn). (4.6)
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Proof. This can be proved in the same way as the corresponding results in [14], [6]
and [9], where the authors work in function spaces other than L∞x,t. The key is an estimate
of B with the same form as (4.5), but in spaces with norms given by the expression on the
left-hand side of (4.6). In the context of the L∞x,t(R

n×(0, T ))-based norms we use here,
the proof is in fact much simpler than in that of the spaces used in the above papers,
due to the elementary nature of estimate (4.5).

Remark 4.2. Estimate (4.6) says that the local-in-time smoothing properties of the
Navier–Stokes equations for u0∈L∞ are the same as those of the heat equation. Since
the solution u is constructed essentially as a power series perturbation around the heat
extension U of u0, this may not be surprising.

Lemma 4.1. Let u(k)∈L∞x,t(R
n×(0, T )) be a sequence of mild solutions of (4.1)

and (4.2) with initial conditions u
(k)
0 . Assume that ‖u(k)‖L∞x,t(R

n×(0,T ))6C, with C

independent of k. Then, a subsequence of the sequence u(k) converges locally uniformly
in Rn×(0, T ) to a mild solution u∈L∞x,t(R

n×(0, T )) with initial datum u(x, 0) given by

the weak∗ limit of a suitable subsequence of the sequence u
(k)
0 .

Proof. This is a routine consequence of (4.6), and the decay estimate (3.7) for the
kernel Kijk.

We now turn to regularity properties of bounded weak solutions. Let

u∈L∞x,t(R
n×(0, T ))

be a weak solution of (4.1) in Rn×(0, T ), and let M=‖u‖L∞x,t(R
n×(0,T )). Let v be the

mild solution of the linear Cauchy problem (3.1) and (3.2) with fk=−uku and u0=0.
By Lemma 3.1, we can write u=v+w+b with the L∞-norms of v, w and b bounded by
N=C1(T )M2+C2(T )M , wt−∆w=0 and b is a function of t only. Hence for k=0, 1, 2, ...

and δ>0 the derivatives ∇k
x(w+b) are bounded by C(k, δ)N in Rn×(δ, T ) by estimates

for the heat equation. Moreover, we have the Lp-estimate (3.11) for ∇xv. Therefore
ω=curlu belongs to Lp

x,t(Q(z0, R)) for any p∈(1,∞) and any Q(z0, R)⊂Rn×(δ, T ), with

‖ω‖Lp
x,t(Q(z0,R)) 6C(p, δ, R,M). (4.7)

Following [28], we can now use the equation for ω to obtain estimates for higher
derivatives ∇k

xu. For n=3, the equation for ω is

(ωi)t−∆ωi =
∂

∂xj
(ωjui−ωiuj), (4.8)
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and it is easy to check that in our situation this equation is satisfied in the sense of
distributions. Equation (4.8) gains ω one spatial derivative in Lp

x,t. The standard boot-
strapping arguments and regularity estimates for harmonic functions now give

‖∇k
xu‖Lp

x,t(Q(z0,R)) 6C(k, δ, R,M) (4.9)

for each Q(z0, R)⊂Rn×(δ, T ). Therefore, using standard imbeddings, for k=0, 1, 2 ... we
have

‖∇k
xu‖L∞x,t(R

n×(δ,T )) 6C(k, δ, T, M). (4.10)

Finally, using (3.14) we also obtain, for k=0, 1, 2 ... ,

‖∇k
x∂t(u−b)‖L∞x,t(R

n×(δ,T )) 6C(k, δ, R,M). (4.11)

(We adopt the usual convention that the value of C can change from line to line.)

5. Liouville theorems

Let us first consider the Navier–Stokes equations in two space dimensions.

Theorem 5.1. Let u be a bounded weak solution of the Navier–Stokes equations in
R2×(−∞, 0). Then u(x, t)=b(t) for a suitable bounded measurable b: (−∞, 0)!R2.

Proof. In two space dimensions the vorticity is a scalar quantity defined by

ω =u2,1−u1,2, (5.1)

where the indices after comma mean derivatives, i.e. u2,1=∂u2/∂x1, etc. By the results of
§4, the function ω is uniformly bounded together with its spatial derivatives. Moreover,
its time derivative is also uniformly bounded. The vorticity equation in dimension 2 is

ωt+u∇ω−∆ω =0. (5.2)

Let
M1 = sup

R2×(−∞,0)

ω and M2 = inf
R2×(−∞,0)

ω,

and assume that M1>0. Applying Lemma 2.1 to ω− 1
2 (M1+M2), we see that there exist

arbitrarily large parabolic balls QR=Q((x̄, t̄), R)=B(x̄, R)×(t̄−R2, t̄) such that ω> 1
2M1

in Q((x̄, t̄), R). For such parabolic balls, we have∫
QR

ω dx dt >
1
2
πM1R

4. (5.3)
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On the other hand, denoting by n the normal to the boundary of B(x̄, R), we can also
write∫

QR

ω dx dt =
∫

QR

(u2,1−u1,2) dx dt =
∫

∂B(x̄,R)×(t̄−R2,t̄)

(u2n1−u1n2) ds dt 6CR3. (5.4)

Clearly (5.3) is not compatible with (5.4), unless M160. In the same way, we conclude
that M2>0 and therefore ω must vanish identically. Hence curlu=0 in R2×(−∞, 0)
which, together with div u=0 and the boundedness of u, implies (by the classical Liouville
theorem for harmonic functions) that u is constant in x for each t.

It is not known if a result similar to Theorem 5.1 remains true in three spatial
dimensions. In fact, the problem is open even in the steady-state case. However, under
the additional assumption that the solutions are axi-symmetric, one can obtain some
results which seem to be of interest. We recall that a vector field u in R3 is axi-symmetric
if it is invariant under rotations about a suitable axis, which is often identified with the
x3-coordinate axis. In other words, a field u is axi-symmetric if u(Rx)=Ru(x) for every
rotation R of the form

R =

 cos α − sinα 0
sinα cos α 0

0 0 1

 .

In cylindrical coordinates (r, θ, z) given by

x1 = r cos θ, x2 = r sin θ and x3 = z, (5.5)

the axi-symmetric fields are given by

u =ur
∂

∂r
+uθ

∂

r∂θ
+uz

∂

∂z
,

where the coordinate functions ur, uθ and uz depend only on r and z. In these coordi-
nates, the Navier–Stokes equations become

(ur)t+urur,r+uzur,z−
uθ

2

r
+p,r =∆ur−

ur

r2
, (5.6)

(uθ)t+uruθ,r+uzuθ,z+
uruθ

r
=∆uθ−

uθ

r2
, (5.7)

(uz)t+uruz,r+uzuz,z+p,z =∆uz, (5.8)

(rur),r

r
+uz,z =0, (5.9)

where ∆ is the scalar Laplacian (expressed in the coordinates (r, θ, z)), ur,z denotes the
partial derivative ∂ur/∂z, etc. The equation for uθ is of special interest, as it is decoupled
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from the pressure. The role of the non-linear terms in this equation can be seen by
considering the inviscid case (Euler’s equations), wherein equation (5.7) is replaced by

(uθ)t+uruθ,r+uzuθ,z+
uruθ

r
=0, (5.10)

which is the same as
(ruθ)t+ur(ruθ),r+uz(ruθ),z =0. (5.11)

Equation (5.11) says that the quantity ruθ “moves with the flow”. This is a special case
of Kelvin’s law that the integral of ui dxi along curves moving with the flow is constant.
In the situation considered here, the curves are circles centered at the x3-axis and lying
in planes perpendicular to it.

In view of (5.11), it is natural to rewrite (5.7) as an equation for ruθ:

(ruθ)t+ur(ruθ),r+uz(ruθ),z =∆(ruθ)−
2
r
(ruθ),r. (5.12)

The infinitesimal version of Kelvin’s law, which is Helmholtz’s law that vorticity
“moves with the flow” (for inviscid flows), gives in the case of axi-symmetric flows without
swirl (uθ=0) another quantity which moves with the flow, namely ωθ/r. Here ω=curlu,
as usual, and in cylindrical coordinates we write

ω =ωr
∂

∂r
+ωθ

∂

r∂θ
+ωz

∂

∂z
.

(For axi-symmetric flows without swirl we have ωr=ωz=0 and we can write

ω =ωθ
∂

r∂θ
.

Therefore the situation is similar to 2-dimensional flows.)
Hence, for axi-symmetric solutions of Euler’s equations without swirl, we have(ωθ

r

)
t
+ur

(ωθ

r

)
,r

+uz

(ωθ

r

)
,z

=0. (5.13)

This is nothing but the θ-component of the equation for ω, and can of course be obtained
by simple calculation, without any consideration of the Helmholtz law. For axi-symmetric
solutions of the Navier–Stokes equations without swirl, the last equation becomes(ωθ

r

)
t
+ur

(ωθ

r

)
,r

+uz

(ωθ

r

)
,z

=∆
(ωθ

r

)
+

2
r

(ωθ

r

)
,r

. (5.14)

Remark 5.1. For a smooth vector field u, the apparent singularity of ωθ/r is only
an artifact of the coordinate choice. The quantity ωθ/r is actually a smooth function,
even across the x3-axis, as long as u is smooth.
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The diffusion term on the right-hand side of equation (5.14) can be interpreted
as the 5-dimensional Laplacian acting on SO(4)-invariant functions in R5. We write
r=

√
y2
1+y2

2+y2
3+y2

4 and y5=z, and we note that for f̃(y1, ..., y5)=f(r, z), we have

∆y f̃(y1, ..., y5) =
(

∂2f

∂r2
+

3∂f

r∂r
+

∂2f

∂z2

)
(r, z). (5.15)

Therefore, with a slight abuse of notation, we can write the equation (5.14) as(ωθ

r

)
t
+ur

(ωθ

r

)
,r

+uz

(ωθ

r

)
,z

=∆5

(ωθ

r

)
. (5.16)

Theorem 5.2. Let u be a bounded weak solution of the Navier–Stokes equations in
R3×(−∞, 0). Assume that u is axi-symmetric with no swirl. Then, u(x, t)=(0, 0, b3(t))
for some bounded measurable function b3: (−∞, 0)!R.

Proof. The idea of the proof is the same as in the 2-dimensional case. By the results
of §4, we have |∇k

xu|6Ck in R3×(−∞, 0), and this implies that ωθ/r is bounded in
R3×(−∞, 0). Let

M1 = sup
R3×(−∞,0)

ωθ

r
and M2 = inf

R3×(−∞,0)

ωθ

r
,

and assume that M1>0. Applying Lemma 2.1 to the solution ωθ/r− 1
2 (M1+M2) of

equation (5.16), considered as an equation in R5×(−∞, 0), we see that ωθ/r> 1
2M1 in

arbitrarily large parabolic balls (with suitably chosen centers). However, this would mean
that ωθ is unbounded, a contradiction. Therefore M160. In the same way we show that
M2>0, and hence ωθ vanishes identically. For axi-symmetric vector fields with no swirl,
this means that ω=0 and the proof is finished by again applying the Liouville theorem
to the system curlu=0, div u=0.

The validity of Theorem 5.2 in the absence of the “no swirl” assumption is still an
open problem. The following theorem, however, is a partial result in that direction.

Theorem 5.3. Let u be a bounded weak solution of the Navier–Stokes equations in
R3×(−∞, 0). Assume that u is axi-symmetric and , in addition, satisfies

|u(x, t)|6 C√
x2

1+x2
2

in R3×(−∞, 0). (5.17)

Then, u=0 in R3×(−∞, 0).

Proof. We will use the cylindrical coordinates (r, θ, z) given by (5.5). We set f=ruθ

and recall that
ft+urf,r+uzf,z =∆f− 2

r
f,r. (5.18)
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For λ>0 we let fλ(x, t)=f(λx, λ2t) and uλ(x, t)=λu(λx, λ2t). We note that fλ again
satisfies (5.18) with u replaced by uλ, a consequence of the fact that uλ satisfies the
Navier–Stokes equations. Under our assumptions we have

|fλ|6C in R3×(−∞, 0) uniformly in λ > 0, (5.19)

|uλ|6 C

r
in R3×(−∞, 0) uniformly in λ > 0. (5.20)

Let M=supR3×(−∞,0) f and m=infR3×(−∞,0) f . We will show that M60 and m>0.
Arguing by contradiction, let us first assume that M>0. By rescaling f 7!fλ, we can
move points where fλ is “almost equal to M” close to the x3-axis. Using this and
applying Lemma 2.1 to fλ− 1

2 (M+m), we see that for any (large) T1>0 and L>0 and
any (small) ε>0 we can find λ>0 such that fλ>M−ε in a space-time region R1 of the
form

R1 =
{
x∈R3 : 1 6

√
x2

1+x2
2 6 2 and −L+x̄3 6x3 6L+x̄3

}
×(t̄−T1, t̄ ). (5.21)

Consider a smooth axi-symmetric cut-off function ϕ on R3×(−∞, 0) of the form

ϕ(r, z, t) = ξ(r)η(z−x̄3)ζ(t),

where ξ: [0,∞)![0, 1] is a smooth function supported in [0, 2) with ξ=1 in [0, 1] and
|ξ′|+|ξ′′|64 in [0,∞), η: (−∞,∞)![0, 1] is a smooth function supported in (−L,L) with
η=1 in (−L+1, L−1) and |η′|+|η′′|64 in (−∞,∞), and ζ: (−∞, 0)![0, 1] is a smooth
function supported in (t̄−T1, t̄) with ζ=1 in (t̄−T1+1, t̄−1) and |ζ ′|62 in (−∞, 0).
Multiplying the equation for fλ by ϕ and integrating over space-time, we obtain∫ 0

−∞

∫
R3

(fλ
t +uλ

r fλ
,r+uλ

z fλ
,z−∆fλ)ϕ dx dt =

∫ 0

−∞

∫
R3

(
−2

r
fλ

,rϕ

)
dx dt. (5.22)

This equality will be shown to be impossible when M>0. In the integral on the left-hand
side of (5.22) one can change fλ to fλ−M and integrate by parts, to obtain∫ 0

−∞

∫
R3

(fλ−M)(−ϕt−uλ∇ϕ−∆ϕ) dx dt =I+II+III. (5.23)

We have |fλ−M |6ε in R1. Using (5.19) and (5.20), it is not hard to see that for a
suitable constant γ>0 which is independent of the parameters ε, L and T1, we have

|I|6 γ(CL+εL), |II|6 γ(C2T1+εCLT1) and |III|6 γ(CT1+εLT1). (5.24)

On the other hand, the right-hand side of (5.22) can be written as follows:∫ 0

−∞

∫
R3

(
−2

r
fλ

,rϕ

)
dx dt =4π

∫ 0

−∞

∫ ∞

−∞

∫ ∞

0

fλϕ,r dr dz dt. (5.25)
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The key point here is that fλ vanishes at the x3-axis and equals M+O(ε) on most of
the support of (ϕ)r. It is easy to check that the last integral in (5.25) can be written as

−4πM

∫ 0

−∞

∫ ∞

−∞
ϕ(0, z, t) dz dt+

∫ 0

−∞

∫ ∞

−∞

∫ ∞

0

4π(fλ−M)ξ′(r)η(z−x̄3)ζ(t) dr dz dt.

(5.26)
This expression can be estimated from above by −8πM(L−1)(T1−2)+γεLT1, where γ

is a constant independent of ε, L and T1. This leads to a contradiction to (5.24) and
(5.22) if L and T1 are sufficiently large and ε is sufficiently small. We have proved that
sup f60. It follows in a similar way that inf f>0 and therefore f must vanish. This
means that the solution u is swirl-free and we can apply Theorem 5.2 to conclude that
u=0 in R3×(−∞, 0).

6. Singularities and ancient solutions

We will now consider the consequences of an assumption that a singularity exists in a
solution of the Cauchy problem for the Navier–Stokes equations (4.1) and (4.2). We
aim to show that singularities generate bounded ancient solutions, which are solutions
defined in Rn×(−∞, 0). More precisely, an ancient weak solution of the Navier–Stokes
equations is a weak solution defined in Rn×(−∞, 0), and u is an ancient mild solution
if there is a sequence Tl!−∞ such that u( · , Tl) is well defined and u is a mild solution
of the Cauchy problem in Rn×(Tl, 0) with initial datum u( · , Tl). (We remark that even
if u is a bounded weak solution of Navier–Stokes in Rn×(−∞, 0), the function u( · , t)
may not be well defined for each t; see §4. On the other hand, u( · , t) is well defined for
almost every t for any u∈L∞x,t(R

n×(−∞, 0)).)

Lemma 6.1. Let ul be a sequence of bounded mild solutions of the Navier–Stokes
equations defined in Rn×(Tl, 0) (for some initial data) with a uniform bound |ul|6C, and
Tl&−∞. Then, we can choose a subsequence along which ul converges locally uniformly
in Rn×(−∞, 0) to an ancient mild solution u satisfying |u|6C in Rn×(−∞, 0).

Proof. This is an easy consequence of the results in §4.

Remark 6.1. Another easy result, which is nevertheless a useful addendum to the
Liouville theorems of §5 is the following: A bounded ancient mild solution u(x, t) of the
Navier–Stokes equations which is of the form u(x, t)=b(t) is constant (independent of t).

We leave the proof of the last statement to the reader as a simple exercise.
Recall from §4 that for any u0∈L∞(Rn) the Cauchy problem (4.1), (4.2) has a

unique local-in-time mild solution u. Assume now that the mild solution develops a
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singularity in finite time, and that (0, T ) is its maximal time interval of existence. Let
h(t)=supx∈Rn |u(x, t)|. By a classical result of Leray ([22]), we have

h(t) >
ε1√
T−t

(6.1)

for some ε1>0. Let H(t)=sup06s6t h(s). It is easy to see that there exists a sequence
tk%T such that h(tk)=H(tk). Let us choose a sequence of numbers γk&1. For all k,
let Nk=H(tk) and choose xk∈Rn such that Mk=|u(xk, tk)|>Nk/γk. Let us set

v(k)(y, s) =
1

Mk
u

(
xk+

y

Mk
, tk+

s

M2
k

)
. (6.2)

The functions v(k) are defined in Rn×(Ak, Bk), with

Ak =−M2
k tk and Bk =M2

k (T−tk) >
ε2
1

γ2
k

,

and satisfy
|v(k)|6 γk in Rn×(Ak, 0) and |v(k)(0, 0)|=1. (6.3)

Also, v(k) are mild solutions of the Navier–Stokes equations in Rn×(Ak, 0) with initial
data v

(k)
0 (y)=(1/Mk)u0(xk+y/Mk). By Lemma 6.1, there is a subsequence of v(k) con-

verging to an ancient mild solution v of the Navier–Stokes equations. By our construction,
we have |v|61 in Rn×(−∞, 0) and |v(0, 0)|=1.

We have proved the following statement.

Proposition 6.1. A finite-time singularity arising from a mild solution generates
a bounded ancient mild solution which is not identically zero.

Without further information about the situation at hand, the proposition may not
be very useful. By itself, the existence of non-zero bounded ancient solutions is not
surprising. (Consider constants, for example.) However, if (non-zero) constant solutions
can be excluded (for example by a scale-invariant estimate) and a Liouville-type theorem
for ancient solutions is available, then finite-time singularities can be ruled out. In fact,
in certain situations one does not need the full Liouville theorem, and in the presence
of suitable scale-invariant estimates the Hölder estimate (3.10) for the rescaled solutions
is sufficient to rule out singularities. To illustrate this with a simple example, we give
a proof of a known result, the Ladyzhenskaya–Prodi–Serrin regularity criterion, by the
above technique. Assume that a finite T >0 is the maximal time of existence of a mild
solution (with a suitable initial condition). Let p, q>1 with n/p+2/q=1, q<∞. We will
show that ‖u‖Lq

t Lp
x(Rn×(0,T ))=∞. To see this, it is enough to note that if the Lq

tL
p
x-norm
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of u was finite, the function v constructed by the above procedure would have to vanish
identically a.e., due to the invariance of the Lq

tL
p
x-norm under the scaling used in the

procedure, along with the fact that the finiteness of the Lq
tL

p
x-norm implies its “local

smallness”. On the other hand, v has to be smooth (by the results of §4) and |v(0, 0)|=1.
This leads to a contradiction, and hence ‖u‖Lq

t Lp
x(Rn×(0,T ))=∞ as claimed.

The above reasoning also suggests that any mild ancient solution u of the Navier–
Stokes equations, with ‖u‖Lq

t Lp
x(Rn×(−∞,0))<∞ for some p and q as above, must vanish.

This can indeed be proved. We will not need this result in what follows, and therefore
we omit the proof, leaving it to the interested reader as an exercise. We emphasize that
we assume that q<∞ (and hence p>n). We believe that the statement is also true in
the case p=n and q=∞, but we do not have a proof for this case.

A more interesting application of the above “blow-up procedure” gives Theorems 6.1
and 6.2 below, which can be thought of as generalizations of recent results in [4].

Theorem 6.1. Let u be an axi-symmetric vector field in R3×(0, T ) which belongs to
L∞x,t(R

3×(0, T ′)) for each T ′<T . Assume that u is a weak solution of the Navier–Stokes
equations in R3×(0, T ) and that

|u(x, t)|6 C√
x2

1+x2
2

in R3×(0, T ). (6.4)

Then, |u|6M=M(C) in R3×(0, T ). Moreover , u is a mild solution of the Navier–
Stokes equations (for a suitable initial datum).

Remark 6.2. By the results of §4 regarding mild solutions, we see that u is in fact
smooth in R3×(0, T ) with pointwise bounds on all derivatives in R3×(τ, T ) for any fixed
τ >0.

Proof. We first prove the statement assuming that u is a mild solution (for a suitable
initial datum). This situation is in fact the main point of the theorem. The fact that we
can weaken the assumptions from mild solutions to weak solutions in the formulation of
the theorem (while keeping the other assumptions the same) is only of marginal interest.

Arguing by contradiction, let us assume that u is a mild solution which is bounded
in R3×(0, T ′) for each T ′<T and develops a singularity at time T . We now use the
rescaling procedure described in the paragraph preceding Proposition 6.1 to construct a
bounded ancient mild solution v. Let xk and Mk be as in the construction. We will write
xk=(x′k, x3k), with x′k=(x1k, x2k). An obvious consequence of assumption (6.4) is that
|x′k|6C/Mk. This implies that the functions v(k)(y, s) are axi-symmetric with respect to
an axis parallel to the y3-axis and at distance at most C from it. Therefore we can assume
(by passing to a suitable subsequence first) that the limit function v is axi-symmetric
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with respect to a suitable axis. Moreover, since assumption (6.4) is scale-invariant, it
will again be satisfied (in suitable coordinates) by v. Applying Theorem 5.3 and using
(6.4), we see that v=0. On the other hand, |v(0, 0)|=1, a contradiction. This finishes
the main part of the proof.

It remains to show that, under the assumptions of the theorem, u is a mild solution.
To do this, we inspect the decomposition of u constructed in Lemma 3.1 with fk=−uku.
Using the decay of the kernel (3.7) and of the heat kernel, it is easy to check that, under
the assumption (6.4), all the terms in the decomposition u=v+w+b will again satisfy
(6.4). It follows easily that b must vanish, and therefore u is a mild solution.

Theorem 6.1 can be used to prove the following result.

Theorem 6.2. Let u be an axi-symmetric vector field in R3×(0, T ) which belongs to
L∞x,t(R

3×(0, T ′)) for each T ′<T . Assume that u is a weak solution of the Navier–Stokes
equations in R3×(0, T ) satisfying

|u|6 C√
T−t

in R3×(0, T ). (6.5)

In addition, assume that there exists some R0>0 such that

|u(x, t)|6 C√
x2

1+x2
2

for
√

x2
1+x2

2 >R0 and 0 <t < T , (6.6)

as is for example the case when u is a mild solution with initial datum u0 decaying
sufficiently fast at ∞.

Then, |u|6M=M(C) in R3×(0, T ). Moreover , u is a mild solution of the Navier–
Stokes equations (for a suitable initial datum).

We remark that the statement fails, for trivial reasons, if we drop assumption (6.6).
(Consider u(x, t)=b(t).) The fact that (6.6) is satisfied when u0 decays sufficiently fast
at ∞ (e.g. when it is compactly supported) follows for example from [1] and [2].

Proof. We have seen in the proof of Theorem 6.1 that (6.6) implies that u is a mild
solution for a suitable initial datum and is therefore smooth in open subsets of R3×(0, T ).
We define

f(x, t) = |x′||u(x, t)|=
√

x2
1+x2

2 |u(x, t)|, (6.7)

where, as above, x′=(x1, x2). By Theorem 6.1, it is enough to prove that f is bounded
in R3×(0, T ). Let h(t)=supR3 f(x, t) and H(t)=sup06τ6t h(τ). Assume that f is not
bounded and choose tk%T and xk∈R3 such that Mk=f(xk, tk)=h(tk)=H(tk)%∞. Let
λk=|x′k| and, for y∈R3 and s∈(−Tλ−2

k , 0), define

v(k)(y, s) = v(k)(y′, y3, s) =λku(λky′, λky3+x3k, T +λ2
ks). (6.8)
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We note that the sequence λk is bounded, due to (6.6). Set sk=−(T−tk)λ−2
k . Since

(6.5) is invariant under the Navier–Stokes scaling, the functions v(k) satisfy

|v(k)|6 C√
−s

in R3×(−Tλ−2
k , 0), (6.9)

where C is the same as in (6.5).
Moreover, from the construction we have

|v(k)(y, s)|6 Mk

|y′|
in R3×(−Tλ−2

k , sk). (6.10)

Note also that, by the elementary inequality min{1/a, 1/b}62/(a+b), estimates
(6.9) and (6.10) imply that

|v(k)(y, s)|6 2CMk

Mk

√
−s+C|y′|

in R3×(−Tλ−2
k , sk). (6.11)

Let γ⊂R3 be the unit circle {y∈R3 :|(y1, y2)|=1 and y3=0}. We have, by construction,
(|v(k)( · , sk)|)|γ =Mk which, together with (6.9) shows that sk>−C2M−2

k .
Therefore, roughly speaking, as k!∞, the sequence v(k) blows up along γ. If we

knew that the v(k) satisfied local energy estimates with bounds independent of k, the
blow-up along γ would be in contradiction with the partial regularity theory in [3], since
the 1-dimensional Hausdorff measure of the blow-up set must be zero. One can in fact
work along these lines and finish the proof, but the procedure is not simple.

One can alternatively finish the proof by another scaling argument (one could do
both scalings in one step, but the two-step procedure seems to be more transparent):
Denoting by e1 the vector (1, 0, 0), for x∈R3 and τ∈(Ak, 0], where Ak=M2

k (−Tλ−2
k −sk),

we define

w(k)(x, τ) =
1

Mk
v(k)

(
e1+

x

Mk
, sk+

τ

M2
k

)
. (6.12)

We will consider the cylinders

Ck =
{
x∈R3 :

√
(x1+Mk)2+x2

2 6 1
2Mk

}
. (6.13)

It follows from our definitions that

|w(k)(0, 0)|=1 and |w(k)(x, τ)|6 2 in (R3\Ck)×(Ak, 0). (6.14)

Note also that (6.11) implies

|w(k)(x, τ)|6 2CMk

Mk

√
−τ +C

√
(x1+Mk)2+x2

2

in Ck×(Ak, 0) (6.15)
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and that (6.9) implies

|w(k)(x, τ)|6 C√
−τ

in R3×(Ak, 0). (6.16)

Since the functions w(k) are mild solutions of the Navier–Stokes equations in (Ak, 0) (for
suitable rescalings of the initial datum u0), in view of bound (6.16) we can choose a
subsequence of the sequence w(k), which we again denote by w(k), such that the w(k)

converge uniformly on compact subsets of R3×(−∞, 0) to an ancient mild solution w.
In view of (6.14), we have |w|62 in R3×(−∞, 0). Moreover, since the solutions v(k) are
axi-symmetric and Mk%∞, it is easy to see that w is independent of the x2-variable.
Applying Theorem 5.1 and Remark 6.1 to the field (w1, w3), we conclude that (w1, w3)
must vanish identically, and this easily implies that w=0 in R3×(−∞, 0). This would
give a contradiction with |w(k)(0, 0)|=1, if we could prove that w(k)(0, 0)!w(0, 0), which
is not immediately obvious since our bound of supx |w(k)(x, τ)| may not be uniform as
τ!0. However, by (6.14), the only possible problem may occur due to the contribution
from the cylinder Ck. In the cylinder, we can use the bound (6.15) to show that the
contribution of the dangerous part of w(k) to the representation formula (3.5) is negligible
(in the limit k!∞). Applying the representation formula (3.5) in R3×(−1, 0) with
w(k)(x,−1) as initial datum and fjl=−w

(k)
l w

(k)
j , and using the bound (6.15) together

with the decay of the kernel (3.7), one sees that it is enough to estimate the integral

I(M) =
∫ 0

−1

∫ ∞

−∞

∫
|x′|6M/2

1
(
√
−τ +|x′|/M)2

1
(M2/4+x2

3)2
dx′ dx3 dτ. (6.17)

An easy calculation shows that I(M)!0 as M!∞. This shows that the contribution
from the region where |w(k)|>2 to the representation formula (3.5) (with fjl=−w

(k)
l w

(k)
j )

is negligible (in the limit k!∞) and therefore (by (3.10)) the sequence w(k) converges
to w uniformly in 
B(0, 1)×[−1, 0]. Therefore |w(0, 0)|=1, which gives the sought-after
contradiction.
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[9] Germain, P., Pavlović, N. & Staffilani, G., Regularity of solutions to the Navier–
Stokes equations evolving from small data in BMO−1. Int. Math. Res. Not., 21 (2007),
Art. ID rnm087, 35 pp.

[10] Gidas, B. & Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equa-
tions. Comm. Partial Differential Equations, 6 (1981), 883–901.

[11] Giga, Y., Inui, K. & Matsui, S., On the Cauchy problem for the Navier–Stokes equations
with nondecaying initial data, in Advances in Fluid Dynamics, Quad. Mat., 4, pp. 27–
68. Dept. Math., Seconda Univ. Napoli, Caserta, 1999.

[12] Giga, Y. & Kohn, R.V., Asymptotically self-similar blow-up of semilinear heat equations.
Comm. Pure Appl. Math., 38 (1985), 297–319.

[13] — Characterizing blowup using similarity variables. Indiana Univ. Math. J., 36 (1987),
1–40.

[14] Giga, Y. & Sawada, O., On regularizing-decay rate estimates for solutions to the Navier–
Stokes initial value problem, in Nonlinear Analysis and Applications, pp. 549–562.
Kluwer, Dordrecht, 2003.

[15] Giusti, E., Minimal Surfaces and Functions of Bounded Variation. Monographs in Math-
ematics, 80. Birkhäuser, Basel, 1984.
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LATP, CMI
39 rue Joliot-Curie
FR-13453 Marseille Cedex 13
France
nicolas@cmi.univ-mrs.fr

Gregory A. Seregin
Oxford University
Mathematical Institute
24–29 St Giles’
Oxford OX1 3LB
U.K.
seregin@pdmi.ras.ru

Vladimir Šverák
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