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0. Introduction and formulation of main results

0.1. The main object of study in this paper is the class GP of generalized polynomials,
namely the class of functions which is generated by starting with conventional polyno-
mials of one or several variables and applying in arbitrary order the operations of taking
the integer part (sometimes called bracket function, or floor function), addition, and
multiplication. We will denote the integer part of a number a∈R or, more generally, of
a vector a∈Rl, by [a], and the fractional part of a, a−[a], by 〈〈a〉〉. Accordingly, given a
real or a vector-valued function f , the functions [f ] and 〈〈f〉〉 are defined by [f ](x)=[f(x)]
and 〈〈f〉〉=f−[f ].

The authors were supported by NSF grants DMS-0345350 and DMS-0600042. The second author
was also supported by the Sloan foundation.
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The following description presents the class GP in a more formal way. For a fixed
d∈N let GP0 denote the ring of polynomial mappings from either Zd or Rd to R, and
let GP=

⋃∞
n=1 GPn, where, for n>1,

GPn =GPn−1∪{v+w : v, w∈GPn−1}∪{vw : v, w∈GPn−1}∪{[v] : v ∈GPn−1}.

Finally, let us call vector-valued generalized polynomials u=(u1, ..., ul):Zd!Rl, or
Rd!Rl, with u1, ..., ul∈GP, generalized polynomial mappings, or GP mappings.

In this paper we will mainly deal with GP mappings of integer vector argument,
that is, with GP mappings Zd!Rl.

0.2. Example. If pi are ordinary polynomials of one or several variables, then [p1], p1[p2],
p1+p2[p3] and [[[p1]p2+p3][p4]p5+p6]+p7[p8]3 are generalized polynomials. Note that
if one identifies R/Z with [0, 1), then there is no distinction between 〈〈p〉〉 and pmod1,
so that expressions like [p1]2〈〈p2[p3]+p4〉〉3 mod5 are generalized polynomials as well.

0.3. Clearly, generalized polynomials form an algebra, and the composition of two gen-
eralized polynomial mappings is a generalized polynomial mapping.

0.4. Generalized polynomials of a special type are featured in the following classical
result due to H. Weyl [We].

Theorem. Given a (conventional ) polynomial p(n)=
∑k

i=0 ain
i such that at least

one of the coefficients a1, ..., ak is irrational , the sequence of values {〈〈p(n)〉〉}n∈N of the
generalized polynomial 〈〈p〉〉 is uniformly distributed on [0, 1]. In particular , for any ε>0
there exists n∈N such that 〈〈p(n)〉〉<ε.

0.5. The following examples demonstrate various distribution phenomena which one
encounters when dealing with bounded generalized polynomials u:Z!R.

Examples. Let a and b be rationally independent irrational numbers.
(1) The values of the generalized polynomial u(n)=〈〈an〉〉2 are dense but not uni-

formly distributed on [0, 1]. They are, however, uniformly distributed on [0, 1] with
respect to the measure dx/(2

√
x).

(2) The sequence 〈〈−n
√

2 [n
√

2 ]〉〉, n∈N, is dense and uniformly distributed on [0, 1]
with respect to the measure which is equal to dx/(2

√
2x) on

[
0, 1

2

]
and to dx/(2

√
2x−1)

on
[
1
2 , 1
]
. (See §3.6 below.) On the other hand, one can show that the sequence
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〈〈−n 3
√

2 [n 3
√

2 ]〉〉, n∈N, is uniformly distributed on [0, 1] with respect to the standard
Lebesgue measure. (This fact is a special case of [H̊a2, Proposition 5.3].)

(3) The sequence 〈〈an〉〉〈〈bn〉〉, n∈N, is uniformly distributed on [0, 1] with respect
to the measure − log x dx. (This follows from the fact that the vector-valued sequence
(〈〈an〉〉, 〈〈bn〉〉) is uniformly distributed in the square [0, 1]2.)

(4) The sequence 2
3 〈〈an〉〉+

1
3 [2〈〈an〉〉], n∈N, is uniformly distributed on

[
0, 1

3

]
∪
[
2
3 , 1
]

with respect to the (normalized) Lebesgue measure.
(5) For the sequence u(n)=[2〈〈an〉〉]〈〈bn〉〉, n∈N, the set Z={n∈N:u(n)=0} has

density 1
2 , and the sequence of the nonzero values of u, {u(n):n /∈Z}, is uniformly dis-

tributed on the interval [0, 1] with respect to the standard Lebesgue measure.
(6) The sequence u(n)=[(n+1)a]−[na]−[a], n∈N, takes on only the values 0 and 1,

with frequency 1−〈〈a〉〉 and 〈〈a〉〉 respectively; in other words, u(n) is uniformly distributed
on [0, 1] with respect to the measure (1−〈〈a〉〉)δ0+〈〈a〉〉δ1. (The generalized polynomial
u(n), often called nowadays the Beatty sequence, appears already in the work of the
astronomer J. Bernoulli III (see [Mar]), and is found, under different names, in a variety
of mathematical contexts, from symbolic dynamics to theory of mathematical games.)

0.6. The examples above indicate that a generalized polynomial can have quite intricate
distributional properties. Given a bounded generalized polynomial u, one would like at
least to know whether the sequence {u(n)}n∈Z has some regular behavior. In particular,
one would like to know the answer to the following recalcitrant question posed in [BH̊a].

Question. Is it true that

lim
N!∞

1
N

N∑
n=1

e2πiu(n)

exists for any generalized polynomial u?

A general result which we obtain in this paper (Theorem B below) not only implies
that the answer to this question is positive, but also gives a description of the measure
which, so to say, governs the law of distribution of the sequence of the values of a
generalized polynomial.

0.7. A more general version of Theorem 0.4, also obtained in [We], deals with vector-
valued generalized polynomials of the special form

p mod1 = (p1 mod1, ..., pl mod1):Z−!Tl =Rl/Zl,

where p=(p1, ..., pl):Z!Rl is a polynomial mapping.
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Theorem. (Cf. [We, Theorem 18]) Let p:Z!Rl be a polynomial mapping and
let p̃=pmod1:Z!Tl be the corresponding generalized polynomial mapping obtained by
reduction modulo 1. There exist (disjoint , parallel , and isomorphic) subtori S1, ..., Sk in
Tl such that the sequence {p̃(n)}n∈N is uniformly distributed on S=

⋃k
i=1 Si.

0.8. When S consists of several components, that is, when k>2, we say that a sequence
is uniformly distributed on S if it is uniformly distributed on the components Si of S
with respect to the Haar measures µSi , or more precisely, is uniformly distributed on S

with respect to a measure µS =
∑k

i=1 αiµSi , with α1, ..., αk∈(0, 1). Here is an example.
Let a be an irrational number, and consider in T3 the sequence

p̃(n) =
(

1
3n

2 mod1, namod1, n2amod1
)
, n∈N.

Let S0 and S1 be the two-dimensional tori defined by S0={0}×T2 and S1=
{

1
3

}
×T2.

The sequence {p̃(n)}n∈N visits the tori S0 and S1 in the following order: S0, S1, S1, S0,
S1, S1, ..., and is uniformly distributed on S0∪S1 with respect to the probability measure
µS = 1

3µS0 + 2
3µS1 , where µSi denotes the normalized Lebesgue measure on Si, i=0, 1.

0.9. A frequently cited special case of the above theorem concerns the situation where the
components of p, the polynomials p1, ..., pl, are rationally independent. In this case the
sequence {p̃(n)}n∈N is uniformly distributed on Tl. From our perspective, the case where
the pi’s are rationally dependent is more significant since it contains in embryonic form
certain elements of a general theorem pertaining to arbitrary generalized polynomials.

0.10. Identifying the torus Tl with the unit cube K=[0, 1)l (and not distinguishing
between pmod1 and 〈〈p〉〉) allows one to view the subtori appearing in the formulation
of Theorem 0.7 above as sections of K by a finite system of parallel planes. One can now
rephrase Theorem 0.7 by saying that the sequence {〈〈p(n)〉〉}n∈N is uniformly distributed
on a bounded piecewise linear surface in Rl. The main goal of this paper is to obtain
a version of this fact for general GP mappings. But first we want to give a couple of
examples demonstrating some peculiarities of distribution of vector-valued generalized
polynomials.

Examples. Let a and b be rationally independent irrational numbers.
(1) The values of the GP mapping u(n)=(〈〈an〉〉, 〈〈an〉〉2), n∈Z, are dense on the

parabola segment S={(x, x2):x∈[0, 1]} in R2 and uniformly distributed on S with re-
spect to the measure dx.
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(2) The values of u(n)=(〈〈an〉〉, [2〈〈bn〉〉](2〈〈an〉〉2−1)−〈〈an〉〉2+1), n∈Z, are dense
and uniformly distributed with respect to the measure dx on the union of two intersecting
parabola segments {(x, x2):x∈[0, 1]} and {(x, 1−x2):x∈[0, 1]}.

0.11. While the examples in §0.5 and §0.10 indicate that too direct a generalization
of Weyl’s theorem cannot be hoped for, it turns out that the values of any bounded
generalized polynomial u:Zd!Rl are uniformly distributed, in a manner to be made
precise, on a piecewise polynomial surface (see §0.24 below). We will now discuss the
ideas behind the proof of this fact. Let us return for a moment to Theorem 0.4. There
are essentially two known approaches to the proof of this theorem. The original approach
of Weyl in [We] can be described as follows. First, Weyl establishes the equivalence of
the following conditions for a sequence {an}n∈N in [0, 1]:

(i) {an}n∈N is uniformly distributed on [0, 1], that is, for any interval [b, c]⊆[0, 1],

lim
N!∞

#{n6N : an ∈ [b, c]}
N

= c−b;

(ii) for any Riemann integrable function h on [0, 1] one has

lim
N!∞

1
N

N∑
n=1

h(an) =
∫ 1

0

h dx;

(iii) for any m∈Z\{0},

lim
N!∞

1
N

N∑
n=1

e2πiman =0.

To prove the uniform distribution of the sequence {〈〈p(n)〉〉}n∈N, Weyl uses the fact
that if for any m∈N the sequence {an+m−an}n∈N is uniformly distributed modulo 1,
then the sequence {an}n∈N is also uniformly distributed modulo 1. Since after finitely
many applications of the difference operator Dmp(n)=p(n+m)−p(n) the situation is
reduced to the case of linear polynomials, for which the condition (iii) above is eas-
ily verified, the result follows. (The difference trick described above is usually called
van der Corput’s difference theorem in honor of van der Corput, who efficiently applied
it in his work. See [vdC].)

0.12. A different approach to the proof of Theorem 0.4, which might be called dynamical,
deals with a special class of affine maps of a torus. This approach was introduced by
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Furstenberg in [F1] and [F2] (see also [H] and [C] for a similar treatment), and can be
described as follows. Let

p(n) = a0+a1n+a2n
2+...+akn

k = b0+b1n+b2

(
n

2

)
+...+bk

(
n

k

)
∈R[n].

Consider the following affine transformation, called a skew product, of the k-dimensional
torus Tk=Rk/Zk:

T (y1, y2, ..., yk) = (y1+bk, y2+y1+bk−1, ..., yk+yk−1+b1). (0.1)

Let y=(0, ..., 0, b0)∈Tk. One can check by induction on n that

(Tny)k = p(n) mod 1, n∈Z.

One can now use the known properties of the dynamical system (Tk, T ) in order to charac-
terize the behavior of the sequence {〈〈p(n)〉〉}n∈Z. In particular, if ak is irrational the sys-
tem (Tk, T ) is uniquely ergodic (with the unique T -invariant measure being the Lebesgue
measure on Tk), which implies (the one-dimensional version of) Weyl’s theorem.

0.13. Let us now return to generalized polynomials. While various modifications of the
technique based on the van der Corput difference theorem allow one to treat successfully
some special classes of generalized polynomials which are uniformly distributed with
respect to the Lebesgue measure (see [H̊a1], [H̊a2] and [H̊a3]), it seems not to be applicable
in the situations where the distribution law is not known in advance or is complicated. On
the other hand, the dynamical approach has much greater range of applicability. Indeed,
if a sequence {an}n∈N in [0, 1] is generated by a uniquely ergodic dynamical system
(X,T, µ) (where X is a compact metric space, T is a homeomorphism X!X, and µ

is a unique T -invariant measure on X) in the sense that for some Riemann integrable
function f :X!R and a point x∈X one has an=f(Tnx), then, as a consequence of
unique ergodicity, one will have for any function h∈C(R),

lim
N−M!∞

1
N−M

N−1∑
n=M

h(an) = lim
N−M!∞

1
N−M

N−1∑
n=M

h(f(Tnx))

=
∫

X

h(f(x)) dµ=
∫
R

h dν,

(0.2)

where ν=f∗(µ). Note that, due to the unique ergodicity of T , formula (0.2) holds for the
uniform Cesàro averages (N−M)−1

∑N−1
n=M h(an) (rather than for the more traditional

averages N−1
∑N

n=1 h(an)); this means that the sequence {an}n∈Z is well distributed
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(rather than uniformly distributed) with respect to the measure ν on [0, 1]. (See [F3]
and [Wa] for a discussion of basic properties of unique ergodicity, and [KN] for more
information on well distribution.) The phenomenon of well distribution of sequences
generated by uniquely ergodic measure-preserving systems takes place for actions of any
amenable group; in this paper we will mainly deal with Zd-actions.

0.14. The following example shows how a generalized polynomial can be generated by
a uniquely ergodic dynamical system. Let u(n)=〈〈an[bn]〉〉, n∈Z, where a, b∈R; we are
going to obtain the generalized polynomial u “dynamically”. Let G be the group of 4×4
upper-triangular matrices with unit diagonal:

G=




1 a1,2 a1,3 a1,4

0 1 a2,3 a2,4

0 0 1 a3,4

0 0 0 1

 : ai,j ∈R


and let

Γ =




1 m1,2 m1,3 m1,4

0 1 m2,3 m2,4

0 0 1 m3,4

0 0 0 1

 :mi,j ∈Z

 .

Then X=G/Γ is a compact manifold, on which the group G naturally acts by left trans-
lations: g(g′Γ)=(gg′)Γ, g, g′∈G. The elements of X can be identified with matrices

x=


1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1

 , where xi,j ∈ [0, 1).

We will call the xi,j ’s, 16i<j64, the coordinates of x. Note that while the coordinate
functions xi,j are not continuous on X, the set of points of discontinuity of each of these
functions has measure 0 and therefore, each xi,j is Riemann integrable.

Let

g=


1 −a 1 0

0 1 0 b

0 0 1 ab

0 0 0 1

∈G;

one checks that

gn =


1 −an n 0

0 1 0 bn

0 0 1 abn

0 0 0 1

 , n∈Z.
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Define a transformation T of X by Tx=gx, x∈X. Let

x=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Γ∈X;

in order to write the sequence Tnx “in coordinates” on X, we have to find, for each n∈Z,
a matrix γn∈Γ such that gnγn has all its entries in [0, 1). Multiplying gn by

1 −[−an] −n 0

0 1 0 −[bn]

0 0 1 −[abn]

0 0 0 1

 , we get


1 〈〈−an〉〉 0 ξn

0 1 0 〈〈bn〉〉
0 0 1 〈〈abn〉〉
0 0 0 1

 ,

where ξn=an[bn]−n[abn]. Finally, multiplying this matrix by
1 0 0 −[ξn]

0 1 0 0

0 0 1 0

0 0 0 1

 , we obtain


1 〈〈−an〉〉 0 〈〈an[bn]〉〉
0 1 0 〈〈bn〉〉
0 0 1 〈〈abn〉〉
0 0 0 1

 .

Thus, the (1, 4)-coordinate (Tnx)1,4 of the point Tnx is just 〈〈an[bn]〉〉, and we have
obtained u dynamically as u(n)=(Tnx)1,4, n∈Z. (X,T ) is not a uniquely ergodic system,
and the sequence {Tnx}n∈Z is not dense in X; let Y ={Tnx}n∈Z⊂X. One can show
that Y is a submanifold of X, and that the action of T on Y is uniquely ergodic. (This
can be shown directly, but also follows from the general theory; see [Le] or [L2].) Thus,
u is generated by the uniquely ergodic system (Y, T |Y ). This implies that the sequence
{u(n)}n∈Z is well distributed with respect to a certain Borel measure ν on [0, 1]. (Namely,
ν=(x1,4)∗(µY ), where µY is the unique T -invariant measure on Y .)

0.15. In the example above, the group G of upper-triangular matrices with unit diagonal
is a nilpotent Lie group, Γ is a uniform subgroup of G, and X is, therefore, a compact
nilmanifold. It turns out that the class of dynamical systems which are generated by
translations on nilmanifolds provides the adequate framework for the study of generalized
polynomials. In this paper the term nilmanifold will stand for a compact homogeneous
space X=G/Γ, where G is a nilpotent, not necessarily connected, Lie group and Γ is a
discrete subgroup of G. The group G acts on X by left translations, or, as we will often
say, by nilrotations. We will use the term nilsystem to denote any dynamical system of
the form (X,H), where X=G/Γ is a (compact) nilmanifold and H is a subgroup of G
acting on X by nilrotations.
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0.16. Let us note that the skew product transformation (0.1) of the torus Tk, which was
utilized in §0.12 to generate the generalized polynomial 〈〈p〉〉, where

p= b0+b1x+b2

(
x

2

)
+...+bk

(
x

k

)
,

can also be viewed as a nilrotation. Indeed, let G be the group of upper-triangular
matrices with unit diagonal

1 a1,2 a1,3 ... a1,k a1,k+1

0 1 a2,3 ... a2,k a2,k+1

0 0 1 ... a3,k a3,k+1

...
...

...
...

...
...

0 0 0 ... 1 ak,k+1

0 0 0 ... 0 1


with ai,j∈Z for 16i<j6k and ai,k+1∈R for 16i6k, and let Γ be the subgroup of G
consisting of the matrices with integer entries. Then G is a nilpotent (nonconnected) Lie
group with X=G/Γ'Tk, and the system defined on X by the nilrotation by the element

g=



1 1 0 ... 0 bk

0 1 1 ... 0 bk−1

0 0 1 ... 0 bk−2

...
...

...
...

...
...

0 0 0 ... 1 b1

0 0 0 ... 0 1


∈G

is isomorphic to the dynamical system on Tk defined by formula (0.1).

0.17. Nilsystems have some remarkable properties which will be relied upon in this
paper. First, they are known to be distal ; see [AGH], [K1] and [K2]. (An action of a
group G on a compact metric space is said to be distal if for any distinct points x and y
of the space, infg∈G dist(gx, gy) is positive.) If a group of homeomorphisms of a compact
space X acts distally, then X is a disjoint union of minimal sets, which are orbit closures
of points of X. While not every distal minimal system is uniquely ergodic, the minimal
components of nilsystems are (see [Le] or [L2]).

0.18. We are now going to formulate a theorem that establishes a connection between
bounded generalized polynomials and nilsystems. But first we need to introduce the
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notion of a piecewise polynomial function on a nilmanifold. Given a connected nil-
manifold X, one can define a bijective coordinate mapping τ :X![0, 1)k (see the formal
definition in §1.5 below). While the mapping τ is not continuous, its inverse τ−1 is. (This
is clear in the case X=Tk, where τ :Tk![0, 1)k is the standard coordinate mapping, and
is analogous in the general case.) Let us say that a mapping h:B!Rl from a set B⊆Rk

is piecewise polynomial if there is a partition B=L1∪...∪Lr and polynomial mappings
P1, ..., Pr:Rk!Rl such that each Lj is defined by a system of polynomial inequalities
and h|Lj =Pj , j=1, ..., r. We say that a mapping f :X!Rl is piecewise polynomial if the
mapping f �τ−1: [0, 1)k!Rl is piecewise polynomial. This definition does not depend on
the choice of a coordinate system on X (see [L4]). We say that a mapping of a non-
connected nilmanifold X is piecewise polynomial if it is piecewise polynomial on every
connected component of X. A piecewise polynomial mapping may be discontinuous, but
it is clearly Riemann integrable. (A function on a compact metric space X equipped
with a finite measure is Riemann integrable if and only if it is bounded and continuous
almost everywhere in X.)

0.19. Theorem A. (i) For any nilmanifold X, any action φ of Zd by nilrotations on
X, any piecewise polynomial mapping f :X!Rl, and any point x∈X, the mapping

u(n) = f(φ(n)x), n∈Zd,

is a GP mapping.
(ii) For any bounded GP mapping u:Zd!Rl there exists a nilmanifold X, an er-

godic action φ of Zd by nilrotations on X, a piecewise polynomial mapping f :X!Rl,
and a point x∈X such that

u(n) = f(φ(n)x), n∈Zd.

In other words, any mapping that is generated by a nilsystem and a piecewise poly-
nomial mapping is a (bounded) GP mapping, and any bounded GP mapping is generated
by an ergodic nilsystem and a piecewise polynomial mapping.

0.20. Remarks. (1) It is important to emphasize that the piecewise polynomial map-
ping f appearing in the formulation of Theorem A may be discontinuous, and that this
(rather mild) discontinuity of f is inevitable: not every bounded generalized polynomial
is of the form u(n)=f(Tnx), where T is a nilrotation, x∈X and f∈C(X). Moreover, not
every bounded generalized polynomial can be represented as u(n)=f(Tnx), where T is
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a (continuous) distal transformation of a compact metric space X, x∈X, and f∈C(X).
Indeed, all points in a distal system are recurrent (see, for example, [F3, p. 160]), and
thus the sequence f(Tnx) with f∈C(X) cannot have nonrecurrent values, whereas some
generalized polynomials may (see examples in §3.4). The same argument shows that
not every bounded generalized polynomial is representable as f(Tnx), where T is a
continuous uniquely ergodic transformation of a compact space X, f∈C(X), and the
unique T -invariant measure µ on X is such that supp(µ)=X.(1) (It is not hard to show
that under these conditions the system (X,T ) is minimal; see, for example, [Wa, Theo-
rem 6.17].) Finally, not all bounded generalized polynomials without isolated values are
representable as f(Tnx), where T is distal and f is continuous; the simplest example of
such a polynomial is u(n)=〈〈[an]b〉〉 (see [H̊a1]).

(2) Also, not all bounded generalized polynomials can be obtained by using a skew
product transformation of a torus (like in the example discussed in §0.12 above), and
a Riemann integrable (not necessarily continuous) function thereon. Indeed, consider
the generalized polynomial u(n)=〈〈an[bn]〉〉, where a and b are rationally independent
irrational numbers. Let X be a torus with the standard measure µ and let T be an
ergodic skew product transformation of X. Assume that there exist a Riemann integrable
function f on X and a point x∈X such that u(n)=f(Tnx), n∈Z, and let f̃=e2πif .
Then f̃(Tnx)=e2πian[bn], n∈Z. One can show that for any character χ on X one has
χ(Tnx)=e2πip(n), where p is a polynomial. Using the method described in §3.6 below
one can check that for any ordinary polynomial p the sequence 〈〈an[bn]−p(n)〉〉, n∈N, is
uniformly distributed on [0, 1]. Hence,

lim
N!∞

1
N

N∑
n=1

e2πi(an[bn]−p(n)) =0.

Since T is uniquely ergodic (this follows from [F3, Proposition 3.10]), the sequence Tn(x)
is uniformly distributed on X, and so

∫
X

f̃ �χdµ= lim
N!∞

1
N

N∑
n=1

f̃(Tnx)χ(Tnx) dµ= lim
N!∞

1
N

N∑
n=1

e2πian[bn]e−2πip(n) =0.

Hence, f̃ is orthogonal to all characters on X, which contradicts the completeness of the
system of characters on X.

(1) On the other hand, it follows from [H̊a1, Theorem 4.2.2] that every bounded generalized poly-
nomial can be obtained with the help of a uniquely ergodic system if the condition supp(µ)=X is
dropped.
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0.21. In order to formulate corollaries of Theorem A we need to introduce some termi-
nology. A Følner sequence in Zd is a sequence {ΦN}∞N=1 of finite subsets of Zd such that,
for any n∈Zd,

lim
N!∞

|(ΦN +n)∆ΦN |
|ΦN |

=0.

(A standard example of a Følner sequence is provided by a sequence of (not necessarily
nested) cubes of increasing size in Zd.) We will say that a set E⊆Zd has density α and
write D(E)=α if

lim
N!∞

|E∩ΦN |
|ΦN |

=α

for every Følner sequence {ΦN}∞N=1 in Zd. When saying that a statement holds for
almost all elements of Zd we mean that this statement holds for all elements of Zd but
a subset of zero density.

0.22. Let ω be a mapping of Zd to a compact metric space X endowed with a finite
nonzero Borel measure µ. We will say that the (multiparameter) sequence {ω(n)}n∈Zd is
well distributed on X with respect to µ if for any open set U⊆X with µ(∂U)=0 one has
D(ω−1(U))=µ(U)/µ(X). When this is the case, for any Riemann integrable function f

on X and any Følner sequence {ΦN}∞N=1 in Zd one has

lim
N!∞

1
|ΦN |

∑
n∈ΦN

f(ω(n))=
∫

X

f dµ.

0.23. Let a set L⊆Rs, with nonempty interior, be defined by a system of polynomial
inequalities, and let P be a polynomial mapping Rs!Rl. We will call S=P(L) a
(parameterized) polynomial surface in Rl. Let λ be the Lebesgue measure on Rs; we will
denote by µS the normalized measure P∗(λ) on S, which is defined by

µS(A) =
λ(P−1(A)∩L)

λ(L)

for Borel sets A in Rl. A piecewise polynomial surface S is a finite (not necessarily
disjoint) union of polynomial surfaces, S=

⋃k
i=1 Si, endowed with a measure µS of the

form µS=
∑k

i=1 αiµSi for some α1, ..., αk>0.

0.24. We are now in a position to formulate a corollary of Theorem A pertaining to well
distribution of bounded generalized polynomials. In order to keep the technicalities to a
minimum, we give here a somewhat simplified version of a more comprehensive theorem
to be found in §3.1 below.
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Theorem B. Let u:Zd!Rl be a bounded GP mapping. There exists a bounded
piecewise polynomial surface S such that u(n)∈S for almost all n∈Zd and the sequence
{u(n)}n∈Zd is well distributed on S with respect to µS .

0.25. In particular, we have the following consequence.

Corollary. Let u:Zd!Rl be a bounded GP mapping. For any f∈C(Rl) and any
Følner sequence {ΦN}∞N=1 in Zd,

lim
N!∞

1
|ΦN |

∑
n∈ΦN

f(u(n))

exists and is equal to
∫
S f dµS .

0.26. The following special case of Corollary 0.25 gives the affirmative answer to the
question formulated in §0.6.

Corollary. For any generalized polynomial u:Zd!R and any Følner sequence
{ΦN}∞N=1 in Zd,

lim
N!∞

1
|ΦN |

∑
n∈ΦN

e2πiu(n) exists.

Note that the generalized polynomial u is not assumed to be bounded, but this does
not matter in view of the identity e2πiu(n)=e2πi〈〈u(n)〉〉.

0.27. From Corollary 0.26 one can deduce, with the help of the spectral theorem, the fol-
lowing two generalizations of the classical von Neumann’s ergodic theorem. (For proofs,
see §4.3 and §4.4 below.)

Corollary. Let U t
1, ..., U

t
k, t∈R, be commuting unitary flows on a Hilbert space H

and let u1, ..., uk be generalized polynomials Zd!R. For any Følner sequence {ΦN}∞N=1

in Zd the sequence
1

|ΦN |
∑

n∈ΦN

U
u1(n)
1 ... U

uk(n)
k

is convergent in the strong operator topology.
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0.28. Corollary. Let U1, ..., Uk be commuting unitary operators on a Hilbert space
and let u1, ..., uk be generalized polynomials Zd!Z. For any Følner sequence {ΦN}∞N=1

in Zd the sequence
1

|ΦN |
∑

n∈ΦN

U
u1(n)
1 ... U

uk(n)
k

is convergent in the strong operator topology.

0.29. We will now formulate one more corollary of Theorem B, which deals with the
existence of invariant means (also called Banach limits) on the algebra B of bounded
generalized polynomials Zd!R. It follows from Theorem B that for any u∈B the
number

L(u) = lim
N!∞

1
|ΦN |

∑
n∈ΦN

f(u(n))

does not depend on the choice of the Følner sequence {ΦN}∞N=1. This fact implies that
all Banach limits agree on u (see [Lo] or [Su].) Consequently, we have the following result.

Proposition. There exists a unique invariant mean on the algebra B of bounded
generalized polynomials Zd!R. In other words, there exists a unique linear functional
L:B!R having the following properties:

(i) for any m∈Zd, L(um)=L(u), where um(n)=u(n+m), n∈Zd;
(ii) L(u)>0 if u>0;
(iii) L(1)=1.

Let us also remark that the analogous fact holds for the algebra generated by
functions of the form f �u, where u is a bounded generalized polynomial Zd!Rl and
f∈C(Rl).

0.30. While Theorem B utilizes the unique ergodicity of (ergodic) nilrotations, the fact
that nilrotations are also distal provides additional information about the character of
distribution of GP mappings on piecewise polynomial surfaces. Given an infinite sequence
E={n1, n2, ... } (of not necessarily distinct elements) in Zd, let FS(E) denote the set of
finite sums of distinct elements of E: FS(E)=

{∑
i∈F ni :F⊂N and 0<|F |<∞

}
. Sets

of the form FS(E) are called IP sets in ergodic theory, and are intrinsically connected
with recurrence properties of distal systems (see [F3] and [B]). A set P⊆Zd is called
an IP∗ set if it has a nontrivial intersection with any IP set in Zd. One can show that
any IP∗ set P is syndetic, that is, has the property that the union of finitely many shifts
of P covers Zd. In fact, the property of IP∗-ness is quite a bit stronger than that of
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syndeticity. For instance, while the intersection of two syndetic sets may be empty, the
intersection of any finite family of IP∗ sets is again an IP∗ set. (See [F3, Lemma 9.5].)
A set Q is called IP∗+ if it is a “shifted” IP∗ set, that is, if it is of the form n+P , where
P is an IP∗ set. While IP∗+ sets do not have the filter property (the intersection of two
IP∗+ sets may be empty), they still have some “regularity” properties and form a smaller
class than that of general syndetic sets. (See [B] for examples of syndetic sets which are
not IP∗+.) The relevance of IP∗ and IP∗+ sets to the distal systems is revealed by the
following theorem.

Theorem. (Cf. [F3, Ch. 9] and [B, Theorems 3.8 and 3.9]) Let φ be a Zd-action
by homeomorphisms of a compact metric space X. The action φ is distal if and only if
for any x∈X and any open neighborhood W of x the set {n:φ(n)x∈W} is an IP∗ set.
If the system (X,φ) is minimal (that is, the orbit {φ(n)x}n∈Zd of every point x∈X is
dense in X), then the action of φ is distal if and only if for any x∈X and any open
W⊆X the set {n:φ(n)x∈W} is IP∗+.

0.31. Let u be a bounded GP mapping and let S be the piecewise polynomial surface
on which the values of u are well distributed. It follows from Theorem B that for any
nonempty open set W⊆S the set u−1(W )={n∈Zd :u(n)∈W} is syndetic. From the
distality of nilsystems we will deduce the following enhancement of this fact.

Theorem C. For any nonempty open set W⊆S, u−1(W ) is an IP∗+ set.

0.32. Let us say that a value u(n)∈Rl of u is IP∗-recurrent if for any neighborhood W
of u(n) the set u−1(W ) is an IP∗ set, and is IP∗+-recurrent if for any neighborhood W of
u(n) the set u−1(W ) is an IP∗+ set. It now follows from Theorems B and C that almost
all values of u are IP∗+-recurrent. (Or, more precisely, u(n) is an IP∗+-recurrent value of u
for almost all n∈Zd.)

0.33. For a given polynomial mapping u, Theorem C gives no information about whether
a concrete value of u is recurrent. This gap is partly filled by the following theorem.

Theorem D. Let u be a GP mapping Zd!Rl such that all polynomials occurring
in the representation of u have zero constant term, and let ũ=umod1 viewed as a
mapping to the torus Tl=Rl/Zl, that is, let ũ be the composition of u with the natural
projection Rl!Tl. Then 0∈Tl is an IP∗-recurrent value of ũ. (In other words, for
any ε>0 the set {n∈Zd :‖u(n)‖<ε}, where ‖x‖ is the distance from x∈Rl to Zl, is an
IP∗ set.)
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(The expression “polynomials occurring in the representation of u” refers to the poly-
nomials occurring in the representation of the coordinates of u; for example, polynomials
occurring in the representation of u=([2[p1]+p2]p3, [p4][p5], 3[p6][p7]) are p1, ..., p7, 2, 3.
Below we will use the term “polynomials involved in u”; see a formal definition in §2.9.)

0.34. We will now briefly discuss an interesting Diophantine application of Theorem D.
The following theorem was obtained in [vdC].

Theorem. Let ui:Zd+i−1!R, i=1, ..., k, be polynomials without constant term.
For any δ>0, the set of n∈Zd for which there exist m1, ...,mk∈Z such that

|u1(n)−m1|<δ, |u2(n,m1)−m2|<δ, ..., |uk(n,m1, ...,mk−1)−mk|<δ (0.3)

is syndetic in Zd.

Furstenberg and Weiss proved in [FW] that the set of n∈Zd for which the system
(0.3) has a solution is IP∗. This fact was further enhanced and generalized in [BH̊aM]. We
will derive from Theorem D yet another generalization of Furstenberg–Weiss’ theorem.

Theorem. Let ui:Zd+i−1!R, i=1, ..., k, be generalized polynomials such that all
ordinary polynomials occurring in the representation of ui have zero constant term. For
any δ>0, the set of n∈Zd for which there exist m1, ...,mk∈Z satisfying system (0.3) is
an IP∗ set.

0.35. In conclusion, we would like to say a few words about bounded generalized poly-
nomials of continuous argument. We do believe that all the results above extend to this
case. We, however, cannot prove this here because of the absence in the literature of
the continuous version of Theorem 2.3, which is an essential ingredient in our proofs. A
version of Theorem 2.3 where the well distribution is replaced by the uniform distribu-
tion follows from the results in [Sh1]; this allows one to obtain a continuous version of
Theorem B, which we will presently formulate. For a measurable set E⊆Rd let us write
DB(E)=α if

lim
r!∞

λ(E∩Br)
λ(Br)

=α,

where λ is the Lebesgue measure in Rd and Br⊂Rd is the ball of radius r centered at 0.
If ω:Rd!X is a mapping to a topological space X equipped with a nonzero finite Borel
measure µ, let us say that ω is ball-uniformly distributed on X if for any open set U in X
with µ(∂U)=0 one has

DB(ω−1(U))=
µ(U)
µ(X)

.
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Theorem Bc. Let u:Rd!Rl be a bounded GP mapping. There exists a bounded
piecewise polynomial surface S such that u is ball-uniformly distributed on S with respect
to µS .

0.36. The goal of this subsection is to help the reader to navigate through this—
sometimes quite entangled—paper. In the course of proving Theorem A and in order
to derive its corollaries, we will formulate various modifications of Theorems A, B, Bc,
etc. The following diagram describes logical connections between the major theorems
and indicates the subsections where they appear:

A (0.19) =⇒ B (0.24)
" "

A∗ (1.7) B∗ (3.1)
" "

A∗∗∗ (10.4)−!A∗∗1 (1.14)=⇒ −A∗∗ (1.17)=⇒B∗∗ (2.12)=⇒ C (0.31)

⇓ =⇒
D (0.33) Bc (0.35) −!B∗c (4.11),

where “P!Q” means that Q is a special case of P and “P⇒Q” means that Q is derivable
from P .

Here is a brief description of the structure of the paper. In §1 we introduce coordi-
nates on a nilmanifold and present another version of Theorem A, Theorem A∗, which
says that any GP mapping is generated with the help of a coordinate mapping of a
connected nilmanifold and a sequence of polynomial transformations thereof. We then
formulate an extension of Theorem A∗, Theorem A∗∗, which deals with families of func-
tions more general than that of generalized polynomials, and ties the complexity of a
GP mapping with the nilpotency class of the nilsystem that generates it. The (long
and difficult) proof of Theorem A∗∗ is self-contained, and we postpone it until the last
sections of the paper, first focusing on applications of this theorem.

In §2 we describe how subnilmanifolds look in coordinates on a nilmanifold, and
use this information to derive from Theorem A a technical version of Theorem B, The-
orem B∗∗. Theorem B∗∗ is used in §3 to obtain Theorem B∗, a refinement of Theo-
rem B that contains some additional information about the distribution of the values of
a bounded GP mapping u on a piecewise polynomial surface S. In particular, it connects
the degrees and the coefficients of the polynomials that define S with the complexity of u
and, respectively, with the constant terms of the polynomials occurring in the representa-
tion of u. We then discuss exceptional values of GP mappings, and provide an instructive
example of computation of the distribution of the values of a generalized polynomial.
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In §4 we derive the rest of the results formulated in the introduction; in particular,
we prove Theorems C and D.

§§5–10 are devoted to the proof of Theorem A∗∗; in this proof we use the nilpotent
group of upper-triangular matrices with unit diagonal. In §5 and §6 we reduce the
problem to an algebraic one, namely, to proving that any generalized polynomial can be
produced by applying special algebraic operations to entries of an appropriately chosen
upper-triangular matrix. (The general algebraic version of Theorem A, Theorem A∗∗∗,
is formulated in §10.)

In §§7–9 we deal with elementary generalized polynomials (the generalized polyno-
mials produced from the conventional polynomials by using only multiplication and the
bracket operation (and no addition or subtraction)). The structure of an elementary
generalized polynomial can be described by a tree (an oriented cycle-free graph), and
we use a rather cumbersome induction over the set of trees to show that any elemen-
tary generalized polynomial can be “read off”, modulo “smaller” elementary generalized
polynomials, from an upper-triangular matrix.

In §10 we conclude the proof of Theorem A∗∗∗, passing from elementary to arbitrary
generalized polynomials.

Acknowledgments. We thank H. Furstenberg and the anonymous referee for useful
comments and suggestions.

1. Coordinates on a nilmanifold and a reformulation of Theorem A

1.1. Let G be a nilpotent Lie group of nilpotency class D and let Γ be a discrete uniform
subgroup of G. The compact homogeneous space X=G/Γ is called a nilmanifold of
nilpotency class D. We will assume that G is connected and simply-connected, which
will suffice for our goals.

1.2. We will list here some facts about connected simply-connected nilpotent Lie groups;
for more details see [Mal].

For any g∈G there exists a unique one-parameter subgroup {gt}t∈R in G such
that g1=g. Let G=G1⊇G2⊇...⊇GD⊇GD+1={1G} be the lower central series of G;
then, for each j, Gj/Gj+1 is a finite-dimensional R-vector space. G has a Mal’tsev basis
compatible with Γ, that is, an ordered set {e1, ..., ek}⊂Γ such that, for a certain sequence
1=k1<...<kD of positive integers, (the images of) the elements ekj , ..., ekj+1−1 form a
basis in Gj/Gj+1 for every j=1, ..., D. If {e1, ..., ek} is a Mal’tsev basis in G, then every
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element g∈G is uniquely representable in the form g=ea1
1 ... eak

k , where the coordinates
a1, ..., ak are real numbers, with g∈Γ if and only if a1, ..., ak∈Z.

For every i∈{1, ..., k} let Di∈N be such that ei∈GDi\GDi+1.

1.3. In the coordinates (a1, ..., ak), the multiplication in G is given by polynomial for-
mulas: if g=ea1

1 ... eai
i ... eak

k and h=eb1
1 ... ebi

i ... ebk

k , then

gh= ea1+b1
1 ... e

ai+bi+pi(a1,...,ai−1,b1,...,bi−1)
i ... e

ak+bk+pk(a1,...,ak−1,b1,...,bk−1)
k (1.1)

and
gt = ea1t

1 ... e
ait+qi(a1,...,ai−1,t)
i ... e

akt+qk(a1,...,ak−1,t)
k , t∈R, (1.2)

where, for each i=2, ..., k, pi is a polynomial in 2(i−1) variables with rational coefficients
which takes integer values on Z2(i−1) and qi is a polynomial in i variables with rational
coefficients which takes integer values on Zi. (See [Mal].)

1.4. For each i=2, ..., k one has deg pi6Di and deg qi6Di. Moreover,

deg pi(aD1
1 , ..., aDk

k , bD1
1 , ..., bDk

k ) 6Di.

It follows that if S1, ..., Sk, R1, ..., Rk are polynomials with degSi6Di and degRi6Di

for all i=1, ..., k, then deg pi(S1, ..., Sk, R1, ..., Rk)6Di, i=1, ..., k. (See [L1]; in the ter-
minology of [L1] the multiplication in G is a continuous polynomial mapping of lc-degree
6(1, 2, ..., D).)

1.5. The coordinate mapping τ̃ :G!Rk, g=ea1
1 ... eak

k 7!(a1, ..., ak), is a diffeomorphism
satisfying τ̃(Γ)=Zk. The “cube” Q=τ̃−1([0, 1)k)⊂G is the fundamental domain for X,
which means that for any g∈G there exists a unique γ∈Γ such that τ̃(gγ)∈[0, 1)k. Indeed,
put γ0=1G, and if γi−1∈Γ is such that

gγi−1 = ex1
1 ... e

xi−1
i−1 e

bi
i ... ebk

k , with x1, ..., xi−1 ∈ [0, 1),

put γi=γi−1e
−[bi]
i . Then

gγi = gγi−1e
−[bi]
i = ex1

1 ... e
xi−1
i−1 e

xi
i e

ci+1
i+1 ... e

ck

k , with xi = bi−[bi]∈ [0, 1).

For γ=γk we therefore have gγ=ex1
1 ... exk

k with x1, ..., xk∈[0, 1).
For g∈G we define χ(g)=gγ∈Q and τ(g)=τ̃(χ(g))=(x1, ..., xk)∈[0, 1)k. The map-

ping τ :G![0, 1)k factors to a one-to-one mapping X![0, 1)k, which is a diffeomorphism
on τ−1((0, 1)k) but is discontinuous at the points of τ−1([0, 1)k\(0, 1)k). The mapping τ
transfers (the completion of) the Haar measure on X to the Lebesgue measure on [0, 1)k.
For 16i6k let τi be the ith coordinate of τ . We will refer to τ=(τ1, ..., τk) as a coordinate
mapping of X or a coordinate system on X.
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1.6. Let us note the following fact.

Lemma. Any piecewise polynomial mapping h:B!Rl of a bounded subset B⊂Rk

is the restriction to B of a GP mapping w:Rk!Rl.

Proof. Recall that a mapping h:B!Rl is said to be piecewise polynomial if B is
partitioned, B=L1∪...∪Lr, so that for each j=1, ..., r the set Lj is defined by a system
of polynomial inequalities:

Lj = {t∈B : pj,1(t), ..., pj,nj (t)> 0, qj,1(t), ..., qj,mj (t) > 0},

and Pj =h|Lj is a polynomial mapping. Let M be such that |pj,i(t)|<M and |qj,i(t)|<M
for all j and i and all t∈B. For any number c with |c|<M , one has

−
[
− c

M

]
=
{

1, if c> 0,
0, if c6 0,

and 1+
[
c

M

]
=
{

1, if c> 0,
0, if c< 0.

Thus, if we define a GP mapping w as

w=
r∑

j=1

( nj∏
i=1

(
−
[
−pj,i

M

]))( mj∏
i=1

(
1+
[
qj,i
M

]))
Pj ,

then, for t∈B, w(t)=Pj if and only if t∈Lj .

It follows that the composition of a bounded GP mapping with a piecewise polyno-
mial mapping is a GP mapping.

1.7. We will now formulate a modification of Theorem A, which, on one hand, is more
natural, and on the other hand, will be easier for us to prove. The idea is to obtain a
generalized polynomial as a coordinate function along the orbit of a point of a nilmanifold
under a polynomial action of Zd instead of a conventional action.

A polynomial mapping ω:Zd!G to a nilpotent Lie group is a mapping of the form
ω(n)=gp1(n)

1 ... g
pr(n)
r , n∈Zd, where g1, ..., gr∈G and p1, ..., pr are polynomials.

Theorem A∗. A mapping u:Zd![0, 1)l is a GP mapping if and only if there exist
a connected nilmanifold X=G/Γ equipped with a coordinate system τ=(τ1, ..., τk), a
polynomial mapping ω:Zd!G, and indices i1, ..., il∈{1, ..., k} such that

u=(τi1 , ..., τil
)�ω.
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1.8. We will now explain how Theorem A can be derived from Theorem A∗.
To prove (i), assume that u(n)=f(φ(n)x), n∈Zd, where f :Y!Rl is a piecewise

polynomial mapping of a nilmanifold Y =H/Λ, φ is a homomorphism Zd!H, and x∈Y .
Let π:H!Y be the natural projection and let g∈H be such that π(g)=x; then the map-
ping ω:Zd!H, ω(n)=φ(n)g, n∈Zd, is polynomial. The function f is the composition
f=h�τ , where τ is a coordinate function on Y and h is a piecewise polynomial function
on Rk. By (the if part of) Theorem A∗, v(n)=τ(φ(n)x)=τ(ω(n)) is a GP mapping.
Thus, by Lemma 1.6, u=h�v is a GP mapping.

To prove (ii), assume that a GP mapping u is represented in the form

u(n) = (τi1 , ..., τil
)(ω(n)), n∈Zd,

as in Theorem A∗. Let π:G!X be the natural projection. It is shown in [L3] that one
can find another connected nilmanifold X̃=G̃/Γ̃ with a continuous mapping η: X̃!X, a
homomorphism φ:Zd!G̃, and a point x̃∈X̃ such that π(ω(n))=η(φ(n)x̃) for all n∈Zd.
It is also shown in [L3] (and, as well, follows from the results in [Le] or [Sh2]) that the
closure Y =φ(Zd)x̃ of the orbit of x̃ under the action of φ is a (not necessarily connected)
subnilmanifold of X̃. Hence, u(n)=(τi1 , ..., τil

)(η(φ(n)x̃)), n∈Zd. Moreover, the action
φ is ergodic on Y , the mapping (τi1 , ..., τil

)�η is piecewise polynomial on X̃, and hence
f=(τi1 , ..., τil

)�η|Y is a piecewise polynomial mapping from Y (see [L4]).

1.9. As a matter of fact, we need an extension of Theorem A∗ which is applicable to vari-
ous classes of polynomial mappings to G: continuous polynomial flows, polynomial map-
pings with zero constant term, etc. We will therefore consider a more general situation.
Let A be a ring of real-valued functions on a set Z. We will call any mapping ω:Z!G of
the form ω(z)=gα1(z)

1 ... g
αr(z)
r , z∈Z, with g1, ..., gr∈G and α1, ..., αr∈A an A-mapping.

If {e1, ..., ek} is a Mal’tsev basis in G, then, since the multiplication in G is polynomial,
any A-mapping ω:Z!G can be written in terms of this basis: ω(z)=eα′1(z)

1 ... e
α′k(z)
k ,

z∈Z, with α′1, ..., α
′
k∈A. We will denote the set of A-mappings to G by G(A).

When A is the ring of polynomials Zd!R, the A-mappings to a nilpotent Lie group
G are just polynomial mappings.

1.10. For D∈N we denote by ND(A) the set of mappings β:Z![0, 1) such that there
exist a nilmanifold X=G/Γ of nilpotency class 6D equipped with a coordinate system
(τ1, ..., τk), ω∈G(A), and i∈{1, ..., k} such that β=τi�ω.
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1.11. Let A be a ring of real-valued functions on a set Z. We will call the minimal
algebra of real-valued functions on Z which contains A and is closed under the operation
of taking the integer part the bracket extension of A, and denote it by B(A). More
precisely, v∈B(A) if one of the following holds:

(i) v∈A;
(ii) v=v1+v2, where v1, v2∈B(A);
(iii) v=v1v2, where v1, v2∈B(A);
(iv) v=±[w], where w∈B(A).(2)

We define

Bo(A) = {u∈B(A) : Ran(u)∈ [0, 1)}= {u−[u] :u∈B(A)}.

1.12. The complexity of v∈B(A), cmp(v), is defined by

cmp(v) =


1, if v ∈A,
max{cmp(v1), cmp(v2)}, if v= v1+v2,
cmp(v1)+cmp(v2), if v= v1v2,
cmp(w), if v=±[w].

(Note that cmp(v) is not uniquely defined and depends on the representation of v in terms
of elements of A. This will not affect our arguments, since we will deal with concrete
representations of generalized polynomial rather than with polynomials themselves. We
refer the reader to §6, where a formalism for dealing with representations of generalized
polynomials is introduced.)

Examples. If pi∈A, then

cmp(p1) = 1, cmp([p1])= 1, cmp(p1[p2])= 2,

cmp(p1[p2]+p3) = 2, cmp(p1[p2[p3]])= 3, cmp(p1[p2][p3])= 3,

cmp(p1[p2[p3]+p4]+p5[p6])= 3 and cmp(p1[p2[p3]+p4][p5]+p6) = 4.

When v=(v1, ..., vl) is a GP mapping, we define cmp(v)=max{cmp(vi)}l
i=1.

(2) Here is the clarification of how this definition should be understood. Put B0(A)=A; then
put Bk(A)=Bk−1(A)∪{v1+v2 :v1, v2∈Bk−1(A)}∪{v1v2 :v1, v2∈Bk−1(A)}∪{±[v]:v∈Bk−1(A)} for
k=1, 2, ... , and finally let B(A)=

⋃∞
k=0 Bk(A).
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1.13. From the definition of complexity we immediately have the following result.

Lemma. Let p be a polynomial in k variables, let n1, ..., nk∈N, let

deg p(xn1
1 , ..., xnk

k ) =n,

and let v1, ..., vk∈B(A) satisfy cmp(vi)6ni, i=1, ..., k. Then cmp(p(v1, ..., vk))6n.

1.14. For D∈N we define

BD(A) = {v ∈B(A) : cmp(v) 6D} and Bo
D(A) =BD(A)∩Bo(A).(3)

Theorem A∗∗1 . For any ring A of real-valued functions and any D∈N,

ND(A) =Bo
D(A).

The inclusion Bo
D(A)⊆ND(A) of this theorem will be proved in §§5–10.

1.15. Proof of the inclusion ND(A)⊆Bo
D(A). Let X=G/Γ be a nilmanifold of nil-

potency class 6D with a coordinate system (τ1, ..., τk), and let ω∈G(A); we need to
show that τi�ω∈BD(A) for all i=1, ..., k. Let {e1, ..., ek} be the Mal’tsev basis in G

which induces the coordinates τ1, ..., τk on X. Define σ0:Z!G, σ0≡1G. Assume that
σi−1:Z!Γ is already defined so that

ω(z)σi−1(z) = e
ξ1(z)
1 ... e

ξi−1(z)
i−1 e

βi(z)
i ... e

βk(z)
k , z ∈Z, (1.3)

with ξ1(z), ..., ξi−1(z)∈[0, 1), z∈Z. Define σi:Z!Γ by

σi(z) =σi−1(z)e
−[βi(z)]
i , z ∈Z.

Then

ω(z)σi(z) =ω(z)σi−1(z)e
−[βi(z)]
i = e

ξ1(z)
1 ... e

ξi−1(z)
i−1 e

ξi(z)
i e

ζi+1(z)
i+1 ... e

ζk(z)
k , z ∈Z, (1.4)

with ξi(z)=βi(z)−[βi(z)]∈[0, 1), z∈Z.
Now put χ(ω)=ωσk. Then Ran(χ(ω))⊆Q=τ̃−1([0, 1)k), so that τi�ω=τ̃i�χ(ω) and

we have τi�ω=τ̃i�χ(ω)=ξi, i=1, ..., k. We have to show that ξ1, ..., ξk∈Bo
D(A).

Assume, by induction on i, that in formula (1.3), ξ1, ..., ξi−1, βi, ..., βk∈B(A) and, in
the notation of §1.2, cmp(ξj)6Dj , j=1, ..., i−1, and cmp(βj)6Dj , j=i, ..., k. Then ξi=
βi−[βi]∈Bo(A), and cmp(ξi)=cmp(βi)6Di6D, so ξi∈Bo

D(A). By §1.3, the functions
ζi+1, ..., ζk in formula (1.4) are polynomial expressions in ξ1, ..., ξi−1, βi, ..., βk and [βi],
hence ζi+1, ..., ζk∈B(A), and by §1.4 and Lemma 1.13, cmp(ζj)6Dj , j=i+1, ..., k.

(3) Let us clarify this definition as well: BD(A) consists of the elements of B(A) that have a
representation with cmp 6 D.
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1.16. Let us now consider vector-valued functions. For a ring A of real-valued functions
on a set Z and D, l∈N, we denote by Nl

D(A) the set of mappings β:Z![0, 1)l such
that there exist a nilmanifold X=G/Γ of nilpotency class D equipped with a coordinate
system (τ1, ..., τk), ω∈G(A), and i1, ..., il∈{1, ..., k} such that β=(τi1 , ..., τil

)�ω.

Lemma. β=(β1, ..., βl)∈Nl
D(A) if and only if βj∈ND(A) for all j=1, ..., l.

Proof. If β=(β1, ..., βl)∈Nl
D(A) then β1, ..., βl∈ND(A) by definition.

Assume that for each j=1, ..., l one has βj∈ND(A), that is, assume that there exist
a nilmanifold Xj =Gj/Γj of nilpotency class 6D with a coordinate system (τj,1, ..., τj,kj ),
ωj∈G(A) and ij∈{1, ..., kj} such that βj =τij �ωj . Define G=G1×...×Gl, Γ=Γ1×...×Γl,
X=G/Γ=X1×...×Xl and ω=(ω1, ..., ωl):Z!G. Then X is a nilmanifold of nilpotency
class 6D, ω∈G(A), (τ1,1, ..., τl,kl

) is a coordinate system on X, and we have

β=(β1, ..., βl) = (τ1,i1 , ..., τl,il
)�ω

1.17. In light of Lemma 1.16, Theorem A∗∗1 implies its multidimensional extension.

Theorem A∗∗. For any ring A of real-valued functions and any D, l∈N,

Nl
D(A) = (Bo

D(A))l.

2. Coordinate representation of a subnilmanifold
and primitive GP mappings

2.1. We keep the notation of §1. Let π:G!X be the natural projection, π(g)=gΓ∈X.
Any closed (not necessarily connected) subgroup of G is a simply-connected nilpotent Lie
group. A subnilmanifold of X is a closed subset Y of X of the form Y =π(bH)=bπ(H),
where H is a connected closed subgroup of G and b∈G. Thus, Y is a translate of
π(H)=H/(Γ∩H) and, hence, has a natural structure of a nilmanifold.

An element g∈G is said to be rational if gn∈Γ for some n∈N. Given a coordi-
nate system (τ̃1, ..., τ̃k) on G, the coordinates of a rational element g∈G are rational,
τ̃1(g), ..., τ̃k(g)∈Q. (See [L4].) We will say that a subnilmanifold Y of X is rational if it
is of the form Y =π(gH) with rational g∈G.

2.2. We remind the reader of some of the terminology introduced in §0.
(i) We say that a set E⊆Zd has density α and write D(E)=α if

lim
N!∞

|E∩ΦN |
|ΦN |

=α
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for every Følner sequence {ΦN}∞N=1 in Zd.
(ii) Let E⊆Zd withD(E)>0 and let ω be a mapping from E to a topological spaceX

endowed with a finite (nonzero) Borel measure µ. We say that the sequence {ω(z)}z∈E

is well distributed on X (with respect to µ) if for any open set U⊆X with µ(∂U)=0 one
has D(ω−1(U))/D(E)=µ(U)/µ(X).

2.3. The following theorem is proved in [L3] and [L4],

Theorem. Let ω:Zd!G be a polynomial mapping. There exists a subgroup Z of
finite index m in Zd, with cosets Z1(=Z),Z2, ...,Zm, such that for each i=1, ...,m the
sequence {π(ω(z))}z∈Zi is well distributed on a subnilmanifold Yi of X with respect to the
Haar measure on Yi. If ω(0)=1G, then the subnilmanifolds Y1, ..., Ym are all rational.

2.4. In light of Theorems A∗ and 2.3, in order to describe the distribution of the values
of a bounded generalized polynomial, we have to determine how a subnilmanifold Y of
X looks in coordinates on X. It is shown in [L4] that if Y is a subnilmanifold of X and
τ is a coordinate mapping of X, then, up to a subset of Y of zero measure, τ(Y ) is a
piecewise polynomial surface. This clearly implies Theorem B. However, if we want to
get information about the degree and the coefficients of the polynomials defining this
surface we need to study τ(Y ) more carefully.

2.5. Let {e1, ..., ek}∈Γ be a Mal’tsev basis in G and let τ̃ :G!Rk be the corresponding
coordinate mapping. Let H be a closed connected subgroup of G such that Γ∩H is uni-
form in H, and let {c1, ..., cs}⊂H∩Γ be a Mal’tsev basis in H. We have a diffeomorphism
η̃:H!Rs, cy1

1 ... cys
s 7!(y1, ..., ys), with η̃(Γ∩H)=Zs.

One has H={cy1
1 ... cys

s }y1,...,ys∈R, and by formulas (1.1) and (1.2),

H = {eS1(y1,...,ys)
1 ... e

Sk(y1,...,ys)
k }y1,...,ys∈R,

where, by §1.3, S1, ..., Sk are polynomials on Rs. By §1.4, degSi6Di, i=1, ..., k. Since
e1, ..., es∈Γ, the polynomials S1, ..., Sk take on integer values on Zs and hence have
rational coefficients. In the commutative diagram

H
IdH //

η̃

��

G

τ̃
��

Rs
RH // Rk,
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the immersion RH =τ̃ �η̃−1:Rs!Rk is (S1, ..., Sk), and so is a polynomial mapping with
rational coefficients. In other words, H appears in coordinates on G as an s-dimensional
rational polynomial surface of degree 6D.

2.6. Let g∈G, g=eb1
1 ... ebk

k ; the coset gH can be written as

gH = {eb1
1 ... ebk

k e
S1(y1,...,ys)
1 ... e

Sk(y1,...,ys)
k }y1,...,ys∈R

= {eR1(y1,...,ys)
1 ... e

Rk(y1,...,ys)
k }y1,...,ys∈R,

where, by §1.3 and §1.4, R1, ..., Rk are polynomials with degRi6Di, i=1, ..., k, and
coefficients in the ring R generated by Q and b1, ..., bk. In the commutative diagram

H
gIdH //

η̃

��

G

τ̃
��

Rs
RgH

// Rk,

the immersion RgH =τ̃ �(gη̃−1)=(R1, ..., Rk):Rs×Zr!Rk is therefore a polynomial
mapping of degree 6D with coefficients in R.

2.7. Now let Y be the subnilmanifold π(gH)⊆X. Let η:Y![0, 1)s be the coordinate
system on Y which corresponds to η̃|H and let τ :X![0, 1)k be the coordinate system
on X corresponding to τ̃ . In the commutative diagram

Y

η

��

⊆ X

τ

��

[0, 1)s RY // [0, 1)k,

the immersion RY =τ �η−1 is the composition of R̂Y =RgE |[0,1)s : [0, 1)s!Rk and of the
“projection” π̂=τ �π�τ̃−1:Rk![0, 1)k,

G
π //

τ̃

��

X

τ

��

Rk
π̂ // [0, 1)k.

Let Q=τ̃−1([0, 1)k)⊂G, then G is represented as the disjoint union
⋃

γ∈ΓQγ. For
γ∈Γ let Cγ =τ̃(Qγ), then Rk is the disjoint union

⋃
γ∈Γ Cγ . Let Mγ :Rk!Rk be defined
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by Mγ(x)=τ̃(τ̃−1(x)γ); by formula (1.1), the mapping Mγ is polynomial with rational
coefficients. Then Cγ =Mγ([0, 1)k) and π̂|Cγ =Mγ−1 |Cγ

.
Let γ1, ..., γN∈Γ be such that R̂Y ([0, 1)s)⊆

⋃N
j=1 Cγj and let

Lj = R̂−1
Y (Cγj ), j=1, ..., N.

Then [0, 1)s is the disjoint union
⋃N

j=1 Lj . Let j∈{1, ..., N}. The restriction of RY on
Lj is Rj =Mγ−1 �R̂Y |Lj

, which is a polynomial mapping with coefficients in R, and Lj

is defined by Lj =R−1
j ([0, 1)k)∩[0, 1)s. Since the coordinates R1, ..., Rk of R̂Y satisfy

degRi6Di, i=1, ..., k, by §1.4 we have degRj 6D.

2.8. We arrive at the following result.

Proposition. Let Y =π(gH) be a connected subnilmanifold of a connected nilman-
ifold X of nilpotency class D, and let τ :X![0, 1)k and η:Y![0, 1)s be coordinate sys-
tems on X and Y . The mapping RY =τ �η−1: [0, 1)s![0, 1)k is piecewise polynomial
in the following sense: there are one-to-one polynomial mappings R1, ...,RN :Rs!Rk

of degree 6D such that the sets Lj =R−1
j ([0, 1)k)∩[0, 1)s, j=1, ..., N , partition the cube

[0, 1)s, and for each j=1, ..., N one has RY |Lj =Rj. The coefficients of R1, ...,RN are
contained in the ring R generated by Q and the coordinates of g.

2.9. We now return to generalized polynomials. Let u be (a fixed representation of)
a generalized polynomial; the conventional polynomials occurring in the representation
of u will be called polynomials involved in u. More precisely, the set I(u) of polynomials
involved in u is

I(u) =


{u}, if u is an ordinary polynomial,
I(u1)∪I(u2), if u appears in the given representation as u1+u2 or u1u2,
I(v), if u=±[v].

In view of the constructive definition in §0.1, I(u) is defined for any representation of
any generalized polynomial.

Example. The polynomials involved in p1[p2+[p3]p4] are p1, p2, p3 and p4.

When u=(u1, ..., ul) is a GP mapping, the set of polynomials involved in u is

I(u) = I(u1)∪...∪I(ul).
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2.10. Let u:Zd!Rl be a bounded GP mapping; we will assume that Ran(u)⊆[0, 1)l.
Let D=cmp(u) and let A be the ring of real-valued functions on Zd generated by the
polynomials involved in u, so that u∈(Bo

D(A))l. By Theorem A∗∗, one has u∈Nl
D(A).

This means that there exist a nilmanifold X=G/Γ of nilpotency class 6D with π:G!X
being the natural projection, a coordinate system τ=(τ1, ..., τk):X![0, 1)k, ω∈G(A),
and n1, ..., nl∈{1, ..., k} such that u=(τn1 , ..., τnl

)�π�ω. Let %(x1, ..., xk)=(xn1 , ..., xnl
),

then u=%�τ �π�ω:

u :Zd ω−−!G
π−−!X

τ−−! [0, 1)k %−−! [0, 1)l.

Since ω is a polynomial mapping, by Theorem 2.3 there exist a subgroup Z with cosets
Z1(=Z),Z2, ...,Zm in Zd and connected subnilmanifolds Y1, ..., Ym of X such that for
each i=1, ...,m the sequence {π(ω(z))}z∈Zi is well distributed on Yi.

Fix i∈{1, ...,m}, and let ηi:Yi![0, 1)s be a coordinate system on Yi. Then by the
proof in §1.15, vi=ηi�π�ω|Zi :Zi![0, 1)s is a GP mapping of complexity 6D, and we
have u|Zi =%�τ �η

−1
i �vi=%�RYi �vi:

u|Zi
:Zi

π�ω //

vi
""FF

FF
FF

FF
F Yi

ηi

��

⊆ X

τ

��

[0, 1)s
RYi // [0, 1)k

%

��

[0, 1)l.

Since the coordinate mapping ηi maps the Haar measure on Yi to the Lebesgue mea-
sure λ on [0, 1)s and is continuous on an open subset of Yi of full measure, {vi(z)}z∈Zi

is well distributed on [0, 1)s with respect to λ. By Proposition 2.8, there exist a parti-
tion [0, 1)s=

⋃Ni

j=1 Li,j and polynomial mappings Ri,1, ...,Ri,Ni :R
s!Rk of degree 6D

such that RYi |Li,j =Ri,j and Li,j =R−1
i,j ([0, 1)k)∩[0, 1)s, j=1, ..., Ni. For j∈{1, ..., Ni} let

Zi,j =v−1
i (Li,j)⊆Zi and let Pi,j =%�Ri,j ; then Pi,j is a polynomial mapping Rs!Rl of

degree 6D and u|Zi,j =Pi,j �vi|Zi,j :

u|Zi,j :Zi,j
vi−−−!Li,j

Pi,j−−−! [0, 1)l.

The coefficients of the polynomials Ri,j (and thus, of the Pi,j ’s) belong to a certain ring
of real numbers which we will now describe. Let τ̃ :G!Rk be the coordinate mapping
of G corresponding to the coordinate system τ on X, and let τ̃ �ω(z)=(α1(z), ..., αk(z)),
z∈Zd, where α1, ..., αk are polynomials from A. Then τ̃(ω(0))=(α1(0), ..., αk(0)), and
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α1(0), ..., αk(0) belong to the ring F generated by Q and the constant terms of the poly-
nomials involved in u. Define ω′(z)=ω(0)−1ω(z), so that ω′(0)=1G. By Theorem 2.3,
the components Y ′

1 , ..., Y
′
m of {π(ω′(z)):z∈Zd} are rational subnilmanifolds of X, that is,

Y ′
i =π(giHi), where the gi’s have rational coordinates. Thus, the components Y1, ..., Ym

of {π(ω(z)):z∈Zd} have form Yi=ω(0)Y ′
i =π(ω(0)giHi), i=1, ...,m. By Proposition 2.8,

the coefficients of the Ri,j ’s, i=1, ...,m, j=1, ..., Ni, are contained in the ring generated
by Q, the coordinates of the gi’s, and the coordinates α1(0), ..., αk(0) of τ̃(ω(0)), and so
are contained in F.

2.11. Let us say that a GP mapping v:Z!Rs, where Z is a subgroup of Zd, is primitive
if v is representable as a composition v=η�π�ω, where ω:Z!H is a polynomial mapping
to a nilpotent Lie groupH, π:H!Y is the projection mapping to a connected nilmanifold
Y =H/Γ′ such that π(ω(Z)) is dense in Y , and η:Y![0, 1)s is a coordinate system on Y .
If v is primitive, by Theorem 2.3 the sequence {π(ω(z))}z∈Z is well distributed in Y

with respect to the Haar measure, and thus the sequence {v(z)}z∈Z is well distributed
on [0, 1)s with respect to the Lebesgue measure.

Example. If a and b are rationally independent irrational numbers, then the GP map-
ping v(n)=(〈〈an〉〉, 〈〈bn〉〉, 〈〈−an[bn]〉〉), n∈Z, is primitive. Indeed, let

H =


 1 a1,2 a1,3

0 1 a2,3

0 0 1

 : ai,j ∈R

 , Λ =


 1 m1,2 m1,3

0 1 m2,3

0 0 1

 :mi,j ∈Z

 ,

Y be the connected nilmanifold H/Λ with the “natural” coordinate system

η

 1 x1,2 x1,3

0 1 x2,3

0 0 1

=(x1,2, x1,3, x2,3), where

 1 x1,2 x1,3

0 1 x2,3

0 0 1


is the representation of x∈Y with all xi,j∈[0, 1), and define the polynomial mapping
ω:Z!H by

ω(n) =

 1 an 0

0 1 bn

0 0 1

 , n∈Z.

Then one can show that π(ω(Z)) is dense in Y , and we have v=η�π�ω.

2.12. We can now summarize the content of §2.10 in the following way.
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Theorem B∗∗. Let u:Zd!Rl be a bounded GP mapping and let F be the ring gen-
erated by the constant terms of the polynomials involved in u. There exist a subgroup Z of
finite index m in Zd with cosets Z1(=Z),Z2, ...,Zm, an integer s∈N, primitive GP map-
pings vi:Zi![0, 1)s, i=1, ...,m, of complexity 6cmp(u), partitions [0, 1)s=

⋃Ni

j=1 Li,j ,
i=1, ...,m, where each Li,j is defined by polynomial inequalities of degree 6cmp(u) with
coefficients in F, and polynomial mappings Pi,j :Rs!Rl, i=1, ...,m, j=1, ..., Ni, of de-
gree 6cmp(u) with coefficients in F, such that for Zi,j =v−1

i (Li,j) one has

u|Zi,j =Pi,j �vi, i=1, ...,m, j=1, ..., Ni.

3. Proof of Theorem B and exceptional values of GP mappings

3.1. Let us recall that a polynomial surface S in Rl is the image under a polynomial map-
ping P:Rs!Rl of a subset L of Rs defined in Rs by a system of polynomial inequalities
06Rj<1, j=1, ..., k, and having nonempty interior. The degree of S is the maximum of
the degrees of P and of Rj , j=1, ..., k; the coefficients of S are those of P and of Rj ,
j=1, ..., k. The measure µS on S is the normalized image of the Lebesgue measure λ|L
under P, defined by µS(A)=λ(P−1(A)∩L)/λ(L) for Borel sets A⊆Rl. Theorem B∗∗

implies the following, more precise version of Theorem B.

Theorem B∗. Let u:Zd!Rl be a bounded GP mapping. There exist bounded
polynomial surfaces S1, ...,Sk⊂Rl of degree 6cmp(u) and a partition Zd=Z∗∪

⋃k
i=1Ei

such that D(Z∗)=0 and such that for every i∈{1, ..., k}, D(Ei)>0 and the sequence
{u(z)}z∈Ei is well distributed on Si with respect to µSi . The coefficients of S1, ...,Sk

belong to the ring generated over Q by the constant terms of the polynomials involved
in u.

When the set Z∗ in the assertion of Theorem B is fixed, we will call the values of u
at the points of Z∗ exceptional, and the other values of u regular. The theorem then says
that the regular values of any GP mapping u lie and are well distributed on a piecewise
polynomial surface (whereas the exceptional values, which do not affect the distributional
behavior of u, are out of our control).

Proof. We keep the notation of §2.12. Fix i∈{1, ...,m}. For each j∈{1, ..., Ni} the
set Li,j⊆[0, 1)s is defined by a collection of polynomial inequalities, and thus either the
interior Lo

i,j of Li,j is nonempty, λ(Li,j)>0 and {vi(z)}z∈Zi,j is well distributed on Li,j

with respect to the Lebesgue measure, or Lo
i,j is empty, λ(Li,j)=0 and Zi,j has zero

density in Zi. Let us assume that Lo
i,1, ...,Lo

i,ri
6=∅ and Lo

ri+1, ...,Lo
Ni

=∅, and define
Zi,∗=Zi,ri+1∪...∪Zi,Ni . Then Zi,∗∪

⋃ri

j=1Zi,j is a partition of Zi, the set Zi,∗ has zero
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density in Zi and for each j=1, ..., ri the sequence {u(z)}z∈Zi,j
is well distributed, with

respect to µSi,j , on the polynomial surface Si,j =Pi,j(Li,j) of degree 6cmp(u). Finally,
we put Z∗=

⋃m
i=1Zi,∗.

3.2. Remark. The values of u are well distributed on the piecewise polynomial surface

S =
⋃

i=1,...,m
j=1,...,ri

Si,j =
⋃

i=1,...,m
j=1,...,ri

Pi,j(Li,j);

as well, we can take
S =

⋃
i=1,...,m
j=1,...,ri

Pi,j(Lo
i,j).

We then see that, in Theorem B, one may assume S=f(V ), where V is a dense open
subset of a nilmanifold Y and f is a piecewise polynomial mapping Y!Rl, continuous
on V .

3.3. Corollary (of the proof). In the notation of Theorem B∗, the set Z∗ is contained
in the set W=w−1(0) of zeroes of a generalized polynomial w:Zd!R, with D(W)=0.

Proof. Note that, in the proof of Theorem B∗ in §3.1, for any i∈{1, ...,m} and j>ri
the set Li,j is contained in the set of zeroes of a nonzero polynomial Si,j on Rs. Put
Si=

∏Ni

j=ri+1 Si,j and define a generalized polynomial w by w|Zi
=Si�vi, i=1, ...,m. For

each i, since Si is a nonzero polynomial and {vi(z)}z∈Zi is well distributed on [0, 1)s with
respect to the Lebesgue measure, (w|Zi)

−1(0) has zero density in Zi.

3.4. Here are some examples of generalized polynomials with exceptional values.

Examples. (1) Let a be an irrational number and let u(n)=[1−〈〈an〉〉]. Then u(n)=0
for all n 6=0 and u(0)=1 is an exceptional value of u.

(2) Let a∈R be such that the set Sa={n∈N:0<〈〈an〉〉<1/n} is infinite. (For in-
stance, a=

∑∞
n=1 2−(2n−1) works since, as it is easy to check, 22n−1∈Sa for all n∈N.)

Let b be any irrational number. Define u(n)=〈〈[1−〈〈[〈〈an〉〉n]b〉〉]an〉〉, n∈N. Then

u(n) =
{
〈〈an〉〉 ∈ (0, 1/n) for n∈Sa,
0 for n /∈Sa.

The regular values u(n), n∈N\Sa, of u are all equal to 0, whereas the exceptional values
u(n), n∈Sa, form a sequence converging to 0.
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(3) In the notation of the preceding example, let now u(n)=〈〈[1−〈〈[〈〈an〉〉n]b〉〉]cn〉〉,
c∈R. One can show that, varying the parameter c, one may achieve any a priori given
distribution (with respect to any a priori chosen Følner sequence) of the sequence of
exceptional values u(n), n∈Sa, in [0, 1].

3.5. A converse of Theorem B also holds, namely, for any piecewise polynomial surface
in Rl whose domain is a cube, or a finite union of cubes, there exists a GP mapping whose
values are well distributed on this surface. Indeed, assume that a piecewise polynomial
surface S is defined by a piecewise polynomial function h:Q!Rl, where Q⊂Rs is a
cube, or a finite union of cubes. Choose a GP mapping v:Z!Q such that the values
of v are well distributed on Q with respect to the Lebesgue measure. (Say, if Q=[0, 1]s,
we can take v(n)=(〈〈a1n〉〉, ..., 〈〈asn〉〉), n∈Z, where a1, ..., as are rationally independent
irrational numbers.) Define u=h�v; by Lemma 1.6, u is a GP mapping, and the values
of u are well distributed on S.

3.6. Let us demonstrate the calculation of the distribution of the values of a generalized
polynomial by carrying it out on one simple example. Let α be an irrational number;
consider the generalized polynomial u(n)=

〈〈
1
2α

2n2−αn[αn]
〉〉

, n∈Z. We are going to
generate u by a nilsystem.

The group

G=


 1 a b

0 1 c

0 0 1

 : a, b, c∈R


of 3×3 upper-triangular matrices with unit diagonal is a connected simply-connected
nilpotent Lie group, and

Γ =


 1 m k

0 1 l

0 0 1

 :m, k, l∈Z


is a discrete uniform subgroup of G. Let X=G/Γ and π:G!X be the natural projection.
Let

e1,2 =

 1 1 0

0 1 0

0 0 1

 , e1,3 =

 1 0 1

0 1 0

0 0 1

 and e2,3 =

 1 0 0

0 1 1

0 0 1

 .

Then {e2,3, e1,2, e1,3} is a Mal’tsev basis in G such that

ec
2,3e

a
1,2e

b
1,3 =

 1 a b

0 1 c

0 0 1

 , a, b, c∈R.
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Thus, in the Mal’tsev basis {e2,3, e1,2, e1,3} the coordinates of a matrix

A=

 1 a b

0 1 c

0 0 1

∈G
are τ̃(A)=(c, a, b). The fundamental domain in G is

Q=


 1 a b

0 1 c

0 0 1

 : a, b, c∈ [0, 1)

 ,

and for a matrix

A=

 1 a b

0 1 c

0 0 1

∈G,
the corresponding matrix χ(A)∈Q with π(A)=π(χ(A)) is

χ(A) =

 1 a b

0 1 c

0 0 1

 1 0 0

0 1 −[c]

0 0 1

 1 −[a] 0

0 1 0

0 0 1

 1 0 −[b−a[c]]

0 1 0

0 0 1


=

 1 〈〈a〉〉 〈〈b−a[c]〉〉
0 1 〈〈c〉〉
0 0 1

 .

For the polynomial sequence

ω(n) =

 1 αn 1
2
α2n2

0 1 αn

0 0 1


in G we will therefore have τ3(ω(n))=

〈〈
1
2α

2n2−αn[αn]
〉〉

=u(n), n∈Z.
Consider the subgroup

H =


 1 a 1

2
a2

0 1 a

0 0 1

 : a∈R


of G; we have ω(n)∈H for all n∈Z. Since Γ∩H is uniform in H, Y =π(H) is a one-
dimensional subnilmanifold of X. Define the coordinate mapping η̃:H!R by

η̃

 1 a 1
2
a2

0 1 a

0 0 1

=
1
2
a,

so that η̃(Γ∩H)=Z. The mapping RH =τ̃ �η̃−1:R!R3 has form RH(y)=(2y, 2y, 2y2).
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Let η:Y![0, 1) be the coordinate mapping corresponding to η̃, then the sequence v(n)=
η(π(ω(n)))=

〈〈
1
2αn

〉〉
is well distributed on [0, 1) with respect to the Lebesgue measure,

and so, π(ω(n)) is well distributed on Y with respect to the Haar measure on Y .
Let C=[0, 1)3. Then RH

([
0, 1

2

))
⊂C. Define R1=RH |[0, 1

2 )=(2y, 2y, 2y2). For

γ=

 1 1 0

0 1 1

0 0 1


one has

Mγ(c, a, b) = τ̃

 1 a b

0 1 c

0 0 1

 1 1 0

0 1 1

0 0 1

=(c+1, a+1, b+a),

and so
Cγ =Mγ(C) = {(c, a, b) : 1 6 c< 2, 1 6 a< 2 and a−1 6 b<a},

and RH

([
1
2 , 1
))
⊂Cγ . Define R2=Mγ−1 �RH |[ 12 ,1), R2(y)=(2y−1, 2y−1, 2y2−2y+1).

Let P1 and P2 be the third coordinates of R1 and R2, respectively: P1(y)=2y2 and
P2(y)=2y2−2y+1.

We have arrived at the following: the interval [0, 1) is partitioned into L1=
[
0, 1

2

)
and L2=

[
1
2 , 1
)
, a mapping P: [0, 1)![0, 1) is defined by P|L1 =P1 and P|L2 =P2, that is,

P(y) =
{

2y2, if y ∈
[
0, 1

2

)
,

2y2−2y+1, if y ∈
[
1
2 , 1
)
,

and we have u(n)=P
(〈〈

1
2αn

〉〉)
, n∈Z. The sequence

{
1
2αn

}
n∈Z

is well distributed on
[0, 1) with respect to the Lebesgue measure dy; hence, u(n), n∈Z, is well distributed on
[0, 1) with respect to the measure

P∗(dy) =


dx

2
√

2x
, if x∈

[
0, 1

2

)
,

dx

2
√

2x−1
, if x∈

[
1
2 , 1
)
.

4. Proofs of Theorems C, D, Bc and other results from the introduction

4.1. The following theorem (cf. Corollary 0.25) clearly follows from Theorem B∗.

Theorem. Let u:Zd!Rl be a bounded GP mapping. For any f∈C(Rl) and any
Følner sequence {ΦN}∞N=1 in Zd,

lim
N!∞

1
|ΦN |

∑
n∈ΦN

f(u(n)) exists and equals
k∑

i=1

D(Ei)
∫
Si

f dµSi .
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4.2. Corollary. (Cf. Corollary 0.26) For any generalized polynomial u:Zd!R and
any Følner sequence {ΦN}∞N=1 in Zd,

lim
N!∞

1
|ΦN |

∑
n∈ΦN

e2πiu(n) exists.

4.3. The proofs of the following two propositions (Corollaries 0.27 and 0.28) are similar;
we confine ourselves to the proof of the first of them.

Proposition. Let U t
1, ..., U

t
k, t∈R, be commuting unitary flows on a Hilbert space H

and let u1, ..., uk be generalized polynomials Zd!R. For any Følner sequence {ΦN}∞N=1

in Zd the sequence
1

|ΦN |
∑

n∈ΦN

U
u1(n)
1 ... U

uk(n)
k

is convergent in the strong operator topology.

Proof. An application of the spectral theorem reduces the problem to the case where
H=L2(Ω) for some measure space Ω and

(U t
jg)(x) = e2πifj(x)tg(x), g ∈L2(Ω), j=1, ..., k, x∈Ω,

where fj are measurable real-valued functions on Ω. Then, for any g∈L2(Ω) and x∈Ω,

( k∏
j=1

U
uj(n)
j g

)
(x) =

( k∏
j=1

e2πiuj(n)fj(x)

)
g(x) = e2πi

∑k
j=1 uj(n)fj(x)g(x) = e2πiux(n)g(x),

where ux(n)=
∑k

j=1 fj(x)uj(n), n∈Zd. By Corollary 4.2, the sequence

1
|ΦN |

∑
n∈ΦN

e2πiux(n)g(x)

converges pointwise on Ω, and thus in H=L2(Ω).

4.4. Proposition. Let U1, ..., Uk be commuting unitary operators on a Hilbert space
and let u1, ..., uk be generalized polynomials Zd!Z. For any Følner sequence {ΦN}∞N=1

in Zd the sequence
1

|ΦN |
∑

n∈ΦN

U
u1(n)
1 ... U

uk(n)
k

is convergent in the strong operator topology.
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4.5. The following proposition can be viewed as a “measure-preserving” version of the
“unitary” result contained in §4.3.

Proposition. Let G be a connected nilpotent Lie group, let X=G/Γ be a nilman-
ifold with π:G!X being the natural projection, let A be the algebra of generalized poly-
nomials on Zd, and let ω∈G(A), that is, ω(z)=gu1(z)

1 ... g
ur(z)
r , z∈Zd, with g1, ..., gr∈G

and u1, ..., ur being generalized polynomials. Then

lim
N!∞

1
|ΦN |

∑
z∈ΦN

f(π(ω(z)))

exists for any f∈C(X) and any Følner sequence {ΦN}∞N=1 in Zd.

Proof. Let τ :X![0, 1)k be a coordinate system. By Theorem A∗∗, u=τ �π�ω∈
B(A)k, and in the case under consideration B(A)=A. So, u:Zd![0, 1)k is a GP map-
ping. Let f∈C(X); since τ−1 is continuous, f̂=f �τ−1 is a continuous function on [0, 1)k.
By Theorem 4.1,

lim
N!∞

1
|ΦN |

∑
z∈ΦN

f(π(ω(z)))= lim
N!∞

1
|ΦN |

∑
z∈ΦN

f̂(u(z))

exists for any Følner sequence {ΦN}∞N=1 in Zd.

4.6. We now move the discussion to the recurrence properties of generalized polynomials
dealt with in Theorems C and D of the introduction. Given a mapping u from Zd to
a topological space X, we will say that a point x∈X is an IP∗-limit of u if for any
neighborhood W of x the set u−1(W ) is IP∗, and that x∈X is an IP∗+-limit of u if for
any neighborhood W of x the set u−1(W ) is IP∗+. The following fact is proved in [L3].

Proposition. Let X=G/Γ be a nilmanifold , π:G!X be the natural projection and
ω:Zd!G be a polynomial mapping. Then π(ω(0)) is an IP∗-limit of the mapping π�ω.

4.7. Corollary. If Y =π�ω(Zd), then every point of Y is an IP∗+-limit of π�ω.

Proof. For any z′∈Zd the point π(ω(z′)) is an IP∗-limit of the mapping π�ω′, where
ω′(z)=ω(z+z′), and thus for every open set W⊆Y the set (π�ω)−1(W ) is an IP∗+ set.

4.8. Theorem C. Let u:Zd!Rl be a bounded GP mapping and let S be the piecewise
polynomial surface on which the values of u are well distributed. Then for every open
set W⊆S, u−1(W ) is an IP∗+ set. In other words, every point of S is an IP∗+-limit of u,
and in particular , every regular value of u is IP∗+-recurrent.
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Proof. By Theorem A, u is representable in the form u=f �π�ω, where ω:Zd!G
is a polynomial mapping to a nilpotent Lie group G, π:G!X is the projection to a
nilmanifoldX=G/Γ, and f :X!Rl is a piecewise polynomial mapping. Let Y =π�ω(Zd);
then Y has a dense open subset V such that f is continuous on V and S=f(V ). (See
Remark 3.2.) IfW is an open subset of S, then U=f−1(W )∩V is a nonempty open subset
of Y ; by Corollary 4.7, (π�ω)−1(U) is an IP∗+ set, and so u−1(W ) is an IP∗+ set.

4.9. Theorem D. Let u be a GP mapping Zd!Rl such that all polynomials involved
in u have zero constant term, and let ũ be the composition of u and of the natural
projection Rl!Tl. Then 0∈Tl is an IP∗-limit of ũ.

Proof. Let u:Zd!Rl be a GP mapping such that all polynomials involved in u

have zero constant term. Let A be the ring generated by these polynomials, then all
polynomials from A vanish at 0. Define v=u−[u]. Then Ran(v)⊆[0, 1)l.

Utilizing Theorem A∗∗, we can find a nilmanifold X=G/Γ with the natural pro-
jection π:G!X, a coordinate system τ :X![0, 1)k, a mapping ω∈G(A), and indices
i1, ..., il∈{1, ..., k} such that v=(τi1 , ..., τil

)�π�ω. Since ω∈G(A), we have ω(0)=1G. Let
o=π(1G). Then π�ω(0)=o.

Let σ be the natural insertion [0, 1)k!Tk=Rk/Zk, that is, the restriction to [0, 1)k

of the natural projection Rk!Tk. Then σ�τ :X!Tk maps o to 0∈Tk and is continuous
at o. Indeed, if a sequence {xj}∞j=1 in X converges to o, then a limit point of {τ(xj)}∞j=1

may only be a vertex of the cube [0, 1]k, and all the vertices of [0, 1]k are mapped by σ
to 0∈Tk.

The mapping ũ=umod1=vmod1:Zd!Tl is the composition of σ�τ �π�ω and of
the projection %:Tk!Tl, %(y1, ..., yk)=(yi1 , ..., yil

):

ũ:Zd ω−−!G
π−−!X

τ−−! [0, 1)k σ−−!Tk %−−!Tl.

By Proposition 4.6, o is an IP∗-limit of π�ω. Hence, 0∈Tk is an IP∗-limit of σ�τ �π�ω
and 0∈Tl is an IP∗-limit of ũ.

4.10. Theorem. (Theorem 0.34) Let ui:Zd+i−1!R, i=1, ..., k, be generalized polyno-
mials such that all ordinary polynomials involved in ui have zero constant term. Then,
for any δ>0, the set of n∈Zd for which there exist m1, ...,mk∈Z satisfying

|u1(n)−m1|<δ, |u2(n,m1)−m2|<δ, ..., |uk(n,m1, ...,mk−1)−mk|<δ (4.1)

is an IP∗ set.
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Proof. Put [u]1=[u] and [u]−1=−[−u]. For n∈Zd and ε1, ..., εk∈{−1, 1}, define

v1(n) =u1(n),

vε1
2 (n) =u2(n, [v1(n)]ε1),

vε1,ε2
3 (n) =u3(n, [v1(n)]ε1 , [vε1

2 (n)]ε2),

...

vε1,...,εk

k (n) =uk(n, [v1(n)]ε1 , [vε1
2 (n)]ε2 , ..., [vε1,...,εk−2

k−1 (n)]εk−1).

By Theorem D, for any δ>0 the set of n∈Zd for which

dist(vε1,...,εi−1
i (n) mod 1, 0)<δ

for all i=1, ..., k and ε1, ..., εk∈{−1, 1} is an IP∗ set. For any such n we now construct
a solution of the system (4.1) in the following way.

We have either 〈〈u1(n)〉〉
δ
≈0 or 〈〈u1(n)〉〉

δ
≈1; in the first case we put ε1=1, and in the

second case we put ε1=−1. Define m1=[u1(n)]ε1 ; then, in both cases, |u1(n)−m1|<δ.
We now have vε1

2 (n)=u2(n,m1) and either 〈〈u2(n,m1)〉〉
δ
≈0 or 〈〈u2(n,m1)〉〉

δ
≈1; in the

first case we put ε2=1, and in the second case we put ε2=−1. Define m2=[u2(n,m1)]ε2 ;
then, in both cases, |u2(n,m1)−m2|<δ.

Next, we have vε1,ε2
3 (n)=u2(n,m1,m2) and either

〈〈u3(n,m1,m2)〉〉
δ
≈ 0 or 〈〈u3(n,m1,m2)〉〉

δ
≈ 1;

in the first case we put ε3=1, and in the second case we put ε3=−1. Define

m3 = [u2(n,m1,m2)]ε3 ;

then, in both cases, |u3(n,m1,m2)−m3|<δ. And so on, inductively.

4.11. The following is a refinement of Theorem Bc.

Theorem B∗
c . Let u:Rd!Rl be a bounded GP mapping. There exist bounded

polynomial surfaces S1, ...,Sk⊂Rl of degree 6cmp(u) and a partition Rd=Z∗∪
⋃k

i=1Ei

such that DB(Z∗)=0 and for every i∈{1, ..., k}, DB(Ei)>0 and u|Ei is ball-uniformly
distributed on Si with respect to µSi . The coefficients of S1, ...,Sk belong to the ring
generated over Q by the constant terms of the polynomials involved in u.

To prove this theorem one just has, in the proof of Theorem B∗, to switch from Zd

to Rd and to substitute Theorem 2.3 by the following theorem, which is a special case
of results in [Sh1].
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Theorem. Let X=G/Γ be a nilmanifold , π:G!X be the natural projection, and
let ω:Rd!G be a polynomial mapping. There exists a connected subnilmanifold Y of X
such that π(ω|Rd) is ball-uniformly distributed on Y with respect to the Haar measure
on Y .

5. Legal orders and reduction formulas

We now proceed to the algebraic part of the paper, which will lead us to the proof of
Theorem A∗∗1 .

5.1. We remind the reader that A stands for a ring of real-valued functions on a set Z;
B(A) is a bracket extension of A, that is, the minimal ring of functions containing A and
closed under the operation of taking brackets; Bo(A)⊂B(A) consists of functions with
range in [0, 1); and N(A) is the set of functions which can be generated by a nilsystem,
that is, functions of the form τ �ω, where ω is an A-mapping from Z to a nilpotent Lie
group G and τ is a coordinate on the nilmanifold X=G/Γ.

5.2. It was shown in §1.15 that N(A)⊆Bo(A). To establish the inclusion Bo(A)⊆N(A),
stated in Theorem A∗∗1 , we will use the group of upper-triangular matrices with unit
diagonal. For d∈N let

Md =




1 a1,2 ... a1,d

0 1 ... a2,d

...
...

...
...

0 0 ... 1

 : ai,j ∈R

 .

Md is a connected simply-connected nilpotent Lie group, and

Γd =




1 n1,2 ... n1,d

0 1 ... n2,d

...
...

...
...

0 0 ... 1

 :ni,j ∈Z


is a discrete uniform subgroup of Md.

We will refer to elements of Md as to upper-triangular matrices. Dealing with ma-
trices from Md, we will often ignore their diagonal and subdiagonal entries and therefore
assume that their entries are indexed by the pairs (i, j) with 16i<j6d.
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5.3. Let A be a ring of real-valued functions on a set Z. The set of A-mappings Z!Md

is then the set

Md(A) =




1 a1,2 ... a1,d

0 1 ... a2,d

...
...

...
...

0 0 ... 1

 : ai,j ∈A


of upper-triangular matrices with entries from A. Let B(A) be the bracket extension
of A; for any matrix P∈Md(A) there exists a unique matrix χ(P )∈Md(B(A)) which is
equal to P modulo Γd and takes values in the fundamental domain of Md with respect
to Γd. Our goal is to show that for any u∈B(A) there exist d∈N, a Mal’tsev basis in Md,
and a matrix P∈Md(A) such that the (1, d)-coordinate of the matrix χ(P ) in this basis
is u−[u].

5.4. For 16i<j6d, let Ei,j be the upper-triangular matrix with unit diagonal whose
only nonzero entry above the diagonal is 1 at the (i, j)-th position.

The set {Ei,j}16i<j6d is a Mal’tsev basis in Md compatible (see §1.2) with Γd, and
for a∈R we have that Ea

i,j is the upper-triangular matrix with unit diagonal whose only
nonzero entry above the diagonal is a at the (i, j)-th position.

5.5. At first glance it seems that with respect to the Mal’tsev basis {Ei,j}16i<j6d the
coordinates of a matrix 

1 a1,2 ... a1,d

0 1 ... a2,d

...
...

...
...

0 0 ... 1

∈Md

are its entries ai,j , and that the corresponding fundamental domain for Md/Γd is the
set of matrices with all ai,j∈[0, 1). However, this is not true, or, more precisely, is only
true for a specific ordering of the Mal’tsev basis {Ei,j}16i<j6d. Indeed, if an ordering
is such that for some 16k<n<l6d the element Ek,n of the basis precedes the element
En,l, then the (k, l)-entry of the product

∏
16i<j6dE

ai,j

i,j computed with respect to this
ordering contains, in addition to ak,l, a summand of the form ak,nan,l. Therefore, the
coordinates of a matrix in the Mal’tsev basis {Ei,j}16i<j6d are equal to its entries only
if the elements of the basis are ordered as follows:

(Ed−1,d, Ed−2,d−1, Ed−2,d, Ed−3,d−2, ..., E2,d, E1,2, ..., E1,d).
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Denote the corresponding order by ≺, that is, let (i, j)≺(k, l) if i>k, or if i=k and j<l.
Then the product

∏
16i<j6dE

ai,j

i,j computed with respect to ≺ equals


1 a1,2 ... a1,d

0 1 ... a2,d

...
...

...
...

0 0 ... 1

 .

5.6. The set of elements of B(A) which can be obtained with the help of the Mal’tsev
basis {Ei,j}16i<j6d in Md ordered by the order ≺ defined in §5.5, is restricted to nested
elements, that is, the elements of B(A) whose representation does not contain products
of brackets. Here is a rigorous definition: an element u∈B(A) is nested if either u∈A, or
u=±[v], where v is nested, or u=α[v], where v is nested and α∈A, or u=u1+u2, where
u1 and u2 are nested. (Example: for αi∈A, α1[α2[α3]+α4[α5+α6]]+α7[α8] is nested
and α1[α2][α3] is not.)

Given a matrix

P =


1 α1,2 ... α1,d

0 1 ... α2,d

...
...

...
...

0 0 ... 1

∈Md(A),

the matrix χ(P ) (introduced in §5.3) is computed in the following way: for 16k<l6d,
if integer-valued functions mi,j∈B(A) have already been defined for all (i, j)≺(k, l), we
put Pk,l=P

∏
(i,j)≺(k,l)E

mi,j

i,j (where the product is computed with respect to ≺), ξk,l
i,j be

the (i, j)-entry of Pk,l, and mk,l=−[ξk,l
k,l ]. Then χ(P )=P

∏
(i,j)E

mi,j

i,j .

By induction on (k, l), assume that ξk,l
i,j =αi,j for all j6k and that ξk,l

i,j are nested
for all j>k. Then

(Pk,lE
mk,l

k,l )i,j =
{
ξk,l
i,j , if j 6= l,
ξk,l
i,j +ξk,l

i,kmk,l = ξk,l
i,j −αi,k[ξk,l

k,l ], if j= l,

which is equal to αi,j if j6k, and which is nested if j>k.
This gives us the following proposition.

Proposition. For P∈Md(A) all entries of χ(P ) are nested elements of Bo(A).

The converse is also true: any nested element of Bo(A) is obtainable as an entry of
χ(P ) for a suitable P . We omit the proof.
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5.7. For a matrix P∈Md we will now compute the coordinates of χ(P ) with respect to
the Mal’tsev basis {Eεi,j

i,j }16i<j6d, εi,j∈{−1, 1}, taken in an arbitrary order ≺. Actually,
≺ cannot be completely arbitrary, since the elements Eεi,j

i,j taken in accordance with the
order ≺ must form a Mal’tsev basis in Md in the sense of §1.2. We will say that a linear
order ≺ on the set {(i, j)}16i<j6d is legal if (i, j)�(k, l) whenever (simultaneously) i>k
and j6l.

Let ≺ be a legal order on {(i, j)}16i<j6d and let εi,j∈{−1, 1}, 16i<j6d. Let

P =


1 a1,2 ... a1,d

0 1 ... a2,d

...
...

...
...

0 0 ... 1

∈Md;

we will call ai,j the (i, j)-entry of P . P is representable in the form P=
∏

16i<j6dE
εi,jzi,j

i,j ,
zi,j∈Z, where the product is computed in accordance with the order ≺; we will call zi,j

the (i, j)-coordinate of P . (Note that although the integers zi,j in the formula for P
may take negative values, the signs εi,j are not superfluous: the bases {Ei,j}16i<j6d and
{Eεi,j

i,j }16i<j6d are different, and may produce different generalized polynomials.)

5.8. We start with finding recurrence formulas connecting the entries ai,j and the coor-
dinates zi,j of P . For indices (k, l)�(i, j) let θk,l

i,j be the (i, j)-entry of
∏

(r,s)≺(k,l)E
εi,jzr,s
r,s

and let θi,j =θi,j
i,j . Then

θk,l
i,j =

∑
(n,j)≺(k,l)
(n,j)≺(i,n)

θn,j
i,n θn,j +

∑
(n,j)≺(k,l)
(n,j)�(i,n)

ai,nθn,j ,

θi,j = θi,j
i,j =

∑
(n,j)≺(i,n)

θn,j
i,n θn,j +

∑
(n,j)�(i,n)

ai,nθn,j ,

and zi,j =εi,j(ai,j−θi,j).

5.9. Now let χ(P ) be the matrix in the fundamental domain of Md corresponding to P ,
that is, χ(P )=P

∏
16i<j6dE

mi,j

i,j with all mi,j∈Z, so that χ(P )=
∏

16i<j6dE
εi,jxi,j

i,j with
all xi,j∈[0, 1). We will compute the coordinates xi,j of χ(P ). For an index (k, l) let

Pk,l =P
∏

(i,j)≺(k,l)

E
mi,j

i,j .

Then

Pk,l =
( ∏

(i,j)≺(k,l)

E
εi,jxi,j

i,j

)
E

ξk,l

k,l

( ∏
(i,j)�(k,l)

E
vk,l

i,j

i,j

)
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for some ξk,l and vk,l
i,j , and one has

mk,l =−εk,l[εk,lξk,l] and xk,l = εk,l(ξk,l+mk,l) = εk,lξk,l−[εk,lξk,l].

For (i, j)�(k, l) let φk,l
i,j be the (i, j)-entry of Pk,l and φi,j =φi,j

i,j . For (i, j)≺(k, l) the
(i, j)-entry of Pk,l is φi,j +mi,j , thus

φk,l
i,j = ai,j +

∑
(n,j)≺(k,l)
(n,j)≺(i,n)

φn,j
i,nmn,j +

∑
(n,j)≺(k,l)
(n,j)�(i,n)

(φi,n+mi,n)mn,j

and
φi,j = ai,j +

∑
(n,j)≺(i,n)

φn,j
i,nmn,j +

∑
(n,j)�(i,n)

(φi,n+mi,n)mn,j .

For (i, j)�(k, l) let ψk,l
i,j be the (i, j)-entry of

∏
(i,j)≺(k,l)E

εi,jxr,s
r,s and ψi,j =ψi,j

i,j ; then
ξi,j =φi,j−ψi,j . For (i, j)≺(k, l) the (i, j)-entry of

∏
(r,s)≺(k,l)E

εr,sxr,s
r,s is φi,j +mi,j , thus

ψk,l
i,j =

∑
(n,j)≺(k,l)
(n,j)≺(i,n)

ψn,j
i,n εn,jxn,j +

∑
(n,j)≺(k,l)
(n,j)�(i,n)

(φi,n+mi,n)εn,jxn,j

and
ψi,j =

∑
(n,j)≺(i,n)

ψn,j
i,n εn,jxn,j +

∑
(n,j)�(i,n)

(φi,n+mi,n)εn,jxn,j .

For (k, l)�(i, j) we define ξk,l
i,j =φk,l

i,j−ψ
k,l
i,j and compute

ξk,l
i,j = ai,j +

∑
(n,j)≺(k,l)
(n,j)≺(i,n)

φn,j
i,nmn,j +

∑
(n,j)≺(k,l)
(n,j)�(i,n)

(φi,n+mi,n)mn,j

−
∑

(n,j)≺(k,l)
(n,j)≺(i,n)

ψn,j
i,n εn,jxn,j−

∑
(n,j)≺(k,l)
(n,j)�(i,n)

(φi,n+mi,n)εn,jxn,j

= ai,j +
∑

(n,j)≺(k,l)
(n,j)≺(i,n)

(−φn,j
i,nεn,j [εn,jξn,j ]−ψn,j

i,n (ξn,j−εn,j [εn,jξn,j ]))

+
∑

(n,j)≺(k,l)
(n,j)�(i,n)

(φi,n−εi,n[εi,nξi,n])(−εn,j [εn,jξn,j ]−(ξn,j−εn,j [εn,jξn,j ]))

= ai,j−
∑

(n,j)≺(k,l)
(n,j)≺(i,n)

ξn,j
i,n εn,j [εn,jξn,j ]−

∑
(n,j)≺(k,l)
(n,j)≺(i,n)

ψn,j
i,n ξn,j

−
∑

(n,j)≺(k,l)
(n,j)�(i,n)

φi,nξn,j +
∑

(n,j)≺(k,l)
(n,j)�(i,n)

εi,n[εi,nξi,n]ξn,j .
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In particular,

ξi,j = ai,j−
∑

(n,j)≺(i,n)

ξn,j
i,n εn,j [εn,jξn,j ]−

∑
(n,j)≺(i,n)

ψn,j
i,n ξn,j

−
∑

(n,j)�(i,n)

φi,nξn,j +
∑

(n,j)�(i,n)

εi,n[εi,nξi,n]ξn,j

and xi,j =εi,jξi,j−[εi,jξi,j ].

6. Bracket algebra

6.1. Once the above formulas have been obtained, we find ourselves in a purely algebraic
context. The nature of entries of our matrices is no longer important to us, and we may
assume that they are elements of an arbitrary commutative ring A. Moreover, we prefer
to use the abstract algebraic language because we are going to deal with neither numbers
nor functions, but with abstract expressions built from the elements of A by applying
the operations of addition, multiplication and taking brackets. We will now introduce
the necessary algebraic formalism.

6.2. Given a set S, we denote by Σ[S] the free commutative ring generated by the set
{[u]:u∈S}, that is, the commutative ring of formal finite sums of the form

l∑
i=1

±[ui,1] ... [ui,mi
]

with l>0, mi∈N and ui,j∈S, where the cancellation of equal summands appearing with
opposite signs is allowed.

For commutative rings R and Q let R∗Q be the commutative ring freely generated
by R and Q, that is, R∗Q=R⊕Q⊕(R⊗Q), with multiplication defined by

rq= r⊗q, r1(r⊗q) = (r1r)⊗q, q1(r⊗q) = r⊗(q1q) and (r1⊗q1)(r⊗q) = (r1r)⊗(q1q)

for r, r1∈R and q, q1∈Q. We will write rq for r⊗q.

6.3. Let A be a commutative ring. We are going to construct an algebra B, which
we will call the bracket algebra over A. We put B0=Σ[A]; if Bk is already defined,
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let Bb
k =Σ[Bk] and Bk+1=Bk∗Bb

k .(4) Let Bb=
⋃∞

k=0 Bb
k and B=

⋃∞
k=0 Bk; a mapping

[ · ]:B!Bb is naturally defined. Let I be the ideal in B generated by the sets

{[v]−v : v ∈Bb} and {[u+v]−[u]−v :u∈B and v ∈Bb};

we define B=B/I and Bb=Bb/(I∩Bb). The mapping [ · ]:B!Bb is well defined,
identical on Bb and satisfies [u+v]=[u]+v for any u∈B and v∈Bb. The elements of B

will be called bracket expressions over A.

6.4. As an abelian group, B is generated by the expressions of the form a[v1] ... [vm],
where a∈A, m>0, v1, ..., vm∈B, and of the form [v1] ... [vm], where m>1, v1, ..., vm∈B.
We will call such expressions monomials. The monomials of the form [v1] ... [vm] span Bb;
let Bt be the subgroup of B spanned by the monomials of the form a[v1] ... [vm] with
a∈A. Then B=Bt⊕Bb, and Bt is an ideal in B.

6.5. For u∈B we define t(u)∈Bt and b(u)∈Bb so that u=t(u)+b(u). From the defi-
nition of Bt and Bb we clearly have the following result.

Lemma. For u1, u2∈B one has

t(u1+u2) = t(u1)+t(u2), b(u1+u2) =b(u1)+b(u2),

t(u1u2) = t(u1)t(u2)+t(u1)b(u2)+b(u1)t(u2), b(u1u2) =b(u1)b(u2),

t([u1])= 0 and b([u1])= [t(u1)]+b(u1).

6.6. We will say that an expression

k∑
i=1

ai[vi,1] ... [vi,mi
]+

l∑
i=1

±[ui,1] ... [ui,ni
], with ai ∈A and ui,j , vi,j ∈B, (6.1)

representing an element of B is reduced if (i) all vi,j , ui,j belong to Bt and are represented
in the reduced form; (ii) the monomials vi=[vi,1] ... [vi,mi ], for i=1, ..., k, are all different,
so that no combining of like terms is possible; (iii) equal monomials ui=[ui,1] ... [ui,ni ],
for i=1, ..., l, have identical signs, so that no cancellation is possible. Every expression

(4) Note that elements of Σ[Bk], as defined in §6.2, have no integer coefficients, so that no confusion
of elements of Bb

k with elements of A⊗Bb
k may occur, even if A contains integers. For example, an

expression of the form, say, 2[v] should not be interpreted as [v]+[v], but only as 2⊗[v].
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u∈B is uniquely representable in the reduced form.(5) When we are free to choose
an expression representing an element of B we will assume that this is the reduced
representation of the element.

6.7. For u∈B we define [u]1=[u] and [u]−1=−[−u].

6.8. We will now transfer the formulas obtained in §5.9 to the “abstract” environment
we introduced. For d∈N, let Md(A) be the group of upper-triangular matrices with unit
diagonal and entries from A. We will call an upper-triangular matrix with unit diagonal
ε=(εi,j)16i<j6d with εi,j∈{−1, 1}, 16i<j6d, a sign matrix.

Given a matrix

P =


1 a1,2 ... a1,d

0 1 ... a2,d

...
...

...
...

0 0 ... 1

∈Md(A),

a sign matrix ε=(εi,j)16i<j6d, and a legal order ≺ (see §5.7) on the set {(i, j)}16i<j6d,
we define φi,j , ψi,j , ξi,j and φk,l

i,j , ψ
k,l
i,j , ξ

k,l
i,j ∈B for (i, j)�(k, l) inductively by

φk,l
i,j = ai,j−

∑
(n,j)≺(k,l)
(n,j)≺(i,n)

φn,j
i,n [ξn,j ]εn,j−

∑
(n,j)≺(k,l)
(n,j)�(i,n)

(φi,n−[ξi,n]εi,n)[ξn,j ]εn,j ,

φi,j =φi,j
i,j = ai,j−

∑
(n,j)≺(i,n)

φn,j
i,n [ξn,j ]εn,j−

∑
(n,j)�(i,n)

(φi,n−[ξi,n]εi,n)[ξn,j ]εn,j ,

ψk,l
i,j =

∑
(n,j)≺(k,l)
(n,j)≺(i,n)

ψn,j
i,n (ξn,j−[ξn,j ]εn,j )+

∑
(n,j)≺(k,l)
(n,j)�(i,n)

(φi,n−[ξi,n]εi,n)(ξn,j−[ξn,j ]εn,j ),

ψi,j =ψi,j
i,j =

∑
(n,j)≺(i,n)

ψn,j
i,n (ξn,j−[ξn,j ]εn,j )+

∑
(n,j)�(i,n)

(φi,n−[ξi,n]εi,n)(ξn,j−[ξn,j ]εn,j ),

(5) Here is how the reduction can be done. First, one reduces the expressions for all the elements
vi,j and ui,j of B appearing in (6.1) (which can be done by induction on the length of the expressions),

and takes their Bb -parts out of the brackets. Next, if a monomial [vi,1] ... [vi,mi ] appears in (6.1)
more than once, the corresponding summands should be combined by adding coefficients. Finally, if a
monomial [ui,1] ... [ui,ni ] appears in (6.1) twice with opposite signs, the corresponding summands should
be canceled.



distribution of values of bounded generalized polynomials 201

ξk,l
i,j =φk,l

i,j−ψ
k,l
i,j = ai,j−

∑
(n,j)≺(k,l)
(n,j)≺(i,n)

ξn,j
i,n [ξn,j ]εn,j−

∑
(n,j)≺(k,l)
(n,j)≺(i,n)

ψn,j
i,n ξn,j

+
∑

(n,j)≺(k,l)
(n,j)�(i,n)

[ξi,n]εi,nξn,j−
∑

(n,j)≺(k,l)
(n,j)�(i,n)

φi,nξn,j ,

ξi,j =φi,j−ψi,j = ai,j−
∑

(n,j)≺(i,n)

ξn,j
i,n [ξn,j ]εn,j−

∑
(n,j)≺(i,n)

ψn,j
i,n ξn,j

+
∑

(n,j)�(i,n)

[ξi,n]εi,nξn,j−
∑

(n,j)�(i,n)

φi,nξn,j .

(6.2)

When it is not clear from the context for which matrix P , sign matrix ε and/or
order ≺ we are computing the elements φk,l

i,j , ψ
k,l
i,j and ξk,l

i,j , we will write

φk,l
i,j (P, ε,≺), ψk,l

i,j (P, ε,≺) and ξk,l
i,j (P, ε,≺).

Notice that in formulas (6.2) the elements ξi,j are computed in terms of the ξr,s’s with
i6r<s6j. Therefore, when computing ξi,j , we may restrict ourselves to the submatrix
of P indexed by {(r, s)}i6r<s6j . We will say that the (r, s)-entry does not affect the
(i, j)-entry if r<i or s>j.

6.9. Our goal is to prove the following result.

Proposition. For any u∈Bt there exist d∈N, P∈Md(A), a sign matrix ε and a
legal order ≺ on the set {(i, j)}16i<j6d such that t(ξ1,d(P, ε,≺))=u.

Let us remark that this proposition does not yet imply Theorem A∗∗1 , because it says
nothing about the nilpotency class of the group needed to obtain an element u∈Bt. We
will later formulate and prove a stronger statement, Theorem A∗∗∗ in §10.4, from which
Theorem A∗∗1 will follow.

7. Elementary bracket expressions and ordering of trees and bushes

7.1. We will say that a bracket expression p∈B is elementary if it is constructible
from elements of A without using addition or subtraction. More precisely, p is elemen-
tary if either p=a[p1] ... [pm], where a∈A, m>0 and p1, ..., pm∈B are elementary, or
p=[p1] ... [pm], where m>1 and p1, ..., pm∈B are elementary.(6) We will denote the set
of elementary elements of B by E.

(6) Here is how this definition should be understood: we put E0=A, and then let Ek=Ek−1∪
{a[p1] ... [pm]:m>0, a∈A, p1, ..., pm∈Ek−1}∪{[p1] ... [pm]:m>1, p1, ..., pm∈Ek−1} for k=1, 2, ... , and
finally, E=

⋃∞
k=0 Ek; then E is the set of elementary elements of B.
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Example. p1[p2[p3]][p4] is elementary, whereas p1[p2+p3] and p1[p2]−p3 are not.

7.2. Elements of E can be described by oriented graphs labeled by elements of A. The
following examples illustrate what we mean.

Examples.

p1 = a : �a p2 = a1[a2] : �a1
↑�a2

p3 = a1[a2][a3] : �a1
↖�a2 ↗�a3

p4 = a1[a2[a3]] : �a1
↑�a2
↑�a3

p5 = a1[a2[a3][a4][a5[a6]]] : �a1
↑�a2

↖�a3 ↑�
a4

↗�a5
↑�a6

q= [a1[a2][a3]][a4[a5[a6]]][a7] : �a1
↖�a2 ↑�
a3

�a4
↑�a5
↑�a6

�a7

(While we do not base our proofs on this graphic representation of elements of E,
the reader may find it useful for the visualization of the exposition.)

7.3. We will now subdivide E into two subsets, E=Et∪Eb, where

Eb =E∩Bb and Et =E∩Bt.

Elements of Et have the form p=a[p1] ... [pm] with a∈A, m>0 and p1, ..., pm∈Et,
and will be referred to as trees, with root a and branches p1, ..., pm.

Elements of Eb have the form p=[p1] ... [pm] with m>1 and p1, ..., pm∈Et, and will
be referred to as bushes, with branches p1, ..., pm.

In Examples 7.2, the elements p1, ..., p5 are trees and q is a bush.

7.4. In the proof of Proposition 6.9, we will use a cumbersome induction based on
the structure of the trees representing the elements of E. We will now introduce some
parameters of trees and bushes, that is, of elements of E.

(i) The complexity cmp(p) of p∈E is the number of its vertices, that is,

cmp(p) =


1, if p∈A,

1+cmp(p1)+...+cmp(pm), if p= a[p1] ... [pm]∈Et, with a∈A and
p1, ..., pm ∈Et,

cmp(p1)+...+cmp(pm), if p= [p1] ... [pm]∈Eb, with p1, ..., pm ∈Et.
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(ii) The height hgt(p) of p∈E is

hgt(p) =


0, if p∈A,

1+max{hgt(pi)}m
i=1, if p= a[p1] ... [pm]∈Et, with a∈A and

p1, ..., pm ∈Et,

max{hgt(pi)}m
i=1, if p= [p1] ... [pm]∈Eb, with p1, ..., pm ∈Et.

(iii) The number of branches brn(p) for p∈P is defined by

brn(p) =


0, if p∈A,
m, if p= a[p1] ... [pm]∈Et, with a∈A and p1, ..., pm ∈Et,
m, if p= [p1] ... [pm]∈Eb, with p1, ..., pm ∈Et.

Examples.

p1= a1[a2][a3[a4][a5]] : �a1
↖�a2 ↑�a3
↖�a4 ↑�a5

cmp(p1)= 5, hgt(p1)= 2, brn(p1)= 2.

p2= a1[a2[a3[a4][a5]]][a6[a7]] : �a1
↑�a2
↑�a3

↖�a4 ↑�a5

↗�a6
↑�a7

cmp(p2)= 7, hgt(p2)= 3, brn(p2)= 2.

p3= a1[a2][a3][a4] : �a1
↖�a2 ↑�
a3

↗�a4
cmp(p3)= 4, hgt(p3)= 1, brn(p3)= 3.

q1= [a1[a2[a3]]][a4] : �a1
↑�a2
↑�a3

�a4
cmp(q1)= 4, hgt(q1)= 2, brn(q1)= 2.

q2= [a1[a2][a3]][a4[a5]] : �a1
↖�a2 ↑�a3

�a4
↑�a5

cmp(q2)= 5, hgt(q2)= 1, brn(q2)= 2.

7.5. The following result can be checked directly.

Lemma. (a) For p∈Et, cmp([p])=cmp(p), hgt([p])=hgt(p) and brn([p])=1.
(b) For p, q∈Eb or p∈Et, q∈Eb, cmp(pq)=cmp(p)+cmp(q).
For p, q∈Et, cmp(pq)=cmp(p)+cmp(q)−1.
(c) For p, q∈Eb or p, q∈Et, hgt(pq)=max{hgt(p),hgt(q)}.
For p∈Et, q∈Eb, hgt(pq)=max{hgt(p), 1+hgt(q)}.
(d) For p, q∈E, brn(pq)=brn(p)+brn(q).
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7.6. We now introduce an order on the set of trees Et and, independently, on the set
of bushes Eb; trees will not be comparable with bushes. Strictly speaking, these will be
linear orders on the set of nonlabeled trees and bushes; for elements p, q∈Et or p, q∈Eb

having the same graph structure we will assume p6q and q6p.
For p, q∈Et or p, q∈Eb we will write p<q, or p=o(q), if
• cmp(p)<cmp(q), or
• cmp(p)=cmp(q) and hgt(p)>hgt(q), or
• cmp(p)=cmp(q), hgt(p)=hgt(q) and brn(p)>brn(q).
If cmp(p)=cmp(q), hgt(p)=hgt(q) and brn(p)=brn(q)=m, write p=a[p1] ... [pm] or

p=[p1] ... [pm], with a∈A and p1, ..., pm∈Et, so that p1>...>pm, and write q=b[q1] ... [qm]
or q=[q1] ... [qm], with b∈A and q1, ..., qm∈Et, so that q1>...>qm. Then p<q if there
is i such that p16q1, ..., pi−16qi−1 and pi<qi; in this case we will say that the list of
branches of p is smaller than the list of branches of q.

Examples.

Trees: �
↖� ↑�↗�

< �
↑�
↑�
↑�
↑�

< �
↑�
↑�
↑�

↗�

< �
↑�
↗�↑�
↑�

< �
↑�
↑�
↑�↗�

< �
↖� ↑�
↑�
↗�

< �
↑�
↑�
↗�
↑�

< �
↗�↑�
↑�↖�

< �
↑�

↖� ↑�↗�

< �
↖� ↑�↗�

→� .

Bushes: �
↑�
↑�
↑�

� < �
↑�
↑�

� � < �
↑�
↑�

�
↑� < �

↑�
↑�
↗�

� < �
↑�
↑�↗�

� < �
↑�
↑�
↗�
↑�

< �
↑�

�
↑�

� < �
↖� ↑�

�
↑� .

7.7. We will now obtain several technical lemmas describing the properties of the intro-
duced orders on Et and Eb.

Lemma. (a) For q∈Et, [o(q)]=o([q]).
(b) For q, r∈E, with hgt(q)>hgt(r), o(q)r=o(qr).
(c) For q∈E and r∈Et, qo([r])=o(q[r]).
(d) For q∈E and r∈Et with hgt(q)>hgt(r), o(q)o([r])=o(q[r]).

Proof. (a) Let p=o(q), that is, p∈Et with p<q. We have

cmp([q])= cmp(q), cmp([p])= cmp(p), hgt([q])= hgt(q) and hgt([p])= hgt(p),

so if cmp(p)<cmp(q), or cmp(p)=cmp(q) and hgt(p)>hgt(q), then [p]<[q]. We also have
brn([q])=brn([p])=1, so if both cmp(p)=cmp(q) and hgt(p)=hgt(q), then [p]<[q] if and
only if p<q.

(b) Let p=o(q) (that is, if q∈Et then p∈Et and p<q; if q∈Eb then p∈Eb and p<q).
If cmp(p)<cmp(q) then cmp(pr)<cmp(qr). If cmp(p)=cmp(q) and hgt(p)>hgt(q), then
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cmp(pr)=cmp(qr) and hgt(pr)=hgt(p)>hgt(q)=hgt(qr). If cmp(p)=cmp(q), hgt(p)=
hgt(q) and brn(p)>brn(q), then cmp(pr)=cmp(qr), hgt(pr)=hgt(p)=hgt(q)=hgt(qr)
and brn(pr)=brn(p)+brn(r)>brn(q)+brn(r)=brn(qr). In all these cases pr<qr.

If cmp(p)=cmp(q), hgt(p)=hgt(q) and brn(p)=brn(q) then

cmp(pr) = cmp(qr), hgt(pr) =hgt(qr) and brn(pr) =brn(qr),

and we pass to the branches of pr and qr. Since the list of branches of p is smaller than
the list of branches of q, the list of branches of pr is smaller than the list of branches
of qr, and so pr<qr.

(c) Let p∈Eb and p<[r]. If cmp(p)<cmp([r]) then cmp(qp)<cmp(q[r]) and qp<q[r].
Assume that cmp(p)=cmp([r]), then cmp(qp)=cmp(q[r]). In this case hgt(p)>hgt([r]),
so hgt(qp)>hgt(q[r]). We have

brn(q[r])= brn(q)+16brn(q)+brn(p) =brn(qp).

If brn(p)>1, then brn(q[r])<brn(qp) and qp<q[r]. Otherwise p=[s] with s<r, and the
list of branches of qp=q[s] is smaller than the list of branches of q[r].

(d) By (c) and (b), we have o(q)o([r])=o(o(q)[r])=o(o(q[r]))=o(q[r]).

7.8. Lemma. If q, r∈Et, s, t∈Eb, r 6=0, hgt(q)>hgt(r) and cmp(qst)6cmp(q[r]), then
qst<q[r], o(qs)t<q[r], [qs]t<[q[r]] and o([qs])t<[q[r]].

Proof. Let p∈Et, p6qs. Then cmp(pt)6cmp(q[r]); assume that cmp(pt)=cmp(q[r]).
If hgt(p)>hgt(q), then hgt(pt)>hgt(q)=hgt(q[r]) and pt<q[r]. If hgt(p)=hgt(q), then
we must have brn(p)>brn(qs)=brn(q)+brn(s), and so,

brn(pt) >brn(q)+brn(s)+brn(t)>brn(q)+1= brn(q[r]).

It follows that pt<q[r].
Next, cmp([qs]t)6cmp([q[r]]), hgt([qs]t)>hgt(q)=hgt([q[r]]) and

brn([qs]t) > 2> 1 =brn([q[r]]),

so [qs]t<[q[r]]. By Lemma 7.7 (c), o([qs])t=o([qs]t)<[q[r]].

7.9. Lemma. If q, r, t∈Et, s∈Eb, r 6=0, hgt(q)>hgt(r) and cmp([qs]t)6cmp(q[r]), then
[qs]t<q[r] and o([qs])t<q[r].
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Proof. In this case we have hgt([qs]t)>hgt(q)+1>hgt(q)=hgt(q[r]), so [qs]t<q[r].
By Lemma 7.7 (c), o([qs])t=o([qs]t)<q[r].

7.10. Lemma. If q, r, t∈Et, a∈A, r 6=0, hgt(q)>hgt(r) and cmp([q]t)6cmp(a[q[r]]),
then [q]t<a[q[r]] and o([q])t<a[q[r]].

Proof. We have hgt([q]t)>hgt(q)+1=hgt(a[q[r]]). If cmp(t)>1 then brn(t)>1, so
brn([q]t)>2>1=brn(a[q[r]]) and so, [q]t<a[q[r]]. If cmp(t)=1 then

cmp([q]t) = cmp(q)+1< cmp(q)+cmp(r)+1= cmp(a[q[r]]),

and again [q]t<a[q[r]]. By Lemma 7.7 (c), o([q])t=o([q]t)<a[q[r]].

7.11. Lemma. If q, r, t∈Et, s∈Eb, a∈A, r 6=0, hgt(q)>hgt(r), cmp(s)<cmp(r) and
cmp([qs]t)6cmp(a[q[r]]), then [qs]t<a[q[r]] and o([qs])t<a[q[r]].

Proof. We have hgt([qs]t)>hgt(q)+1=hgt(a[q[r]]). If cmp(t)>1 then brn(t)>1, so
brn([qs]t)>2>1=brn(a[q[r]]) and [qs]t<a[q[r]]. If cmp(t)=1 then

cmp([qs]t) = cmp(q)+cmp(s)+1< cmp(q)+cmp(r)+1< cmp(a[q[r]]),

and again [qs]t<a[q[r]]. By Lemma 7.7 (c), o([qs])t=o([qs]t)<a[q[r]].

8. Components of bracket expressions

8.1. We start the proof of Proposition 6.9 by treating first its simplified version. This
simplification is achieved by dealing with, instead of elements of B, a new sort of
bracket expressions. Such “new” expressions are obtained from the “old” bracket ex-
pressions by treating the bracket mapping [ · ] as an additive function, that is, by assum-
ing that [u+v]=[u]+[v]. This will be done by letting every element u of B correspond
to an unordered list c(u) of “components of u”, which we will write as a formal sum,
c(u)=p1+...+pk with p1, ..., pk∈E.

8.2. Let S be the set of formal sums of the form c=p1+...+pk with p1, ..., pk∈E; the
order of the summands in c is not essential, but no combining of like terms is allowed. For
two elements c=p1+...+pk and c1=q1+...+ql of S, the sum c+c1=p1+...+pm+q1+
...+ql∈S and the product cc1=p1q1+...+p1ql+...+pmq1+...+pmql∈S are naturally de-
fined. We also define [c]=[p1]+...+[pm].
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8.3. Now let u∈B; we define c(u)∈S in the following way: if u=a∈A, we put c(u)=a; if
u /∈A and u=

∑k
i=1 ai[vi,1] ... [vi,mi ]+

∑l
i=1±[ui,1] ... [ui,ni ], with ai∈A and ui,j , vi,j∈Bt,

is the reduced representation of u, we define

c(u) =
k∑

i=1

ai[c(vi,1)] ... [c(vi,mi
)]+

l∑
i=1

[c(ui,1)] ... [c(ui,ni
)].

When c(u)=p1+...+pk, we call p1, ..., pk∈E the components of u.

Examples. (1) Let u=a1[a2+a3[a4][a5]]+a6[a7+a8]−[a9][a10+a11[a12]], ai∈A. To
compute c(u) we simply “open brackets”, and ignore the “−” before the b-part of u:

c(u) = a1[a2]+a1[a3[a4][a5]]+a6[a7]+a6[a8]+[a9][a10]+[a9][a11[a12]]. (8.1)

Warning: although the right-hand side of (8.1) looks like “a bracket expression”,
that is, an element of B, it is just a notation for an unordered list of elements of E! In
what follows, it will be always clear from the context which interpretation of a bracket-like
expression is intended.

(2) For u=[a1+a2[a3]]−[a1−a2[a3]], ai∈A, c(u)=[a1]+[a2[a3]]+[a1]+[−a2[a3]].

8.4. We will write ct(u) for the “tree part” and cb(u) for the “bush part” of c(u), that
is, ct(u)=c(t(u)) and cb(u)=c(b(u)).

Example. In the example (1) above,

ct(u) = a1[a2]+a1[a3[a4][a5]]+a6[a7]+a6[a8] and cb(u) = [a9][a10]+[a9][a11[a12]].

8.5. From Lemma 6.5, one deduces the following result.

Lemma. For any u1, u2, u∈B,

ct(u1+u2) = ct(u1)+ct(u2), cb(u1+u2) = cb(u1)+cb(u2),

ct(u1u2) = ct(u1)ct(u2)+ct(u1)cb(u2)+cb(u1)ct(u2), cb(u1u2) = cb(u1)cb(u2),

ct([u])= 0 and , if ct(u) = p1+...+pm, c([u])= cb([u])= [p1]+...+[pm]+cb(u).

8.6. Given c=p1+...+pm∈S, we define

cmp(c) =max{cmp(pi)}m
i=1, hgt(c) =min{hgt(pi)}m

i=1 and brn(c) =min{brn(pi)}m
i=1.

For u∈B we put cmp(u)=cmp(c(u)). (This agrees with the definition of cmp given
in §1.12.)
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8.7. Let P∈Md(A), ε=(εi,j)16i<j6d be a sign matrix, ≺ be a legal order on the set
{(i, j)}16i<j6d, and let φk,l

i,j , ψ
k,l
i,j , ξ

k,l
i,j ∈B be defined by formulas (6.2). The following

lemma can be easily proved by induction on j−i.

Lemma. For any 16i<j6d and 16k<l6d with (k, l)≺(i, j) one has

cmp(φk,l
i,j ), cmp(ψk,l

i,j ), cmp(ξk,l
i,j ) 6 j−i.

8.8. Given c=p1+...+pm∈S and c1=q1+...+ql∈S, we will write c<c1 if max{pi}m
i=1<

max{qj}l
j=1, and c6c1 if max{pi}m

i=16max{qj}l
j=1. If c<p (that is, p1, ..., pm<p), we

will also write c1=o(p).

9. Tree growing and induction over elementary bracket expressions

9.1. If (J1,≺1), ..., (Jk,≺k) are linearly ordered sets, then ((J1,≺1), ..., (Jk,≺k)) will
stand for the linear order ≺ on J1∪...∪Jk which coincides with ≺i on each Ji and
satisfies Ji≺Jj whenever i<j. If Ji is a one-element set, Ji={mi}, we will write in this
definition mi instead of (Ji,≺i) that is, ≺=((J1,≺1), ...,mi, ..., (Jk,≺k)).

9.2. Given a tree p∈Et we will now construct a matrix Pp∈Md(A), d=cmp(p)+1,
and a legal order ≺p on {(i, j)}16i<j6d such that p appears as “the principal part”
of ξ1,d(Pp,≺p) (see Proposition 9.4 below for the exact formulation). Our computations
will not be affected by the choice of the signs εi,j , and we will take εi,j =1 for all i, j.

If cmp(p)=1, that is, p=a∈A, we define

Pp =
(

1 a

0 1

)
.

Now let p∈Et with cmp(p)>1 and assume that for all q∈Et with cmp(q)<cmp(p)
a matrix Pq and an order ≺q on the set of entries of Pq have been constructed. Let
d=cmp(p)+1 and m=brn(p). Represent p=a[p1] ... [pm] so that a∈A and p1, ..., pm∈Et

satisfy hgt(p1)>...>hgt(pm). We distinguish between two cases.

Case 1. m=1 (“extending the trunk”). Put q=p1, then p=a[q] with cmp(q)=d−2.

q : �
↖�

↖� ↑�
↑�
↑�

=⇒ a[q] : �a
↑�q

↖�
↖� ↑�

↑�
↑�
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Let

Pq =


1 b1,2 ... b1,d−1

0 1 ... b2,d−1

...
...

...
...

0 0 ... 1

∈Md−1(A).

Define

Pp =


1 −a 0 ... 0

0 1 b1,2 ... b1,d−1

0 0 1 ... b2,d−1

...
...

...
...

...

0 0 0 ... 1

=


1 −a 0 ... 0

0
... Pq

0

∈Md(A),

shift the order ≺q so that it is defined on Iq={(i, j)}26i<j6d instead of {(i, j)}16i<j6d−1,
and put

≺p =((Iq,≺q), (1, 2), (1, 3), ..., (1, d)).

(In plain words, the entries of Pq go first then follow the entries of the first row of Pp.)

Case 2. m>2 (“adding a branch”). Put q=a[p1] ... [pm−1] and r=pm, then p=q[r]
with hgt(q)>hgt(r).

q : �
↖�

↖� ↑�
↑�
↑�

, r : �
↑�↗�

=⇒ q[r] : �q↖
�

↖� ↑�
↑�
↑�
↗� r
↑�↗�

Let d1=cmp(q)+1 and d2=cmp(r)+1, then d=cmp(p)+1=d1+d2−1. Let

Pq =


1 b1,2 ... b1,d1

0 1 ... b2,d1

...
...

...
...

0 0 ... 1

∈Md1(A) and Pr =


1 c1,2 ... c1,d2

0 1 ... c2,d2

...
...

...
...

0 0 ... 1

∈Md2(A).

We define

Pp =



1 c1,2 ... c1,d2 0 ... 0

0 1 ... c2,d2 0 ... 0

...
...

...
...

...
...

0 0 ... 1 b1,2 ... b1,d1

0 0 ... 0 1 ... b2,d1

...
...

...
...

...
...

0 0 ... 0 0 ... 1


=


Pr

Pq

∈Md(A).

That is, Pq occupies the submatrix of Pp indexed by Iq={(i, j)}d26i<j6d and Pr oc-
cupies the submatrix of Pp indexed by Ir={(i, j)}16i<j6d2 . Shift the order ≺q so
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that it is defined on Iq instead of {(i, j)}16i<j6d1 , and let ≺J be any legal order on
J={(i, j)}16i6d2−1, d2+16j6d. We define the order ≺p on {(i, j)}16i<j6d to be

≺p =((Iq\{(d2, d)},≺q), (Ir,≺r), (d2, d), (J,≺J)).

(That is, first the entries of Pq excluding b1,d1 appear, then follow the entries of Pr, then
follow b1,d1 , and finally all other entries of Pp follow.)

9.3. Lemma. Let p∈Et, d=cmp(p)+1 and 1<n<d. Then the submatrix Q of Pp

indexed by {(i, j)}n6i<j6d is equal to Pt and ≺p|Q=≺t for some t∈Et. If brn(p)>2,
so that Case 2 takes place, that is, p=q[r] with q, r∈Et, hgt(q)>hgt(r), cmp(q)=d1,
cmp(r)=d2, and if 16n<d2, then Q is equal to Pq[s] and ≺p|Q=≺q[s] for some s∈Et.

Proof. In Case 1, that is, when p=a[q], Q is a submatrix of Pq, and we are done by
induction on cmp(p):

Pp =


1 −a 0 ... 0

0 1 b1,2 ... b1,d−1

0 0 1 ... b2,d−1

...
...

...
...

...

0 0 0 ... 1

 .

Consider Case 2, where p=q[r], d1=cmp(q) and d2=cmp(r). If n>d2, then Q is a
submatrix of Pq and we are done:

Pp =



1 c1,2 ... c1,d2 0 ... 0

0 1 ... c2,d2 0 ... 0

...
...

...
...

...
...

0 0 ... 1 b1,2 ... b1,d1

0 0 ... 0 1 ... b2,d1

...
...

...
...

...
...

0 0 ... 0 0 ... 1


.

If n<d2, consider the submatrix R indexed by {(i, j)}n6i<j6d2 :

Pp =



1 c1,2 ... c1,d2 0 ... 0

0 1 ... c2,d2 0 ... 0

...
...

...
...

...
...

0 0 ... 1 b1,2 ... b1,d1

0 0 ... 0 1 ... b2,d1

...
...

...
...

...
...

0 0 ... 0 0 ... 1


.
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R is a submatrix of Pr and, by induction, R=Ps and ≺q|R=≺s for some s∈Et. The
matrix Q and the order ≺p|Q are obtained from Pq, ≺p, Ps and ≺s in the way described
in Case 2; hence, Q=Pt and ≺p|Q=≺t for t=q[s].

9.4. Proposition. For any p∈Et one has ct(ξ1,d(Pp,≺p))=p+o(p).

Proof. We will prove this proposition by induction on cmp(p). We strengthen our
induction hypothesis and will simultaneously be proving that cb(ξ1,d(Pp,≺p))<[p] and
that cb(φ1,d(Pp,≺p))<[p].

If cmp(p)=1, that is, p=a∈A, we have

Pp =
(

1 a

0 1

)
and ξ1,2=φ1,2=p.

a : �a

If cmp(p)=2, then p has form a[b] with a, b∈A.

a[b] : � a
↑� b

In this case, Pp and ≺p are constructed in accordance with Case 1:

Pp =

 1 −a 0

0 1 b

0 0 1


and ≺p=((2, 3), (1, 2), (1, 3)). By formulas (6.2), ξ1,3=0−ξ2,3

1,2 [ξ2,3]−ψ2,3
1,2ξ2,3. We have

ξ2,3
1,2 =−a, ξ2,3=b and ψ1,2=0, so that ξ1,3=a[b]=p. Also, φ1,3=−a2,3

1,2[ξ2,3]=a[b] and so,
cb(φ1,3)=0.

Now let p∈Et with cmp(p)>3; put d=cmp(p)+1. We consider several cases.

Case 1a. p=a[b[q]], where a, b∈A and q∈Et.

a[b[q]] : � a
↑� b
↑� q

↖�
↖� ↑�

↑�
↑�

Let

Pq =


1 c1,2 ... c1,d−1

0 1 ... c2,d−2

...
...

...
...

0 0 ... 1

∈Md−2(A),
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then

Pp =



1 a1,2 0 0 ... 0

0 1 a2,3 0 ... 0

0 0 1 a3,4 ... a3,d

0 0 0 1 ... a4,d

...
...

...
...

...
...

0 0 0 0 ... 1


=



1 −a 0 0 ... 0

0 1 −b 0 ... 0

0 0 1 c1,2 ... c1,d−2

0 0 0 1 ... c2,d−2

...
...

...
...

...
...

0 0 0 0 ... 1



=


1 −a 0 0 ... 0

1 −b 0 ... 0

Pq

∈Md(A).

We will identify Pq with the submatrix of Pp indexed by Iq={(i, j)}36i<j6d and shift ≺q

so that it is defined on Iq instead of {(i, j)}16i<j6d−2. Then

≺p =((Iq,≺q), (2, 3), ..., (2, d), (1, 2), ..., (1, d)).

The entries (i, j) /∈Iq do not affect the entries from Iq, therefore the elements φk,l
i,j (Pp),

ψk,l
i,j (Pp) and ξk,l

i,j (Pp) with (i, j)∈Iq are equal to the corresponding elements φk,l
i,j (Pq),

ψk,l
i,j (Pq) and ξk,l

i,j (Pq).
From formulas (6.2), we have

ξ1,d =−
d−1∑
n=2

ξn,d
1,n [ξn,d]−

d−1∑
n=2

ψn,d
1,nξn,d.

One checks by induction on n that for any n∈{3, ..., d} and (k, l)∈Iq one has φk,l
1,n=ψk,l

1,n=
ξk,l
1,n=0. It follows that

d−1∑
n=3

ξn,d
1,n [ξn,d]+

d−1∑
n=3

ψn,d
1,nξn,d =0.

We have ξ2,d
1,2 =−a and ψ2,d

1,2 =0, hence ξ1,d=a[ξ2,d]∈Bt, and so, cb(ξ1,d)=0. By
our induction hypothesis, c(ξ2,d)=b[q]+o(b[q])+o([b[q]]). By Lemma 7.7 (a) and (c),
ct(ξ1,d)=ct(a[ξ2,d])=a[b[q]]+o(a[b[q]])=p+o(p). We also find that

φ1,d =−
d−1∑
n=2

φn,d
1,n[ξn,d] =−φ2,d

1,2[ξ2,d] = a[ξ2,d]∈Bt,

and so, cb(φ1,d)=0.
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Case 2a. p=q[r] where q, r∈Et, cmp(r)>2, and hgt(q)>hgt(r).

q[r] : �q↖
�

↖� ↑�
↑�
↑�
↗� r
↑�↗�

Let d1=cmp(q)+1, d2=cmp(r)+1,

Pq =


1 b1,2 ... b1,d1

0 1 ... b2,d1

...
...

...
...

0 0 ... 1

∈Md1(A) and Pr =


1 c1,2 ... c1,d2

0 1 ... c2,d2

...
...

...
...

0 0 ... 1

∈Md2(A),

then

Pp =



1 a1,2 ... a1,d2 0 ... 0

0 1 ... a2,d2 0 ... 0

...
...

...
...

...
...

0 0 ... 1 ad2,d2+1 ... ad2,d

0 0 ... 0 1 ... ad2+1,d

...
...

...
...

...
...

0 0 ... 0 0 ... 1



=



1 c1,2 ... c1,d2 0 ... 0

0 1 ... c2,d2 0 ... 0

...
...

...
...

...
...

0 0 ... 1 b1,2 ... b1,d1

0 0 ... 0 1 ... b2,d1

...
...

...
...

...
...

0 0 ... 0 0 ... 1


∈Md(A).

Let Iq={(i, j)}d26i<j6d, Ir={(i, j)}16i<j6d2 and J={(i, j)}16i6d2−1, d2+16j6d. We will
identify the matrices Pq and Pr with their images in Pp indexed by Iq and Ir, respectively,
and, in particular, will index the entries of Pq by Iq instead of {(i, j)}16i<j6d1 . We then
have ≺p=((Iq\{(d2, d)},≺q), (Ir,≺r), (d2, d), (J,≺J)).

The entries of Pq do not affect the entries of Pr and vice versa. Thus, the elements
φk,l

i,j (Pp), ψ
k,l
i,j (Pp) and ξk,l

i,j (Pp) with (i, j)∈Ir are equal to the corresponding φk,l
i,j (Pr),

ψk,l
i,j (Pr) and ξk,l

i,j (Pr), and the elements φk,l
i,j (Pp), ψ

k,l
i,j (Pp) and ξk,l

i,j (Pp) with (i, j)∈Iq are
equal to the corresponding φk,l

i,j (Pq), ψ
k,l
i,j (Pq) and ξk,l

i,j (Pq). From formulas (6.2), we have

ξ1,d =−
d−1∑

n=d2+1

ξn,d
1,n [ξn,d]−

d−1∑
n=d2+1

ψn,d
1,nξn,d+

d2−1∑
n=2

[ξ1,n]ξn,d−
d2−1∑
n=2

φ1,nξn,d

+[ξ1,d2 ]ξd2,d−φ1,d2ξd2,d.

(9.1)
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By our induction hypothesis, c(ξ1,d2)=r+o(r)+o([r]) and c(ξd2,d)=q+o(q)+o([q]). By
Lemma 7.7 (a), c([ξ1,d2 ])=[r]+o([r]). By Lemma 7.7 (b), (c), and (d),

c([ξ1,d2 ]ξd2,d) = q[r]+o(q[r])+o([q][r])= p+o(p)+o([q][r]).

Since hgt(q)>hgt(r), we have hgt([q][r])=hgt(q)=hgt([q[r]]); since brn([q][r])>brn([q[r]]),
we have [q][r]<[q[r]]=[p] and so, c([ξ1,d2 ]ξd2,d)=p+o(p)+o([p]).

We will now show that the components of all other terms on the right-hand side of
formula (9.1) are smaller than p or [p]. By Lemma 8.7, the complexity of these terms do
not exceed d−1=cmp(p).

We start with the sums

d−1∑
n=d2+1

ξn,d
1,n [ξn,d] and

d−1∑
n=d2+1

ψn,d
1,nξn,d.

Fix any (k, l)∈Iq\{(d2, d)}. Since for (i, j)∈Ir one has (k, l)≺p(i, j), we obtain from
formulas (6.2) that φk,l

i,j =ξk,l
i,j =ci,j and ψk,l

i,j =0. In particular

cmp(φk,l
i,d2

), cmp(ψk,l
i,d2

), cmp(ξk,l
i,d2

) 6 1

for any i∈{1, ..., d2−1}. Next, since (k, l)≺p(n, j) for any (n, j)∈J , the entries (n, j) with
n<d2 do not participate in formulas for φk,l

i,j , ψ
k,l
i,j and ξk,l

i,j with (i, j)∈J . By Lemma 8.7,
one has cmp(φn,j), cmp(ψn,j), cmp(ξn,j)6n−j, and one checks by induction on j that
for any (i, j)∈J , cmp(φk,l

i,j ), cmp(ψk,l
i,j ), cmp(ξk,l

i,j )6j−d2+1. In particular, for any n∈
{d2+1, ..., d−1} one has cmp(ξn,d

1,n), cmp(ψn,d
1,n)6n−d2+1, and since d2=cmp(r)+1>3,

we obtain cmp(ξn,d
1,n [ξn,d]), cmp(ψn,d

1,nξn,d)6n−d2+1+d−n<d−1=cmp(p).
Now turn to the sums

d2−1∑
n=2

[ξ1,n]ξn,d and
d2−1∑
n=2

φ1,nξn,d.

Fix n∈{2, ..., d2−1}. By Lemma 9.3, the submatrix of Pp indexed by {(i, j)}n6i<j6d2

has the form Pq[s] for some s∈Et with cmp(s)<cmp(r), and by induction hypothesis

c(ξn,d) = q[s]+o(q[s])+o([q[s]]).

By Lemma 7.8,

c([ξ1,n])ct(ξn,d) = o(q[r])= o(p) and c([ξ1,n])cb(ξn,d) = o([q[r]])= o(p)+o([p]).

We also have by Lemma 7.8 that cb(φ1,n)ct(ξn,d)=o(q[r]) and cb(φ1,n)cb(ξn,d)=o([q[r]]),
and by Lemma 7.9 that ct(φ1,n)cb(ξn,d)=o(q[r]). By Lemma 8.7, cmp(ξn,d)6d−n and
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cmp(φ1,n)6n−1, so cmp(ct(φ1,n)ct(ξn,d))6d−n+n−1−1=d−2<cmp(p). Summariz-
ing, ct(φ1,nξn,d)=o(q[r])=o(p) and cb(φ1,nξn,d)=o([q[r]])=o([p]).

Now consider the term φ1,d2ξd2,d. Again, we have cmp(ct(φ1,d2)c
t(ξd2,d))<cmp(p).

By our induction hypothesis, ct(ξd2,d)=q+o(q), cb(ξd2,d)=o([q]) and cb(φ1,d2)=o([r]).
By Lemma 7.7 (b) and (d),

cb(φ1,d2)c
t(ξd2,d) = o(q[r])= o(p) and cb(φ1,d2)c

b(ξd2,d) = o([q][r])= o([p]).

By Lemma 7.7 (c),

ct(φ1,d2)c
b(ξd2,d) = ct(φ1,d2)o([q])= o(ct(φ1,d2)[q]).

Since hgt(ct(φ1,d2)[q])>hgt(q)+1>hgt(p), we have ct(φ1,d2)[q]=o(p) and so,

ct(φ1,d2)c
b(ξd2,d) = o(p).

Hence, ct(φ1,d2ξd2,d)=o(p) and cb(φ1,d2ξd2,d)=o([p]).
It remains to check that cb(φ1,d)<[p]. By formulas (6.2),

φ1,d =−
d−1∑

n=d2+1

φn,d
1,n[ξn,d]−

d2∑
n=2

(φ1,n−[ξ1,n])[ξn,d].

Again, for n∈{d2+1, ..., d−1} one has cmp(φn,d
1,n)6n−d2+1 and so,

cmp(φn,d
1,n[ξn,d])<d−1 = cmp(p).

For n∈{2, ..., d2−1} one has c([ξn,d])=[q[s]]+o([q[s]]), and, by Lemma 7.8,

cb(α1,n[ξn,d])+cb([ξ1,n][ξn,d])= o([q[r]])= o([p]).

For n=d2 one has c([ξn,d])=[q]+o([q]), cb(α1,n)=o([r]), and c([ξ1,n])=[r]+o([r]); by
Lemma 7.7, cb(α1,n[ξn,d])+cb([ξ1,n][ξn,d])=[q][r]+o([q][r])=o([p]).

Case 1b. p=a[q[r]], where a∈A and q, r∈Et with hgt(q)>hgt(r).

a[q[r]] : �a
↑�q↖

�
↖� ↑�

↑�
↑�
↗� r
↑�↗�

Let d1=cmp(q)+1, d2=cmp(r)+1,

Pq =


1 b1,2 ... b1,d1

0 1 ... b2,d1

...
...

...
...

0 0 ... 1

∈Md1(A) and Pr =


1 c1,2 ... c1,d2

0 1 ... c2,d2

...
...

...
...

0 0 ... 1

∈Md2(A),
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then

Pp =



1 a1,2 0 ... 0 0 ... 0

0 1 a2,3 ... a2,d2+1 0 ... 0

0 0 1 ... a3,d2+1 0 ... 0

...
...

...
...

...
...

...

0 0 0 ... 1 ad2+1,d2+2 ... ad2+1,d

0 0 0 ... 0 1 ... ad2+2,d

...
...

...
...

...
...

...

0 0 0 ... 0 0 ... 1



=



1 −a 0 ... 0 0 ... 0

0 1 c1,2 ... c1,d2 0 ... 0

0 0 1 ... c2,d2 0 ... 0

...
...

...
...

...
...

...

0 0 0 ... 1 b1,2 ... b1,d1

0 0 0 ... 0 1 ... b2,d1

...
...

...
...

...
...

...

0 0 0 ... 0 0 ... 1


∈Md(A).

Let Iq={(i, j)}d2+16i<j6d, Ir={(i, j)}26i<j6d2+1 and J={(i, j)}26i6d2, d2+26j6d. We
will identify the matrices Pq and Pr with their images in Pp indexed by Iq and Ir,
respectively, and will index the entries of Pq and Pr by Iq and Ir, respectively. We then
have ≺p=((Iq\{(d2+1, d)},≺q), (Ir,≺r), (d2+1, d), (J,≺J), (1, 2), ..., (1, d)).

The entries of Pq do not affect the entries of Pr and vice versa. Thus, the elements
φk,l

i,j (Pp), ψ
k,l
i,j (Pp) and ξk,l

i,j (Pp) with (i, j)∈Ir are equal to the corresponding φk,l
i,j (Pr),

ψk,l
i,j (Pr) and ξk,l

i,j (Pr), and the elements φk,l
i,j (Pp), ψ

k,l
i,j (Pp) and ξk,l

i,j (Pp) with (i, j)∈Iq are
equal to the corresponding φk,l

i,j (Pq), ψ
k,l
i,j (Pq) and ξk,l

i,j (Pq).

From formulas (6.2), for n∈{3, ..., d} and 16k<l6d with (k, l)�p(1, n), we have

φk,l
1,n =−

∑
m=2,...,n−1
(m,n)≺p(k,l)

φm,n
1,m [ξm,n],

ψk,l
1,n =−

∑
m=2,...,n−1
(m,n)≺p(k,l)

ψm,n
1,m (ξm,n−[ξm,n]), (9.2)

ξk,l
1,n =−

∑
m=2,...,n−1
(m,n)≺p(k,l)

(ξm,n
1,m [ξm,n]+ψm,n

1,m ξm,n).
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So,

b(φk,l
1,n) =−

∑
m=2,...,n−1
(m,n)≺p(k,l)

b(φm,n
1,m )b([ξm,n]),

b(ψk,l
1,n) =−

∑
m=2,...,n−1
(m,n)≺p(k,l)

b(ψm,n
1,m )(b(ξm,n)−b([ξm,n])),

b(ξk,l
1,n) =−

∑
m=2,...,n−1
(m,n)≺p(k,l)

(b(ξm,n
1,m )b([ξm,n])+b(ψm,n

1,m )b(ξm,n)),

and, by induction on n, b(φk,l
1,n)=b(ψk,l

1,n)=b(ξk,l
1,n)=0. Hence, φk,l

1,n, ψ
k,l
1,n, ξ

k,l
1,n∈Bt. In

particular, cb(φ1,d)=0.
From formulas (6.2),

ξ1,d =−
d−1∑
n=2

ξn,d
1,n [ξn,d]−

d−1∑
n=2

ψn,d
1,nξn,d.

We have ξ2,d
1,2 =−a, ψ2,d

1,2 =0, and, by the induction hypothesis,

c(ξ2,d) = q[r]+o(q[r])+o([q[r]]).

By Lemma 7.7 (b), c(ξ2,d
1,2 [ξ2,d]+ξ2,dψ

2,d
1,2)=a[q[r]]+o(a[q[r]])=p+o(p).

We will now show that

c
( d−1∑

n=3

ξn,d
1,n [ξn,d]+

d−1∑
n=3

ψn,d
1,nξn,d

)
= o(p).

First, fix n∈{3, ..., d2}. By Lemma 9.3 and the induction hypothesis,

c(ξn,d) = q[s]+o(q[s])+o([q[s]])

for some s∈Et with cmp(s)<cmp(r). By Lemma 7.11,

c(ξn,d
1,n)c([ξn,d])= o(a[q[r]])= o(p) and c(ψn,d

1,n)cb(ξn,d) = o(a[q[r]])= o(p).

Also, cmp(c(ψn,d
1,n)ct(ξn,d))<cmp(p), so that c(ψn,d

1,n)ct(ξn,d)=o(p).
Now, put n=d2+1. By our induction hypothesis,

c(ξn,d) = q+o(q)+o([q]).
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By Lemma 7.10,

c(ξn,d
1,n [ξn,d])= o(a[q[r]])= o(p) and c(ψn,d

1,n)cb(ξn,d) = o(a[q[r]])= o(p).

Also, cmp(c(ψn,d
1,n)ct(ξn,d))<cmp(p), so that c(ψn,d

1,n)ct(ξn,d)=o(p).
Finally, let n∈{d2+2, ..., d−1}. In formulas (9.2), for any (k, l)∈Iq\{(d2+1, d)}, if

(m,n)≺p(k, l) then we must have m>d2+1, and, by induction on n, we conclude that
ξk,l
1,n=ψk,l

1,n=0. In particular, ξn,d
1,n =ψn,d

1,n =0. Hence, ξn,d
1,n [ξn,d]+ψ

n,d
1,nξn,d=0.

Case 2b. p=b[q][a], where a, b∈A and q∈Et.

b[q][a] : � b
↑�q

↖�
↖� ↑�

↑�
↑�

↗� a

Let

Pq =


1 c1,2 ... c1,d−1

0 1 ... c2,d−2

...
...

...
...

0 0 ... 1

∈Md−2(A),

then

Pp =



1 a1,2 0 0 ... 0

0 1 a2,3 0 ... 0

0 0 1 a3,4 ... a3,d

0 0 0 1 ... a4,d

...
...

...
...

...
...

0 0 0 0 ... 1


=



1 a 0 0 ... 0

0 1 −b 0 ... 0

0 0 1 c1,2 ... c1,d−2

0 0 0 1 ... c2,d−2

...
...

...
...

...
...

0 0 0 0 ... 1



=


1 a 0 0 ... 0

1 −b 0 ... 0

Pq

∈Md(A).

After redefining ≺q so that it is now defined on Iq, we have

≺p =((Iq,≺q), (2, 3), ..., (2, d−1), (1, 2), (2, d), (1, 3), ..., (1, d)).

The only difference between this case and Case 1a is that we switched the entries (2, d)
and (1, 2). This change only affects the (1, d)-entry of Pp, all other computations remain
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the same. From formulas (6.2),

ξ1,d =−
d−1∑
n=3

ξn,d
1,n [ξn,d]−

d−1∑
n=3

ξn,dψ
n,d
1,n +([ξ1,2]−φ1,2)ξ2,d,

φ1,d =−
d−1∑
n=3

φn,d
1,n[ξn,d]+([ξ1,2]−φ1,2)[ξ2,d].

We have checked in Case 1a that
d−1∑
n=3

ξn,d
1,n [ξn,d]+

d−1∑
n=3

ξn,dψ
n,d
1,n =0 and b

( d−1∑
n=3

φn,d
1,n[ξn,d]

)
=0.

Since ξ1,2=φ1,2=a and by our induction hypothesis c(ξ2,d)=b[q]+o(b[q])+o([b[q]]), we
obtain, by Lemma 7.7 (b),

c(ξ1,d) = c(([a]−a)ξ2,d) = b[q][a]+o(b[q][a])+o([b[q]][a])+ab[q]+o(ab[q])+o(a[b[q]])

= p+o(p)+o([p])

and
cb(φ1,d) = cb(([a]−a)[ξ2,d])= [a][b[q]]+o([a][b[q]])= o([p]).

Case 2c. p=q[r][a], where a∈A and q, r∈Et with hgt(q)>hgt(r).

q[r][a] : �q↖
�

↖� ↑�
↑�
↑�
↗� r
↑�↗�

→�a

Let d1=cmp(q)+1, d2=cmp(r)+1,

Pq =


1 b1,2 ... b1,d1

0 1 ... b2,d1

...
...

...
...

0 0 ... 1

∈Md1(A) and Pr =


1 c1,2 ... c1,d2

0 1 ... c2,d2

...
...

...
...

0 0 ... 1

∈Md2(A),

then

Pp =



1 a1,2 0 ... 0 0 ... 0

0 1 a2,3 ... a2,d2+1 0 ... 0

0 0 1 ... a3,d2+1 0 ... 0

...
...

...
...

...
...

...

0 0 0 ... 1 ad2+1,d2+2 ... ad2+1,d

0 0 0 ... 0 1 ... ad2+2,d

...
...

...
...

...
...

...

0 0 0 ... 0 0 ... 1


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=



1 a 0 ... 0 0 ... 0

0 1 c1,2 ... c1,d2 0 ... 0

0 0 1 ... c2,d2 0 ... 0

...
...

...
...

...
...

...

0 0 0 ... 1 b1,2 ... b1,d1

0 0 0 ... 0 1 ... b2,d1

...
...

...
...

...
...

...

0 0 0 ... 0 0 ... 1


∈Md(A).

Let Iq={(i, j)}d2+16i<j6d, Ir={(i, j)}26i<j6d2+1, and J={(i, j)}26i6d2, d2+26j6d. After
redefining ≺q and ≺r so that they are now defined on Iq and Ir, respectively, we have
≺p=((Iq\{(d2+1, d)},≺q), (Ir,≺r), (1, 2), (d2+1, d), (J,≺J), ..., (1, d)).

The difference between this case and Case 1b is that the entries (d2+1, d) and
(1, 2) are switched; this change of order only affects the (1, d)-entry of Pp, all other
computations remain the same. From formulas (6.2),

ξ1,d =−
d−1∑
n=3

ξn,d
1,n [ξn,d]−

d−1∑
n=3

ψn,d
1,nξn,d+([ξ1,2]−φ1,2)ξ2,d,

φ1,d =−
d−1∑
n=3

φn,d
1,n[ξn,d]+([ξ1,2]−φ1,2)[ξ2,d].

We have checked in Case 1b that

c
( d−1∑

n=3

ξn,d
1,n [ξn,d]+

d−1∑
n=3

ψn,d
1,nξn,d

)
<a[q[r]]<p and b

( d−1∑
n=3

φn,d
1,n[ξn,d]

)
=0.

We have ξ1,2=φ1,2=a and c(ξ2,d)=q[r]+o(q[r])+o([q[r]]), thus, by Lemma 7.7(b),

c(([ξ1,2]−φ1,2)ξ2,d) = q[r][a]+o(q[r][a])+o([q[r]][a])+aq[r]+o(aq[r])+o(a[q[r]])

= p+o(p)+o([p])

and
cb(([ξ1,2]−φ1,2)[ξ2,d])= [q[r]][a]+o([q[r]][a])= o([p]).

10. From components to bracket expressions

10.1. We want to emphasize again that Proposition 6.9 (which has not been proven yet!)
does not imply Theorem A∗∗1 , because it says nothing about the nilpotency class of the
group necessary for obtaining an element u∈Bt. Let us return to the notation introduced
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in the beginning of §5; we will compute the nilpotency class of certain subgroups of Md,
d∈N.

We will say that a set T ⊆{(i, j):16i<j6d} is transitive if it satisfies the following
condition: (i, j), (j, k)∈T implies (i, k)∈T . Given a transitive set T ⊆{(i, j):16i<j6d},

MT =





1 a1,2 a1,3 ... a1,d−1 a1,d

0 1 a2,3 ... a2,d−1 a2,d

0 0 1 ... a3,d−1 a3,d

...
...

...
...

...
...

0 0 0 ... 1 ad−1,d

0 0 0 ... 0 1


∈Md : ai,j =0 whenever (i, j) /∈T


is a connected Lie subgroup of Md, and {Ei,j}(i,j)∈T is a Mal’tsev basis in MT . We will
now determine the nilpotency class of MT .

10.2. Let T ⊆{(i, j):16i<j6d} be a transitive set. For (i, j)∈T let us define stepT (i, j)
to be the maximal length of a chain connecting i and j in T , that is, the maximal
integer m for which there exist k1, ..., km−1∈{1, ..., d} with

(i, k1), (k1, k2), ..., (km−2, km−1), (km−1, j)∈T .

We also define step(T )=max{stepT (i, j):(i, j)∈T }.

Lemma. The nilpotency class of MT is equal to step(T ).

Proof. We have

[Ei,j , Ek,l] =
{
Ei,l, if j= k,
1, otherwise.

It follows that the mth member of the lower central series

(MT )1 =MT , (MT )m = [(MT )m−1,MT ], m=2, 3, ...,

of MT is generated by {Ei,j :(i, j)∈T and stepT (i, j)=m}.

10.3. We will say that an order ≺ on the elements of a transitive set T is legal if
(i, j), (j, k)≺(i, k) whenever (i, j), (j, k), (i, k)∈T . This definition agrees with the defini-
tion of a legal order given in §5.7 for the case T ={(i, j):16i<j6d}.
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10.4. We return to the bracket algebra B over a commutative ring A. For D∈N,
we define MD as the set of u∈Bt such that there exist d∈N, a transitive set T ⊆
{(i, j):16i<j6d} with (1, d)∈T and step(T )6D, a matrix P∈MT (A), a sign matrix
ε=(εi,j)16i<j6d and a legal order ≺ on T such that u=t(ξ1,d(P, ε,≺)). We then define

M= {u∈Bt :u∈MD with D=cmp(u)}.

We will prove the following enhancement of Proposition 6.9, which implies Theorem A∗∗1 .

Theorem A∗∗∗. M=Bt.

10.5. Lemma. If u∈MD then −u∈MD. In particular , u∈M implies −u∈M.

Proof. Let u=t(ξ1,d(P, ε,≺)) for d∈N, a transitive set T ⊆{(i, j):16i<j6d} with
(1, d)∈T and step(T )6D, a matrix

P =


1 a1,2 ... a1,d−1 a1,d

0 1 ... a2,d−1 a2,d

...
...

...
...

...

0 0 ... 1 ad−1,d

0 0 ... 0 1

∈MT (A),

a sign matrix ε=(εi,j)16i<j6d and a legal order ≺ on T . Define

P ′ =


1 −a1,2 ... −a1,d−1 −a1,d

0 1 ... a2,d−1 a2,d

...
...

...
...

...

0 0 ... 1 ad−1,d

0 0 ... 0 1

 (A)

and a sign matrix ε′=(ε′i,j)16i<j6d by

ε′i,j =
{
−εi,j , if i=1,
εi,j , otherwise.

Using the identity [−u]−1=−[u]1, one checks from formulas (6.2), by induction on (i, j),
that, for any 1<j6d and (k, l)≺(1, j),

φk,l
1,j(P

′, ε′,≺) =−φk,l
1,j(P, ε,≺),

ψk,l
1,j(P

′, ε′,≺) =−ψk,l
1,j(P, ε,≺),

ξk,l
1,j(P

′, ε′,≺) =−ξk,l
1,j(P, ε,≺),
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and that, for any 26i<j6d and (k, l)≺(1, j),

φk,l
i,j (P

′, ε′,≺) =φk,l
i,j (P, ε,≺),

ψk,l
i,j (P ′, ε′,≺) =ψk,l

i,j (P, ε,≺),

ξk,l
i,j (P ′, ε′,≺) = ξk,l

i,j (P, ε,≺).

In particular, ξ1,d(P ′, ε′,≺)=−ξ1,d(P, ε,≺), so t(ξ1,d(P ′, ε′,≺))=−t(ξ1,d(P, ε,≺))=−u
and −u∈MD.

10.6. Lemma. If u∈MD1 and v∈MD2 , then u+v∈Mmax{D1,D2}. In particular , u, v∈
M implies u+v∈M.

Proof. Let u=t(ξ1,d(P, ε1,≺1)) for d1∈N, a transitive set T1⊆{(i, j):16i<j6d1}
with (1, d1)∈T1 and step(T1)6D1, a matrix

R=


1 a1,2 ... a1,d1

0 1 ... a2,d1

...
...

...
...

0 0 ... 1

∈MT1(A),

a sign matrix ε1 and a legal order ≺1 on T1, and let v=(ξ1,d2(Q, ε2,≺2)) for d2∈N, a
transitive set T2⊆{(i, j):16i<j6d2} with (1, d2)∈T2 and step(T2)6D2, a matrix

S=


1 b1,2 ... b1,d2

0 1 ... b2,d2

...
...

...
...

0 0 ... 1

∈MT2(A),

a sign matrix ε2 and a legal order ≺2 on T2. Put d=d1+d2 and define

P =



1 a1,2 ... a1,d1−2 a1,d1−1 b1,2 b1,3 ... b1,d2−1 a1,d1 +b1,d2

0 1 ... a2,d1−2 a2,d1−1 0 0 ... 0 a2,d1

...
...

...
...

...
...

...
...

...

0 0 ... 1 ad1−2,d1−1 0 0 ... 0 ad1−2,d1

0 0 ... 0 1 0 0 ... 0 ad1−1,d1

0 0 ... 0 0 1 b2,3 ... b2,d2−1 b2,d2

0 0 ... 0 0 0 1 ... b3,d2−1 b3,d2

...
...

...
...

...
...

...
...

...

0 0 ... 0 0 0 0 ... 1 bd2−1,d2

0 0 ... 0 0 0 0 ... 0 1


∈Md(A).
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That is, R occupies the submatrix of P indexed by IR={(i, j)}i,j∈{1,2,...,d1−1,d}, i<j , and
S occupies the submatrix of P indexed by IS ={(i, j)}i,j∈{1,d1,d1+1,...,d}, i<j ; the only
common entry of these submatrices is the (1, d)-entry, which equals a1,d1 +b1,d2 . We
will identify R and S with their images in P and redefine ε1, ≺1, T1, ε2, ≺2 and T2

accordingly.
Put T =T1∪T2. Then (1, d)∈T ,

step(T ) =max{step(T1), step(T2)}6max{D1, D2},

and P∈MT (A). Let ε=(εi,j)16i<j6d be any sign matrix whose restrictions on IR and
IS coincide with ε1 and ε2, respectively; the “common entry” is ε1,d=1. Let ≺ be any
legal order on T such that the restriction of ≺ on IR and IS coincides with ≺1 and ≺2,
respectively.

When one computes ξi,j(P, ε,≺) by formulas (6.2), the entries of R do not affect the
entries of S and vice versa, except the common (1, d)-entry, which accumulates values
from both R and S. More precisely, one checks by induction that if (i, j) /∈IR∪IS , then
φk,l

i,j (P )=ψk,l
i,j (P )=ξk,l

i,j (P )=0; if (i, j)∈IR\{(1, k)}, then φk,l
i,j (P ), ψk,l

i,j (P ) and ξk,l
i,j (P )

are equal to the corresponding φk,l
i,j (R), ψk,l

i,j (R) and ξk,l
i,j (R); if (i, j)∈IS\{(1, k)}, then

φk,l
i,j (P ), ψk,l

i,j (P ) and ξk,l
i,j (P ) are equal to the corresponding φk,l

i,j (S), ψk,l
i,j (S) and ξk,l

i,j (S);
and finally, ξ1,d(P )=ξ1,d1(R)+ξ1,d2(S). Hence, u+v=t(ξ1,d(P ))∈Mmax{D1,D2}.

10.7. Lemma. If u∈MD1 and v∈MD2 , then [u]v+u[v]−uv∈MD1+D2 . In particular ,
u, v∈M implies [u]v+u[v]−uv∈M.

Proof. Let u=t(ξ1,d1(R, ε1,≺1)) for d1∈N, a transitive set T1⊆{(i, j):16i<j6d1}
with (1, d1)∈T1 and step(T1)6D1, a matrix

R=


1 a1,2 ... a1,d1

0 1 ... a2,d1

...
...

...
...

0 0 ... 1

∈MT1(A),

a sign matrix ε1 and a legal order ≺1 on T1, and let v=t(ξ1,d2(S, ε2,≺2)) for d2∈N, a
transitive set T2⊆{(i, j):16i<j6d2} with (1, d2)∈T2 and step(T2)6D2, a matrix

S=


1 b1,2 ... b1,d2

0 1 ... b2,d2

...
...

...
...

0 0 ... 1

∈MT2(A),
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a sign matrix ε2 and a legal order ≺2 on T2. Put d=d1+d2−1 and define

P =



1 a1,2 ... a1,d1 0 ... 0

0 1 ... a2,d1 0 ... 0

...
...

...
...

...
...

0 0 ... 1 b1,2 ... b1,d2

0 0 ... 0 1 ... b2,d2

...
...

...
...

...
...

0 0 ... 0 0 ... 1


∈Md(A).

That is, R occupies the submatrix of P indexed by IR={(i, j)}16i<j6d1 and S occupies
the submatrix of P indexed by IS ={(i, j)}d16i<j6d; we will identify R and S with their
images in P and redefine ε1, ≺1, T1, ε2, ≺2 and T2 accordingly.

Let T be the transitive subset of {(i, j):16i<j6d} generated by T1 and T2, that
is, the minimal transitive subset containing T1∪T2. Then one checks that (1, d)∈T ,
step(T )6step(T1)+step(T2)6D1+D2 and P∈MT (A). Let ε be any sign matrix whose
restrictions on IR and IS coincide with ε1 and ε2, respectively, except for ε1,d1 and εd1,d,
which we put equal to 1. Introduce two different orders ≺ and ≺′ on {(i, j)}16i<j6d in
the following way. Let ≺J be any legal order on J={(i, j)}16i6d1−1, d1+16j6d; let

≺=((T1\{(1, d1)},≺1), (T2\{(d1, d)},≺2), (1, d1), (d1, d), (T ∩J,≺J))

and
≺′ =((T1\{(1, d1)},≺1), (T2\{(d1, d)},≺2), (d1, d), (1, d1), (T ∩J,≺J)).

(In plain words, first the entries of R excluding a1,d1 appear, then the entries of S
excluding b1,d2 follow, then a1,d1 and b1,d2 follow, then all other entries of P follow; the
order ≺′ is obtained from ≺ by switching the order of a1,d1 and b1,d2 .)

The entries of R do not affect the entries of S, and vice versa. Thus, for both ≺
and ≺′, the elements φk,l

i,j (P ), ψk,l
i,j (P ) and ξk,l

i,j (P ) with (i, j)∈IR are equal to the cor-
responding φk,l

i,j (R), ψk,l
i,j (R) and ξk,l

i,j (R), and the elements φk,l
i,j (P ), ψk,l

i,j (P ) and ξk,l
i,j (P )

with (i, j)∈IS are equal to the corresponding φk,l
i,j (S), ψk,l

i,j (S) and ξk,l
i,j (S). The difference

between the orders ≺ and ≺′ only affects the last, (1, d)-entry of P . Since with respect
to ≺′ the entry (d1, d) precedes (1, d1) and does not affect it, ξd1,d

1,d1
(P,≺′)=ξ1,d1(P,≺′)

and ψd1,d
1,d1

(P,≺′)=ψ1,d1(P,≺′). From formulas (6.2) we now have

ξ1,d(P,≺)−ξ1,d(P,≺′) = [ξ1,d1 ]
ε1,d1 ξd1,d−φ1,d1ξd1,d+ξ1,d1 [ξd1,d]εd1,d +ψ1,d1ξd1,d

= [ξ1,d1 ]ξd1,d+ξ1,d1 [ξd1,d]−(φ1,d1−ψ1,d1)ξd1,d

= [ξ1,d1 ]ξd1,d+ξ1,d1 [ξd1,d]−ξ1,d1ξd1,d.
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Hence,

t(ξ1,d(P,≺))−t(ξ1,d(P,≺′))= t(ξ1,d(P,≺)−ξ1,d(P,≺′))

= [t(ξ1,d1)]t(ξd1,d)+b(ξ1,d1)t(ξd1,d)

+t(ξ1,d1)[t(ξd1,d)]+t(ξ1,d1)b(ξd1,d)

−t(ξ1,d1)t(ξd1,d)−t(ξ1,d1)b(ξd1,d)−b(ξ1,d1)t(ξd1,d)

= [u]v+u[v]−uv.

Since t(ξ1,d(P,≺)), t(ξ1,d(P,≺′))∈MD1+D2 , by Lemmas 10.5 and 10.6, we have

[u]v+u[v]−uv= t(ξ1,d(P,≺))−t(ξ1,d(P,≺′))∈MD1+D2 .

10.8. From Lemmas 10.5, 10.6 and 10.7, we derive the following result.

Lemma. If u, v, [u]v, uv∈M, then u[v]∈M.

10.9. Let ∼ be the minimal equivalence relation on the set of trees Et for which r[s]∼[r]s
for any r, s∈Et. Graphically, two trees are equivalent if they are obtainable from each
other by changing of the root vertex:

r[s] : �r
↖�

↖� ↑�
↑�
↑�
↗� s
↑�↗�

∼ [r]s : � s
↑�↗�↖�r

↖�
↖� ↑�

↑�
↑�

Examples.

�
↑�
↑�
↑�
↑�

∼ �
↑�
↑�
↑�

↗�

∼ �
↑�
↑�
↗�
↑�

, �
↑�
↑�

↖� ↑�

∼ �
↑�

↖� ↑�
↗�

∼ �
↖� ↑�↗�

↑�

∼ �
↑�
↑�↗�
↑�

.

10.10. Lemma. Let u, v∈Bt and c([u]v)=p1+...+pm. Then c(u[v])=q1+...+qm with
q1∼p1, ... , qm∼pm.

10.11. Let Ω be the set of equivalence classes for ∼. We define an order on Ω in the
following way: for ω1, ω2∈Ω we write ω1<ω2 if min(ω1)<min(ω2).

For p∈Et we denote by ω(p) the class in Ω that contains p, and for u∈Bt let
ω(u)=max{ω(p):p∈c(u)}.
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Example.

ω1 =ω

(
�

↖� ↑�
↖� ↑�
↗�
↑�
)
<ω2 =ω

(
�

↖� ↑�
↑�
↑�

↗�

→�

)
since min(ω1) = �

↑�
↑�

↖� ↑�
↑�↗�

<min(ω2) = �
↑�
↑�
↑�

↖� ↑�↗�

.

10.12. We need more notation. We define the number of pluses, nop, of elements of Bt

in the following way:

nop(a) = 0 for a∈A,

nop(a[v1] ... [vm])= nop(v1)+...+nop(vm) for a∈A and v1, ..., vm ∈Bt,

nop(u1+u2) =nop(u1)+nop(u2)+1 for u1, u2 ∈Bt.

Note that nop(u)=0 implies u∈Et.

The minimal depth of a plus, dop, of elements of Bt\Et is defined by the following
rules:

dop(u1+u2) = 0 for u1, u2 ∈Bt,

dop(a[v1] ... [vm])= 1+min{dop(v1), ...,dop(vm)} for a∈A and v1, ..., vm ∈Bt.

Example. For u=a1[a2[a3[a4+a5]]] one has nop(u)=1 and dop(u)=3, whereas for
v=a1[a2[a3[a4+a5]]][a6+a7] one has nop(v)=2 and dop(v)=1.

10.13. Proof of Theorem A∗∗∗. We will use induction on Ω; fix ω∈Ω and assume that
v∈M for any v∈Bt with ω(v)<ω.

We will first show that ω∩M 6=∅. We will use induction on nop(u) and dop(u) of
elements u∈M for which c(u)=p+p1+...+pk with p∈ω and ω(p1), ..., ω(pk)<ω.

First of all, such an element u exists. Indeed, let p be the minimal element of ω.
By Proposition 9.4, there exists u∈M such that c(u)=p+p1+...+pk with p1, ..., pk<p.
Since p is the minimal element of ω, we have ω(p1), ..., ω(pk)<ω.

If nop(u)=0 then u∈Et and so p=u∈M∩ω. Assume that nop(u)>0. If dop(u)=0
then u=u1+u2. Assume that ω(u1)=ω, then ω(u2)<ω. By our induction hypothesis,
u2∈M, and hence, u1=u−u2∈M, by Lemmas 10.5 and 10.6. Since nop(u1)<nop(u), by
induction on nop(u) we have p∈M.
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If nop(u)>0 and dop(u)>0, represent

u= a[v1][v2] ... [vm], with a∈A and v1, ..., vm ∈Bt,

so that dop(v1)6dop(vi) for i=2, ...,m, and thus dop(u)=dop(v1)+1. Define

v= a[v2] ... [vm],

then u=[v1]v. Since cmp(v1), cmp(v), cmp(v1v)<cmp(u), by our induction hypothesis
we have v1, v, v1v∈M. Thus, by Lemma 10.8, u′=v1[v]∈M. By Lemma 10.10,

c(u′) = q+q1+...+qk with ω(q) =ω(p) =ω and ω(qi) =ω(pi)<ω, i=1, ..., k.

Since dop(u′)6dop(v1)<dop(u), by induction on dop(u) we have q∈M.
We will now show that every element of ω belongs to M. Indeed, if q∈M∩ω and

q=r[s] with r, s∈Et, then, since by the induction hypothesis r, s, rs∈M, Lemma 10.8
states that [r]s∈M.

Now, let u be an arbitrary element of Bt with ω(u)=ω. We will show by induction
on nop(u) and dop(u) that u∈M. If nop(u)=0, then u∈Et, so u∈ω and u∈M is proved.
Assume that nop(u)>0. If dop(u)=0, then u=u1+u2; by induction on nop(u), we have
u1, u2∈M and, by Lemma 10.6, u∈M. Assume that nop(u)>0 and dop(u)>0. Represent
u=[v1]v so that dop(u)=dop(v1)+1. Define u′=v1[v]; then ω(u′)=ω(u)=ω and

dop(u′) 6dop(v1)<dop(u).

By induction on dop(u), we have u′∈M and, since cmp(v1), cmp(v), cmp(v1v)<cmp(u),
by our induction hypothesis v1, v, v1v∈M. By Lemma 10.8, u∈M.
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