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The diophantine equation 2"=x?+47

By L. J. MorDELL

This paper deals with the following

Theorem. The only solutions in integers x>0 of the equation

2 =g+ 7 4N
are given by
n=3,z=1,
n=4,x=3,
n=>5x=35, (2)
n="Tx=11,
n=15, z=181,

In 1913, Ramanujan gave these values (2) in Problem (465), page 120 of Vol. 5
of the Journal of the Indian Mathematical Society, and asked whether there were
other values of n. In Ramanujan’s collected works, there is a reference on pare
327 to “Solution by K. J. Sanjana and T. P. Trevedi on pages 227, 228 also o1
Vol. 5.” This, however, is merely a verification for some values of .

On page 272 of Nagell’s Introduction to Number Theory, the theorem is set as
a problem. The enunciation is preceded by the problem, to show by considering

the quadratic field R () —7) in which factorization is unique, that the only ra-
tional integer solutions of

Prr+2=y4> (3)

are given by y=2. It seems to be implied that the same method will suffice for
a proof of the theorem.

The theorem was proved by Chowla, D. J. Lewis, and Skolem in a joint paper
submitted in 1958 for publication in the Proceedings of the American Mathematical
Society.! The question was brought to my notice by Professor Chowla. I have found
the present cclution which is entirely different from theirs, which I had not seen
when this paper was written.

1 It has since appeared in Vol. 10 (1959) 663—669. Professor Nageil now informs me that he
published (in Norwegian) a simple proof of the theorem in the Norsk Matematisk Tidsskrift 30
(1948) 62-64.
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We note first that the only even value of » occurs when n=4. For then
(2" +x) (2" )=
and so 2"y =7,21" —p=1,21" =4,
and n=4,2=3.

This is also the only solution for which =0 (mod 3).
For then, all to mod 3,

or (—14+3)"—-1=0,(-1)"—-1=0,

and so % is even.

We now investigate the solutions for which n is odd and x =0 (mod 3).
Corresponding to the cases n=3m, 3m+1, 3m+2, we have the respective equa-
tions,

¥ —T1=2" (4)
2yP—1=27, (5)
42— T=2a? (6)

where y=2".
The equation (6) becomes Nagell’s (3) when x in (6) is replaced by 2z +1.

Since z is odd, %(z-f—l/ 7) are coprime integers in the field R(} —7). Factori-
zation is unique in this field, and the only units are 11. Hence

(x+ g——v) (x— g——7) —,

z+ V——7=(a+bl/——7)a,

and so

2 2
where a, b are rational integers and a=b (mod 2).
This gives
4=3a%b—T0H%. 7N
Since the right-hand side factorizes, we have

b=*1, £2, £4;3a*-7b6"= 14, 12, +1

Hence b= —1, a———_-_l-l, and y=2. Then n=5, x=5.
The field R () —17) does not seem useful for equations (4), (5). Thus in (4), put

y=22, and so
x+V—7.x—V?7=2z3
2 2 )
Si 1+V=1\ (1-V=17
ince 2= 3 5 ,
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we have now

x+ g——7= (1 + giﬁ) (a+bol/—_7)3,

or 8=a’—21ab*+(3a>b—75%).
It suffices to take the positive sign, and putting a=X—-2Y, y=7Y, we have
X-6X¥Y*+2Y3=1. (8)

The number 6 defined by 6®—66+2=0 has discriminant A (§)=4-6%—27.2*=
4-9-21, and so the study of the units in the field defined by 0, and this is re-
quired by (8), may not be simple.

3 3
For equations (4), (5), we use the cubic fields R(V7), R(V28), respectively.
3

We recall that for the cubic field R(Vf——gz), where f and ¢ are square free and
relatively prime, the integers are given by

3 3
a+bVigg+cVig, 1/3 (a+bV’;?+ch2_g),

respectively according as fg®=% +1 or f¢°= +1 (mod 9). Here, a, b, ¢ are integers
which when fg®= +1 (mod 9) are subjected to congruences (mod 3) which do
not matter here. There is only one fundamental unit £, say, and all the units
are given by +¢" for integers 7. The number! of classes of ideals in each of
our two fields is 3, and so an equation 4 B=C?, in integers, or in ideals

[4 B]=[C7T,

where [A4] and [B] are principal ideals relatively prime to each other, and [C] is
a principal ideal, gives first [A]=C}, [B]=C3, where C,, C, are ideals, and then
since the class number is odd, C,, C, are principal ideals. Hence we have an equation

A= +&C3

where A, C, are integers, and on absorbing powers of ¢ in (), it suffices to con-
sider only

A= +¢& 0%, where r=0, 1. (9)

3 3
We note that the fundamental units in R(V7), R(V28), are

3

8 3
&=2-V7,6=1/3 ( —1-V28+ V98), respectively. (10)
We come back to equation (4). Here

(y— ;5) (y2+ lsf7y+ 17@)=x2.

1 A table of class numbers and fundamental units is given by Cassels for R (VB) with D <50
in the Acta Mathematica (82) 1950, page 270.
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The two factors here are relatively prime since z is prime to 21. Hence (9) gives

i(y—lz/i)=e;(a+blaﬁl+cl;«?9)2, (r=0,1). (11)

When r=0, we have

3 _ 3 3
i(y-l/7)=az+l4bc+ VT (2ab+T7c%) + V48 (b* +2ac). (12)

Hence b*+2ac=0, 2ab+7c*= +1. Since (b,c)=1,¢c= *+1,ab= —3, or —4, and
it suffices to take c¢=1, b=2, a= —2, and then +y=a’+14b¢, and so y=32,

3
n=15, and = 181. Suppose next r=1 in (11). Then multiplying (12) by 2 — V7, we
have

3

3
i(y—ﬁ)=2a2+28bc——7b2~14ac+W(4ab+ 14c*—a®~14bc)+

3
+V49(28% +4ac—2ab—Tc).

Hence +y=2a%+28bc—Tb*—1l4ac, (13)
Fl=4ab-+14ct—a®—-14bc, (14)
0=24*+4ac—2ab—"Tc%. (15)

Equation (14) shows that o is odd, and equation (15) that ¢ is even. Then equa-
tion (13) gives +y=2+b® (mod 4). Since y=2", the only possibility is y=2,
n=3, r=1.

We now come to (5), which we write as 8y°—28=427 ie., say,

Y?—28=X?, (16)
3 3 3
or (Y— V2s) (Y2+ Vo8 Y + 1/282) =X2 (17)

3 3 3
In the field R(VQ—S), 2 becomes an ideal cube, and we have 2=(2, V98) = pP3,
say. Since

3 3 3 \2 3
Y2+ V28Y + V282=(Y— V2—s) +3Ve87Y,
on noting that X =0 (mod 3) but that X is even, we see that the only common

ideal factor of the left-hand factors of (17) is P%. This can be absorbed in the
square of an ideal, and so

3 8 2
3 _
+(r- ) =e;(‘i+—b-‘[2—'§‘id?-8), (r=0.1). (18)

Take first r=0, then

3 3 3
iQ(Y— V§8)=a’+28bc+ V28 (2ab+7¢%) + V98 (2ac+2b%). (19)
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Hence ac+b=0,2ab+T7c%= +9.
Clearly (b,c)=1,3,9. Then (b,c)=1 gives, say, c= —1, a=b*, 2b°+ 7= +9, and
s0o b=—2,a=4, Then +9Y =a®+28b¢c, and Y=8,n="7, X=22. If (b,c})=3 or
9, then a=0 (mod 3) since the last term in (18) is an integer. Hence putting
a=3A4,b=3B, c=30,
AC+B*=0,24B+70%*= +1.

From the last equation (B, 0) =1, and from the first C | B%. Hence C= +1, A= T B?,
and +2B%4+ 7= +1, and no solution arises.

3 3
Take next r=1; then multiplying (19) by 1/3 (— 1-V28+ V98), we find

+27Y = —a®—28bc—14(2ac+2b%) + 14 (2ab+ 7%, (20)
F2T1=—2ab—-T7c*—a*—28bc+7(2ac+28%), (21
0=—2ac—2b*—2(2ab+17c*) +a?+28bc. (22)

Equation (22) shows that @ is even, and equation (21) that ¢ is odd. Then (20)
becomes Y =2 (mod 4) and so Y =2 is the only possibility. This, however, is
not a solution.

This completes the proof.

I remark that on writing 4y°—7=2% as ¥°—14 =2 X® where ¥ =2y, we could

3

have used the cubic field R(Vl_fi) The class number is 3, and the fundamental

3 3 3 13
unit is e=1+2)14—V196. Also 2= [2, V14] =P3, say. Then we have the ideal
equation

[Y-ljﬁ]=PT?,

where T', is a non-principal ideal. Since PT,=T or P*T,=T, where T is a prin-
cipal ideal, we have

2(Y— ;l—‘i) =+¢ (a-l—b 13/1—4+c;}r42)2, (r=0,1).

If r=0, we have

3 3 3
+2 (Y— V1—4) =a+28bc+ V14(2ab+ 14c2) + V196 (b® + 2ac). (23)

b? .
Hence ab+7¢*= 11, b+ 2ac=0. Since (b,c)=1, c= *1, a=g, and no solution
results.
If r=1, on multiplying the right-hand side of (23) by &, we have
+2Y =a’+28bc+28(b%+2ac)—14(2ab+14cP),
F2=2ab+14c®+2(a®+28bc)— 14 (b*+2ac),
0=0%+2ac+2(2ab+14c%) —a®—28be.
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The first equation shows that a=24 is even, the third that b=2B is even, and
the second that ¢=C is odd. Hence

+3Y=A2+14BC+28B*+284C—28 AB—49C?,
F1=44AB+70*+44*+56 BC—-28B*—~284C,
0=B*+A4C+4AB+7C*— A*—-14BC.

The first equation shows that A =C (mod 2) since Y =0 (mod 4), and from
the second equation C is odd. Then the third shows that B is odd. The first
equation then becomes

+4Y=1+2-1 (mod 4).

Hence the only possibility is ¥ =4, and then n=35, x=5.
I remark that the same methods would apply to some other equations

a®=b+x’
where a, b are given integers.

University of Colorado, U.S.A. St. Johns College, Cambridge, England.

Tryckt den 29 januari 1962

Uppsala 1962. Almqvist & Wiksells Boktryckeri AB
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