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Determining the absolutely continuous component of a
probability distribution from its Fourier-Stieltjes transform

By H. ROBERT VAN DER VAART

1. Introduction

Most discussions of the inversion formula

—itb __ e—zta

T
plin )+ bucla) + b =@ tim [ g0 g —ae,

which recovers a probability measure y from its characteristic function (Fourier—
Stieltjes transform)

P(t)= L e u(dy), (1.2)

contain a remark to the effect that if ¢ €L,(R) then yu is absolutely continuous and
has a (continuous) density function f given by

f(x) = (27)1 f pt)e " dt 1.3)
R

(e.g., see Lukacs [13], p. 40, Th. 3.2.2).

For the case that ¢ ¢ L,(R) there seems, however, to be some confusion. Lévy [12],
Pp. 167-168 recommends the use of the Cauchy principal value in equation (1.3) in
case u is absolutely continuous. The same recommendation is made by Kendall and
Stuart [10], p. 94 for the case where the distribution function “is continuous every-
where and has a density function”, and by Richter [16], p. 329 for the case where u
has a differentiable density function. Dugué [6], p. 24 quotes essentially a theorem
of Jordan (cf. Goldberg (8], Th. 5C) to point out that if the Cauchy principal value
of the integral in eq. (1.3) exists and if also f(x40) and f(z—0) exist (note that
these three conditions are satisfied if the density f of u is of bounded variation in
a neighborhood of z) then equation (1.3) is valid in the sense that
T

fet0)+fz—0_ 1 —it
- z dt. 1.4
D) 5 lim p(t)e " dt (1.4)

At the same time, Robinson [17], p. 30 states that equation (1.3) holds as printed
if the random variable in question has a density function. On the other hand Lukacs
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[14], p. 177, citing Goldberg [8], p. 14, Th. 6C, recommends the use of (C, 1)-summa-
tion in equation (1.3) when ¢ is not absolutely integrable and y is absolutely continuous.

The present paper wants to dissolve some of this confusion, and also to furnish
criteria by which to select a suitable interpretation, if any, of equation (1.3). In
many applications of the method of characteristic functions we first obtain what
we know to be the characteristic function of some k-variate distribution, then we
ask questions about that distribution: whether it is absolutely continuous, and if
8o what its density is, and so on. For such problems, knowledge of ¢ has to suffice.
Accordingly, our criteria will be in terms of @ only, as opposed to the above quota-
tions which impose conditions on the probability measure u.

The fundamental result is: the integral of equation (1.3) exists (for Lebesgue-almost
all x) in the (C, 1)-sense whenever ¢ is the characteristic function of a probability
measure u (regardless whether u is absolutely continuous or purely discontinuous
or singular continuous), and the resulting function of z gives the density of the
absolutely continuous component of u. Some corollaries and examples are also dis-
cussed. This paper corrects and strengthens the results listed in: van der Vaart [20].

2. Preliminaries

For easy reference we are listing some definitions, notations, and results to be
used in the sequel.

2.1. Lebesgue decomposition. Let B,=B(R*) denote the ¢-algebra of Borel sets in
ER*. Let A denote Lebesgue measure on B, and w a o-finite signed measure, Then

Y =v.+Ys (2.1.1)

where uniquely determined 1, is absolutely continuous with respect to A and v, is
singular with respect to A (e.g., see Hewitt and Stromberg [9], sec. 19.42). In case
k=1 let x4 be a probability measure defined on B,. Then one can even say that

B = g T e T tsas (2.1 2)

where the y; are uniquely determined, u,; is purely discontinuous, u, is singular
continuous (re 1), and u, is absolutely continuous (re 1) (e.g., see Hewitt and Strom-
berg [9], sec. 19.61). In the sequel, the terms ‘absolutely continuous’ and ‘singular’
are always understood as relative to A.

2.2. Derivatives of set functions. Let p be a finite signed measure on B,. The deri-
vative of y with respect to Lebesgue measure 4 at the point p is defined as

Yip)= Z—;{)(I)) £ lim e when this limit exists, (2.2.1)

a0 A(C)

where C denotes any closed convex set containing p (and satisfying certain additional
conditions: for details see Doob [5], p. 291). Hereafter C, will stand for a closed
ball, centered at a point appearing from context, with radius p. It is known that the
derivative (2.2.1) exists A-almost everywhere. It is also known that 9, (see eq. (2.1.1))
and i, and g, (see eq. (2.1.2)) are zero where they exist. Hence A-almost everywhere
9 exists and equals ¥,, i exists and equals g, (see Dunford and Schwartz [7], seec.
II1. 12.6).
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2.3. Notation for integrals. The (Lebesgue-Stieltjes) integral of f relative to the
(possibly signed) measure g will be denoted by [f(z)y(dx).

If =4, the Lebesgue measure, we will sometimes write da for A(dx).

If ¢ is a monotone non-decreasing point function then {... g(dx) will denote inte-
gration relative to the (positive) measure determined by the point function g (via
the interval function g(x,) —g(x,))-

2.4. A special case of integration by parts. Let r(z) depend on |z| only, r(z) =r*(|z|),
and let 7* be non-increasing. Let z=0 be the center of the closed balls C Flnally
let 0 be a finite (positive) measure. Put 6(C,)=v(¢), a non-decreasing point function
(g€ RY). Then

fc r(z)0(dz) = fo r*(Q)V(dQ):T*(Q)V(Q)—L g)r*(dg) =r"(0)6(C f 8(C,)r*(dg),
) (2.4.1)

provided 6(C,) =06({0}) =0. Note that the last term in the last member of this equa-
tion is positive.

2.5. Total variation. The total variation |y| of a signed measure yp is a set function
defined by

9| (4) =y*(4) +y~(4) forall AEB, 2.5.1)

where gt and y~ are the (positive) measures ensuing from the Jordan decomposition

(e.g., see Royden [18], sec. 11.4, or Dunford and Schwartz [7], sec. ITL. 4.11). From

the proof given in Dunford and Schwartz [7], sec. ITI. 12.6 (or a bit more explicitly
in Rudin [19], sec. 8.6) it follows that

d
1—3{'() 1 10)‘ l9(p) (2.5.2)

wherever 9(p) exists, i.e., A-almost everywhere.
Now let 9=u—aA (« a real number, u a probability measure on R*, A Lebesgue
measure on E*), and define

0=|y|=|u—ok|. (2.5.3)
Then by (2.5.2)
0(p) = |p(p) —a| for A-almost all p.
By the same argument that is commonly used in the discussion of Lebesgue points
(e.g:, see Doob [5], p. 291; or Dunford and Schwartz [7], III. 12.8; or Alexits [1],
§ 4.4.1) it follows that if

wy(A) & w(A)—(p)A(4) forall AEB, (2.5.4)

and def I Vo l

—(p)= dl%l( )=0 for A-almost all p.

then 0,(p)= 0
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This means that to A-almost all p and to any £ >0 a real number J.(p) can be as-
signed such that

0,(Cy) = |9, | (C<e-AC,) for g<bup), (2.5.5)

where the C, are closed balls with radius p and center p.
We will also use the inequality

|| serwias] < [ 11 lylidar < atyica, 250

where |f(x)| <M for |y|-almost all €4 (e.g., see Dunford and Schwartz [7], III.
2.20).

2.6. A lemma on integrals with kernels. The following lemaoma combines various
methods used in this area; see a.o. Dunford and Schwartz [7], ITI. 12.10 and III. 12.11,
and Doob [5], who also gives a short history of the problem (l.c., p. 505).

Lemma. Let A be Lebesgue measure and y a probability measure, both defined o % B,.
For all x€ R* let K {x,.) be a summable function defined on R* such that

(1) lim Ko(x,9) Mdy) =1 (C, being a closed ball with radius 1 and center y = x),
Cl

T—>00

and
. al* for |v—y|<T7,
i) | Kp(x,y)| <7 —yp=
(11) l T(x y)l 7T(|x yl) {aT‘l‘,xwyl‘l’ for |:t—y|>T_1,

where x>0, [[>0, [,>0, l,—1,=x, and either [,—k<0 or 0<[—k<[,. Then at
A-almost all points p, namely at all points p which satisfy condition (2.5.5):

tim f  Kalp,)udy) =Alp) (2.6.1)

Remark. Remember that i(p)=fi,(p), see section 2.2. The rather special choice
of majorant r, simplifies the technical execution of the proof, and is sufficient for
our purpose.

Proof. Because of condition (i) our claim is equivalent to

Tlgrgo { f - Kr(p,y)uldy) — fc Kr(p,y)/l(p)l(dy)} =0.

Since the subsequent argument will center around the fixed value p of y we will
use the coordinate z =y — p rather than y; accordingly K.(p, y) becomes K. (p, p+z)
and u(dy) becomes u(p +dz). The center of the balls C, is 2=0. Now the expression
whose limit we will investigate is the sum of three integrals:

I,= f Kp(p,p+2)u(p+dz);
BRI\ C,
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I,= f Ki(p,p+2)yp,(p+dz)
Ci\Cg

(for y, see eq. (2.5.4)); and
13 = f%KT(P:P + Z)%(P + dz)’

where ¢ is some number <1 and <&,(p) (see eq. 2.5.5)). We will prove that for any
7>0 we can choose T, >0~! large enough that |1, + I,+ I| <7 for T>T,.
Applying (2.5.6) and condition (ii) of the lemma we find

|L| <aT b <ex for Th>e,
and also | Iy <a™167" |y, | (Cy) <ea|y,|(C,) for Th>g 157",

Finally, applying successively (2.5.6), condition (ii), (2.4.1) (note that 0,(Cy) =0 if
p satisfies (2.5.5)), (2.5.5), the fact that A(C,)=p¢", and the restriction T >d-1,
we find:

S leKﬂp,wz)l oalp+de) < fc,, rallz]) By(p +d2) =B, (CY T 16"

] L)

- f 0,(Core(dg) < ead(Co) T8 — & f MO roldg) = eaf ™85
1] 0

i

+- socﬁ’T"’f

1
exfly/(lb—k) if 1,—k>0

<qeaf for T>7, (where 75"(1+1,log (dr,))<l) if l—k=0
eafk/(k—1) if I,—k<O.

Thus we find that |I,+I,+I | <ea[l+ |y,|(C1)+Py(k, 1,)] for T large enough,
where the coefficient of ex is a finite number. This completes the proof.

lLg* " dg
T

Remark. If u were a signed measure of finite total variation, the proof would remain
virtually unaltered. Therefore the lemma is valid if u is such a signed measure.

2.7. Examples of kernels K,. We shall give a few examples of kernels of the special
form K (z, y) =@Qr(x —y), where Qp(z) =Qr(—2) = (27)™* [ p(t/T)e ***dt, the function
y being a ‘convergence factor’ (see Bochner [3], definition 2.1.1). All listed kernels
K satisfy conditions (i) and (ii) of our lemma, unless the opposite is mentioned
explicitly. First a few instances with dimension k=1, with %x—=1=[,, [,=2, and
with e as listed below.

Non-periodic Fejér kernel (corresponding to (€, 1)-summation):

y(T)y=(Q1 —|7]) for |7| <1, O for |z >1; Q0)=2n)'T;

T 3
Qr(z) = (27Z)*1J‘ (1 - L;,l) e Medp = (27'5T)1JTduf et dp
_r o L
=(1—cos Tz) (T2 a=n"t.
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Gaussian kernel:
y(@)=e7¥ Qp(0)=(2n) 1T}
2
for z>T7Y); a= l/—.
7

21
- it |/ 2 S
QT(Z) (27Z) Te nTzz (

Kernel corresponding to Cesaro-Riesz summability (see Bochner [3], sec. 2.5):
y(t) =1—12 for |7| <1, 0 for |7|>1;

4T
Q0)=35;
" £\ o1 f—re
Qr(z) =(2n) f (l—q—ﬂ)e 2dt = (2xnT*) f 2uduf e dt
-T 0 —u

=%T’2z_3( — Tz cos Tz + sin Tz);
7

4 4
|@rz)| <S=T" 22 for 2>T7Y, a=-.
7 7

More general Cesaro-Riesz kernels have y(z) = (1 — %)™ for || <1, 0 for | 7| > L;

—m—}
lF(m-l—l)J,H,}(Tz) (%) ;

2V
these kernels furnish examples of I, and I, values different from 1 and 2 (see Bochner

[3], sec. 2.5 and p. 169).
Other kernels (see Cramér [4], p. 192):

T
Qr0)=5_Blm+1,3); Qr(z)=

T T 1 1 1
—eo 17l =_- e R Bl | A P =_
Y(f) € s QT(O) 7'5’ QT(Z) 7 1 + T222< ﬂT 2 o n'
1 T T _ 1 -
Y= U0)=% GR=5¢ <IN a-l,

Now three instances with dimension k> 1; here t'z = > ¢;z;; |2 =¥t
Gaussian kernel: y(7) =e ¥"F;

R , PA k(2 k‘ 2 ki2
QT(z) = (2n)_k/2Tkef%T =l (*) T—ch; o= (*) k!

7T T

Other kernels: y(r) =[]e '™/,
j

T 1 _1_ 1

=T7= < —TT—-

Qr(z) I;Inl"r‘TzZ,Z nkl;[TZ,z’
and y@ =TTy Qelo)=TT13Te <] o
1+ T i 3 T7
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The Gaussian kernel is a function of |z| only; hence the lemma of section 2.6
can be applied to it; the other two kernels are product kernels and the lemma is
of no avail: the product 2} 23 ... 22 cannot be majorated efficiently by a function of

(B+2E+... +28).

3. Results

We will now apply the results listed in Chapter 2 to the problems introduced
in Chapter 1.

3.1. Theorem 1. Let ¢ be the characteristic function of any probability measure
1=, +u, defined on B,. Let y(t) be a convergence factor which, according to

0= [ (f) e,

corresponds to a kernel Kp(x, y) =Qr(x —y) =Qrly — x) satisfying the conditions of the
lemma in section 2.6. Then the following limit exists A-almost everywhere, and we
have, wherever it exists:

lim (27)™* f . e y(t/T)e " dt = i, (p). (3.1.1)

T—>0

Remark. All functions 9 discussed in section 2.7 for dimension k=1 were shown
to satisfy the conditions of this theorem. Part of the convergence factor definition
is that y €L, (R) (see Bochner [3], section 2.1).

Proof. Using the fact that ¢ is the characteristic function of some probability
measure u, we find for the integral in eq. (3.1.1):

(2 n)“L 7(%) e ! dt [R ¢ u(dy) = (27)"? f i /A(dy)L y(&/T) e Vdi

- f Kelpypuldy), (3.1.2)

where the first equality sign follows from Fubini’s theorem since y€L,(R) and
fu(dy)=1. Application of the lemma of section 2.6 yields the desired result imme-
diately.

Remark. The application of an inversion formula of the type of eq. (3.1.1) just
destroys (A-almost everywhere) any contribution which a possible non-absolutely
continuous component of y may have made towards ¢. Example: let u be defined
by wu({a})=1, then @(t)=¢"**; now choose p(t)=e"'*!; then the integral in (3.1.1)
equals

(Zn)_lf e e ITIT g = 0
R

- r.
1+T%p—a)
with T—co for all p, except for p=a (where no finite limit exists).
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Corollary 1. Let ¢ be the characteristic function of any probability measure y—p, + i,
defined on B,. Define

Fr(p) = 2m)~" [_T (1 - l;}') @(t)e *Pdt=(2al)™* fo du f fu @(t)e " dt

T T
=(2nT)“1J duf plu—v)e P NPy, (3.1.3)
0 0
Then:

(i) fr(p)=0 for all p, all T>0;

(it) (frp)dp=1 for all T>0;

(iil) lim f.(p) exists for A-almost all p, and equals fi,(p).
T—>o0

Proof. Ad(i) Follows from last member of eq. (3.1.3). Cramér showed that “p(0)=1
and f,(p) =0 for all p, T” is necessary and sufficient for a bounded and continuous
complex function ¢ to be a characteristic function (cf. Lukacs [13], Th. 4.2.3).

Ad(ii) By (3.1.2) and sec. 2.7:

f fr(p)dp= fﬂ dpL Qr(p — y) u(dy) = L M(dy)L Qr(p—y)dp= L u@dy)=1,

. 1 (% 1—cos T(p y) f
u el ¥ o 2, Ydp=1.
since nle T(p—y Qr(p—y)dp=

Ad(iii) Immediate from Theorem 1: take y(tr)=1—|7| for |7| <1, 0 for || >1.

Remark. Theorem 1 and result (iii) of Corollary 1 are also valid if u is not a proba-
bility measure, but any signed measure of finite total variation.

Remark. Corollary 1 remains valid for y being any of the convergence factors
discussed in section 2.7 (except that result (i) does not obviously hold for the Cesaro-
Riesz kernels).

Remark. The discussion in section 3.1 has been restricted to the case of dimension
k=1. The argument extends immediately to the Gaussian kernel for £>1 (being a
radial function). However, the product kernels do need a separate study. For pro-
duct measures yx it takes a trivial argument to show that product kernels do the
job. For non-product measures a rather involved approach through conditional
measures (sections) seems indicated. The complexity of the analogous situation in
multiple Fourier series (e.g., see Bochner [2] and Mitchell [15]) shows that this prob-
lem falls outside the scope of the present paper.

3.2. Criterion for absolute continuity of u. If the only thing known about a pro-
bability measure u is its characteristic function g, then one can find out if it is
absolutely continuous and construct its density function in one operation according
to:

Theorem 2. Let @ be the characteristic function of some probability measure u =y, + s
defined on B,. Let f(p) be defined as in Corollary 1. Write f(p) for limy_, fr(p). Then
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18 absolutely continuous if and only if
f f(p)dp=1,
R

in which case f is the density function of u.

Remark. The results of Corollary 1 warrant the application of Fatou’s lemma,

which gives f flp)dp<1.
R

Proof. p is absolutely continuous iff 1 = p,(R) = f fo(p)dp = f f(p)dp.

Example 1. It is indeed possible to prove directly that if

f Jpldt < oo then f(p) = lim fr(p) = (22)”" f gl

T—o0

b
and lim fT )dp = f f(p)dp for all a€R, b€ R, which by Theorem 2 shows that then

@ is the characterlstlc function of an absolutely continuous probability measure.

Example 2. Consider the characteristic function ¢** and construct the corresponding
T £

.fr(p)=(27tT)_lf du| €' Pdt; then lim fy(p)=0, A-almost everywhere; f 0
0 —u T->w0 R
dp=+1. So this characteristic function corresponds to a non-absolutely continuous
probability measure y, and the density of the absolutely continuous component is
0, A-almost everywhere: the abs. cont. component is absent.

Example 3. Let @(f) =Le #" 4 2. We find that the density of the a.c. component
is 3 (27;) 16747 which sums to 1, not to 1. So here the absolutely continuous com-
ponent is not absent yet this measure is not absolutely continuous.

Ezample 4. We have proved that for any measure y, or any characteristic function
@, a function f exists such that lim fr=1 (A-almost everywhere); further, if p is

positive and absolutely continuous then hm fr= f /- In view of the fact. that

fr(p) =0 for all p, Theorem 2H in Goldberg [8] is applicable (with p=1) and yields
Cramer s [4] (p. 192) necessary condition of type (g) for the special case of (positive)
measures. The sufficiency of his condition follows trivially from our results by means

: f(fT—f>|<f|fT—f|-

3.3 The Cauchy principal value approach. If lim | a(x)dx exists, then so does
T J_ 1 .

T->00

T U
lim T‘lf duf a(z)dx and the two limits are equal.
0 ~-u
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Applying this observation to Corollary 1 and Theorem 2 proves:

Theorem 3. Let ¢ be the characteristic function of some probability measure p = p, 4 s
defined on B,. Define
T

f(p)=2n)™" f p(tye P dt.

(1) If lim f(p) exists A-almost everywhere, then wherever it exists:
T-»>c0

Jim 5 (p) = f1a(p).

(it) Write f(p) for Bm f(p); then u is absolutely continuous if and only if
T—oo

Lf(p)dp =1.

Example 1. The chi-square distributions with 1 or 2 degrees of freedom have
characteristic functions (1 —2it)" "% (n=1, 2), which do not belong to L,(R). Yet
these distributions are absolutely continuous and their densities can be obtained
by the Cauchy principal value approach.

Example 2. Purely discontinuous distributions or components cause their charac-
teristic functions to have non-convergent f7 : if p(t) =¢'** then f7(p) =n~1 sin T'(a —p)/
(@ —p), which has no limit as 7— oo for any p.

3.4. Conclusions. We will use the following abbreviations:

BV =of bounded variation
AC =absolutely continuous
SC =singular continuous
SD =purely discontinuous
A-a.=A-almost

We will discuss only univariate distributions and distinguish two cases.

Case 1. ¢ is known to be a characteristic function, the Fourier-Stieltjes transform
of a probability measure.

la. @€L,(R); then (2n)‘1f @(t)e Pdt exists for all pER and constitutes the
R
continuous density function of the AC probability measure determined by ¢.

T
1b. ¢ L,(R), but f(p)= lim {*(p)=2xn) ! lim J‘ p(t)e P di exists A-a. every-
T—>0 T—soe J T
where; this limit function then constitutes the density function of the AC com-
ponent of the probability measure y determined by ¢. In this case 4 cannot have
a SD component, and we have not determined if the existence of a SC com-
ponent is always compatible with the convergence of ff(p). Of course, y is AC
iff [ f(p)dp=1. Jordan’s theorem (Goldberg [8], Th. 5C) shows that whenever u
is AC and g is locally BV A-a. everywhere, then the corresponding f” has a limit
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A-a. everywhere. So if limy_, ., f* does not exist i-a. everywhere, u either must have
a 8D component or might have a SC component, or if 4 is AC then s must be not
locally BV on a set of positive Lebesgue measure.

Note that the confusion around the use of the Cauchy principal value method
in evaluating integral (1.3) for a characteristic function ¢ has been dissolved to the
effect that the only justification needed for its use is the A-almost everywhere existence
of limy_,., f'(p); that is, the method gives a meaningful result whenever it is formally
feasible. Note that f’(p) need not be non-negative, as opposed to fy(p). Also note
that one need not immediately resort to (C, 1)-summation if ¢ is not absolutely
integrable: one may first try his luck with the Cauchy principal value approach.

Ic. Limy,, f7(p) does not exist (A-a. everywhere). In this case, as in the two
other cases,

T u
flp)= Tlim fz(p) = (2xn)™! lim T‘IJ‘ duf p(t)e P di
=00 T—>00 0 —u

does exist, A-a. everywhere, and equals ji,, the density of the AC component of yu;
u is AC iff f, f(p)dp=1. This (O, 1)-summation will always tdentify pi,, but the
computation is unduly cumbersome if any of the other two is available. Fortunately
most of the work to be done in case (1b) is needed in case (1¢) anyway.

Note that possibly another convergence factor y may yield simpler computations
for special cases (sections 2.7 and 3.1).

Case 2. ¢ is not known to be a characteristic function. There are two ways of finding
out. As a preliminary, use the fact that all characteristic functions ¢ are everywhere
continuous (even uniformly so), and also ¢(0)=1, |p(t)| <1 everywhere. Then

2a. If in addition @ €L,(R), use Theorem 2.1 in Letta [1 1], which amounts to the
result that such ¢ is a characteristic function if also f@(t)e *?dt>0 for all p€ R;

2b. if ¢ L,(R), apply point (i) of Corollary 1.
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