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On approximation of continuous and of analytic functions

By HaraLDp BoHMAN

1) General survey

Let {£, »} denote a system of points in the interval (0, 1) with the following
properties
n=1,2,3,...

v=0,1,... (n—1), n
‘Sv,n> f,u,n if » > .
With every point &, , we associate a real function v, »(z), defined for 0 =z =1.

A system of the above-mentioned type will be said to solve the approxima-
tion problem, if for every continuous function f ()

An() =316 ) (o)

tends to f(z) when n tends to infinity, uniformly for 0=z =<1.

In this paper we are going to treat the case when the approximation func-
tions 9, »(z) are non-negative. We begin in section 2 by stating the necessary
and sufficient conditions of a system {&, .} of points. We proceed in section
3 by stating the necessary and sufficient conditions of a system {&, u; ¥, a} of
points and functions, which solves the approximation problem. Then in section
4 we apply the obtained results on a special system and finally, in section 5,
we study the convergence for complex values of x for this same system.

2) Necessary and sufficient conditions of {&, ,}.
We shall prove that the conditions
50, n—>0

5n,n"> 1

Ma'X {£v+1,‘n - El’, n} -0

when n — oo are necessary and sufficient for {&, »} in the following meaning.

43



H. BOHMAN, On approximation of continuous and of analytic functions

If the conditions are fulfilled there is a system {y, »} of functions so that
{&, n; Wy, a} solves the approximation problem.

If the conditions are not fulfilled there is a continuous function f(z), not
identically zero, so that for every system {4, .} of functions

HﬂAn(f):

n—>o0

i.e. the system {&, n; v, ) does not solve the approximation problem.
Let us first suppose that the conditions are fulfilled.

We define

0 for x<<&-1,n

T — Ev—l n

—t— for &_1,.Sx=é,,
Ev,n—év—l,n § —hn= "
Yo, n ()=

SnTT g EnST=&41n
stv_-}-l, n- fv, n
0 for z>& 11,0

This definition is also valid for yo,n if £_1,» is replaced by 0 and for wn n
if &nt1,n i1s replaced by 1.
In each sub-interval

=2 f(&,n) Yo, n (2)
is then a linear function and in the points &m, »
) =21 (&,n) Po,n (Em,n) =1 (§m, )
Hence it follows from the continuity of f(z) that A4, (f) =/ uniformly for

0sz=1.
Let us then suppose that the conditions are not fulfilled.

If we denote
Max {EO,nQ ( fn n) (§v+l n ‘fv,n)} =dy

the supposition is equivalent to the existence of a constant a>>0 so that
m dn =q> 0.

Hence there is a sub-sequence d, " and a constant p, so that

d"u>g for p> uy.

This statement can also be expressed as follows. There is an infinite set of
intervals I,, each of a length greater than 2 such that I » contains no point

2’
of the set > &u,»
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1 .. .
Now choose a number N such that %< Zéﬁ and d1v1de the interval
. a
(0,1) into N equal sub-intervals 4y, 45, . . ., iy. Each I, being greater than 9’

it covers at least onme of the intervals 7,. As the number of intervals I w18
infinite, there must be at least one interval 7 which is ‘covered by an infinite
number of intervals I,. Thus we have found that there is a sub-sequence
and an interval 7 such that 4 contains no point of the set ;ZE"W'

Consider now a continuous function f(z) which is different from zero n %
but zero elsewhere. Let {y,»} be some system of approximation functions.

Then
An(f) =2 (En) Yrrne
An,(f)=0 for every A

In particular

Hence lim 4,(f)=0.

3) Necessary and sufficient conditions in the case Wy, 020

In the preceding section we made no assumptions concerning the sign of
Yr,n. From now, however, we shall always assume that ¥,,n 1S non-negative.
The consequences of this restriction are prima facie somewhat unexpected.

We shall give two different necessary and sufficient conditions for a system
{&,n; ¥s,a} of points and non-negative functions that solves the approximation
problem.

Condition A

For each >0
E;‘= z '/’v,n g 0

14, n—zl=y

z;:= Z Yoon > 1

|_ Ey, % |<y
as n — oo, uniformly for 0z <1.
Condition B .
An(z) >z

An (2%) - 2*

as n— oo, uniformly for 0<z<1.
Let ‘us first assume that condition A is fulfilled. If /(x) is a continuous
function there is a number M such that

| ifl<M
and an n=7(e) such that

/@) —fz)|<e for |@3—ai|<n.
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Then we get

[f— da() =1L =30 f + 30— An(f) | <
<M|1—=20|+M3n+e2a<2e for n>mny

Condition A4 is thus sufficient. In particular it follows, that if condition 4
is fulfilled, the same is true of condition B.

Secondly, let us assume that condition B is fulfilled. This is evidently a
necessary condition.

From the assumption follows

2 An(1) — 2z An(x) + An(@?) > 22— 22% + 22 =0.
On the other hand
2 An(1) — 22 A () + Au(@®) =3 (@ — &,0)" 9o, (@) Z * 2.

Hence >~ 0 and as An(1)=Dn + 2n->1 we have also >y~ 1.
Thus, if condition B is fulfilled, the same is true of condition A.

4) Application of the obtained results

Let us consider the system

(N =z)

—Naz YA
p!

5v,n= 'Wv,n(x)=e

S|

where N =N (n) is a posititive function of n.
Our first problem is to. determine N (n) so, that the system solves the ap-
proximation problem. For this investigation we apply condition B.
n Nw v
da(l)y=eF=3 (—,—)
y=0 V.

and M=—Ne‘ L <0
dx n!

for z=0 is Aa.(l)=1

for z=1 is Aa(l)=e ¥

v

i

y!

i

If we show that the latter expression tends to 1 as n tends to infinity, it
is clear that 4,(1) tends to 1, uniformly for 0 =z <1.

oo N
* N 1 1
_N Lo — - = —_
e vgov! n!fe “z”da:. 1 n!fe zxndx.
bt o
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Put z=n+tVn
N—n

n+§ —n
—f "”x”dac— ¢ —tVn(1+_) dtN‘j_f —tV"( ——)d
~Vn

by Stirlings formula. Now for every fixed ¢

— t 22

_ ~tVatnlog (1+— _é

e—tVn(1+_Vé_)n:e n nog( l/n) - e 2
n

and hence the integral tends to zero, if and only it

— + oo, and then

n

We must also have An(x) -z

n=l N (Nx) N N (N
—,— Nz = —Na; Al STl N T Nz

An(w)=e vzon vzo'n :1; A”(l) n nl ¢

But

(N )" Nz~ __1_ (Nxe)”e_Nx= 1 & n (®
n! . Q7N n 27N

where

N , N
gn(w)=log; + log x + 1—;90

1
x

3.12

G () =

For sufficiently large n is N <n as ;,N -4 00, and gn(z)>0for 0 =z =<1.
n
Then ‘
N - N
gn(z) = gn(1)=lqg ~ +1— ;<0
and hence

—— @ >0 for 0<z=1.
2nn.

. . N
Thus a necessary condition for A4,(xz) - x is that poing 1.

Finally we have to prove that A4, («?) — 1:2.

An(a?) —e—zvxz( ) (Z\;f _szv(v—l +”‘A:f)v—
N 2 _ xn—2(Nw)v
=;5An(w)+(;).w2e . ,v=0-—v’l’! .
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But

n—2 NzYy Nx)n 1 Nzt
e—Nz VZO »(—""TizAn(l) eRNxEn - 1) o e—Nx (71)‘

AT

. . . e s . N
and this expression tends to 1 as » tends to infinity, provided that - -1 and

N

Vn

Thus we have proved that if ]—Z—> 1 and T/ﬁ — + 0o then 4,(1)—~>1,
n

2 2 v, _w. ey
An(x) >z and An(2?) > 2®. Hence the system e g S solves the
approximation problem.

5) Convergence for complex values of x

In the previous section we have found that the system

JK. e—Nz(N”) }

3

n »!
solves the approximation problem. We shall now see whether for this same

system it is- possible to extend the region of convergence to complex values
of x. We begin with the simplest case, f(z)=1, for which

n N v
An(1)=e‘N’E (_’Zi)
v=0 V
where z=z + 1y=pe'?.
Let us denote by w the function
w=ze'"?
and consider the curve |w|=1. The equation of this curve is
0 el—-g cosp—
and it is easily seen that it divides the z-plane into three different. parts.
In 2, is |w|<1 and ¢<1
In 9, is |w|<1 and p>1
In Q, is |w|>1.

In accordance with this definition, each region £ is an open set.
If we put

jn(@)=en: 3 0
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Fig. 1.

we have 7, (% =A,(1) and if ju(2) tends to a limit, uniformly in a

region D, then also A4, (1) tends to the same limit, uniformly in every bounded,
closed region, interior to D. For we know from the previous section

that "E - 1.
n

Now ’ in(e) = en° 2 (nz)
»=0 y!
_(ne)r 2 n! 1
- t € <0 ’V‘ prY g
7% n‘n

L n! 1
= E,______

n oo, Hence

uniformly for. |2|=1 + % for every 7> 0.
80

n!~ (”;)"Vﬁ.

49



H. BOHMAN, On approximation of continuous and of analytic functions

Thus

for |z| > 1. From this we obtain that in the region where [z|>1 and |&| <1,
ie. in 2 gn(z)—>0.

Again, in the region where [z|>1 and |w|>1, |ja(z)] > co. We shall
prove that Iyn )| oo in ;. This is now proved for the part of 3 where
[z2]>1. It is easﬂy seen that in the part where [2] <1 is R{z} <1. We
shall make use of this fact.

Integrating by parts we obtain the formula

n
ﬁzf-i—_l / ezt(l__i)ndt=enz_ i (nz)"
. n v
0

n!

1— () =2 [ezt(l—i)"dt

1—7n(2) = :::L (n)nzfe“ (1 — %)ndt.

" Now (1 —;L) < e~* so that

n
fe”(l——) dt—>fet<2—1>dt=~1——
n 11—z
0 0

uniformly for R{z} <1—7 for every 5> 0.
Hence

ie. for R{z} <1 and |w|>1, |ju(2)]| = oco.
Finally we shall study the convergence in £2,.

in(2) = e—nzé:o (7: ?)v
1 —jn(2) =e—nz§1 ((1:, i)n;):'
SRRy
1— 4, (1)=1— i (%)=(N o _szwl (sziz,),),
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Now in £2; |1— A4,(1)] is less than its maximum value on the boundary;

§n+v gn-i-

and |ze!=?[=1 on the boundary, so that

V

’V

N N™

Nn o ~Nz|_2"_ n—N << 7

I e I o I o

as N <n for n sufficiently large.
Hence

Nn o0 N Nv o0 Nn+v " Nv
[1—4,()| =% 3 ~——=e¥ =l—e V3~
e’ Zi(n +)! =1{n + »)! y=0 V!

and as we have proved in section 4 that

k4
1
y=ov!

e—N

it follows that 4,(l) =1 uniformly in £; and on the boundary.
Summing up our results we have thus found

Ay (1) — 1 uniformly’in £; and on the boundary.

An(1 )—>0 in £, and the convergence is uniform in every bounded, closed
region interior to £2,.

| A4n(1)] > o0 in 2, and the convergence is uniform in every bounded,
closed region interior to 2.

In particular it follows that if f(z) is an arbitrary analytic function, the
region of convergence where A,(f)— f is at most equal to £2,.

We shall now prove the following theorem.

Let f(z) be regular inside 2, and continuous up to and on its contour. Sup-

pose further that {(1)=0 and that % l 18 bounded on the contour. Then
A —e_sz f( ) (¥ey

";'

tends to f(2) as m — oo, uniformly in every closed region tnterior to £,

In the proof we shall frequently use the function log z of a complex number
2=ré'". We define this function as log r + ¢v, where 0 <o <<2m.

Let us first notice that the function

_eney f(2)
Bu=e ,gof(n) y!
is equal to A.(f) at the point %z As N < n for n sufficiently large and
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%» 1, it follows that if B, —f, the same is true of A, (f). B is more easy

to handle than A4, (f), and therefore we choose to prove the convergence for B,.
We begin by cutting off the part of £2; which lies to the right of the straight

line R{z}=1 —51—7;. We obtain a suite of new regions, which are part of £,,

with the contours C -+ Cn, where Cp denotes the straight line and Cj the con-
tour to the left of (. The contour of £2, is denoted by C.
Consider now the integral

—nz . a1 )
— Zb;m ff(C) e-ninc(n.z)n:p(_ng)dcze—nzgof(ﬁ)(:LJ_?)zB”
Cp+Cp

where 2"f=¢ntlogz,
The scheme of our proof is a follows. ,
We prove first that the integral along O tends to zero, then that the inte- -
gral along O, is bounded for z on C. We know that B, > f on the real axis .
for 0 <2z<(1. Hence B, — f inside £,.

Now ve have
eY n

né"ﬂ(l—nc) e

v

I'(—nl)=-— z’

As |1—z—4y|=|1—gz] it is clear that on C, where C=1——§;L+iy
| P (—nl)|<| T3 —mn)]
and as

| TG—n) '} +n)|==

Stirlings formula gives : ]
: e n+i 7 Vﬂ e\"
lr(’}—"”%(nw) ]/Zn 2 (ﬁ)

On C is |ze!~?|=1 so that for ¢ on Cp

ne—nz

1@ e gt T (—n) .

<Mn|e"'z|n”“*lz]”( )n=MV7_L

and as the length of C;=O(%) the integral along.C, tends to zero.

F.o.r the investigation of the integral along C» we need an asymptotic ex-
pression for I'(—n{) on Cr. Stirlings formula for complex values of { gives us

[—u-]—~————_u+%du.

log I'(—nl)=(n{ +4) (wi—log nl) + n{ + } log 27 + f u—nt
V]

valid for 0 <arg {¢} <2a.
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The function

w(w)=0f<[u]~u+%)du

is evidently bounded, so that we can write the ‘“‘remainder term” in the fol-
lowing form.

o0

(m—utd, e, 1
g"(é)—.o/ u—unl du= —nCdu b[(u nj
0

<

i.e. for any >0, |ga(£)| ~ O uniformly in the region & <<arg {{} <2m—e.
If we put {=& + +n we have in the neigbourhood of {=1

£ 4 p?= g2
MP=e2ED 1 —(f—1)— (£ —1)
n=(E—1)?+

1
so that TZ_&A +1 as {—~1 along C, 1e. f 1 —&,=—

|2n17n]—>1;

hence there is a constant a such -that [ 5| >a>0.
Now for { on C, and £>0 we get the following inequality

~+c0 4+ o0
_ (p(u du { du
lga (2)]= lf du <M[~———| 2<M.[u~2+——n2n2<Mu g <

Thus there is an upper bound N, independent of u, such that |gn(Z)] is
less than N on Ci.

We now replace I'(—n{) by the obtained expression in the integral I,

n:

- ff ‘"‘“(m)“l"(—ncdé~—ff(é 0 d

where .
()= —nz—minl +nllognz +
+ (e + 3 (mi—lognl) +nl+3log 27+ gu(l)=
=n({—z+{logz—{log C)+%i—,}log ng +

+ 3 log 27 + gu(0)
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1.e.
In=—]/]—{—ﬁ ff,@eyn(n en¢—ztilogz—tlogd) g -
2
nc;: ¢
2n—d,
]/anf( @) gnG—2z+tlogz—tlogd) g g
where
{=pée? and ('= dé‘
de
Now
g'=¢§+g'eiw=c(¢+%)
and

logp=pcos ¢ —1

’

g—g cos p —g sin @
1%
o o sin 2

E l—pcosg

which is bounded, because the only critical point is.¢=0, and we know that

lw-‘=lL -1 as {1 along C.
1—pcosep 1--¢&
. i
Also M—I was supposed to be bounded on C. Hence Lf-(ge—)L is bounded.
1—z| : 27 —9)

Thus we have

2
L] <MV [ g@a—g)oRGrrms s dp,
0

Now we put z=rée'?, and so

R{{—z+logz—1Clog {} =
=p cos ¢ — 7 cos v + g cos ¢ (log 7 — log ) + o sin ¢ (¢p —v) =y (@, V).

As
log r=7r cosv—1

loge=pcosp—1
this may also be written

v (p, v)=(1— g cos @) (o cos ¢ —r cos v) + ¢ sin @ (p — v).
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In particular v (p, p)=0

0 . .
a—;’:=(1—gcoszp)(rsmv—r’cosv)——gsmtp
or as ¥ =k = — r* sin v
dv 1—7rcosw
0_1/)_(1_ cos )_rsinv__ sin
0v e Pl rcosv 2509
0
so that also 3%)=0 for v=9¢
0y (v’ sin v + 7 cos v) (L —r cos ») + (' cos v— 7 sin v) 7 sin v
gz ~(1—ecosg) (1—7 cos v)?

7 sinv+rcosv—r2

(1 — 7 cos v)?

=(1—p cos @)

(1 —7 cos v) (r cos v— %) —¢2 gin® v

=(1—p cos ¢) (1 —r cos v)®

272 — (r + %) cos v
(1 — 17 cos v)®

=—(1—p cos ¢)

2 _ 3
2r a —Y‘r—{_c(:s) v(;gs Y is >0 for all values of v. To prove this we

put 1 —7rcosv=¢, r=¢ !, The function may then be written

The function

226‘2”— (2 +1)(1—0)

s(t)

t3
e (1 +—1+1
= 5 .
When t—0 is
(=24 22 =42+ )1 +t)—1+¢
s(t)“' t3
3 4 ...
4 2
B 3

for £>0 we consider
- -1+ 2¢
G g—14d-1—cnq r g1 152

and so e72%(1 +¢)—1+4¢>0 for £>0. Hence there is a constant a such that

272 — (r + %) cos v

0.
(1 —7 cos v)® e
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Now we expand o (@, v), considered as a function of o, in its Taylor’s series,
using the first three terms only. Then for some ¢ between v and ¢ we have

a — 202 ,19
v (@ v)=p(@9) + (©—9) ’/’g‘z’"’u(v th) wa(;p2 )

_(0—9P Py (p,d) __a o
L ERRE) ot g (1~ cos )

Again there is a constant b such that

and so
p(p,v) <—ab(p— @27 —9).

If we make use of this inequality in the expression for |1.| we obtain

2n
| I.| < MV;bqu(%z—- @) e_"'“b("’“”)zq’@"_"’)dqo
0

2n

o p2n—¢)
<HVn ( 1+nab(<p—v)2<p(2n—<p)d(r

S

and as o2 —@)=af for 0 < ¢ <2m

V; 2n nz ;
[ Inl <M n_[l—knabﬂz((p—v)z ¢
0
Putting ¢p=v + . this becomes
Vn
+o0 o
- 7
Il < | T apmadt <o

.
— 00

The theorem is thus proved and I conclude this paper by expressing my
gratitude to Professor F. Carlson who suggested the problem.

Matematiska institutet, Stockholms Hogskola.

Tryckt den 10 december 1951

Uppsala 1951. Almqvist & Wiksells Boktryckeri AB
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