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Determining the absolutely continuous component of a 
probability distribution from its Fourier-Stieltjes transform 

By H .  ROBERT VAN DER VAART 

1. Introduct ion  

Most discussions of the inversion formula 

T e i t b - - e  ita 
#(]a,b[)§189 -1 lim q~(t) - i t  dr, 

T---> oo T 

(1.1) 

which recovers a probabili ty measure # from its characteristic function (Fourier- 
Stieltjes transform) 

~v(t) = f e~tY #(dy), (1.2) 
JR 

contain a remark to the effect that  if ~v ELl(R) then # is absolutely continuous and 
has a (continuous) density function / given by 

/(x) = (2zt) -1 fR q~(t)e-itXdt (1.3) 

(e.g., see Lukacs [13], p. 40, Th. 3.2.2). 
For the case that  ~ $LI(R ) there seems, however, to be some confusion. Ldvy [12], 

pp. 167-168 recommends the use of the Cauchy principal value in equation (1.3) in 
case # is absolutely continuous. The same recommendation is made by  Kendall and 
Stuart  [10], p. 94 for the case where the distribution function "is continuous every- 
where and has a density/unction", and by  Richter [16], p. 329 for the case where/~ 
has a di//erentiable density/unction. Dugud [6], p. 24 quotes essentially a theorem 
of Jordan (cf. Goldberg [8], Th. 5C) to point out tha t  if the Cauchy principal value 
of the integral in eq. (1.3) exists and if also /(x+O) and /(x-O) exist (note tha t  
these three conditions are satisfied if the density / of # is of bounded variation in 
a neighborhood of x) then equation (1.3) is valid in the sense tha t  

/(x+0)+/(x-0_ 1 ~ r  
lim | r ~tXdt. (1.4) 

2 2~ r -~  J-T 

At the same time, Robinson [17], p. 30 states tha t  equation (1.3) holds as printed 
if the random variable in question has a density/unction. On the other hand Lukacs 
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[14], p. 177, citing Goldberg [8], p. 14, Th. 6C, recommends the use of (C, 1)-summa- 
tion in equation (1.3) when ~ is not absolutely integrable and # is absolutely continuous. 

The present paper wants to dissolve some of this confusion, and also to furnish 
criteria by which to select a suitable interpretation, if any, of equation (1.3). In  
m a n y  applications of the method of characteristic functions we first obtain what  
we know to be the characteristic /unction of some k-variate distribution, then we 
ask questions about that  distribution: whether it is absolutely continuous, and if 
so what its density is, and so on. For such problems, knowledge of ~v has to suffice. 
Accordingly, o u r  criteria will be in terms o/q~ only, as opposed to the above quota- 
tions which impose conditions on the probabili ty measure/t .  

The fundamental result is: the integral of equation (1.3) exists (for Lebesgue-almost 
all x) in the (C, 1)-sense whenever q9 is the characteristic function of a probabili ty 
measure tt (regardless whether # is absolutely continuous or purely discontinuous 
or singular continuous), and the resulting function of x gives the density of the 
absolutely continuous component of p. Some corollaries and examples are also dis- 
cussed. This paper  corrects and strengthens the results listed in: van der Vaart  [20]. 

2. Preliminaries 

For easy reference we are listing some definitions, notations, and results to be 
used in the sequel. 

2.1. Lebesgue decomposition. Let Bk=B(R k) denote the a-algebra of Borel sets in 
R k. Let  h denote Lebesgue measure on Bk and ~v a a-finite signed measure. Then 

~o = ~Pa +~0s, (2.1.1) 

where uniquely determined Va is absolutely continuous with respect to h and ~os is 
singular with respect to h (e.g., see Hewit t  and Stromberg [9], sec. 19.42). In  case 
k = 1 let # be a probability measure defined on Br  Then one can even say tha t  

/x =/~a +/~sc +#sa, (2.1.2) 

where the #~ are uniquely determined, #~d is purely discontinuous, /x~c is singular 
continuous (re h), and ~a is absolutely continuous (re h) (e.g., see Hewit t  and Strom- 
berg [9], sec. 19.61). In  the sequel, the terms 'absolutely continuous' and 'singular'  
are always understood as relative to ~. 

2.2. Derivatives o/set/unctions. Let y~ be a finite signed measure on  Bk. The deri- 
vative of ~v with respect to Lebesgue measure h at  the point p is defined as 

r = d~ (p) 
~(C) def 

~(c)-,olim ~ when this limit exists, (2.2.1) 

where C denotes any closed convex set containing p (and satisfying certain additional 
conditions: for details see Doob [5], p. 291). Hereafter Ce will stand for a closed 
ball, centered at  a point appearing from context, with radius Q. I t  is known tha t  the 
derivative (2.2.1) exists h-almost everywhere. I t  is also known tha t  ~bs (see eq. (2.1.1)) 
and/ i~  a n d / ~  (see eq. (2.1.2)) are zero where they exist. Hence h-almost everywhere 
y) exists and equals y)a, ti exists and equals/2~ (see Dunford and Schwartz [7], sec. 
I I I .  12.6). 
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2.3. Notation /or integrals. The (Lebesgue-Stieltjes) integral  of / relat ive to  the  
(possibly signed) measure  ~v will be denoted by  S/(x)y~(dx). 

I f  ~v =A, the  Lebesgue measure,  we will somet imes write dx for A(dx). 
I f  g is a monotone  non-decreasing point  funct ion then  S... g(dx) will denote  inte- 

gra t ion  relat ive to the  (positive) measure  determined by  the  point  funct ion g (via 
the  in terval  funct ion g(x2) g(xl) ). 

2.4. A special case o~ integration by parts. Let  r(z) depend on I z ] only, r(z) =r*( Iz I), 
and  let r* be non-increasing. Let  z = 0  be the center  of the  closed balls CQ. Final ly  
let 0 be a finite (positive) measure.  P u t  O(Cq)=v(q), a non-decreasing point  funct ion 
(q E R1). Then 

fc r(z)O(dz)=f~r*(q)v(dT)=r*(e)v(e)-f[v(q)r*(d~)=r*(e)O(C~)-~:O(Cq)r*(dq), 
q 

(2.4.1) 

provided O(Co)=0({0})=0. Note  t ha t  the  last  t e rm  in the  last  m e m b e r  of this equa- 
t ion is positive. 

2.5. Total variation. The tota l  var ia t ion I~vl of a signed measure  ~v is a set funct ion 
defined b y  

I~I(A)=w+(A)+~v-(A) for all AC•k, (2.5.1) 

where ~v + and ~v- are the  (positive) measures  ensuing f rom the J o r d a n  decomposi t ion 
(e.g., see Royden  [18], sec. 11.4, or Dunford  and Schwartz  [7], See. I I I .  4.11). F r o m  
the proof given in Dunford  and Schwartz  [7], see. I I I .  12.6 (or a bit  more  explicit ly 
in Rudin  [19], sec. 8.6) it follows t h a t  

dt ld  (P)= = Ir (2.5.2) 

wherever  ~b(p) exists, i.e., A-almost everywhere.  
Now let ~ v = # - ~ A  (~ a real number ,  # a probabi l i ty  measure  on R k, ~ Lebesgue 

measure  on Rk), and define 

0 = I v l  = ( 2 . 5 . 3 )  

Then by  (2.5.2) 

0(p) = I f i ( p ) - a l  for A-almost all p. 

B y  the same a rgumen t  t ha t  is commonly  used in the  discussion of Lebesgue points  
(e.g., see Doob [5], p. 291; or Dunford  and Schwartz  [7], I I I .  12.8; or Alexits [1], 
w 4.4.1) it follows tha t  if 

~vp(A) aef tt(A)-fi(p)A(A) for all AEBk (2.5.4) 

and Ov aef ]~vv [ 

then  Op(p) = - ~  (p) = (p) = O for A-almost all p .  
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This means that  to / t -a lmost  all p and to any e > 0  a real number ~(p) can be as- 
signed such that  

0~(c~)= I~1(c~)<~.2(c~) for ~<5~(p), (2.5.5) 

where the Cq are closed balls with radius ~ and center p. 
We will also use the inequality 

where I/(x)[ <~M for lyl-a lmost  all x E A  (e.g., see Dunford and Schwartz [7], I I I .  
2.20). 

2.6. A lemma on integrals with kernels. The following lemma combines various 
methods used in this area; see a.o. Dunford and Schwartz [7], I I I .  12.10 and I I I .  12.11, 
and Doob [5], who also gives a short history of the problem (1.c., p. 505). 

Lemma. Let ,~ be Lebesgue measure and I~ a probability measure, both de/ined o r, ~ .  
For all xE R k let KT(X , .) be a summable /unction de/ined on R k such that 

lim f KT(X,y))~(dy ) = 1 (C1 being a closed ball wit'~ radius 1 and center y = x ) ,  (i) 
r- - -~  J CI 

and 

I0r for I x - y ] < ~ T  -1, 
( i i ) [ K r ( x , y ) l ~ r r ( I x - y l ) = i ~ T ~ Z ~ l x _ y l _ ~ ,  for [ x - y [ >  T -1, 

where u > 0, ll > 0, 12 > 0, 12 - [1  : u ,  and either 12 - k <~ 0 or 0 < 12 - k <~ ll. Then at 
A-almost all points p, namely at all points p which satis/y condition (2.5.5): 

lim f K T ( p , y ) # ( d y ) = f i ( p )  
T-->oo J Rk 

(2.6.1) 

Remark.  Remember  that  fi(p)=rid(P), see section 2.2. The rather special choice 
of majorant  r r simplifies the technical execution of the proof, and is sufficient for 
our purpose. 

Proo/. Because of condition (i) our claim is equivalent to 

Since the subsequent argument  will center around the fixed value p of y we will 
use the coordinate z = y - p  rather  than y; accordingly Kz(p, y) becomes Kr(p,  p + z) 
and #(dy) becomes #(p  +dz). The center o / t h e  balls C~ is z=O. Now the expression 
whose limit we will investigate is the sum of three integrals: 

11 = | K r ( p , p  + z)/~(p + dz); 
3R ~kcl 
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12 = J c,\ c~ KT(p,p + z) ~p~(p + dz) 

~for yJp see eq. (2.5.4)); and  

13 = jo Kr(p,p + z)q,,,(p + dz), 

where • is some n u m b e r  < 1 and <(~(p) (see eq. 2.5.5)). We will prove  t h a t  for any  
~ > 0  we can choose T , > 5  -1 large enough t h a t  111+12+131 < ~  for T > T ,  v 

Applying (2.5.6) and condition (ii) of the  l emma  we find 

1/11 ~<~T-+'<e~ for TZl>e -1, 

and  also 112] <~o~T-hd-l'l~pl(C1)<eo:l~l(Cl) for TZ'>e-ld -~. 

Finally,  applying successively (2.5.6), condition (ii), (2.4.1) (note t h a t  Op(Co)=0 if 
p satisfies (2.5.5)), (2.5.5), the fact  that  J.(Cq)=flq k, and the restr ict ion T>(~ -1, 
we find: 

I131 < +d+) ++,+ 

-- Io + ov(er <~ +r162 -++ - + f j  X(Cq)rT(dq) = +cr + 12 

+ 

l ee~12/(l 2 - k )  if 1 2 - k > 0  

< eefl for T > T 0  ( w h e r e ~ Z ' ( l + 1 2 1 o g ( ~ v 0 ) ) < l )  if 1 2 - k = 0  

[e~flk/(k-l~) if 1 2 - / c < 0 .  

Thus  we find t h a t  Ih+  +hl I~0~[(C1)+N(/~,/2)] for T large enough, 
where the  coefficient of e~ is a finite number .  This completes the  proof. 

Remark. I f  # were a signed measure  of / in i te  total variagon, the proof  would remain  
vi r tual ly  unaltered.  Therefore the l emma  is vdid if/~ is such a signed measure.  

2.7. Examples o/kernels K r. We shall give a few examples  of kernels of the  special 
fo rm KT(X , y) = Qr(x - y), where Qr(z) = Qr( - z) = (2~)- e i ,  k y(t/T) e +tz dr, the  funct ion 
~, being a 'convergence fac tor '  (see Bochner  [3], definition 2.1.1). All listed kernels 
K r s~tisfy conditions (i) and (ii) of our lemma,  unless the opposi te  is ment ioned  
explicitly. Fi rs t  a few instances with dimension k = l ,  with ~ - 1 - 1 1 ,  12=2, and 
w i t h  ~ as listed below. 

Non-periodic Fej~r kernel  (corresponding to (C, 1)-summation):  

y ( ~ ) = ( 1 - 1 v l ) f o r ] ~ l - . < l ,  0 f o r l ~ l > l ;  QT(o)-c2z)-aT; 

Q+(+>=(2=) lfr(1- )+ " Z d t = ( 2 z T ) ' f f d + f " e - " + d +  

= (1 - -cos  Tz)(TeTz2)-l; ~=7~ ~. 
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Gaussian kernel: 

7(~)=e-�89 QT(0)=(2~) iT; 

V V QT(Z)=(27e)-�89 �89 z,~. ~Tz~( fo rz>T-1 ) ;  r162 ~. 

Kernel corresponding to Cess summability (see Bochner [3], sec. 2.5): 
y ( T ) = l - ~  for Ivl< 1, 0 for Iv[> 1; 

4 T  Q~(o): ~ ~ ;  

QT(Z) = (2~)-l f~T (1--  ~ )  e-ttZdt = (2z~T2)-l f :  2udu  f~ue-itZdt 

= 2_ T 2z-3( - Tz cos Tz + sin Tz); 

4 IQr(z)]<.4- T - l z  -2 for z>~ T- ' ;  ~= -.  
:rg 7g 

More general Ceshro-Riesz kernels have y(v) = (1 - v2)~ for [z I ~< l, 0 f~or IT I > l; 

\ 2 !  ' 

these kernels furnish examples of 11 and l 2 values different from 1 and 2 (see Bochner 
[3], sec. 2.5 and p. 169). 

Other kernels (see Cramdr [4], p. 192): 

y(~)=e  '~'; QT(0)=T; QT(z)_T  1 1 1 
7e ~r l + T~z 2 < -  o~= 7t-" 

1 QT(O ) : T T T z ~' (V): I~-T2;  2 ;  Q T ( Z ) : ~ e  - I ' < T - l z - 2 ;  ~ : l .  

:Now three instances with dimension k > 1; here t'z = ~t  t~z~; ] t 12 = t't. 
Gaussian kernel: ~(~) = e- �89 ~.'; 

Qr(z)=(2ze)-kl2Tke �89 Tklzl2k; ~= k! 

Other kernels: ~(T) = l i e  I~j I; 
i 

Q~(z)=I_iT 1 < 1 - -  I 

and 
1 1 

7(v) = ~YI. ~+~21; QY(Z) = ]~s 1 Te- T I zj, << l~j --Tz~" 

336 



ARKIV F6R MATEMATIK. B d  7 nr 24 

The Gaussian kernel is a function of I z[ only; hence the lemma of section 2.6 
can be applied to it; the other two kernels are product kernels and the lemma is 
of no avail: the product z~ z~ ... z~ cannot be majorated efficiently by a function of 

Z2 , Z2 2 l~- 2 +...  +zk). 

3.  R e s u l t s  

We will now apply the results listed in Chapter 2 to the problems introduced 
in Chapter 1. 

3.1. T h e o r e m  1. Let  q~ be the characteristic ]unction o/ any probability measure 
[~ =/~ +/~ defined on Br Let T(v) be a convergence ]actor which, according to 

Qr(z) = (2~) -1f  7(T)e-*tZdt,  

corresponds to a kernel Kr(x, y )=Qr(x-y)=Qr(y- -x )  satis/ying the conditions o/ the 
lamina in section 2.6. Then the /ollowing limit exists 2-almost everywhere, and we 
have, wherever it exists: 

lim (2 ~)~1 f/~ ~(t) ~)(t/T) e -~tp dt = flu(P)- (3.1.1) 

Remark. All functions y discussed in section 2.7 for dimension k = 1 were shown 
to satisfy the conditions of this theorem. Part  of the convergence factor definition 
is that  7 ELI(R) (see Boehner [3], section 2.1). 

Proo/. Using the fact that  ~ is the characteristic function of some probability 
measure/~, we find for the integral in eq. (3.1.1): 

(22"~)-ifR~2(T)e-ttPdtfReitY#(dy): (2]~)-lfR[~(dy)fR~(t/T)e-it(P-Y)dt 
= J Jr KT(p,y)tt(dy), (3.1.2) 

where the first equality sign follows from Fubini's theorem since ~ELI(R ) and 
Stt(dy) = 1. Application of the lemma of section 2.6 yields the desired result imme- 
diately. 

Remark. The application of an inversion formula of the type of eq. (3.1.1) just 
destroys (2-almost everywhere) any contribution which a possible non-absolutely 
continuous component o f / t  may have made towards ~. Example: let # be defined 
by #({a})=l ,  then qD(t)=e~ta; now choose ~(T)=e-I~l; then the integral in (3.1.1) 
equals 

f a  T ~.0 (2~)-1 e-~(v-a)e I~llTdt= 1 + T2(p -a )  2 

with T ~  for all p, except for p=a  (where no finite limit exists). 
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Corollary 1. Let q~ be the characteristic ]unction o/any probability measure tt =~t a +]its, 
defined on El. De/ine 

,;) ; o f  u IT(P) = (2~r) -1 1 -- q~(t)e-~tPdt = (2~T) -1 du q~(t)e-~'dt 
J - T \  - u  

= (2~T) -1 d~ q~(u-v)e-~(~-~Pdv. (3.1.3) 

Then: 
(i) /T(P) >~ 0 /or all p, all T > 0; 
(ii) [~]T(p)dp=l /or all T > 0 ;  
(iii) lim Jr(P) exists/or ~.-almost all p, and equals fi~(p). 

T " > ~  

Proo/. Ad(i) Follows from last member  of eq. (3.1.3). Cramdr showed tha t  "~(0) = 1 
and /T(P)>~ 0 for all p, T"  is necessary and sufficient for a bounded and continuous 
complex function ~ to be a characteristic function (cf. Lukacs  [13], Th. 4.2.3). 

Ad(ii) By  (3.1.2) and sec. 2.7: 

fR/T(p)dp= fRdP fRQr(P--Y)~(dY)= fR/~(d'J) fRQT(P--y)dp= f #(dy)= I, 

since 1- f ~  l--c~ T(p--Y) dp= f RQr(p--y)dp= l. 
z T(p - y)2 

Ad(iii) Immedia te  from Theorem 1: take 7 ( v ) = l -  for 131 <1, 0 for > l .  

Remark. Theorem 1 and result (iii) of Corollary 1 are also valid if ju is not  a proba- 
bility measure, bu t  any  signed measure of finite total  variation. 

Remark. Corollary 1 remains valid for y being any  of the convergence factors 
discussed in section 2.7 (except t ha t  result (i) does not  obviously hold for the Ces~ro- 
Riesz kernels). 

Remark. The discussion in section 3.I has been restricted to the case of dimension 
k = 1. The argument  extends immediately to the Gaussian kernel for k > 1 (being a 
radial function). However,  the product  kernels do need a separate study.  For  pro- 
duct  measures /x  it takes a trivial a rgument  to show tha t  product  kernels do the 
job. For  non-product  measures a ra ther  involved approach th rough  conditional 
measures (sections) seems indicated. The complexity of the analogous situation in 
multiple Fourier series {e.g., see Bochner  [2] and Mitchell [15]) shows tha t  this prob- 
lem falls outside the scope of the present paper. 

3.2. Criterion /or absolute continuity o/~. If  the only thing known about  a pro- 
babil i ty measure # is its characteristic function ~v, then one can find out  if it is 
absolutely continuous and construct  its densi ty function in one operat ion according 
to: 

Theorem 2. Let q~ be the characteristic ]unction o/some probability measure # =tt~ § t~s 
de/ined on ~1. Let /T(P) be de/ined as in Corollary 1. Write/(p)/or l imT_~ ]T(P)" Then 
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~u is absolutely continuous i[ and only i/ 

f R/(p)d p = 1, 

in which case / is the density [unction o/[~. 

Remark. The results of Corollary 1 warrant the application of Fatou's lemma, 

which gives _I [(p)d p <~ 1. 

Proo/. # is absolutely continuous if[ 1=  tta(R)= ( fta(p)dp = ( /(p)dp. 
da Ja 

Example 1. I t  is indeed possible to prove directly that  if 

f ]9(t)[dt< oo then [ (p)= lim [T(p)= (27/:)-1f q~(t) e-UP dt 
JR T--~o JR 

I = for all aeR, bER, which by ,~n d lira Theorem 2 shows that  then 
T--r162 .] a 3o 

9 is the characteristic function of an absolutely continuous probability measure. 

Example 2. Consider the characteristic function e ua and construct the corresponding 

; ;  L [r(P) = (2~rT) -1 du e~t(~-P)dt; then lim [T(P) =0, 2-almost everywhere; 0 
-- U T-->or 

dp 4:1. So this characteristic function corresponds to a non-absolutely continuous 
probability measure /~, and the density of the absolutely continuous component is 
O, ;t-almost everywhere: the abs. cont. component is absent. 

Example 3. Let ~(t)= le-~t2+ w We find that  the density of the a. c. component 
is -~-3 ~/2~-�89 ~ �89 which sums to �89 not to 1. So here the absolutely continuous com- 
ponent is not absent yet  this measure is not absolutely continuous. 

Example 4. We have proved that  for any measure/~, or any characteristic function 
~, a function [ exists such that  l i m [ r = /  (2-almost everywhere); further, if ~u is 

T--->~ 

positive and absolutely continuous then lira |IT= ~[. In view of the f ac t  that  
T ~ 0 r  J 3 

IT(P) >~ 0 for all p, Theorem 2H in Goldberg [8] is applicable (with p = 1) and yields 
Cram~r's [4] (p. 192) necessary condition of type (g) for the special case of (positive) 
measures. The sufficiency of his condition follows trivially from our results by means 

o, lf,,  , 
3.3 The Cauchy principal value approach. If lim I i  a(x)dx exists, then so does 

T...*oo J -  T 

f;; l i ra  T -1  du a(x)dx and the two limits are equal. 
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Applying this observation to Corollary 1 and Theorem 2 proves: 

Theorem 3. Let q) be the characteristic function o/some probability measure tt =#~ § tt~ 
defined on B1. Define 

= (2u) -1 J-~T~(t)e "'dr. if(p) 

(i) I /  lim if(p) exists ).-almost everywhere, then wherever it exists: 
T--> oe 

lim if(p)=/~a(P)" 
T--> o e  

(ii) Write/(p) /or lim if(p); then t~ is absolutely continuous i / and  only i/ 

fRf(p) d p = 1. 

Example 1. The chi-square distributions with 1 or 2 degrees of freedom have 
characteristic functions (1-2i t )  -~/2 ( n = l ,  2), which do not belong to LI(R ). Yet  
these distributions are absolutely continuous and their densities can be obtained 
by the Cauchy principal value approach. 

Example 2. Purely discontinuous distributions or components cause their charac- 
teristic functions to have non-convergent/T : if ~(t) =e ta~ then if(p) =~-1 sin T ( a - p ) [  
( a - p ) ,  which has no limit as T-~co for any p. 

3.4. Conclusions. We will use the following abbreviations: 

BV = of bounded variation 
AC = absolutely continuous 
SC = singular continuous 
SD =purely  discontinuous 

2-a. =2-almost 

We will discuss only univariate distributions and distinguish two cases. 

Case 1. q9 is known to be a characteristic function, the Fourier-Stieltjes transform 
of a probability measure. 

la.  ~ELI(R); then (2z) -1 l~qJ(t)e-itpdt exists for all pER and constitutes the 

continuous density function of the AC probability measure determined by ~. 

lb. ~ L I ( R ) ,  b u t / ( p ) =  lim /T(p)=(27~) 1 lim I ~ qJ(t)e-U~dt exists 2-a. every- 
T-->ce T-->oo ~ T  

where; this limit function then constitutes the density function of the AC com- 
ponent of the probability measure # determined by ~. In this case/~ cannot have 
a SD component, and we have not determined if the existence of a SC com- 
ponent is always compatible with the convergence of if(p). Of course, lu is AC 
iff SR/(p)dp = 1. Jordan's  theorem (Goldberg [8], Th. 5C) shows that  whenever/u 
is AC and /~ is locally BV ~t-a. everywhere, then the corresponding /T has a limit 
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R-a. everywhere. So if l imr .oo / r  does not exist R-a. everywhere,/~ either must  have 
a SD component or might have a SC component, or if # is AC then/2 must  be not  
locally BV on a set of positive Lebesgue measure. 

Note tha t  the confusion around the use of the Cauchy principal value method 
in evaluating integral (1.3) for a characteristic function ~ has been dissolved to the 
effect tha t  the only justi/ication needed for its use is the R-almost everywhere existence 
of limT_,~ /r(p); tha t  is, the method gives a meaningful result whenever it is formally 
feasible. Note tha t  /r(p) need not be non-negative, as opposed to /r(P). Also note 
tha t  one need not immediately resort to (C, 1)-summation if ~ is not absolutely 
integrable: one may  first t ry  his luck with the Cauchy principal value approach. 

lc. Limr~oo /r(p) does not exist (R-a. everywhere). In  this ease, as in the two 
other cases, 

/ (P)= r-~oclim/r(p)=(27e) -1 T~olim T-l f~ du f~u~(t)e:UPdt 

does exist, 2-a. everywhere, and equals fia, the density of the AC component of #; 
is AC iff SR/(p)dp=I. This (C, 1)-summation will always identi/y /2~, but the 

computation is unduly cumbersome if any of the other two is available. For tunate ly  
most of the work to be done in case (1 b) is needed in case (1 c) anyway. 

Note tha t  possibly another convergence factor 7 may  yield simpler computations 
for special cases (sections 2.7 and 3.1). 

Case 2. q~ is not known to be a characteristic/unction. There are two ways of finding 
out. As a preliminary, use the fact that  all characteristic functions ~ are everywhere 
continuous (even uniformly so), and also ~(0)= 1, I~(t)]~ < 1 everywhere. Then 

2a. I f  in addition ~ ELl(R), use Theorem 2.1 in Let ta  [11], which amounts to the  
result tha t  such ~ is a characteristic function if also S~(t)e-~tpdt >~ 0 for all p E R; 

2b. if ? ~LI(R), apply point (i) of Corollary 1. 
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