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The Hellinger square-integrability of matrix-valued
measures with respect to a non-negative hermitian measure

By Hasis Saven:

Introduction

Let B be a o-algebra of subsets of a given space Q, and let F be a fixed non-
negative hermitian measure on B. For matrix-valued measures M and N the
Hellinger integral o (dMdN*/dF) (* =conjugate) is defined in such a way that
the space of all matrix-valued measures M for which [ (dMdM*/dF) exist be-
comes a Hilbert space under the inner product 7 fq deN*/dF) (r =trace). It
will follow that fo(dMdM*/dF) exists iff there exists a B-measurable matrix-
valued function W on ) such that ¥ € Ly ¢ [9, p. 295], and for each B€ B, M(B) =
Sz WdF. These generalize the corresponding results [3, pp. 258-61] & [8, pp.
1414-18] concerning the Hellinger integrals {q (dvdy/du), where » and y are com-
plex-valued measures and g is a non-vegative real-valued measure on B.

For any matrix G we write G~ for the generalized inverse of G [7, p. 407].
If u is a o-finite non-negative real-valued measure on B with respect to (w.r.t.)
which F is absolutely continuous (a.c.), then it is easy to show that (dF/du)”
is a B-measurable matrix-valued function on Q.

Lemma 1. Let (i) M and N be matriz-valued measures on B.

(i) u and v be a-finite non-negative real-valued measures on B w.r.t. which M, N
and F are a.cl Then

(a) f (AM/dp) (A¥/dp)” (AN/dp)* dp  exists iff
Q

f (@M/dv) (dF/dv)~ (AN/dv)* dv  exists.
Q

) If these integrals exist, they are egual.

Proof. (a) Let y=p-+v. X [o(dM/du)(dF/du)” (AN/du)* du exists, then from
the relations

i Each matrix-valued measure is a.c. w.r.t. the sum of the total variation measures of its
components. Hence such a ¢ exists.
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| /am @ /a @i au - | @m/an @i @ a du/an

~ [ @mjay) @/ awjayray )
follows that f (AM/dy) (dF/dy)” (AN/dy)* dy exists.
Q :
Conversely if f (@M/dy) (dF/dy)” (dN/dy)* dy exists,
Q

again from (1) we infer that

f (@M /du) (dF/du)” AN/du)* du  exists.
Q
Similar argument can be used to show that

. f (dM/dv) (dF/dv)” (@N/dv)* dv  exists iff
o)

J(dM/dy) (dF/dy)” (dN/dy)* dy exists.
Q

Hence (a) is proved.
(b) From the argument used in the proof of (a) we infer (b). (Q.E.D.)
Thus the following definition makes sense.
Definition 1. Let M, N, F and u be as in the previous lemma. Then (a) we say

that (M, N) is Hellinger integrable w.rt. F if {o(dM/du) (dF/du)” (AN/du)* du exists.
We write

dM dN* -
f ~ [ @M /au) @¥/ag) (N fau)* au.
o dF Jo
(b) Hy g 18 the class of all matriz-valued measures M on B for which [ o (dMdM*/dF)
exist.
It is easy to see that
1) M,NecH, g= (M,N) is Hellinger integrable w.r.t. F,
McH, y and A is a matrix=AME€EH, ,
M, Ne H2F3M+Ne H2,F'

By (1) fo(dMdN*/dF) exists for M, N € H, p. This matrix-valued integral be-
haves like an inner product. It is therefore convenient to write
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dM dN*
(MyN)F_ JQ dF .

We define the ordinary inner product for H, g by

(M, N))g = (M, N)g.

Thus from (1) we immediately get:

Lemma 2. H, y is an inner product space under ((.,.))s, where for M and NEH, ¢
(M, N))z = (M, N)g.

Let L, 5 be the class of all matrix-valued functions @ on Q for which [, ® dF ®*
exist (A detailed discussion of integrals {o®dFW¥* and [, ®dF are given in [6]
and [9]). It is known [9, p. 295] that L, ¢ is a Hilbert space under the inner
product.

Q

The following lemma is needed to establish an isomorphism between L, g and
H, .

Lemma 3. Let (i) ® and WEL, 5.
(ii) For each B€B
M(B)=f ®dF and N(B)- f @ dF.
B B

Then (M, N) is Hellinger-integrable w.r.t. F and

Proof. Let u be any o-finite non-negative measure w.r.t. which F is a.c. Then
for each B€ B, M(B) = [, ®(dF/du) du and N(B)= f ¥ (dF/dy)du. Hence

(dM/da) = ®(dF /dp), (dN/du) =F(dF/dps).

*
Therefore f deiCIl“N =f (@M/dy) (dF¥/du)” (AN/du)* du
o o

= [ @R /dpy @¥ iy @ i ¥

o

- | ®ar/an ¥ du- @, 9. M
Q

Since for @ and WEL, g, (P, W) exists, from (1) it follows that (M, N)y is
Hellinger integrable w.r.t. F. Moreover (M, N)g=(®, ¥)s. (Q.E.D.)
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If WeL, s Then Mg will denote the matrix-valued measure in H, 5 such that
for each BEB, My (B)= [, WdF. Hence the following definition makes sense.

Definition 2. Let the transformation T be defined on L, g into Hy 5 as follows:
T‘PzMw.
The important properties of T are given in the following theorem:

Theorem 1. (a) T 4s a linear operator on L, g tnto Hy g, i.e., if A and B are
matrices and B and W €L, g, then

T(A® + BY¥) = AT® + BTY.
(b) T is an isometry on L,y into H, 5. In fact

(¢) T is onto Hy g, i.e., for each MEH, g, there evists a ¥ € Ly 5 such that
M=TW¥. In fact we can take W to be (AM/du) (dF/du)~, where u is any o-finite
non-negative real-valued measure w.rt. M and F are a.c.

Proof. (a) and (b) follow from Lemma 3 and Definition 2.

(c) Let MeH, x. If u is any o-finite non-negative real-valued measure on B
w.r.t. which M and F are a.c., then

O N = | @M/ @™ @M dp

— || ) @R a0 @8 M) 0B )

where the first equality follows from the definition of (M, N}y and the second one is
a consequence of (dF/du)” (dF/du) (dF/du)” = (dF/du)~. Hence (dM/du) (dF/dp)”
is in Ly p. Let N(B) = [ 5 (dM/du) (dF /du)~ dF. Then (M, M)g = (N, N)g and (M, N)g=
(N,M);. Hence (N—-M,N—M)z=0, i.e., N and M as elements of H, y are equal.
By Definition 2, T(dM/du) (dF/du)” = N. Therefore T(dM/du) (dF/du)” = M.
(Q.E.D.)

We immediately obtain the following result.

Theorem 2. (a) H, ¢ ts a Hilbert space under the inner-product ((-,"))g.
(b) M€H, g iff there exists a B-measurable matriz-valued function ¥ on Q such
that ¥ € L, y and for each BE B,

M(B) = f W JF.
B

Moreover if u is a o-finite non-negative real-valued measure w.rt. which M and F
are a.c., then (AM/du) (dF/du)” (dF/du) = (dM/dy) a.e. .

302



ARKIV FOR MATEMATIK. Bd 7 nr 21

Proof. (a) (b). (a) and the first part of (b) are immediate consequences of
Theorem 1. For the second part of (b) we have

(dM/dy) (dF /dp)™ (dF /dp) ="F(dF /du) (dF/dp)~ (dF /dy)
=W(dF/du) = (dM/du) a.e. p,

where the first and the third equalities are consequences of M(B) = ;¥ dF and
the second one is a consequence of (dF/du) = (dF¥/du) (dF/du)” (d¥/du) a.e. u.
(Q.ED,)

Remark. The significance of the Hellinger integrals fq (dvdy~ /du), where v and y
are complex-valued measures and 4 is a non-negative real-valued measure, in uni-
variate stochastic processes has bee pointed out by H. Cramér [1, p. 487] and
U. Grenander [2, p. 207]. Our Hellinger integrals play an important role in
g-variate stochastic processes. In particular, they give rise to an extension of
P. Masani’s work on g¢-variate full-rank minimal processes [5, pp. 145-150] which
in turn is a generalization of a well-known result of A. N. Kolmogorov on uni-
variate minimal sequences [4, Thm. 24]. These and other results will be published
separately.
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