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On the central limit theorem in R,

By BeneT von BAHR

1. Introduction

Let X®=(X{,...X?), »=1,2,...7n, be a sequence of independent and identi-
cally distributed random vectors (r.v.’s) in R,, £>1, with zero mean and non-
singular covariance matrix M. Then, according to the Central Limit Theorem,
the normed sum Y,=n"%>7 , X® is approximately normally distributed, with
the same moments of the first and second orders as X®. Tn the present paper,
we shall consider the distribution of the norm |Y,|= (Y2, +... + Y%;)}, and
estimate the difference

P(|Yn|<a)~f d d(z), (1)

lzl<ea

where ®(z), = (2, ... ;) is the corresponding normal distribution function (d.f.)
and |z|= (2} +... +23)t. If the moments of the fourth order exist and if M = E
(unit matrix of order kxk), then (Esseen [3])

|P(| Y] < @) — Ky (a®)| < On F1**D, @)

where K, (z) is the d.f. of the x%.distribution with % degrees of freedom, and C
is a finite constant, only depending on the moments of X®. Here we shall study
the difference (1) as a function of both n and a.

2. Convergence of characteristic functions

We introduce the d.f.’s F(x) and F,(z) and the characteristic functions (ch.f.’s)
f(t) and f,(t) of X and Y, respectively. We have

k

)= f D AR (x), t=(ty,... 1), (tx)= DL,

i=1

and f,(t)=f*(t/Vn). If the moment B,=E|X®|"< oo, r integer >3, then log f(t)
has the Taylor expansion

log /()= ~}(t. M)+ 3

v

(5, 2t)"
p!

+o([t]), (3)

61



B. VON BAHR, On the central limit theorem in R,

where (x,3) = (y 3, + ... +x3t,), and i ...»* is the semi-invariant of order
(iy, ... ;). According to (3), the relation

r-2

e(c, Mt)/2fn (t) =14 fiz,n—vﬂp,, ('l/t) +o0 (n‘ T) (4)
v=1

defines a sequence of polynomials P, of degree 3%, the coefficients of which are
functions of the moments of X®. By estimating the remainder term in (4), we
obtain the following lemma.

Lemma 1. If f,< oo, r integer >3, then for all ¢ with |t|<K Vn

r—

f=(®)— (1 + z2n_”/2P., (it)) o MDI2 d(n

) et
<0n(r_2)/2|t|’e e

K and « are positive constants, only depending on k, v and the moments of X®;
d(n) is bounded by ome and lim,_ ., d(rn)=0. Here and in what follows, we denote
by C unspecified constanis, with the same properties as K and o.

A proof of the lemma in the one-dimensional case is given by Gnedenko and
Kolmogorov ([5] pp. 204-208). The present case is treated in the same way.
If g(t) is the Fourier-Stieltjes Transform (F.S.T.) of G{(x), that is

g@) = f P dG(x),
Rk

then —it,g(t) is the F.S.T. of 8G(z)/ox; and thus P,(it)e”“¥"* is the F.S.T. of
P,(—D)®(x), where P,(—D) is a derivation operator obtained from P(if) by
replacing i; by —08/0x;. We put

G, (x)= (1 + S‘j nP,(~ D)) D(x) (5)

and H,(x)=F,(z)— G, (x), and thus, the corresponding F.8.T.’s are

gult) = (143 1Py om0
v=1
and ho(t) = fo(t) — 4 (). (6)

3. Main formula

In order to estimate P(|Y,|<a), we shall use the formula (Bochner [2], p. 318)

L U(|x|)dH,,(x)=(2n)-kL w(t) k() dt (At =db, ... db), (7)
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where U(|z|) and u(|t|) are integrable functions in R, only depending on |z
and |t| respectively and being F.T.’s in R, that is (Bochner [2], p. 235)

u(|t]) = kae“t' DU (|x|) dwe = (2n)k’2t""2+1f0 22T 01 (2 |t]) Uz) da;

U(|z|) is to be approximately 1 when |z|<a and 0 when |z|>a, and for this
purpose we let U(|z|) be the convolution in R, of two functions V(|z|) and

QM=) 2>0:

Ul = [ Vb #Qula—yhay

=22 g~V ((k — 1)/2))'1]‘[17(1/@02 +0%) QA V(|z| —u)? ++?) v* 2dudv.  (8)

20

1, «<b

We take V{x) ={
0, z>b

and choose the function @(|x|) with compact support and rapidly decreasing F.T.,
the existence of which is guaranteed by the following lemma.

Lemma 2. If &(t) is a positive function monoctonically decreasing to zero when

t—>o0 and if |Ce(t)/tdt< oo, then there ewist two functions Q(x) and gq(t), defined
for 220 and £>0 respectively, being F.T.s in R, that is

a(lt) = f ¢eoQ(a))du, tER, )

and salisfying Rx)=0, 0<q@)<q0)=1
Qx)=0 when zxz>1

q(t) and ¢'(t) are O(e **®) when t—co.

In the one-dimensional case, the lemma follows from theorems proved by Paley
and Wiener [7] and Ingham [6]. In the present case it can be proved by putting

gt) = TIT (/2 + 1) 252 (0,8) 2 T 0 (0u1),

n=1

the quantities g, being suitably chosen and satisfying ¢,>0 and 27 10,<1.
We put P(|Y,|<a)=pu(a) and

77(00)=J‘I < GlHn(%)=fI < an(x)—fl < 4@, (x) = u(a) —y(a)
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and thus the formula (7) becomes
f: U(x) dn(x) = fR (b/25 )" T2 (b 2]) a( 2]/ 2) P (8) B (10)

which is the starting-point for our estimations.

4. Point estimations

We first show two theorems, which are generalizations to the multi-dimen-
sional case of results given by Esseen [3].

Theorem 1. If B, < oo, r integer >3, and if m is the largest eigenvalue of the
matriz M, then

. 4n)
< C'a T 'n(r_2)72

|pavi<a - avw

r|<a

for a > (m(r —2) log n)t.

Proof. We take @,(x) according to (5) and obtain

na)=P(Y,|<a)— f d®(x) + rizn*m f dP,(— D) D(z).
Iz|<a

lzl<a r=1

In order to estimate 7(a), we choose Q(|«|) and g(|¢]} according to Lemma 2,
such that g([t|)<C(1+|t[**%)! and distinguish between the two cases n{a)>0
and #(@)<0. If 5(a@)>0, we put b=a+1", and thus U(z)=1 when z<a,
0<U(x)<1 when a<zx<a+2/A and U(x)=0 when z>a+2/1. Since dny(zx)=
du(x) — dy(x) and du(z) >0, we obtain from (10)

a+2/

n(a)<|1|+f |dy(x)], (11)

a

where I is the integral of the right-hand side of (10). We put 2/A=a/2 and
divide I into two parts:

I= +
l<kVa |4>KVn

In the first integral, we use Lemma 1 and in the second one the inequality
|h(t)| < C for estimating k(). Easy calculations now give

_, d(n
1< a8

The last term of (11) is at most equal to
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|dG(z)| < p(|z|) e @ xT D dg,
a<|zj<a+2/2 a<)z|<a+2/4

where p(y), 4 >0, is a positive polynomial. Now (x, M 'z)>m !|«|® for all z€ R,
and consequently

a+2/i a+2/4 . ~ _ d(’)’b)
f ]dy)(x)|<0f p(x)e =Pk ldx<C-a ’77;,—2),—2
a qQ

since a®/m>3(r —2)logn.

It now remains to estimate §,<.dP,(—D)®(x), v=1,2,...,r—2, but since
frydP,(—D)®(x)=0, they can be treted in exactly the same way as the last
term of (11), and thus the theorem is proved if n{a)=>0. If n(a) <0, we choose
b=a—21"! and proceed in a similar way.

The proof is concluded.

In the remaining interval e <Vm(r —2)logn the estimations are more com-
plicated, and the convergence of P(|Y|<a). towards fi;<,dP(@) is slower. In
the following theorem we shall make use of Esseen’s result (2), and thus we
have to assume that M =K.

Theorem 2. If B, < oo and if M =E, then for a<Vilogn
(o-1j4
[P(¥|<a)— K, (a?)| < On~HED(1 +a#*2) ¢ 04 40 (Lli’g—"?z—~)
where d=1% if k=2, and §=(k—1)/2(k+1) of k>3.
Proof. Because of (2), we can assume a>1. We put
G, (x) = D(2) +n~ 1Py (— D) D(2),
and then #(a)=P(|Y|<a)—K,(a?), since dP,(—D)®(x) is odd. According to
Lemma 2, we can find two functions @(x) and ¢() defined for >0 and ¢>0,
satisfying (9); and
Q@) >0, 0<q@t)<q0)=1,
q(t)=0 when ¢>1,
Qx)<Ce??, |Q (w)|<Ce .

As in the proof of Theorem 1, we must consider separately the two cases n(a) =0
and 7(a)<0. If 5(a)>0, we take £¢>0 (to be determined later), put b=a-+e¢
and use (10). After dividing the left-hand integral into three parts, corresponding
to the intervals [0,a), [@,a+2¢) and (a+ 2, o), we obtain

7(a) = (1 - Ula)) n(a) + Ula +2¢)nla +2¢) — fa+ ) U(x) dn(x)

+( a+r )U’(x)r;(x)dx+1, (12)
0 a+2e
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where I is the integral on the right-hand side of (10). Using (2), we get, since
du(x) >0,

a

pla) < fa+2€|d1p(x)| + C’n_’”(’”l){l —Ula)+ Ula + 2¢) + (fa + J‘w ) IU'(x)|dx} +11|.
0 a+2e

ki(k+1) e—2§a’/(k~l)
]

We now put A=n e=a/2, and easily obtain

a+2e
- - — - 2
f |dy(x) | < Ceakt e~ 2 < O HIk+D gk 42 g-da2,
a

V(y)=0 when y>a+e¢, and thus we obtain from (8)

U(a)= 21 a%* P2 ((k—1)/2))" ff QA V(u—a)+v®)v* 2dudy

v20
(u—a)+viet

—1— 22 (D(k/2))"" L Qo) o do,

and 1-Ua) < C'f e_"%g"”l dp<C-a¥+2¢0%,

aﬂ
U(a+2¢) is estimated in the same way.

By taking the derivative with respect to |z| in (8), we obtain

PR 2 dudy.
Vie—u)? +?

U'(w) = 22K 1 q®* " D2(T((k —1)/2))* f" Q AV (x—u)+?)

o
ut+vig b
20

We first take z<a. The integrand is an odd function with respect to u —z, and
thus there is no contribution to the integral from the region (u—=z)*+¢*<
(6 — )%, v==0. After change of variables, we get

A(b+z)
| U ()| < CA 1@ (0)] 0" 'do, z<a.

Ab—1)

In a similar way, we can estimate U’(x) for x>a +2¢ and integration gives

(f + f ) | U’ (x)| de < Ca**2 e7%%
0 a+2e

It remains to estimate I. Now g¢(|¢t|/A)=0 when |t|>1, and consequently

I= + f =I,+1,.
[<EVn EVn<|tj<2
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We use Lemma 1 with r=4 for estimating /;. Our choice of ¢ implies that &
is finite and therefore b <C(logn)!. We obtain

I, < On'(log n)*~ 14,
1 (log

We divide I, into two parts according to (6): I,=1I, —I,,, where

I, = f (b/2n|t|)k/ka,2(b|t|)q(ltl/l)]m(t/ﬂ)dt_ (13)

KYn<]t<i

After change of variables we get

|21 < O Vi)~ f | @) el 22 .

E<|t|<afVn

In order to estimate this integral, we need a more detailed knowledge of the
value distribution of ch.f.’s.
Following Esseen ([3], pp. 94-98 and 107-108), we obtain

|1'21| < C(b l//;;)(k—l)/2,nAkl2 (l/l/,;)(k—l)lz < Ca(k—-l)/2 e-—~0‘a2n—kl(k+1)

I,, is o(n™"), and thus the theorem is proved in the case 7(a)=>0. If n(a) <O,
we put b=a—¢, and obtain instead of (12)

co

n(a)=(1— Ula — 2¢)) y(a — 2¢) + Ula) {a) + f

a—

+ (fu_25+ fw) U (2) () de +1,
0 a

and proceed in the same way as when n(a)>0.

When M =E. it is thus possible to express the probability P(|Y|<a) in terms
of the normal d.f. and associated functions, except for quantities of the mag-
nitude o(n"?"®2) for large values of a and O(n *'**V) for small values of a. It
is not possible in the general case to improve the latter result much. In fact,
Esseen [3] has shown that, if F(x) is a lattice distribution and if k>4, then u(a)
may have discontinuities of the magnitude O(n ). However, if the ch.f. of X©
satisfies Cramér’s condition

\ (1= Ulw)) dn(x)

lim |f(t)| <1, ©

[t1—>c0

the following theorem holds.

Theorem 3. If B,< oo, r integer >3, and if f(f) satisfies the condition (C), then
uniformly in a

k—-1)/4
P(|Y|<a)=f dd@)+ > n‘”fll szﬂ(—D)®(x)+0(%)-

lzl<a ISpu<r-9)/2
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Proof. Owing to Theorem 1, we can restrict ourselves to a < Vim(r—2)logn.
We define G,(z), Q(z) and ¢(f) in the same way as in the proof of that theo-
rem, and thus

n(a)=P(|Y| <a)—f dd@)— > n"‘f APy, (— D) ®(x)+ O(n=C2'2),
lzl<a

1z|<a 1<p<r-3)/2

since dP,(— D) ®(x) is odd when » is odd.
It thus suffices to estimate n(a), and we get in the case z(a)>0

a+2/A

w1+ [ lapto)l

a

By putting 2=n""?2 we can easily estimate the second term. We divide I into
two parts

I- f " f —I+1,

<&V lf>KVn
where, because of Lemma 1 and since b<C(log n)t,
I,=o(n " P2 (log n)* 1.

We also put I,=1,, —1I,, according to (6), where

I = f (b/ 27 |E|)2 T2 (®8]) q(t]/A) ¢/ V) dt.
ltl>&Ya

Now, since f() satisfies (C), there exists a constant p>0 such that |f(f)|<e™”
when |t|>K, that is |f"(¢/Vn)|<e ™ in I, and thus after some calculation

oo

|1, | < Oe"’”(/lb)("’l’/zf g(t) ¥ D2 dt = o(n T D),
0

Finally it is easy to show that I,,=o(n " ?'#) and the theorem is proved when
n(a)=0. The case n(a) <0 is treated in a similar way.

Remark. R. R. Rao [8] has announced without proof a corresponding expan-
sion for P(Y € A), where A is an arbitrary convex subset of R,, but with the
remainder term O(n™ " 2/Z(logn)% %),

5. Mean estimations
In the one-dimensional case, it is known (Agnew [1] and Esseen [4]) that F,(x)

converges towards @(x) in L,-mean, p=> 1.
The two following theorems concerning the mean convergence of P(|Y|<wz)
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towards f|,<; d®(y) are immediate consequences of the theorems of the previous
section. We define the L,-norm

| w(@), = (f |w(z)|Pdw)"'? for every function w(z)€ L, (0, 00).
0

Theorem 4. If B, < oo and if f(t) satisfies (C), then for p>1

P(Y|<2)— f 10(y)

l¥l<z

fl | dP,(— D) D(y)

¥4

where B=(k—1)/4+1/(2p).

Proof. Putting ul(x)=P(lY|<x)—f d®(y)
lyl<z
and Uy (x)=%f dP,(— D) ®(x)
lyl<z

and using Minkowsky’s inequality

ez @)l = s (2) = e @)l < oy @)l < g ) [l + | 20 (2) — s @) [l

we thus have to show that
ll1 (%) = ug (@) |, = O(n~ ¥(log n)’)

but this easily follows from Theorem 1 with =35 and Theorem 3.
In the same way we obtain from Theorem 1 with =4 and Theorem 2 the fol-
lowing theorem.

Theorem 5. If f,< oo and if M =B, then
|P(Y]|<z)— K, (2} ], < On F&*D,
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