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1. Introduction

The prime number theorem provides an asymptotic formula for the number of integer
points m on the real line at a prime distance no more than x units from the origin, namely
π1(x)∼2x/log x. The simplest case of the prime ideal theorem provides an asymptotic
formula for the number of integer lattice points m+ni in the complex plane at a prime
norm (so distance squared) at most x units from the origin, namely π2(x)∼4x/log x.

By analogy, one can consider the number of prime vectors among integer lattice
points in the 3-dimensional ball (or, for that matter, n-dimensional).

Theorem 1. The number of integer points (x1, x2, x3) with

x2
1+x2

2+x2
3 = p6x

satisfies

π3(x)∼
4π
3
x3/2

log x
.

Although the problem of counting the number of integer lattice points in the ball
has a long history, see for example [CI], there seems to be no record of the corresponding
theorem for primes. Hence, we provide the sketch of a proof in §2.

Our main concern however is an analogous problem for the hyperbolic plane. As a
model of the hyperbolic plane we take the upper half-plane

H = {z=x+iy :x∈R and y ∈R+},
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part by NSF grant DMS-03-01168.



2 j. b. friedlander and h. iwaniec

which is acted on by the modular group

Γ =SL2(Z) =
{(

x1 x2

x3 x4

)
:x1, x2, x3, x4 ∈Z and x1x4−x2x3 =1

}
,

by fractional linear transformations. As a distance function on H, we choose

u(z, w) =
|z−w|2

Im z Imw
,

and, as the origin, we choose z=i. As “integers” we choose the orbit {γi:γ∈Γ}. We wish
to count the number of points γi at a distance p−2 from the origin, with p6x. Let us
denote this number by πΓ(x).

The number of all points γi within this disc is given asymptotically (see [I2]) by

NΓ(x) = 8x+O(x2/3). (1.1)

We expect that πΓ(x) satisfies the asymptotic formula

πΓ(x)∼ cx

log x
, (1.2)

where

c=16
∏
p

(
1+

2χ(p)
(p+1)(p+χ(p))

)
. (1.3)

Here, and throughout the paper, χ=χ4 is the non-principal character of modulus 4.
In this paper we are able to show that this order of magnitude is correct, that is

c1x

log x
<πΓ(x)<

c2x

log x
, (1.4)

for suitable positive constants c1 and c2, and all large x, subject to a standard conjecture
concerning the distribution of rational primes in arithmetic progressions.

Let Λ(n) denote the usual von Mangoldt function and

ψ(x; q, a) =
∑
n6x

n≡a (mod q)

Λ(n).

The expected main term for ψ(x; q, a), when a and q are coprime, is x/ϕ(q), so we define
the “remainder term”

E(x; q, a) =ψ(x; q, a)− x

ϕ(q)
, (1.5)

and the “remainder of level Q”

E(x,Q) =
∑
q6Q

max
(a,q)=1

max
y6x

|E(y; q, a)|. (1.6)

We introduce, for 0<θ61, the following assumption.
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Assumption A(θ). The bound

E(x,Q)�x(log x)−A

holds for Q=xθ−ε, for every ε>0 and A>0, with an implied constant that depends only
on ε and A.

We remark that A
(

1
2

)
is known to be true, the famous Bombieri–Vinogradov theo-

rem, and that the expectation that A(1) holds is also well-known, as the conjecture of
Elliott and Halberstam.

Our main result is the following.

Theorem 2. If A(θ) holds for some θ, less than 1 but sufficiently close to 1, then
there are positive constants c1 and c2 such that

c1x

log x
<πΓ(x)<

c2x

log x
(1.7)

for all x>2.

As is customary, we denote this relationship by πΓ(x)�x/log x. Actually, the up-
per bound is unconditional and an easy consequence of the sieve (well, the Riemann
hypothesis for curves is indirectly involved).

We stress that we do not need to assume A(θ) for θ=1. Conceivably, one could get
the asymptotics with the aid of this stronger assumption. The method allows for the
determination of an admissible value for θ but we did not carry this out. We actually
need a considerably weaker form of the conjecture and some results in this direction have
been provided by Fouvry [Fo], and by Bombieri, Friedlander and Iwaniec [BFI].

We can re-state our problem explicitly in terms of the coordinates x1, x2, x3 and x4.
We have

u(γi, i)+2=x2
1+x2

2+x2
3+x2

4; (1.8)

therefore, we are looking for prime numbers

p=x2
1+x2

2+x2
3+x2

4 (1.9)

with x1, x2, x3 and x4 satisfying the determinant equation

x1x4−x2x3 =1. (1.10)

Thus, an equivalent formulation of our main theorem is the following.
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Theorem 3. Under the same assumption as Theorem 2, we have∑
x2
1+x2

2+x2
3+x2

46x

x1x4−x2x3=1

Λ(x2
1+x2

2+x2
3+x2

4)�x. (1.11)

It is because of the interpretation of our main result, given by (1.8) and (1.9), that
it seems more natural to consider points at a distance p−2 rather than those at prime
distance, even though it makes the problem sound a little more like the twin prime
question than the prime number theorem. We shall have more to say about the points
at distance p toward the end of this section.

A more general problem in which the quadratic form (1.9) is replaced by a polyno-
mial in four variables has been considered recently by Bourgain, Gamburd and Sarnak
in [BGS]. Actually, they consider a still more general situation for a system of polynomi-
als in many variables and with GLn in place of GL2, a setting in which they succeeded
in producing almost-primes. We were motivated to look at the problem (1.11) because
of their work.

We can reinterpret the system{
x2

1+x2
2+x2

3+x2
4 =n,

x1x4−x2x3 =1,
(1.12)

as the system {
y2
1+y2

2 =n+2,
(y2

1+y2
2)−(y2

3+y2
4) = 4,

(1.13)

by making the linear transformation (x1, x2, x3, x4) 7!(y1, y2, y3, y4), where
y1 =x1+x4,
y2 =x2+x3,
y3 =x1−x4,
y4 =x2−x3.

The inverse is given by 
x1 = 1

2 (y1+y3),
x2 = 1

2 (y2+y4),
x3 = 1

2 (y2−y4),
x4 = 1

2 (y1−y3).

These provide a one-to-one correspondence as real numbers. Assume now that n is
an odd integer. If x1, x2, x3 and x4 are integers, then so are y1, y2, y3 and y4. Conversely,
given y1, y2, y3, y4, we learn from the first equation in (1.13) that y1 and y2 have opposite
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parity, and then we learn from the second equation that so do y3 and y4. Hence, given
a pair of integer solutions (y1, y2, y3, y4) and (y1, y2, y4, y3), precisely one of them gives
rise to an integer solution in the x’s. Therefore, the number of integer solutions in the
x’s is equal to one half of the number of integer solutions in the y’s.

(On the other hand, if n is even, then automatically y1 and y2 have the same parity
as do y3 and y4, so the correspondence between x’s and y’s is one-to-one.)

Denote by r(m), as is customary, the number of representations of m as the sum of
two squares. From the above discussion it follows that the number of solutions to the
system (1.12), for n odd, is just

1
2r(n−2)r(n+2). (1.14)

Hence, the statement of our main theorem now becomes the following.

Theorem 4. Under the same assumption as Theorem 2, we have

S(x) =
∑
n6x

r(n−2)r(n+2)Λ(n)�x. (1.15)

It is in this form that we shall give the proof. Here too, we can note the similarity
of the formula (1.15) to the twin prime conjecture. See the remarks at the end of the
proof.

If we consider prime distances, rather than those of the form p−2, by the above
argument, the problem translates into an evaluation of the sum

T (x) =
∑
n6x

r(n−2)r(n+2)Λ(n+2). (1.16)

Since r(p)=8 if p≡1 (mod 4), and r(p)=0 if p≡3 (mod 4), this becomes

T (x) =
∑
p6x

r(p−4) log p+O(
√
x ), (1.17)

which, using [BFI, Theorem 9], we shall directly and unconditionally evaluate in §3,
getting the following result.

Theorem 5. We have

T (x) =πx
∏
p

(
1+

χ(p)
p(p−1)

)
+O(x(log x)−A),

for any A>0, with an implied constant depending on A.
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2. Primes in the 3-ball

In this section we sketch the proof of Theorem 1. See, for example [CI], for background
material.

We have

π3(x) =
∑
p6x

r3(p),

where r3(n) denotes the number of representations of n as the sum of three squares. By
Gauss’ formula, for p>2,

r3(p) =
cp
π

√
pL(1, χp), (2.1)

where

cp =


24, if p≡ 1 (mod 4),
16, if p≡ 3 (mod 8),
0, if p≡ 7 (mod 8).

The L-function is that which accompanies the Kronecker symbol

χp(n) =
(
−4p
n

)
.

Using (2.1), we have

π3(x) =
1
π

∑
p6x

cp
√
pL(1, χp). (2.2)

Here, we open the L-series and truncate it to

∑
n6N

(
−4p
n

)
,

where N=(log x)A. The error term so made is acceptable, due to the inequality

∑
P<p62P

∣∣∣∣ ∑
N<n62N

(
−4p
n

)∣∣∣∣�PN3/4(logN)2,

which follows by a direct application of Cauchy’s inequality, the Pólya–Vinogradov in-
equality and quadratic reciprocity (see for example [He]).

Given n6N , we sum over p, getting, by the Siegel–Walfisz theorem (see for example
[IK, Corollary 5.29]), for any A>0,

∑
p6x

cp
√
p

(
−4p
n

)
= s(n)

∑
p6x

cp
√
p+O(x3/2(log x)−A), (2.3)



hyperbolic prime number theorem 7

where s(n)=1 if n is the square of an odd integer and is zero otherwise. Here,∑
p6x

cp
√
p∼ 32

3
x3/2

log x

and ∑
n6N

s(n)
n

∼ π2

8
.

Putting these together, we complete the proof of Theorem 1.

3. Hyperbolic prime distance theorem

We give here a sketch of the proof of Theorem 5. For m≡1 (mod 4) we have

r(m) = 8
∑

kl=m
k<

√
m

χ(k)+4χ(
√
m ), (3.1)

where we adopt the convention that the last term vanishes in case m is not a square.
Hence

T (x) =
∑
p6x

p≡1 (mod 4)

r(p−4) log p+O(
√
x ) = 8

∑
k6

√
x

χ(k)
∑

k2<p6x

p≡1 (mod 4)

p≡4 (mod k)

log p+O(
√
x ).

Estimating the inner sum with the aid of [BFI, Theorem 9], we obtain

T (x) = 8
∑

k6
√

x

χ(k)
x−k2

ϕ(4k)
+O(x(log x)−A) = 4x

∞∑
k=1

χ(k)
ϕ(k)

+O(x(log x)−A).

Here we have
∞∑

k=1

χ(k)
ϕ(k)

=
∏
p

(
1+

χ(p)
p−1

(
1−χ(p)

p

)−1)
=L(1, χ)

∏
p

(
1+

χ(p)
p(p−1)

)
,

and L(1, χ)= 1
4π (remember that χ=χ4), completing the proof of the theorem.

4. Properties of r(m)

We need results about the distribution of the function r(m) over arithmetic progressions
in a wide range of moduli. If one uses the formula

r(m) = 4
∑
d|m

χ(d), (4.1)
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where as before χ=χ4, then not surprisingly one controls the error term by means of
Kloosterman sums. The Weil bound for these, produces results more than sufficient for
our needs. We refer to the result of Smith [S1], [S2]; see also [IK].

Lemma 4.1. Let (a, q)=1. Then

∑
m6x

m≡a (mod q)

r(m) =
πx

q

∏
p|q

(
1−χ(p)

p

)
+O(q−1/2x2/3+ε) (4.2)

when q 6≡0 (mod 4) and the main term is multiplied by 1+χ(a) when q≡0 (mod 4).

Note that this gives the asymptotic within the range q<x2/3−ε.
We also need a bound for the shifted convolution of r against itself.

Lemma 4.2. We have, for d odd ,∑
n6x

n≡3 (mod 4)

n≡0 (mod d)

r(n−2)r(n+2) = g(d)8x+O(x11/12+ε), (4.3)

where

g(d) =
1
d

∏
p|d

p−χ(p)
p+χ(p)

, (4.4)

and the implied constant depends only on ε.

Note that (4.3) accounts for all odd n since, for n≡1 (mod 4), both of r(n±2) vanish.

Remark. The result in Lemma 4.2 solves the lattice point problem in the hyperbolic
plane with respect to a congruence group. The spectral theory produces a very good error
term for this, namely O(x2/3), see [I2]. However, we need a wide range of uniformity
in d, which is easier to obtain using Lemma 4.1.

Proof of Lemma 4.2. Since, for m≡1 (mod 4),

r(m) = 8
∑

kl=m
k<

√
m

χ(k)+4χ(
√
m ), (4.5)

we have ∑
n6x

n≡3 (mod 4)

n≡0 (mod d)

r(n−2)r(n+2) =8
∑

k

∑
n

+O(x1/2+ε),
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where ∑
k

∑
n

=
∑

k<
√

x

(k,d)=1

χ(k)
∑

k2<n6x

n≡3 (mod 4)

n≡0 (mod d)

n≡2 (mod k)

r(n+2)

=2π
∑

k<
√

x

(k,d)=1

χ(k)
(
x−k2

4dk

∏
p|dk

(
1−χ(p)

p

)
+O((dk)−1/2x2/3+ε)

)

=
πx

2d

∏
p|d

(
1−χ(p)

p

) ∑
(k,d)=1

χ(k)
k

∏
p|k

(
1−χ(p)

p

)
+O(x11/12+ε)

=
x

d

∏
p|d

(
1−χ(p)

p

)(
1+

χ(p)
p

)−1

+O(x11/12+ε),

giving Lemma 4.2.

We also need an asymptotic formula for a shifted convolution of r with the von
Mangoldt function. In this case we shall leave the remainder term untreated for the time
being.

Lemma 4.3. Let (a, q)=1, q≡0 (mod 4), and a≡3 (mod 4). Then we have∑
n6x

n≡a (mod q)

r(n+2)Λ(n) =
Hx

ϕ(q)

∏
p|q

(
1+

χ(p)
p(p−1)

)−1

+O
( ∑

k6
√

x

Emax(x, qk)+
√
x log x

)
,

where

H =2π
∏
p

(
1+

χ(p)
p(p−1)

)
and Emax(x, q) = max

(a,q)=1
max
y6x

|E(y; q, a)|,

the latter quantity being as defined in (1.5).

Proof. Using (4.5) we obtain∑
n6x

n≡a (mod q)

r(n+2)Λ(n) = 8
∑

k6
√

x

χ(k)
∑

k2<n6x

n≡a (mod q)

n≡−2 (mod k)

Λ(n)+O(
√
x log x)

= 8
∑

k6
√

x

χ(k)
(
x−k2

ϕ(kq)
+O(Emax(x, qk))

)
+O(

√
x log x)

=
8x
ϕ(q)

∑
k>1

χ(k)
k

∏
p|k
p-q

(
1− 1

p

)−1

+O
( ∑

k6
√

x

Emax(x, qk)+
√
x log x

)
,

giving the lemma.
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5. The upper bound

In this section we prove the upper bound of Theorem 4 and hence of Theorems 2 and 3.
This is a linear sieve problem for the sequence A={an}n with an=r(n−2)r(n+2).

We have already shown in Lemma 4.2 that this sequence has a level of distribution
D=D(x)=x1/12−2ε; therefore any upper bound sieve, such as Brun’s, yields the result.

6. Preliminaries for the lower bound

Our goal is to show that

S(x)�x.

We are going to use the semilinear sieve and hence it will be convenient to replace
the function r in one factor by b, the characteristic function of such integers. Define
b(n)=1 if all prime factors of n are congruent to 1 (mod 4) and zero otherwise (so that
b(n)=1 if and only if n is an odd number which has a primitive representation as the
sum of two squares). Note that b is totally multiplicative.

In case b(n) 6=0 then χ(d)=1 for every d|n. Thus, for every positive integer m we
have, by (4.1),

r(m) > 4b(m)τ(m). (6.1)

Hence

S(x) > 4
∑
n6x

b(n−2)τ(n−2)r(n+2)Λ(n) > 4
∑
δ6∆

b(δ)
∑
n6x

n≡2 (mod δ)

b(n−2)r(n+2)Λ(n)

(6.2)
for any ∆=∆(x), which will be chosen to be relatively small, ∆=xϑ.

We detect the factor b(n−2) by the semilinear sieve with respect to the set

P = {p≡ 3 (mod 4)}.

To this end we consider the sifting sequence

A(δ) = {an}n, an = r(n+4)Λ(n+2)

for n6x−2, n≡1 (mod 4), n≡0 (mod δ), and so∑
n6x

n≡2 (mod δ)

b(n−2)r(n+2)Λ(n) =S(A(δ),P,
√
x ), (6.3)
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where, in the usual sieve notation, this is the sum of the an in A(δ) over those n having
no prime factor in P up to

√
x. Here

√
x suffices because, if n≡1 (mod 4) has one prime

factor from P, it must have a second one.
We are going to apply the lower bound semilinear sieve to the sequence A(δ) for

every δ6∆. To this end we need to verify approximations of the type

A(δ)
d (x) = g(d)X(δ)+rd(x), (6.4)

for d squarefree and having all prime factors congruent to 3 (mod 4). Note that this
implies that (d, 2δ)=1. Lemma 4.3, with q=4δd, provides such an approximation where

X(δ) =
Hx

2ϕ(δ)

∏
p|δ

(
1+

1
p(p−1)

)−1

(6.5)

and

g(d) =
1

ϕ(d)

∏
p|d

(
1− 1

p(p−1)

)−1

. (6.6)

The remainder term in (6.4) satisfies, by Lemma 4.3,

rd(x)�
∑

k6
√

x

Emax(x, 4δdk)+
√
x log x. (6.7)

The function g(d) in (6.6) is a linear sieve density, but we shall be sifting by only
half of the primes, so this becomes a semilinear sieve problem, see [I1]. Since the sieving
limit for the semilinear sieve is β=1 and our level of distribution is D=D(x)<

√
x, we

cannot successfully apply the lower bound sieve to S(A(δ),P,
√
x ), but we can come close

to this.
Let z=D1/s with 1<s<3. Then we have (see (B.2) in Appendix B)

S(A(δ),P, z) >X(δ)V (z)(f(s)+o(1))−Rδ(x) > c
x

δ
√

log x
(
√
s−1+o(1))−Rδ(x), (6.8)

where c is a positive absolute constant and

Rδ(x) =
∑

k6
√

x

∑
d6D

Emax(x, 4δdk). (6.9)

We shall choose
D=D(x) =xθ−1/2−ϑ−ε, (6.10)

so that the modulus 4δdk in (6.9) does not exceed 4xθ−ε.
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7. Reinterpreting the sieve problem

In order to turn our lower bound (6.8) into a lower bound for the sum in (6.3), it remains
to estimate the difference

T (A(δ),P, z) =S(A(δ),P, z)−S(A(δ),P,
√
x ),

and, for the purpose of utilizing (6.2), we are only required to do this on average over δ.
We behave as if θ<1 is quite close to 1 and ϑ is very small, so the level of dis-

tribution D=D(x) of A(δ) is only slightly smaller than
√
x and is in particular greater

than x1/3. Assuming that 1<s6 4
3 , we have z=D1/s>x1/4; therefore T (A(δ),P, z) counts

only integers having two prime factors in P. Thus

T (A(δ),P, z) =
∑

n6x+2

n≡1 (mod 4)

n≡4 (mod δp1p2)

z6p1<p2

p1,p2∈P

r(n)Λ(n−2).

We are looking for an upper bound and so can ignore some constraints. We reinter-
pret the congruence n≡4 (mod δp1p2) as the equation

n=4+δap1p2,

so that a runs through integers
a6

x

δz2
6
x

z2
,

with a having only prime factors ≡1 (mod 4).
We record the fact that z<p16

√
x and, having done that, we ignore the conditions

for the prime p2 and replace it by way of an upper bound linear sieve∑
ν2|q2

ν26x1/60

λν2 ,

where q2=(n−4)/δap1. Similarly, we relax Λ(n−2), majorizing it by

Λ(n−2) 6 (log x)
∑

ν|n−2

ν6x1/60

λν .

As a result, we obtain

T (A(δ),P, z) 6 (log x)
∑

a6xz−2

b(a)
∑

z<p16
√

x

p1≡3 (mod 4)

∑∑
ν,ν26x1/60

2-νν2

(ν,δaν2)=1

λνλν2

∑
n6x+2

n≡1 (mod 4)

n≡2 (mod ν)

n≡4 (mod δap1ν2)

r(n).
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At this point we cannot apply crude estimates because we cannot afford to lose the
sign changes in λν and λν2 . Therefore, we apply Lemma 4.1 to the inner sum above,
getting ∑

n

r(n) =
πx

4νδap1ν2

∏
p|δaνν2

(
1−χ(p)

p

)
+O(z−1/2x2/3+ε).

Hence,

T (A(δ),P, z)� x log x
δ

∏
p|δ

(
1− 1

p

)( ∑
z<p1<

√
x

1
p1

)

×
∑

a6xz−2

b(a)
a

∣∣∣∣ ∑∑
ν,ν26x1/60

2-νν2

(ν,δaν2)=1

λνλν2

νν2

∏
p|νν2

p-δa

(
1−χ(p)

p

)∣∣∣∣+z−5/2x11/5+ε.

Here, for the sum over ν and ν2, we apply Theorem A.5 from Appendix A, getting∑
ν,ν2

� δa

ϕ(δa)
(log x)−2.

Hence,

T (A(δ),P, z)� x

δ log x
log

(
log

√
x

log z

)√
log

x

z2
+z−5/2x11/5+ε.

For z=D1/s=x(θ−1/2−ϑ−ε)/s the above estimation simplifies to

T (A(δ),P, z)� x

δ
√

log x

(
1− 2

s

(
θ− 1

2
−ϑ−ε

))3/2

. (7.1)

We want the upper bound (7.1) to be small compared to the lower bound (6.8). This
is possible because when θ<1 is near 1 and ϑ is even closer to zero, then the above factor
behaves like (s−1)3/2 which tends to zero faster than

√
s−1. Specifically, we choose

ϑ= 1
2 (1−θ) and s=2−θ so that(

1− 2
s

(
θ− 1

2
−ϑ−ε

))3/2

< 8(1−θ)3/2,

while
√
s−1=

√
1−θ. Subtracting (7.1) from (6.8), we get

S(A(δ),P,
√
x) >

cx
√

1−θ
2δ
√

log x
−Rδ(x).

Now, summing over δ, we conclude from (6.2) that S(x)�x subject to the condition
A(θ).
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Note that we actually require A(θ) for the sum weighted by a divisor function, but
this extra factor can be handled by an application of Cauchy’s inequality. This completes
the proof of our main Theorem 4.

As remarked earlier, the sum

S(x) =
∑
n6x

r(n−2)r(n+2)Λ(n)

bears some resemblance to the twin prime sum∑
n6x

Λ(n)Λ(n+2),

not just superficially but also from a sieve-theoretic viewpoint. The latter counts sur-
vivors of two linear sieves, while the former counts survivors of one linear and two semi-
linear sieves. The assumption of the full conjecture A(1) narrowly misses resolving the
twin prime conjecture, see [Bo], whereas the extra flexibility in the sum S(x) allows us
to succeed, even with the weaker assumption.

Appendix A. Reduced composition of sieves

Let Λ={λd}d be a finite sequence supported on squarefree numbers. Let g(d) be a
multiplicative function supported on a finite set of squarefree numbers with

0 6 g(p)< 1. (A.1)

Consider the sum
G=

∑
d

λdg(d). (A.2)

We shall express this in terms of the sequence

%=1∗λ. (A.3)

Lemma A.1. We have
G=V G∗, (A.4)

where

V =
∏
p

(1−g(p)), (A.5)

G∗ =
∑

d

%dh(d) (A.6)

and h(d) is the multiplicative function supported on squarefree numbers with

h(p) =
g(p)

1−g(p)
. (A.7)
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Proof. By Möbius inversion,
λ=µ∗%. (A.8)

Hence
G=

∑
a

∑
b

µ(a)%bg(ab) =
∑

b

%bg(b)
∏
p-b

(1−g(p))=V G∗.

Next, we consider the double sum for a pair of such sequences

G′∗G′′ =
∑∑

(d1,d2)=1

λ′d1
λ′′d2

g′(d1)g′′(d2). (A.9)

Lemma A.2. We have

G′∗G′′ =
∑∑
(b1,b2)=1

%′b1%
′′
b2g

′(b1)g′′(b2)
∏

p-b1b2

(1−g′(p)−g′′(p)). (A.10)

Proof. Using (A.8), we get

G′∗G′′ =
∑∑∑∑
(a1b1,a2b2)=1

µ(a1a2)%′b1%
′′
b2g

′(a1b1)g′′(a2b2)

=
∑∑
(b1,b2)=1

%′b1%
′′
b2g

′(b1)g′′(b2)W (b1b2),

where

W (b) =
∑∑

(a1a2,b)=1

µ(a1a2)g′(a1)g′′(a2)

=
∑

(a1,b)=1

µ(a1)g′(a1)
∏

p-a1b

(1−g′′(p))

=
∏
p-b

(1−g′′(p))
∑

(a1,b)=1

µ(a1)g′(a1)
∏
p|a1

1
1−g′′(p)

=
∏
p-b

(1−g′′(p))
∏
p-b

(
1− g′(p)

1−g′′(p)

)
=

∏
p-b

(1−g′(p)−g′′(p)).

This completes the proof.

Note that, at every p, we have

1−g′−g′′ =(1−g′)(1−g′′)(1−h′h′′), (A.11)

where h′=g′(1−g′)−1 and h′′=g′′(1−g′′)−1; see (A.7). By |1−h′h′′|61+h′h′′, we get

|W (b)|6
∏
p-b

(1−g′(p))(1−g′′(p))(1+h′h′′(p)).
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Hence,

|W (b)|6CV ′V ′′
∏
p|b

1
(1−g′(p))(1−g′′(p))

, (A.12)

where
C =

∏
p

(1+h′h′′(p)), (A.13)

V ′ =
∏
p

(1−g′(p)) and V ′′ =
∏
p

(1−g′′(p)). (A.14)

Inserting (A.12) into (A.10) and dropping the condition (b1, b2)=1, we obtain the follow-
ing result.

Corollary A.3. We have

|G′∗G′′|6CV ′V ′′G∗12G
∗
21, (A.15)

where
G∗12 =

∑
b

|%′b|h12(b) and G∗21 =
∑

b

|%′′b |h21(b), (A.16)

and h12(b) and h21(b) are the multiplicative functions supported on squarefree numbers
such that

h12(p) =
g′(p)

(1−g′(p))(1−g′′(p))
and h21(p) =

g′′(p)
(1−g′(p))(1−g′′(p))

. (A.17)

Now assume that (λ′) and (λ′′) are upper-bound sieves, that is %′>0 and %′′>0, hence
the absolute values in (A.16) are redundant. Define the corresponding multiplicative
functions g12 and g21 by the formula (A.7), so we have (at primes)

g12 =
h12

1+h12
and g21 =

h21

1+h21
. (A.18)

Using (A.17), these are (at primes)

g12 =
g′

1−g′′(1−g′)
and g21 =

g′′

1−g′(1−g′′)
. (A.19)

By Lemma A.1, we get

V12G
∗
12 =G12 =

∑
d

λ′dg12(d) and V21G
∗
21 =G21 =

∑
d

λ′′dg21(d), (A.20)

where
V12 =

∏
p

(1−g12(p)) and V21 =
∏
p

(1−g21(p)). (A.21)

Inserting (A.20) into (A.15), we get the following result.
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Proposition A.4. Let {λ′} and {λ′′} be upper-bound sieves, and let g′ and g′′ be
density functions. We have

|G′∗G′′|6BCG12G21, (A.22)

where

B=
V ′V ′′

V12V21
=

∏
p

(1−g′(p))(1−g′′(p))
(1−g12(p))(1−g21(p))

. (A.23)

Note that, at primes, we have

(1−g′)(1−g′′)
(1−g12)(1−g21)

= 1+g′g′′+h′h′′ 6 1+2h′h′′ 6 (1+h′h′′)2.

Hence B6C2 and (A.22) gives

|G′∗G′′|6C3G12G21. (A.24)

Now suppose that the density functions g′ and g′′ satisfy the linear sieve conditions,
in which case so do the functions g12 and g21. Take λ′ and λ′′ to be the optimal linear sieve
weights of level D′ and D′′, respectively (either those from the beta-sieve or else those
from the Selberg sieve corresponding to the density functions g12 and g21, respectively).
Then

G12 6 (2eγ +o(1))V12 and G21 6 (2eγ +o(1))V21, (A.25)

where V12 and V21 are the products (A.21) restricted by p<D′ and p<D′′, respectively.
Hence (A.22) gives

|G′∗G′′|6 4CV ′V ′′(e2γ +o(1)), (A.26)

where

V ′ =
∏

p<D′

(1−g′(p))= (e−γ +o(1))
H ′

logD′ ,

V ′′ =
∏

p<D′′

(1−g′′(p))= (e−γ +o(1))
H ′′

logD′′ ,

by Mertens’ formula, and H ′ and H ′′ are the products

H ′ =
∏
p

(1−g′(p))
(

1− 1
p

)−1

and H ′′ =
∏
p

(1−g′′(p))
(

1− 1
p

)−1

. (A.27)

Inserting these asymptotic formulas into (A.26), we conclude the main result of this
section.
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Theorem A.5. Let {λ′} and {λ′′} be the linear sieves of level D′ and D′′, respec-
tively, and let g′ and g′′ be density functions which satisfy the linear sieve conditions.
Then

|G′∗G′′|6 (4+o(1))
CH ′H ′′

(logD′)(logD′′)
, (A.28)

where C, H ′ and H ′′ are given by the infinite products (A.13) and (A.27), respectively.

Example. Let q′ and q′′ be positive integers and set

g′(d) =
{
d−1, if (d, q′) = 1,
0, otherwise,

and g′′(d) =
{
d−1, if (d, q′′) = 1,
0, otherwise.

Then

H ′ =
q′

ϕ(q′)
, H ′′ =

q′′

ϕ(q′′)

and

C 6
∏
p

(
1+

1
(p−1)2

)
< 3.

In this case we obtain

|G′∗G′′|6 q′q′′

ϕ(q′)ϕ(q′′)
12+o(1)

(logD′)(logD′′)
. (A.29)

Appendix B. The semilinear beta-sieve

In this section we state immediate consequences of some results for the semilinear sieve
which we apply in the paper. Detailed proofs are given in [I1].

The sieve is based on the construction of two sequences {λ+
d}d and {λ−d }d, with

λ±1 =1, |λ±d |61, and
±

∑
d|n

λ±d > 0 for n> 1.

They have the following properties. Let g(d) be a multiplicative function such that
06g(p)<1 at primes, and

∏
w6p<z

p≡3 (mod 4)

1
1−g(p)

6

√
log z
logw

(
1+

L

logw

)

for any z>w>2 and some constant L>1. We remark that the condition p≡3 (mod 4)
is what we need in our application, but this could be replaced by any set of primes of
asymptotic density 1

2 .
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Let
P (z) =

∏
p<z

p≡3 (mod 4)

p and V (z) =
∏

p|P (z)

(1−g(p)),

and define
V ±(D, z) =

∑
d|P (z)

λ±d g(d).

Then we have, for 16s62 and z>2,

V +(D, z) 6V (z)(2+O((logD)−1/6)), (B.1)

V −(D, z) >V (z)
(

1
2

√
s−1+O((logD)−1/6)

)
, (B.2)

where s=logD/log z.
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