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On absolute convergence of Fourier series

By Masako Izumi and SHIN-IcHI IzumI

§ 1. Let f be an integrable function on (0,2x) and periodic with period 2z,
and its Fourier series be

(=) ~—29+ > (@, cos nx + b, sin nx)
n=1

If 321 (la,|+]b:])< oo, then we say that the Fourier series of f converges ab-

solutely and we write f€A. If €4, then f must be bounded and continuous
We define the modulus of continuity of f by

(& f)= sup |f(x)

)]
|lz—z|<9d
and the integrated modulus of confinuity of f by

277 1/p
wn (3 f)= sup ( f If(w+h)—f(w)|”dx)
0<hé 0

for p>=1. It is known that w,(d;f) <w(d;f) and lim, . w,(J;f

D =w(; ).
Concerning absolute convergence of Fourier series there are two famous theo-
rems, one is due to S. Bernstein and the other to A. Zygmund
Bernstein’s theorem ([1], p. 241; [2], p. 154) reads as follows

o

This was generalized hy O. Szész ([2], p. 155) in the following form
Theorem II. If

. 721 (1 f)<oo,
then fEA.

Zygmund’s theorem ([1],

Theorem I. If

then fEA.

p. 242; [2], p. 160)" reads as follows.

1 The condition of this form was first formulated by E. Hille and J. D. Tamarkin [3]
13: 2
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Theorem IILI. If f is of bounded variation and

1 1
nglﬁ (D(;, f)<oo,

then f€EA.

We shall prove a ‘“bridge” theorem between Theorems II and III. For this
purpose we need the notion of r-bounded variation which is defined as follows:
f is called of r-bounded variation when

n 1/r
IM>0: (igllf(xi)_f(xi-l)lr) <M

for all divisions 0 =2, <, <...<x,=2xn. The case r =1 is ordinary bounded varia-
tion and the case r— oo means boundedness of f.

Theorem 1. Let 1<p<oo, 1/p+1/g=1 and 1<r<2p. If f ts of r-bounded
variation and

ad 1
21 n1‘1/2q (wr+(2—T)q(n/n; f))l rizp < o,
n=

then fE€EA.

If r=1 and p—1 (consequently g— oo), then Theorem 1 reduces to Theorem III.

If r>oo and p—>oco such that r/p—>0 (for example r= V/p), then the theorem
reduces to Theorem II, since g1 and r+(2—7)g=2¢+ (1 —q) =2¢9—q(r/p)~>2
and the boundedness of f is necessary for f€A. Thus Theorem 1 is a bridge
between Theorems IT and JII.

If we consider the cases r=p=¢=2 and r=3, p=¢=2 in Theorem 1, then
we get the following corollaries.

Corollary 1. If f is of 2-bounded variation and
_ 1
n *sz(;; f)<oo,

Corollary 2. If f is of 3-bounded variation and

M3

1

then f€A.

4

éln‘* ‘/wl (7—1% f) < oo,

Further we prove the following theorems.

then fEA.

Theorem 2. Suppose that f is even and of bounded variation and put g(x)=

fseafe. 1 ]
o t

then fE€A.

178



ARKIV FOR MATEMATIK. Bd 7 nr 12

This is not contained in Theorem III. For example, let

1
f(x)=(l—0g‘@m on (0,#), f(x)=f(—=) on (—=,0),
1
then w(kme

and hence

nan (’f >Af Vo) & —Af”( 27’)_1‘%_00.

Therefore the condition of Theorem III is not satisfied. But, the conditions of
Theorem 2 are satisfied. For,
-2 — 24(1 -+ 0(¢))

O~ Gog@mn® 19~ (og @)

Ct
(log (272/1))*”

(t g) di
fo T dt\of t(log (2n/t)

Theorem 3. Suppose that f is an odd function of bounded variation and vanishing
at O and m.2 If

and then! w(t; g) <

[T10 2 aj0] <
V]

and f:htA [d(f(e) — f(¢ + R))| < O™ (1)

for some A>1 and some a(0<a<1), then fEA.
The condition of the theorem is satisfied by the odd function f such that

1

f(z) =W (e>0)

in the right neighbourhood of ¢=0 and is very smooth otherwise.

§ 2. Proof of Theorem 1. We have

fleth)~fz—h)~2 § (b, cos nx — a, sin nx) sin nh,

n=1

! We denote by O an absolute constant, different in different occurrences.
% The continuity of f at the point 7 is contained in the last assumption (1).
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and then, by the Parseval formula, we get

27 -
}T fo (e +h)—fz—h)]Pde= 42193 sinnh where gf=aZ+ b2,

We have to prove that > o, < oo.
Now we write

—r(g— 2—r)g+
2=Z+(2_1)=1+%1_f_(q1)=£+<__@g._1‘
p/ P q p q

and let us consider the sum (cf. [1], p. 242)
2ZN (f%U(x+kn/N)—f(x+(k—l)n/N)]zdx)p
k=1\Jo

2N 7T r 2—r)q+r il
=> (f [f(x+kn/N)—f(x+(k—1)n/N)]5+( : dx) .
k=1 0

By Holder’s inequality, this is less than
2N 27t
> (f |f(z+kn/N)—Hz+ (k—1)7/N)| d=
k=1\Jo

= rig
X(f 'f(””+kn/N>—f(x+(k—l)n/N)|'+<2-f>«dx)
0

2N 27

=> (f |f(x+kn/N)—f(x+(Ic—l)n/N)|’dx)
k=1 0

pia

278
X (fo |f(x+m/N)—fz)|[ *E& "¢ dm)
27 /9N
- fo (,lef(oﬁ— kz/N)—flx+ (k- l)n/N)Ir) 2 (0r+@-ry o (/N3 P "

<2Vi(@r+q-nq(m/N; )7,
where V,=sup (371 |f(z;)) — f(zi—1)|")", sup being taken about all divisions 0=

2y < <...<x,=2m. Therefore

¥y 2 . o NI 2—r/p ~1/p
2_:107! sy ﬁ > C(wr+(2—r)q(n/N; f)) .N

nzgﬁ < 0N1+1/a (wr+(2—r) a (ﬂ/N; ]c))2—r/11_
1

M=,

and then

1

n

Let us put g,=>7_; kg, then @,<Vn(St.1 k%l by the Schwarz inequality

and then
Pn< Cnl*1i2e (Wr+@-nq (ﬂ/n: f))l_rlzp'
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Now
N N
2.6= 2 (72— gu-1)/n
1 Py Pn , Px
“Eﬁ”"(% n+1)+N< 2 2ty
N-1

N-1 g
<C Z pi-i2e (@r+@-nalm/m P <C

L]
for all N. Thus we have proved that > p,< co.
§ 3. Proof of Theorem 2. Let f(z)~ > a, cosnz, then
a, = 2 fnf(x) cos nxdx = — 2 f"sin nx df(x)
n T Jo Tan Jo ‘

We shall prove that

o0 2 00

f ﬂsm nx df(x)

is finite. Now we write

T nin 7T s
f sin na df (x) — f sin na df (@) + f Smxnxdg(x)=ln+Jﬂ.
0 1}

nin

Then

= 1
2 ~|I|<

n=17

||M8
S[!—'

P f ne | df(z) |
k=n Jnmi(k+1)

nllk

w/(k+1)

s laf@) <0 |at)] <.
We shall estimate J,. We suppose first that » is odd, then

T sinnr
Jn::fl d()*z

=1 o knin

(k+Dnin sin na

dy(x)

sin né
K=1 0 t+kax/n

=(""§1:)/2 J"”" . t(dg(t+2knn)_dg(t-|—(2k—1)7c/n))
0 t+2%km/n  t+ (2k—1L)7/n

S (- 1 f o dgltka/n)

k=1
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n—1)/2 TN o
=( Z)l [f l M(dg(t+2kn/n)—dg(t+(2k—l)ﬂ/n))

k=1 0 2k7{/n
nin .
- L (t+ 2kizs/12)n-52k 7 (@006 °+ 2kr/m) —dg(s-+ 2k~ 1) /)
7 n/n sin nt
“ fo (t+2kz/n) (t+(2k_l)n/n)dg(t+(2k—1)ﬂ/n)]

(n-1/2
= Z (J}L.k_Ji,k—Ji.k)=J}z—Jﬁ*Ji.
1

k=

We have
nin
JL = 2%n sin nt [dg(2ka/n + 1) ~ dg (2t /n — (/n— 1))]
0
n/n
- %z sin nt d [g(2kz/n +t) — g(2km/n — 1))
[

2 n/n
= 2 1, cos nt {g(2kn/n +t) — g(2km/n —t)] dt.
Writing o(t) = w(t; g), we get

2

|5, ] < fmw(t)dt
o kn 0 ’

n-1)j2 nin
FARED) lJ}z.klgonlegnJ w(t) db.
k=1

0

00 oo nin
and then > 1]J;|<02nlognf o(t) dt
gan TR
©0 o0 nlk
=02 nlogn> w(t) dt
n=1 n=1 Ja/(k+1)

0 ik k
=02 f w(t)dt > nlogn
n=1

k=1 Jnj(k+1)
nlk

<C 2 Klogk o(t) dt

k=1 R+

0 7k
<c3 f ‘i’(—t)IOg%@dt

t2
k=1 Jn/(k+1)

= f —L%t)log‘?—ndt<oo
o ¢ i

by the assumption.
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Secondly we have

n (" tsinnt
Ji_k=2'k;f m[ngkn/n—'_t) dg((2k — ln/n-l-t)]

n (™[ tsinnt \’
T % L (,;+2,07/;) [9(2km/n +1) — g((2k — 1) 7/n+t)] dt

Cn
and then |72 | <<% o (Z)
(n— 1 2 n—1)/2 ‘
1< 3 10" Bo(Z) <ono(?
and §1|J§|<C§w(7—t <0 w()dt<oo
n=dld’l’b n=1 \7
Finally,
7Tin "
g =7 sin
7 nin Sln’nt
-] zzazgygdﬂt+<2k—1>n/n>
and then
c O [2kain
|J?zk|< f |dft+ 2k—1) n/n | ——f Idf(t)l’
' k k @Ck-Drnin
® 1 kDR | g
| 73] < IJ o< z L!it(il
K=1 ©=1 Jnim
and

® 1 ® 1 =» (k+Dnin di(t
S <ol 5 3 [

n=1M1" =1 Jrkam
=) oo 1 (lc+1)n/n f

—02 = la)] 2 klf t|dft)l<0f |df(t)] < oo.

k<1 n= kn knin

Hence we have |J | < oo.

n
n odd

For even n, we get the same estimation. Thus we have proved the theorem.

§ 4. Proof of Theorem 3. We write f(x)~ 2 b,sinnx, then!

1 [~ . 1,
b,= - J‘_,,f(x) sin nx da = o f_nsm nx[f(x) — f(x— 7x/n)] dz
1 Cf. [3], p. 533, Theorem (A), VI.
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1 T
= f cos na d[f(x) — f(x — 7/n)]
2an ) _,

“ml[i+ L)zt
We shall estimate b,. Let r=a/2A, then 0<r<1. We put

nfnr £
[,
0 afnr

Since f is continuous at the origin, we have

oo 1 ® 1 (/v
HIAR DR RTE)
n__ n=1"M Jo
® 1 ® 2nfk
32 .2 |df(2)]
ne1 M kamn JomiGe+ D)
onk [k"']+1
25 [0 lawl sy
2/ +1) =1 n
o0 2nfic
<O 2 log (k+1) |2f(x)|
k=1 2/ +1)
<Of logz—x[d]‘(x)[< oo,
0 x
© 1
Further > —l f ld(f f(x—yt/n))]
n=17 -—ln nr
<3 -t f )~ e e/m)|

O z 1+nc/2

Thus we have proved that 2, |b;|/n<co. Similarly we have > |bnl/n< oo and
then > |b,| < co. The theorem is now completely proved.
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