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Overconvergence of sequences of rational functions 
with sparse poles 

By HAROLD S. SHAPIRO 

I n  this paper  we consider Banach  spaces S of functions holomorphic  in D + = 
{z II z I<  1} which contain all functions { i / ( z  - b)) with b E D -  = {z I[ z I > 1}. We show 
(Theorem 1) t ha t  under  ra ther  mild restrict ions on S, a sequence {/~) of ra t ional  
functions which converges in the norm of S, if the  poles of a l l /n  are confined to a 
" spa r se"  subset  E of D -  (here the sparseness criterion is de te rmined  by  the par t i -  
cular  space S, and  we give it only in an  implicit  form),  necessarily converges uni- 
fo rmly  on compact  subsets of D-\E. This it seems appropr ia te  to call an  "over -  
convergence"  theorem, a l though it has a somewhat  different character  than  o ther  
theorems bearing this designation, e.g. those due to Ostrowski [3] and  to  Walsh 
([5], p. 77). In  general the  sequence {/~} will not  converge in domains  which inter- 
sect the  uni t  circumference, and the l imit  functions in D + and  D -  are not  ana ly t ic  
cont inuat ions of one another .  In  Theorem 2 it is shown, wi th  addi t ional  hypotheses  
on S, t ha t  when the closure of E does not  include the entire uni t  circumference we 
ge t  overconvergence in domains  which intersect  the circumference, and  hence ana-  
lyt ic  cont inuabi l i ty  of the limit functions.  These theorems are proved  in w 1. 

The present  paper  was mo t iva t ed  b y  a s tudy  of the paper  [1] of Akutowicz and  
Carleson, f rom which we have  adap ted  the me thod  of proof of Theorem 2. Conver- 
sely, m a n y  of the  theorems of [1] are deducible f rom our Theorem 2. In  w 2 the  
relat ionship of our paper  with [1] is discussed briefly. In  w 3 some problems which 
invi te  fur ther  invest igat ion are pointed  out. 

The  au thor  wishes to acknowledge some helpful conversat ions with D. J .  N e w m a n  
and  A. L. Shields. 

1. The main theorems 

We consider a Banach  space S of funct ions /(z) holomorphic  in D +, and satis- 
fying the following conditions: 

(1) 1 E S, and  for every  [b I > 1, 1/(z - b) is an  e lement  of S. The  set  of all functions 
1/(z - b) with I b[ > 1 is to ta l  in S. 

(2) For  every  l a[ < 1, the  evaluat ion  funct ional  Ia defined by  Ia[=[(a)is 
bounded.  

(3) lira 1 b-.~r z----b = 0 .  
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(4) For  every  I bl > 1, mult ipl icat ion by  1/(z - b) is a bounded opera tor  Mb f rom 
S t o  S. 

(5) IIMb ]] is bounded  on compac t  subsets of D . 

Observe t ha t  mos t  Banach  spaces of analyt ic  functions in D + previously  studied 
(in par t icular  the  H v spaces) sat isfy these properties,  as well as the  ex t ra  ones to 
be in t roduced below in the hypotheses  of Theorem 2. 

Theorem 1. Let E be any subset o/ D -  such that the set U o/ /unct ions  1 / ( z - b )  
with b E E is not total in S. Let R denote the set o/ /inite linear combinations o/elements 
of U. Then, i/  /~ is a norm convergent sequence o/ elements o / R ,  the sequence/n(z) 
converges uni/ormly on compact subsets o/ D \ E .  

Remark.  I t  would be easy  to ex tend  this result  to allow also [ b [ = 1, if the  corre- 
sponding 1 / ( z -  b) belong to S. 

Proo/ o/ Theorem 1. L e t / E R ,  II/ll = 1. Wr i t e / ( z )  = ~ _ l p k / ( z - - b k ) ,  b k e E .  Let  G 
be a compac t  subset  of D - \ E .  To prove  the  theorem, it is sufficient to show t h a t  
the  m a x i m u m  of I/(z)[ on G is bounded  by  a constant  not  depending upon  the  par t i -  
cular  / E R of norm 1. Indeed,  this then  implies t ha t  the  m a x i m u m  of I/re(z) - / , ( z )  I 
on G is less t han  a constant  t imes I ] /m- /n  I], which clearly implies the desired result.  

Now, since { 1 / ( z - b ) } ,  b E E  are not  to ta l  there is a non-null  l inear funct ional  
L E S* such tha t  

L(1) 2(w) = Z ~  (4 is the "Borel  t r ans fo rm"  of L) 

vanishes on K.  B y  (1), ~t(w)~ 0. Also, it is easily deduced f rom our hypotheses  t ha t  
is holomorphic  for I w[ > 1 and  vanishes a t  ~ .  Now fix a point  c E D - \ E  such 

tha t  2(c):t: 0 and define 

L M c  
Qc = 2(c); 

clearly Q~ is a bounded  linear funct ional  on S, and 

Now, for b E E we have  

II Q=II IILll. l[ Moll (6) 
I (c)l 

L 1 c z -b ) -2 (c )  

Therefore,  Qc(1/(z - b)) = 1/(c - b), hence 

i n 1 / ( e ) l =  =  P Qo(- -I=IQ /t<IIQ II. 
= 1 c - b~ k = 1 \z  - ok/I 
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Now, we m a y  surround G by a contour  on which 2(w) does no t  vanish, and  
which contains no points of E. By  the last inequality,  together  with (6) and (5), 
we obtain  a bound for / on the contour,  and so by  the  max imum modulus  theorem 
on  G. This proves Theorem 1. 

Theorem 2. Suppose for some p > 1 S satisfies, in addition to (1)-(5), the additional 
.conditions 

fl(= 
(log+log+Hl~ll)Vrdrdt< (a=re~t) ,  (7) 

d o  d o  

f Q (log + log + N(x)) p dx < ~ (for every 1 < Q < ~ ) ,  (S) 

+where N(x) satis]ies II M II < N(I b l) ]or I b l > 1. 

Then, under  the hypotheses of Theorem 1, {]~(z)} converges uniformly on compact  
subsets of Z\E(Z = Riemann  sphere). 

Remark. Theorem 2 gives new information in the case tha t  E does not  include 
I z I = 1, assuring analyt ic  continuat ion of lira t~. 

We require first a lemma. 

Lemma.  Let F(z) 
8ome q < 1 

be holomorphic in D +, and write M(r)=maxt [F(reU)l. I / /or  

f~q[log+log+M(r)]Pdr<~, where p>~l, (9) 

then log + log + rdrdt < ~ (10) 

Pro@ I t  is easy to reduce the general case to the case when F(0) = 1, which we 
assume. Now 

1 
- -  ~< - log I F(rdt)]  + log + M(r). 

In tegra t ing  and recalling tha t  F(0) = 1, we get 

2~r J0  l~ IF(re't)} dt <~ log + M(r). (11) 

Let  us first suppose tha t  p ~< 3/2.  Now, the funct ion (log x) v is concave for x > e p-1 
(and so for Ix [ >~ 2), hence using Jensen 's  convexi ty  inequali ty 
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r   [log 

~< log ~ 2 + l o g  + iF(rdt)l dt , and this is, by  (11), 

~< [log (2 + log + M(r))] p ~< [log 3 + log + log + M(r)] ~' 

~< 2"[(log 3) p + (log + log + M(r)) ' ]  

and  now, observing (9), (10) follows readily, The case p >  3 /2  involves a trivial 
modification of the argument ,  which we leave to the reader. 

Remark. I t  is clear, by  the change of variables z = 1/w, tha t  the lemma is t rue  
also under  the hypothesis  t ha t  F is holomorphic in D , where now the range of 
integration in (9) is from 1 to Q, and in (10) over the annulus 1 < r <  Q. I t  is in this. 
form tha t  we shall actual ly  employ the lemma. 

Proo/ o/ Theorem 2. We shall base the proof on a theorem of Beurling (see [2]) 
according to which, if we have a family of functions holomorphic in a domain H 
and  there exists a function J(z) such tha t  J(z) >~l/(z)l for all / in the family, where  
for some p > 1 

f f  [l~176 (12)~ 

then the functions of the family are uniformly bounded on compact  subsets of H. 
Again, we consider the family R o of all /E R of norm one. Note first that ,  for 
aED*, 

I/(a)l II If. (13) 

Now, when I c[ > 1, as we have seen 

 AiN(Ict} 
It(c)1 I z( )l ' where A I=IILll. {14)  

In  what  follows A~, A s . . . .  denote positive constants. Define J(a)to be [l/all for- 
[a[ < 1 and  g(c) =r i gh t -ha nd  side of (14) for Icl > 1. Clearly I/(z)] <g(z) f o r / E R o .  
Moreover, for [c[ > 1, 

1 
log + log + g(c) <~ A 2 + log + log + N(] c I) + log + log + 12(c)l' 

therefore 

1 P 

Let  now H be any  bounded open subset of Z \ E .  All /E  Ro are holomorphic on H._ 
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Moreover (7) guarantees tha~ the contribution to the integral (12) coming from 
H N D + is finite. Likewise the contribution coming from H N D-  is finite, as we see 
from (15), together with (8), providing we can show, for any Q > 1 

0 J1 l ~ 1 7 6  r d r d t < ~  (c=re~t). (16) 

But, L 1 I~(c)]= (~-~) ~IILII'I]M~]I~AIN(Icl). 

Again observing (8), and applying the lemma (note the remark  following its proof) 
we see that  (16) holds. Therefore, the functions in Ro are uniformly bounded on 
compact subsets of Z \E ,  and this implies Theorem 2. 

2. Thc A k u t o w i c z - C a r l e s o n  m i n i m u m  problem 

In [1] the following type of problem is studied: One has a Banaeh space F of 
functions holomorphic in a domain D, and two given complex sequences {zn}, zn E D 
and {an} such that  the interpolation problem/(z , )  = an is underdetermined, i.e. there 
exist two distinct functions (and hence infinitely many) in F which satisfy/(zn) = an, 
n = 1, 2 . . . .  Then, under suitable hypotheses about F, which are moreover sufficient 
to guarantee the existence of a unique solution of the interpolation problem which 
has minimal  norm (for instance, uniform convexity of F guarantees this), it is shown 
in [1] that  this minimal solution is analytically continuable across each boundary 
point of D which is not a limit point of {zn}. Moreover, the analytic behaviour of 
the function thus continued on the whole Riemann sphere is obtained. 

From Theorem 2 one may deduce many of the theorems in [1], notably those 
where F is a Hilbert space. We content ourselves with sketching the method of 
deduction in one typical case only. Let  B denote the Hilbert space of analytic 
functions in D + normed by ][]]12=SloS~l/(re~t)]2rdrdt. Let {zn} be points of D +, 
and a n complex numbers such that  the interpolation problem/(zn) =an(n = l,  2 . . . .  ) 
has more than one solution in B. Let E = (l/Sn}, and suppose/~ is an arc of I z I = 1 
disjoint from the closure of E. Then, it was shown in [1] tha t  the (unique) solution 
]* of the interpolation problem which has minimal norm is analytically continuable 
across/~ and into all of Z\/~. 

To deduce this result from Theorem 2, observe that  B has the reproducing kernel 
K(z,  ~)= 1/(1 -~z)  ~, and that  the minimal interpolating function (as is known from 
general principles concerning Hilbert spaces with reproducing kernel) is that solution 
which is spanned by the functions K(z,  zn) (this set is not total by the underdeter- 
minedness hypothesis). Now, we can't  yet  apply Theorem 2 in this situation since 
the K(z, zn) have double poles. However, let H be the Hilbert space of functions 
g(z) = ~ cn z n normed by [[ g [I 2 = ~ (n + 1)[ C n [2. The correspondence of orthonormal 
bases 

(n + 1) �89  § 1)-�89 ~ 

induces an isometry between B and H, under which K(z,  zn) corresponds to 
1/(1 -~nz) in H. The transform g* of /*  is, by Theorem 2, continuable across fl into 
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Z\E ,  and finally the corresponding continuability for /* is readily inferred from 
the fact t h a t / *  is the Hadamard  product of g* and 1/(1 - z )  2. 

We wish to remark that  throughout [1] the authors assumed that  the closure of 
the set {zn} doesn't  include the whole boundary of the domain. Our Theorem 1, 
together with the technique just employed (or, suitable modification of the dis- 
cussion in [1]) enables one to assert something also about  the case where the zn 
cluster at all boundary points. For instance, returning to the example of the space 
B just discussed, if ]* denotes the unique solution of the/inite interpolation problem 

/(zk)=ak, k =  l, 2, ..., n 

having least norm, then t he /*  converge in norm to/*: and what is more (/*(z)) con- 
verges uniformly on compact subsets of D - \ E  to a certain function g meromorphic 
in D- .  In  other words, we still have overconvergence of the solutions of the cor- 
responding minimization problems with finitely many  interpolation conditions. 
Whether  the functions /* and g bear to one another some simple relation in the 
case when E includes the whole unit circumference (in which case ]* will in gen- 
eral be nowhere continuable), for instance whether they are connected by  a func- 
tional equation, or exhibit some kind of matching boundary behaviour, seems wor- 
thy  of investigation. 

3. Concluding remarks and open questions 

3:1. In  Theorem 1 we showed that  i f / n e R  and H/n - I l l  -+0, then (under suitable 
hypotheses) {fn(z)) converges on compact subsets of D--\E to a certain function, 
say f, which is then meromorphic in D-  (indeed, the hypothesis of non-totality 
implies that  E has no limit points in D-) .  Moreover, as the proof of Theorem 1 
showed, / =  0 implies ] = 0, that  is, f uniquely determines ]. 

I t  seems plausible that  the converse is true, i.e. that  ] = 0 implies / =  0, but  we 
have not been able to show this, not even under stronger hypotheses on S. We 
wish also to raise the following more general questions: 

(i) If  f is analytically continuable across some point of ]z I = 1, must  the contin- 
uation coincide with ]? (The answer is yes in the special case / =  0, as we just 
remarked.) 

(ii) If  ] is analytically continuable across some point of I zl = l, must  the contin- 
uation coincide with ]? 

Of course, the answers to these questions are trivially yes under the hypotheses 
of Theorem 2, i f /~  doesn't  include the whole unit circumference, since then / and ] 
are analytic continuations of one another. These questions are suggested by  the 
author 's  speculations about generalizing the notion of analytic continuation [4]. 

3.2. I t  seems of some interest to generalize the results of this paper to open sets 
more general than the unit disk. For smoothly bounded domains this is quite rou- 
tine, but  for general open sets serious technical difficulties appear, for instance in 
extending the lemma needed for Theorem 2. 

In  like manner, one could a t tempt  to generalize the results to topological linear 
spaces (even the unit disk) of holomorphic functions other than normed spaces. 
Here again some new ideas are needed. That  the overconvergence theorems are 
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t rue  for some interest ing non-normed  spaces m a y  perhaps be considered plausible 
i n  view of the remark t ha t  they are t rue (rather tr ivial ly)  for the topology of uni-  
form convergence on compact  sets. Here the non- to ta l i ty  hypothesis is equiva lent  
t o  the finiteness of E. 

University o] Michigan and University o] Stockholm 
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