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On the boundary behavior of the derivative of analytic
functions

By AKE SAMUELSsON

1. Introduction

In 1929 R. Nevanlinna [5] introduced the class of functions f (z), analytic and
bounded in the unit circle |2| <1, for which the radial limits lim f(r e!?) are of

r—>l-
modulus 1 for almost all z in the interval 0 <a2<2x. This class will here be

called class (N). The set of arguments z, such that ]im0 f(re'®) does not exist
T-pl—

or is not of modulus 1, will be called the exceptional set of the function f(z).
Each function in class (N) admits a representation

1 (@)=B () E (2), (1.1)

where B(z)=¢""2"11 Ol —2)

1.2
k |ak|(1"‘dkz) ( )

(y real, m integer >0, 0<|a;|<1, and 2 (1—|ac|) < + o)
k

is the Blaschke product, finite or infinite, extended over the zeros of f(2) or-
dered after increasing modulus, and where

2n
E (z)= exp {— f Zu.l-zd‘u (t)}, (1.3)
H

“—Z

with & non-decreasing function u (f), defined in the interval 0 <t <2, and with
the property that ' (¢)=0 for all { in that interval except possibly for a set
of mesasure zero. The first extensive description of the properties of the func-
tions belonging to class (N) was given almost simultaneously by Frostman [2]
and Seidel [7].

Except in the frivial case when wu (¢) is identically constant, there is at least
one argument x, such that the symmetric derivative

lim @R —p—h)

: + oo,
R—>+0 2h
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i. saMuELssoN, Boundary behavior of derivative of analytic functions
and for any such argument z we have

lim f(re!®)=0.

T—>1-0

The aim of this paper is to investigate the boundary behavior of the deriv-
ative of f(z) for such a point ¢* and, in particular, some local conditions on
the function u(t) will be given to ensure that

lim f' (ret®)=0.

r—>1-0

In the following section we restrict ourselves to the case that f(z)=E (z), i.e.
f(z) has no zeros in |z|<1 and in section 3 we consider the general case. In
section 4 we state some theorems on the Lebesgue function constructed on a
set of the Cantor type, to be used in section 5, where we construct some ex-
amples of functions f(z) belonging to (N). Each of these functions will have
the radial limit of the derivative equal to zero for every point in the excep-
tional set, except in a set which, in a sense to be defined in section 5, is of
measure Zzero.

2. The boundary behavior of E’ (2)

Theorem 1. Let E (z) be a function given by (1.3) and let x be a point in the
interval 0 <x<2m. Suppose that there exists a number 7>}, such that

lim (”(x+h)_”(x_h)+nlogh)=+00. 2.1)
h—+0 2h
Then lim E (re*)= lim E’ (ré'®)=0.
T->1-0 r->1-0

Writing E (z)= exp { —w (2)} and w(2)=u(2)+1v(2) we have the following two

lemmata.

(z+h)—p(x—h)
h

Lemma 1. u((1—h)e%)>% , 0<h<l.

u(re")<%u(re”), o<r<l,.

2
-7

Lemma 2. |w’ (re'®)|<

Lemma 1 is essentially due to Fatou [1], p. 340 (for the proof see Frostman [2],
p- 107-109) and Lemma 2 is given by Zygmund [8], p. 72 (for the proof see
Zygmund [9], I, p. 258).

Proof of Theorem 1. It follows immediately from (2.1) that

i A@TR—p@—h)

+ oo,
h—>+0 2h
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Hence, by Lemma 1,

lim w(ré*)=+co and lim |E(re®)[= lim exp { —u (re’®)}=0.
7—>1-0 r>1-0 r—>1-0

From Lemma 2 we obtain

|E" (rei®)|=|w' (re'®)| exp { —u (re'*)} < u(re'*) exp { —u(re'®)}

1—»

=2u (re'*) exp {—— (1 - zi) u (re“”)} (exp { —}u(re'®)—ylog (1 —r)})'™
n
Hence, since

Hm % (re®) exp {— (1 —%)u(re”)}zo for >4,
—1-0 n

and since, by Lemma 1, with r=1-—-4

exp {—du(re’®)—nlog (1 —7)} < exp {—ﬂ(x+h)2_}b”(x_k)—n log h}

it follows from condition (2.1) that

lim E' (ret*)=0.

r-»1-0

This proves the theorem.
Incidentally we remark that for any argument x, where the symmetric de-
rivative of wu (z) is infinite or zero

lim [ B’ ()| (1 —]z]) =0,
z—>etx

where the limit is uniform in every symmetric triangular neighbourhood of e,
This is a consequence of Lemma 2.

3. The boundary hehavior of f' (z)

In this section we consider the general case, when there are zeros of f(z) in
|z] <1, i.e. when the Blaschke product does not reduce to a constant.

Theorem 2. Let f(z) =B (z) E (z) be a function in (N) and let x be a point in
the interval 0 <x <2m. Suppose that there exists a nwmber 7, such that

lim (" @b —p@=h) o h)=+oo, 3.1)
h—>+0 2h

and either (a) n=1 or (b) t<n<1, and
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A. sAMUELSSON, Boundary behavior of derivative of analytic functions

1 - |ak|
% % a, [T '2(1_,,)< + oo, (3.2)
Then lim f(ref®)= lim f (re'*)=0.
7->1-0 r-»1-0

Proof of the theorem. The proof of case (@), being similar to that of case (b),
will be omitted.

Suppose we have z and 7, 1<n<1, such that (3.1) and (3.2) hold. Since
|B(z)]<1 it follows from Theorem 1 that lim f(re'*)=0. Differentiating (1.1)
r=>1-0

we get
f (re®y=B (re'*) B’ (re!*)+ B (ret®) B (r '),

where, by Theorem 1, the first term tends to zero when z—>1-—0. To prove
that the second term tends to zero we differentiate (1.2) and obtain

___mB(z)

- 2

z—ag) (L—Gy2) =

_5 & p oy Lolal
2ol P a2

where B, (z) is the Blaschke product obtained from B(z) by omitting the factor
corresponding to a@,. Since this factor has a modulus <1 and since

I 1 _‘dkz|2= i 1 _akEIZq li (E—l_ak) 12—21)> (]. . 7)2’7 1.2—217 | eil___ak |2—217

we obtain

2| E (re'%)| 1—|a|
1-— r)2ﬂ 20-7 % I et — a, |2(1—n)'

| B’ (re”)E(re”)IQr—: |B(re")E(re“‘)|+( (3.3)

Furthermore, by Lemma 1, we have (with r=1—h)

| E (ret*)| (1—r) 1< exp {—2 (‘u (x+h)2—h,u (x—h)+17 log h)}

Hence, by (3.1)
limoE (ret*)(1—r)"21=0
r->1-—

and thus (3.3) together with (3.2) implies that

i \ B (re!*)E (re!*)=0.

T-»1-

This completes the proof of the theorem.
For each argument x, where p(x+0)—u(z—0)>0, the conditions of Theo-
rems 1 and 2 are fulfilled and thus lim f'(re'*)=0. It is natural to ask if there

r—->1-0
can be other values of x for which f (re!*)—>0 when r—>1—0. In section 5 we

can answer this question affirmatively by stating examples.
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4. Lebesgue functions

In this section we investigate a special type of functions wu (x), which will be
used in stating the examples in section 5. We begin by constructing a class of
perfect sets.

By a dissection of the type [£], 0 <£<}, of an interval I:a <z <b, we mean
the dissection

a<wz<at+&(b—a),a+é(b—a)<x<b—E(B—a),b—E((b—a)<z<b
into two closed intervals, each of measure £m (I), and an open interval of meas-
ure (1—2¢&)m(I). Now let B denote a sequence of real numbers &, 0<& <},
k=1,2, ..., such that lim 27 II &, =0. Starting with the interval I we first
. DP-»00
perform a dissection of the type [51] and obtain two closed intervals, which we
call 4,, and 4, ,. By putting ¢;=6,,U 0,., we obtain a closed set of measure

2&,m(I). On each of the mtervals 0y,; and 6,4, we then perform a dissection
of the type [&,]. We obtain four closed intervals &, ;, 0,5 055 and &, , and

a closed set C,= kU1 82, . of measure m (Cy) =4 &, &, m (I). By repeating this proce-
2P P
dure we get a sequence of closed sets C, = U dp.x of measure m (C,) = 2° II {-‘km(I )-

Finally we put C (I, B)= n C,. This is the well-known Cantor set constructed

on the interval I by the sequence . It is rea,dlly seen that C (I, E)is a per-
fect set of measure zero and that each point in C (I, Z) admits a representation

oo
x=a+ D e,
n=1

n—1 0
where ¢, i8 0 or 1 and r,=(1-¢,) Il &m () (H §k=1). In the sequel we
k=1 k=1

mainly consider Cantor sets constructed by sequences H, such that 0 <&, <&<},
k=1,2,.... To indicate this we write E<f<1.

The followmg lemma, essentially originating from Hausdorff [3] (cf. Salem [6],
p. 73), will be of frequent use.

Lemma 3. Let z’'=a+ Z entyn omd T=a+ Z £, 7, be two different points in
C,8), E<&<l. Suppose that ' >z and let p be the natural number for which

en=g, if n<p—1, e,=1, and &,=0.
p-1 -1
Then A H1§k<x’—x<B II &, (4.1)
k= k=1

where A=(1—-2&)m (I) and B=m (I).
223
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Proof of Lemma 3. We have

o0

x,—x:/rp_*_ z (8;1 _£n)rn-
n=p+1

Tt follows that

o0

o0
Ty D 1 <& —x<ry+ 2 T,

n=p+1 n=p+1
i ®© «© n-1 k4
and since 2 = 2> (=&} &m(I)= [T &m(I)
n=p+1 n=p+1 k=1 k=1
p-1 -1 -1
we obtain ATl &<(1-2&) 1T Ekm(1)<x’—x<BkHl§k.
k=1 k=1 =

This proves the lemma. Incidentally we remark that the condition E<& <} is
not necessary to prove the right-hand side of (4.1).

We now construct a non-decreasing, continuous function u (z) increasing at
every point of C'=C (I, E) and constant in each interval contiguous to C. First
we define y (x) on C by putting

u(x)=> e,2°" for x=a+ Zlenrn.
n=1 n=

We observe that the endpoints of the intervals d, x are contained in C. Let
z; be the right-hand endpoint of 8, , and z, the left-hand endpoint of &, x.1.
These points admit the representations

s-1 o0 s-1
Ty=a+ D g1yt DO 1, and xy=a-+ D £, 1+ 1
n=1 n=8+1 n=1

and hence it follows

s-1 o s—1
() =n§18n2*” + > 2" =ngle,, 27"+ 27 =y {xy).

n=s+l

Thus, in order to get a non-decreasing function, we put, in each component of
I-C, u(x) equal to the well-defined value at the endpoints of the component.
The function, obtained in this way, will be called the Lebesgue function con-
structed on the Cantor set C. It is easy to verify that p(x) is a continuous,
non-decreasing function, such that u’(z)=0 almost everywhere in I.

For each x=a+ > &,r,€C we introduce two sets of integers
n=1
Ny(z)={n; &,=0} and N, (x)={n;e,=1}.

Let %%, §=1, 2, ..., be the elements of N, (z}, =0, 1, ordered as an increasing
sequence. If z is not the right-hand endpoint of any &, ., the set N,(x) is

224



ARKIV FOR MATEMATIK. Bd 4 nr 16

infinite. and if » is not the left-hand endpoint of any 4, ;. the set N, (x) ix
infinite.

We state two theorems concerning the right-hand and the left-hand derivatives
of p(r) at a point r€C.

Theorem 3. Let * be a point in the Cantor set (I, Z),Z <~ and suppose
that x is not the right-hand endpoint of any 6y «. Let u(x) be the Lebesgue func-
tion constructed on C (I, Z). Then

plr=h)—u(x)

lim ——— = + o 4.2
n—lffo h 2

if and only if lim 2”1 [T &=0. (4.3)

J—>ac k=1
Theorem 4. Let x be a point in the Cantor set C(I, Z), E<E<]. and suppose
that z is not the left-hand endpoint of any O, x. Let y(x) be the Lebesgue func-
tion constructed on C(I, E). Then

lim © (x) —u{x—h)

= 4+ oo
h—>+0 h

n}-1
L
if and only if lim 2%-1 T & =0.
F>o0 k=1
Proof of Theorem 3. Let z be a point in C=C (I, E), which is not the right-
hand endpoint of any 8, . Since C is perfect, there is in every neighbourhood

of z an 2'€(C, where 2'>2z. Let us prove that the right-hand derivative of
4 (z) is infinite at the point z if and only if

lim A& 0@ _ (4.4)
q?xoo r —x

The necessity of (4.4) is obvious. To prove the sufficiency, we observe that if
z+h(h>0) is situated in an interval where u(z) is constant, we have

plz)—p @) _plath)—p@)_ple) - u @)
= h = 7

-z T,— %

where z;, and x, are the right-hand and the left-hand endpoints of the interval.
Hence the sufficiency of (4.4) follows. Let x and 2’ in C, z’' >z, admit the
representations

og o0
.
r=a-+ D e, v, and ' =a-— 2 e, 1,
n=1 n=1
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By Lemma 3 there is an integer j, such that

,u(x’)-—,u(x)=2—";'+ § (en—8,)2 "= § (1+e,—g,)2"

n=n;+1 n=n;+1
and such that
M-t 1 e -1 -1 , w@')—u(x)
(Bra) [ a-eer<(Blla) 3 va-eze <MLl
k=1 wm—t 1 \ k=1 n=ns+1 v
] /
(4.5)
n-1 -1 ) /Yy —
and (A I 5,,) S (4o g2 hE)TLE) (4.6)
k=1 nom+1 -z
We will now prove that (4.2) holds if and only if
n;—l s
lim [] &' S (1—g,)2 "= + . (4.7)
j—owo k=1 n,=n;+1

Since «’'—>x+ 0 implies j—>co, the sufficiency of (4.7) follows immediately from
(4.5) and (4.4). Suppose that (4.2) holds and consider the sequence of points

L]
n=a+ > ehr,€0, j=1,2, ...,
n=1

g, if n<n!
where g=11 if n=n) j=1,2, ....
0 if n>nf

Since j— oo implies a;—>x+0, the necessity of (4.7) follows from (4.6) applied
to  and 2;. However, since

27 Y (l—g)2m<2 (4.8)

n=nj+1

(4.7) holds if and only if (4.3) holds. This proves Theorem 3. The proof of
Theorem 4, being similar to that of Theorem 3, will be omitted.

Let z=a+ 21 £,7, be a point, which is not the right-hand endpoint of any

-]
8.« and consider the sequence of points z;=a+ Y &, 7,€C, j=1,2, ...,
‘n=1

&, if n¥n!

i=1,2, ...
1 if n=n? !

where &= {
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From the definition of & we have

li 2"?“";_1 =0
m Ir,l:I Ek— ’

F>00 1

and thus we conclude from (4.5) that (u (z;) —u (2))/(%;— )= + co when j—>oo.
In the same way, if y€C is not the left-hand endpoint of any 4, ., we can
find a sequence of points y;<y such that (u(y)—pu(y))/(y—y;)— + oo when
Y—~>y—0. When proving this, we have not used the condition E<§ < and
thus we have the following theorem.

Theorem 5. Let C(I, E) be a Cantor set and u(x) the corresponding Lebesgue
function. Then, at each point x€C (I, B),

i aup £EHR B @=h) _

+ oo,
—>+0 25

5. Examples of functions in (V)

We make use of the Cantor sets C(0<x<2n, E), E<£<}, and their corre-
sponding Lebesgue functions. We prove the following theorem.

Theorem 6. Let f(z)=B(2) E(2) be composed of a Blaschke product B(z) and
a function

27
éttz
E (z) = exp {—f gr_—z‘d,u(t)},
(1]
where p (t) is the Lebesgue function constructed on the Cantor set

C=C(0<t<2m, B), E<i<}

Let « be a point in this set, such that at least one of the conditions

" n;_l
lim 7,127 ] £=0, (5.1)
j—>o0 k=1
»l n"’—l
and limn},, 2 " [] &=0 (5.2)
f—>o0 k=1
holds. Then lim f(re'®y= lim f (re'*)=0.
r->1-0 r=>1-0

Proof. We carry through the proof only for a point z, such that (5.1) holds.
By Theorem 3, condition (5.1) implies that (4.2) holds. Hence, if z+5 (h>0) is
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situated in an interval where u (r) is constant, and if k is sufficiently small,
we have

wlr=h) Z e S HEe R ) SR TR
5 - log h > Y + log k: Sr) | log (x; — ).

where r, is the right-hand endpoint of the interval of constancy. Thus, to prove
the theorem it is enough to prove, by Theorem 2.

im (#E)=pE) - )= oo 5
;:2?0( (7 ~7) + log (« x)l + oo, (5.3)

However, by (4.5). (4.8), and Lemma 3. there is for every z’' € with ' ~x an
integer j, such that

n(x) —p (),
2(x' —r)

RS | w "] o
= L"ln{:k SE-*' 251 HEA log(:‘z]‘ln"tk -
7 \2 k=1

k=1

Hence. since z'—>x+0 implies j—>oco, and since (5.1) holds. (5.3) follows. and
we have proved the theorem.

let S, be the set of points x, for which (5.1) holds and §; the set of points.
for which (5.2) holds. In order to investigate to what extent the points in C
belong to Sy and S;, we introduce for a set ScC the measure

2n

p(S)= f Xs(t)dp(t),

[

(5.4)

where Xs{t) is the characteristic function of the set S and u (f) is the Lebesgue
function constructed on C. We say that S is measurable (u) if the integral in
(5.4) exists. Denote by 8’ the image of S under the transformation

u(®@): C>{x; 0<z<1}.

By the theorem of Lebesgue [4], p. 87, S is measurable (u) if and only if S’
is measurable in the ordinary sense, and then

£n 1
w®)= [ 10au0- [ 1 @dz-n ).
0 (1]
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Theorem 7. S, and S, are measurable (@) and u(8) = u (8;) 1.

Proof. For symmetric reason we restrict ourselves to 8. Since u () 11t is
enough to show that. for any ¢. 0<e< 1. there is a set & =8, such that
1(S)>~1--¢ or, what is the same. 1 (C— &) ~e.

Let ¢ bLe a number. such that 0 ¢ < 1. and let a be a number such that
a>1 and a*~(~ log &) log 2. where &< 1 We choose an integer K. such

that
S RIRS 1"""“\5 (5.3
ke K
Next we devide the set of natural numbers into subsets Z,. r=0. 1.2, ... de-
fined by
Zo i lin—wa® Z, - tnia® " 'sn<a® e 1,02
Since ¢~ 1. (3.3) implies that a® " ~a¢% " 141, 3 =1, 2, ... aud thus Z,=0

(=the empty =et). Finally we put
S, =1r:r€C. Z, NNy ()0 for each r=-1.2 .},

Let w€S8, and let #»'€Z, (r>1). Then n?. 1 belongs to Z, or 7, , and henee

0
ndy atort

ny ator?

- a {3.6)
Since a®-_ (- log &) log 2. a simple caleulation shows that (5.6) implies (5.1) and
thus S.c 8. In order to estimate u(C—8,) we use

C-8=UT,. where T',~ \a; v€C. Z, < N, (x)}. » 1.2, ... (3.7
[}

It is readily scen that T, is measurable (u) and that

KEiv-1 4y

w(TYy=m(T)2 @k
and thus. by (5.7). 8, is measurable (1) and

oc
. - Kiv_  Kir—1
PO~ 8)< S @Rir kot
v 1

This completes the proof.

From Theorem 7 we see that &, and §, have the power of continuum. In
fact, since pu(8S))=1 we have m (8y)=1. Hence Sg has the power of continnm
and therefore also S,

In view of Theorem 7, each function f(z) of the type defined in Theorem 6
has the property that liin0 f (re'*)==0 almost everywhere (u) in the exceptional

r—»1-

set, although the associated function g () is continuous. Thus we have answered
the question raised in section 3.
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7.

8.
9.
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