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On the existence o f  approximate  identities 

in ideals of group algebras 

By HASKELL P. ROSENTHAL 

A B S T R A C T  

A short proof is given of the theorem by Wik, who, in 1965, showed that  the nowhere-dense 
strong Ditkin subsets of T, the circle group, are finite. 

In  [8] Ingemar  Wik characterized the nowhere-dense strong Ditkin subsets of T, 
the circle group. Wik showed tha t  such sets are finite, using an argument analogous 
to tha t  given by  Cohen in [2]. 

In  this paper we give a fairly short proof of this result, based on a result of u  
Meyer (see [4]) and the statement of Cohen's theorem on idempotent measures. 
(A very simple and elegant demonstration of Cohen's theorem m a y  be found in [3]. 
See also [6], where some of our results have appeared in a preliminary form.) 

Our results generalize to the n-dimensional Euclidean group R ~, and the n-dimen- 
sional torus T ~, enabling us to show in Theorem 1.3 that  the ideals associated with 
most nowhere dense subsets in these groups do not possess approximate identities. 
(We say tha t  a separable commutat ive Banach algebra B possesses an approximate 
identity if there exists a sequence {/n}~%l C B so tha t  lim,~ll/n~eg-g[[ = 0  for all 
gEB.) 

Thus, in particular, these sets do not exhibit the strong form of spectral synthesis 
studied in [8]; i.e., these sets are not strong Ditkin sets. For example, we show tha t  
circles, half-lines, and finite intervals in the plane are not strong Ditkin sets (see 
the remark following Theorem 1.3). 

In  w 2, we establish the appropriate generalizations of the theorems in [8] on the 
existence of strong Ditkin sets to separable metrizable groups; for example, we 
show in Theorem 2.3 tha t  closed subgroups are strong Ditkin sets. 

Finally, we show in Theorem 2.5 tha t  a closed nowhere-dense subset of the real 
line is a strong Ditkin set if and only if, with the possible exception of finitely many  
points, the set is a finite union of arithmetic progressions. Thus, even most discrete 
subsets of the real line are not strong Ditkin sets. 

Definitions and notat ion 

We follow [7] in most of our definitions and notation, with the exception of the 
two underlined paragraphs below. 

Throughout this paper, unless explicitly stated otherwise, G denotes an arbi trary 
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locally compact metrizable abehan group, E an arbi trary closed subset of G, F the 
dual group of continuous characters on G, LI(F) the Banach algebra, under convo- 
lution, of (equivalence classes of) integrable functions on F (with respect to a fixed 
Haar  measure). If  ~ is a finite complex-valued regular measure defined on the Borel 
subsets of F (hereafter simply called a finite measure),/2 denotes the function on G 
which is the Fourier-Stieltjes transform of/~; given ~ and v finite m e a s u r e s , / ~ v  
denotes the convolution of/~ and v. 

Given E, we denote by I(E) (resp. Io(E)) the largest (resp. smallest) closed ideal 
in Ll(F) associated with E. (We say tha t  an ideal J is associated with E if E = (g E G: 
f(g) =0  a l l /E  J}.) Thus, 

I(E) = (/ELI(F):f(g) = 0 all /EE}; 

and Io(E ) is the closure of the set of all /ELl(F) such tha t  f = 0 on an open neighbor- 
hood of E. 

Given E, we say that there is an approximate identity for Io(E ) in I(E), denoted 3 
App. Id. in I(E), if there exists a sequence (v~}~-~ ~ I(E) with lim~[[ Vn~ /--/I[L,(r)=0 
/or all f E Io(E ). 

(We note that  if J is associated with E and ~] App. Id. in I (E) ,  then J does not  
possess an approximate identity.) 

We recall tha t  if J is a closed ideal in LI(F) and if ~u is a finite measure on F, 
then # ~ g E J for all g E J .  (This is an easy consequence of the Hahn-Banach  theorem, 
the associativity of convolution, and the fact tha t  L~176 may  be identified with 
the conjugate space of LI(F).) 

We recall tha t  E is said to be of spectral synthesis if Io(E ) = I(E). Following [8], 
we say tha t  E is a strong Ditkin set if E is of spectral synthesis and 3 App. Id. in 
I(E). (See our Lemma 2.2 for equivalent definitions.) We recall tha t  E is said to  
be a Ditkin set (i.e., a C-set as defined on page 169 of [7]), if E is of spectral synthesis 
and given /E I(E) ,  there exists a sequence {v~}~l~  I(E) with v ~ f - + / .  

We denote by r the Bohr compactification of F; and by  Gd the group G endowed 
with the discrete topology, r may  be defined simply as the dual group of Gd; see 
pages 30-32 of [7] for other properties of P. 

Given G, we denote by R(Gd) the coset-ring of Gd. R(Gd) thus denotes the smallest 
ring of subsets o/ G (closed under/inite unions and complementation), containing all 
cosets of arbitrary subgroups of G. 

w 1. Sets E for which ~ App. Id. in I(E) 

We first state the version of Cohen's theorem that  we will need (see 3.1.3, page 
60, of [7]). 

Cohen's theorem: E belongs to ~(Gd) if and only if there exists a finite measure/z 
on F with/2 =1 on E , /2=0 off E (i.e. f i -Zs ,  the characteristic function of E). 

Our first theorem generalizes Theorem 4 of [8]. 

Theorem 1.1. Let G be arbitrary, E a not necessarily closed subset o/ G, and {Vn} 
a sequence in LI(F) satisfying the following two properties: 

(i) ~n(g)-->0 as n -+~ /or all gEE. 
(ii) ~n(g)->l as n -+~ /or all g(~E. 

Then ]] v, ]] L~(r) tends to infinity with n unless E E ~(Ga). 
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 rool Suppose that snp. IIv.II = K <  We may regard each v n as defining a 
finite measure on F. By the compactness of the K-sphere of a conjugate space in 
the weak* topology and the Riesz representation theorem (cf. appendices C7 and 
F4 of [7]), there exists a finite measure ~u on F tha t  is a point of closure, in the weak* 
topology, of the sequence {v~} of linear functionals defined on the Banach space 
of continuous functions on F. In  particular, for each gEG, fi(g) is a limit point of 
the sequence of complex numbers {~n(g)},~a, regarding the character defined by  g 
as a continuous function on 1". 

Hence, f i (g)=0 for all gEE, f i (g )= l  for all g(~E. Thus by  Cohen's theorem the 
complement of E, and hence E itself, is a member  of ~(Ga). Q.E.D. 

(Note t h a t  we could have assumed merely tha t  each v~ is a finite measure on 1", 
replacing Ilvnll.( )by 

We now obtain Theorem 4 of [8] as a corollary of 1.1. 

Corollary 1.2 (Wik). Suppose F = Z, the group o/integers, and E is a closed subset 
o] T with {v,} a sequence satis/ying (i) and (ii) o/ Theorem 1.1. Then ][v, Hz,(z) tends 
to in/inity with n unless E is a/inite set or all o /T .  

Proo]. EE~(Td)  by 1.1, and we have assumed tha t  E is closed. Hence by  the proof 
of Corollary 1.7 of [5], E is a finite set or all of T. 

Our next theorem shows that  for many  groups G, nowhere dense strong Ditkin 
sets must  belong to ~(G~). I t  is in reality an easy consequence of our Theorem 1.I 
and a result of Meyer (see [4]) generalizing Lemma 6 of [8]. 

Theorem 1.3. Let G be R ~, T ~, or any compact metrizable group such that the union 
o /a l l  o/ its finite subgroups is everywhere dense. Then i/ E is a closed subset o/ G 
without interior and 3 App. Id. in I(E),  E is a member o/ t~(Ga). 

Proo/. I t  is shown by  Meyer in [4] tha t  under our hypotheses, the norm of a finite 
measure # on F is equal to its operator norm, by  convolution, on Io(E ). That  is, 

fr 

Now suppose { n},=l is an App. Id. in I (E) .  As was observed by  Wik, by  a general 
theorem of Banach on convergence of operators (page 80 of [1]), there exists a finite 
constant M so that  ][vn~e/]] <M]]/]] for all /EIo(E ) and all n. Hence by  Meyer's 
theorem, I iv~I[L,(r)~i  for all n. Since we have assumed tha t  vnEI(E), ~(g)=O 
for all gEE and all n. Finally, given g(~E, we m a y  choose ]EIo(E ) with ] (g )= l  
(el. page 49 of [7]); hence since Vn~/->], v,~'f tends to f uniformly as n tends to 
infinity, so ~(g)-~l .  Thus EEt~a(G) by Theorem 1.1. 

Remark. Theorem 1.3 yields the following examples of sets tha t  are~ not strong 
Ditkin sets, because they are nowhere dense and do not belong to ~(Gd). 

(i) Any infinite closed nowhere-dense subset of T. 
(ii) Circles in the plane, e.g. E =  {(x, y} :x~+y2=l} .  

(iii) Bounded intervals and half lines in the plane, e.g. 
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E = { < x , y > : y = O ,  0~<x41}, 

and E = { < x , y > : y = O ,  x\<l}. 

(iv) Appropriate circles and intervals in T 2, e.g. 

E = {<e ~, e~U>:x2+y ~ = 1}, 

and E = {<e ~, e~):x  = 1, 1 ~<y~<2}. 

We note tha t  the sets in (iii), and intervals in T 2 are Ditkin sets by 7.5.2(e) of [7]; 
moreover, the sets in (iii), as subsets of R, are strong Ditkin sets in R (see our 
Theorem 2.4, below). 

To see tha t  these sets do not belong to ~(Ga), see the proof of Corollary 1.7 of 
[5] for (i); (ii) and (iii) both follow from the fact tha t  if G is torsion free, an infinite 
subset of ~(Ga) must  contain, with the possible exception of a finite set, the coset 
of an infinite subgroup (see A 0 of the Appendix, page 71 of [5]). (iv) may  be reduced 
to the same argument by  observing tha t  if n : R  2-+ T ~ is the homomorphism defined 
by  ~((x, y ) )=<e  ~, e~Y), then if E is closed and in ~(T~), then 7e-l(E) is closed and 
in ~(R~). Now if E is as in (iv), E (or a translate of E) will have the proper ty  t ha t  
7r l (E)  has an infinite compact component F. We may  choose /ELI(R 2) so tha t  
] = 1  on F and f = 0  on 7~-~(E) N CF,  from which it follows tha t  ZF=ZJ ;  thus by  
Cohen's theorem, ff EER(R~), we would also have FE}~(R~a), since ZF would be the  
product of two Stieltjes transforms of measures on the Bohr compactffication of R 2. 

w 2. Sets E which are strong Ditkin sets in separable metrizable groups G 

Most of our theorems constitute the appropriate generalizations of Theorems 1, 
2, and 7 of [8]. Throughout this section, we assume tha t  G and F are both metrizable, 
i.e. tha t  G is separable metrizable; ~ denotes the finite measure on F assigning point 
mass 1 to the zero of F; i.e. 6=1 .  

Let  us recall first tha t  strong Ditkin sets, like Ditkin sets, have the following 
property: 

Theorem 2.1 (Wik). Finite unions o] strong Ditkin sets are strong Ditkin sets. 
For the proof, see Theorem 3 of [8]. (Although Wik stated this result only for T, 

his short, elegant argument holds word for word in complete generality.) 
For most  of the theorems in this section, we will have need of the following 

characterization of strong Ditkin sets: 

Lemma 2.2.(a) E is a strong Ditkin set i/ and only i/ there exists a sequence 
{Vn}C~=lcLi(p) so that/or all u, vn has compact support disioint /rom E, and Vn%]~/  
/or all ]El(E).  

(b) E is a strong Ditkin subset o/ G i / a n d  only i/there exists a sequence {#n} o/ 
/inite measures on F so that/or all n, f in=l  in a neighborhood o/ E, and I[#~/[[->0 
/or a l l /E l (E) .  

(Hereafter, if {#~}~=1 has these properties, we shah simply say tha t  { ~ )  obeys 
2.2/or  I(E).) 
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Proo/. (a) Assuming tha t  E is a strong Ditkin set, let {v~)c I(E) with vn~r 
for all /E I(E). Now by  definition, E is also of spectral synthesis, hence, J = 
(g ELI(F):~ has compact support  disjoint from E )  must  be dense in I(E). (Indeed 
J is an ideal associate4 with E, and hence the closure of J must  be equal to I(E).) 
So, for each n, choose v~ E J  with I]v~ -vnHL,(r ) <.l/n. Then (v~}n~=l has the desired 
properties. The converse i~r iv ia ] .  

(b) Suppose first tha t  E ] s  a strong Ditkin set. Let  {v~} be the sequence given 
by  (a), and define ten = ~ - v ~  for all n; then {ten} has the desired properties. 

Conversely, given the sequence {ten}, let {]n} be an approximate identi ty for 
L~(F), with [I/nH ~<1 for all n. (For example, letting {Un}~=z be a nested base for 
the open neighborhoods of 0, simply let /n be a non-negative continuous function 
with compact support  in U~ and H/nil = L ( 0 )  = 1. A c o u n t a b l e  n e s t e d  ba se  ... 
exists because we assume tha t  1 ~ is metrizable.) 

Now set Vn=/n-)e(~--ten); then Vn-~]--> / all /EI(E); moreover, ~n=O in a neigh- 
borhood of E for all n, showing tha t  I , ( E ) = I ( E )  and hence tha t  E is of spectral 
synthesis. Q.E.D. 

Theorem 2.3. Every closed coset o/ G is a strong Ditlcin set; i.e. i/ H is a closed 
subgroup o / G  and g is an element o/ G, then g + H is a strong Ditkin set. 

Proo/. I t  suffices to prove this for a closed subgroup H, since translates of strong 
Ditkin sets are again strong Ditkin sets. Let  U s ~ U 2~ ... be a nested base for the 
open neighborhoods of 0 in G, and let g:G-+G/H be the natural  continuous homo- 
morphism from G onto G/H. Let A be the annihilator of H in F, i.e., 

A = {TEF:(7, h) = 1 all hEH}; 

and let m h be a ha i r  measure on A. By 2.6.3, page 49, of [7] we may  choose for 
each n, an/nELl(A) with [[/niIzl(A)~<2, fn supported in ~(Un), a n d / n = l  on  a neigh- 
borhood of ~(0). Now set 

ten = In dmA. 

Then ten is a finite measure on F, fin = 1 on a neighborhood of H (in fact, if w n = 
{TEG/H:]n(V ) =1}, then f i n= l  on H+~-l(Wn)), and/~n vanishes off the set H +  U n. 
Now, let 

J = {g ELi (F)  : ~ has compact  support  disjoint from H}. 

]qow Un must  be compact for all sufficiently large n. Hence, if g E J ,  then there is 
an N so tha t  f i n ' S - 0  all n~>N; whence l imn-~ten~-g=0.  Now J is dense in I(H), 
since J is associated with H and H is of spectral synthesis (el. 7.5.2 of [7]). Finally, 
since Hten]] ~'~2 for all n, it follows tha t  (ten) obeys 2.2 for I(E). Q.E.D. 

Our next  theorem generalizes Theorems 7 and 2 of [8], where it is established 
for G = T. 

Theorem 2.4.(a) I / E  is a strong Ditlcin set and F is a compact subset o] E so that 
E N C F  is closed, then both E N C2" and F are strong Ditkin sets. 

(b) I / the  boundary o / E  is a strong Ditlcin set, then E is a strong Ditkin set. 

Proo/. (a) Our_hypotheses imply tha t  there exists an open set U so tha t  F c  U 
and E N C F c  CU. Since 2' is compact we may  choose a compact neighborhood C 
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Of F so tha t  C c  U. Then by  2.6.2 of [7] there exists an hELl(F) so tha t  ~ = 1  on 
C and ~ = 0  outside U. Hence h = l  on a neighborhood of F and ~ = 0  on a neigh- 
borhood of E N CF. 

Now, let { / t~}~  obey 2.2 for I(E).  Then setting #~ = / ~ + h  for all n, {#~} obeys 
2.2 for I (F) ;  setting/t'~ = # ~ e ( ( ~ - h )  for all n, {#'~} obeys 2.2 for I ( E  N CF). 

(b) Let  F E  denote the boundary, or frontier, of E, and let {Vn}~l satisfy the 
conditions of 2.2(a) for the set FE.  That  is, letting W~ be the support  of v~, we 
have for all n tha t  W~ is compact and disjoint from FE,  and tha t  v ~ e / - ~ / f o r  all 
/ E I ( F E ) .  Fixing n, it follows tha t  W~ N CE is a compact set, and hence we may  
choose a function h~ELI(F) with f ~ = l  on W~N CE and ~n=0 on a neighborhood 
of E; then h ~ - ) e v ~ / = v ~ e /  for all /EI (E) ,  by uniqueness of Fourier transform. 
Hence the sequence {hn~vn}~_ 1 satisfies the conditions of Lemma 2.2(a) for the 
set E. Q.E.D. 

Remark. (1) We thus obtain by  2.2(b) tha t  certain closed proper neighborhoods 
in T ~ are strong Ditkin sets. For example, for ~ a fixed real number,  0<a<27e ,  
we have tha t  E = { ( e  *x, e*Y>:0~<x~<27~, 0~<y~<a} is a strong Ditkin subset of T 2, 
since the boundary of E consists of the union of a closed subgroup and a closed 
coset of T ~, namely 

{(e ~x,l>:0~<x~<2~} and {(e ~,e~>:0~<x~<2~}. 

Remark. (2) I t  is proved in 7.5.2(d) of [7] tha t  if E ~ H  where H is a closed sub- 
group of G, and if the boundary of E relative to H is a Ditkin set in G, then E is 
a Ditkin set in G. Note tha t  this does not hold for strong Ditkin sets, i.e. our 2.4(b) 
cannot be sharpened to this extent. Indeed, we have shown (see the remark follow- 
ing Theorem 1.3) tha t  E = {(x, y>:y =0,  0 ~<x ~< 1} is not a strong Ditkin set in R u, 
yet  the boundary of this set relative to t t  consists of two points, and hence is a 
strong Ditkin set. 

For the final result of this paper, we give a complete characterization of those 
nowhere dense subsets of It  which are strong Ditkin sets. (I t  is perhaps surprising 
that  even most discrete subsets are not; for example E = {n 2 : n an integer} is not a 
strong Ditkin subset of It; note tha t  this shows tha t  one cannot replace the hypo- 
thesis "_~ is compact"  by  the hypothesis " F  is closed" in 2.4(a).) 

T h e o r e m  2.5. Let E be a closed nowhere-dense subset o/I t .  Then E is a strong Ditkin 
set i / a n d  only i/there exists a finite set F, and numbers ~1 .. . .  , v~; fll .... , fin; so that 

n 

EU F =  Uv~Z +fl~. 
t - 1  

Moreover, i / E  is not o/ this /orm, then ~] App.  Id. in I(E).  

Proo/. Suppose first tha t  E is of the above form. Then by  Theorem 2.3, each 
set of the form T~Z § is a closed coset of R, hence is a strong Ditkin set; by  Theo- 
rem 2.1, U ~-1 T~ Z +fl~ is a strong Ditkin set. Finally, we may  assume tha t  F N E =~;  
F is then a compact subset of U~-I ~ Z  +fit with 

E = "ci Z + fi~ ~-' F being a closed set. 
i 

Hence by  Theorem 2.4(a), E is a strong Ditkin set. 
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Conversely, if 3 App. Id. in I(E), then EER(Rd) by  Theorem 1.3. Thus by  the 
proof of Theorem 1.6 of [5], E must  be of the above form. Q.E.D. 

Final remark. We note tha t  all the results of Section 2 hold for unrestricted 
locally compact abelian groups G, if we replace all sequences by nets uniformly 
bounded in convolution operator norm. Thus, we say tha t  an arbi trary commutat ive 
Banach algebra B has an approximate identity if there exists a net {/~}~D C B, 
where D is ~ directed set, such tha t  there exists a constant M, so tha t  for all g E B ,  

]l/~giI <~MIIgII for all ~, (A) 

and lim H/~-g-g[ [  = 0. 
6teD 

Of course, we then say tha t  {/~}~D c I(E) is an approximate identity for Io(E ) in 
I(E), if there exists a constant M so tha t  for all gEIo(E), (A) holds. 

Note tha t  if {V~)~eD is an App. Id.  in I(E), then the appropriate versions of (i) 
and (if) of Theorem 1.1 hold. Thus i /we make the stronger assumption that [[%H ~ i  
/or all ~E D, we obtain that E E~(Gd) by an argument identical to that o/Theorem 1.1. 
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