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Direct sum decompositions in Grothendieck categories 

By Bo STEr~STRSM 

Throughout this paper, A will denote a Grothendieck category, i.e. an abelian 
category with generators and exact direct limits. Our main theorem gives a 
sufficient condition for an object to decompose into a direct sum of indecom- 
posahle objects. This theorem will then be applied to obtain decompositions of 
injective objects in focally noetherian categories and of projective modules over 
perfect rings. Some applications will also be given to relative splitting problems, 
i.e. splitting by  E-proper subobjects where ~ is a proper class in the sense of 
relative homological algebra. 

In  a preliminary version of this paper (cited in [12]), A was assumed to be 
locally finitely generated. I am grateful to J .-E.  Roos for pointing out tha t  
the results m a y  be extended to AB 6 categories. 

l .  Main theorem 

For the validity of the subsequent decomposition theorems it turns out to be 
essential tha t  A should satisfy some condition of local finiteness. The following 
two axioms will be used for this purpose: 

AB 6: Every  object M is a sum of subobjects which are finitely generated 
relative to M. 

AB 6 (ess): Every  object M # 0  contains a subobject # 0 which is finitely gen- 
erated relative to M. 

Here a subobject L of M is called finitely generated relative to M if whenever 
M = ~ M i for a directed family (Mi)z of subobjects of M, there is an i E I such 
tha t  L c M  i. The axiom AB 6 was first introduced in [6] in the following form: 

For every M and every family (Mj)j of directed families of subobjects 
(Mj~)A+ of M, the canonical morphism 

v: Z ( n z j = )  + n ( i t=)  
a(j)r jCJ  ~eJ o:eAj 

is an isomorphism. 
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I t  has been shown by  Roos [12] that  the two formulations of AB 6 are equi- 
valent, and that  AB 6 (ess) is equivalent to the condition tha t  ~ should always 
be an essential monomorphism. 

We will consider the following condition for an object M of A: 

(C) Every  union of an ascending chain of direct summands of M is a direct 
summand of M. 

Lemma 1. I f  M satisfies (C), then also every direct summand o / M  satisfies (C). 

Proof. Clear. 

Theorem 1. Suppose A satisfies A B  6 (ess). Every object M satisfying condition 
(C) is a direct sum of indecomposable objects. 

Proof. Let (L,)~ be a maximal  family of indecomposable subobjects of M such 
tha t  the sum ~ L i is direct and splits M. The existence of such families is 
guaranteed by  condition (C) and axiom AB 5. Write M = ( ~  L~)| Suppose 
L 4 0 .  To reach a contradiction we only have to find an indecomposable direct 
summand @ 0 of L. Choose a relatively finitely generated subobject B 4= 0 of L. 
Then there exists a direct summand L' of L which does not contain B and is 
maximal with these properties. For let (K~)A be any ascending chain of direct 
summands of L with BdvK~. Then L = (  U K~)|  by Lemma 1, and (K~|  
is a directed family of subobjects of L. Hence B c K ~ |  for some a E A ,  but  
then B must  have non-zero projection on K '  and it follows that  B~: U K~. 

Write L = L ' |  E is indecomposable, for if E = F |  with non-zero F and 
G, then L = L ' | 1 7 4  and either B d v L ' |  or B~:L ' |  which would contradict 
the maximal i ty  of L' .  

2. Decomposition of injective or projective objects 

Theorem 2. Suppose every injective object o/ .,4 is a direct sum of indecompos- 
able objects. Then every direct sum of injective objects is injective. 

Proof. Consider any family (E,)z of injective objects and let F denote the 
injcctive envelope of @zE i. Then F =  @jFj  where Fj are indecomposable in- 
jective objects. Since @E i is an essential subobject of F, it has a non-zero in- 
tersection with each Fj. Hence B j = F j N ( E , I |  ... (~E,~)@0 for some i 1 . . . . .  i n 
(depending on j). But  Fj is indecomposable, so F j = E ( B j ) c E ~ , |  ... | I t  
follows that  | Et coincides with its injective envelope F. 

The following theorem generalizes results due to Gabriel [5], Matlis [9], Nouazd 
[10] and Papp [11]: 

Theorem 3. Let .,4 satisfy A B  6. The following properties o/ .,4 are equivalent: 

(a) • is locally noetherian. 

(b) Every direct sum of injective objects is injective. 
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(c) Every direct limit o/ in]ective objects is in]ective. 

(d) Every in]ective object satis/ies (C). 

(e) Every in]e~tive object is a direct sum o/ indecomposable in]ective objects. 

Proof. (a) =>  (c) has been proved by  Gabriel [5]. (c) =>  (d) is clear and 
(d) = >  (e) follows from Theorem 1. (e) =>  (b) is given by  Theorem 2. Fin- 
ally, (b) =>  (a) is obtained by an obvious modification of the proof given by 
Nouazd ([10], cf. [12]). 

Let  us now consider the more difficult dual problem of decomposing projec- 
tive objects. We assume at once that  14 is the category of left modules over 
a ring A. Note that  A satisfies condition (C) if and only if A has no infinite 
set of orthogonal idempotents. More particularly we have: 

Lemma 2. Every projective left module satis/ies (C) i] and only i/ A is a le]t 
per]ect ring. 

Proo/. If  A is left perfect, then every direct limit of projective modules is 
projective, so every projective module satisfies (C). The converse follows from 
the proof of 5) =>  6) in Theorem P of [1]. 

An application of our Theorem 1 immediately gives 

Theorem 4. (Eilenberg [3]). Every projective le/t module over a le/t per/ect ring 
is a dire:t sum o/ indecomposable projective modules. 

3. Relative splitting 

Let  E be an allowable class of short exact sequences of A, and suppose E 
contains all split sequences and Em is closed under composition (we follow here 
the terminology of [8], ch. 9). Consider the following generalization of the con- 
dition (C): 

( C - E )  Every  union of an ascending chain of E-allowable subobjects of M is 
E-allowable in M. 

We call M E-simple if it does not contain any E-allowable subobjects 4=0, M. 
M is then of course indecomposable. 

Theorem 5. Let ,.4 satis/y A B 6  (ess). Suppose M is an object in A which 
satis/ies ( C -  E) and is split by all its E-allowable subo]ects. M is then a direct 
sum o/ E-simple objects. 

Proo/. M also satisfies condition (C), so M is a direct sum of indecomposable 
subobjects. These subobjects must be E-simple, since they also are split by E- 
allowable subobjects. 

Our next  result gives a necessary and sufficient condition for an object  to 
be split by all its E-allowable subobjects. Let  E be a proper class. 'A mbno- 
morphism a : L - > M  is E-essential if every cp:M~N,  such that  ~0~EEm, is a 
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monomorphism. I f  furthermore M is E-injective, we call a an E-in]ective envelope 
of L (cf. [13], sec. 4). 

Lemma 3. I /  ~ and fl belong to Em and ~ i8 E-essential, then also ~ and 
are E-essential. 

Proof. Easy. 

Theorem 6. Let E be a proper class such that all objects have E-injective en- 
velopes. M is split by all its E-allowable subobje~ts i/ and only i/ M has no E- 
essential subobjects # M. 

Proo/. The necessity of the condition is clear, so we will prove its sufficiency. 
Let  a: L ~ M  be any monomorphism in Era. Choose an E-injective envelope 
~: L-+E and extend /~ to a morphism #' :  M--->E with # ' a=~ t .  Pu t  K = K e r  ~t'. 
Then K N L = O  and the composed morphism L ~ M ~ M / K  is E-essential by 
Lemma 3. I t  now suffices to show tha t  ~:K+L--->M is E-essential. So sup- 
pose ~ : M-+ N is a morphism such that  qfl E Era. Then also L---> M / K  ~ N / K  
belongs to Em by  axiom P3* for proper classes ([13], sec. 2). I f  follows tha t  
M / K ~ N / K  is a monomorphism and hence q):M-+N is a monomorphism. 

As an example we let E be the class of all short exact sequences and obtain 
the following equivalent descriptions of semi-simple objects: 

Theorem 7. Let ,.4 satis/y A B  6 (ess). The /ollowing conditions are equivalent 
/or an object M: 

(a) M is split by all its subobjects. 

(b) M has no essential subobjects # M. 

(e) M is the sum o/i ts  simple subobjects. 

(d) M is a direct sum o/simple objects. 

Proo/. (a) < = >  (b) follows from Theorem 6, (a) = >  (d) follows from Theorem 
5, (d) = >  (c) is trivial, and (c) = >  (a) is proved as in the case of modules [2]. 

4. Splitting by high subobjeets 

A short exact sequence O-*L-+M-+N-+O is called high if L = M  ~ E(L), where 
E(L) as usual denotes the injective envelope of L (cf. [14]). The high sequences 
form a proper class. 

Lemma 4. Let .,4 satisfy A B  6. ,.4 is then locally noetherian i /and  only i/every 
object o/,.4 satisfies ( C -  High). 

Proo]. Suppose ~4 is locally noetherian and let (L~) be any ascending chain 
of high subobjects of M. Then U E(L~) = E( U L~) by Theorem 3, so M t3 E ( U L~) 
= U (M N E(L~))= U L~. For the converse one notes tha t  conditions (C) and 
( C -  High) coincide for injective objects and Theorem 3 therefore is applicable. 
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Lemma 5. M is high-simple i /and  only i/ it is coirreducible. 

Proo/. Clear from Proposition 3 of [14]. 

Applying Theorem 5 we now obtain 

Theorem 8. Let ,.4 be locally noetherian and suppose M is split by all its high 
subobje:ts. M is then a direct sum o/co&reducible objects. 

As an application of this theorem we will prove a decomposition result for 
quasi-injective objects. Recall tha t  an object is quasi-injective if it is stable under 
all endomorphisms of its injective envelope. The following two lemmata  have 
been proved for modules by  Johnson and Wong ([7], Theorem 1.]), resp. by  
Fai th and Utumi ([4], Corollary 2.2). Their proofs may  easily be extended to 
any abelian category with injective envelopes. 

Lemma 6. M is quasi-in]ective i/ and only i/ every morphism L ~ M ,  /or any 
Subobject L o / M ,  may be extended to a morphism M-> M. 

Lemma 7. Every quasi-injective object is split by its high subobjects. 

Theorem 9. Let .,4 be locally noetherian. Every quasi-injective object is a direct sum 
o] co#reducible quasi-in]ective objects. 

5. Splitting by neat  subobjects 

A short exact sequence is called neat if every simple object is a relative 
projective for it. In  particular every high sequence is neat  ([14], Proposition 5). 

Lemma 8. Every object o] A satis]ies ( C -  Neat) when A is locally noetherian. 

Proo]. Let (L~) be an ascending chain of neat  subobjects of M. Every  simple 
object S is noetherian, so every morphism 9 : S ~ M / U  L~ m a y  be factored 
through some M/L~ ([5], p. 358) and may  therefore be lifted to M. 

Lemma 9. M is neat-simple i/ and only i / M  is coirreducible and all its quotient 
objects ~ O, M have non-zero socles. 

Proo/. I f  M is neat-simple, then it  is also high-simple, hence coirreducible- 
I f  then L c M and Soc M / L  = O, L is trivially neat  in M. 

Conversely, suppose M is eoirreducible and L c M  with L + 0 ,  M and 
Soc M / L  =# O. Then there exists a non-zero morphism ~ : S-> M / L  for some 
simple object S. I f  we could lift ~ to a morphism ~:S->M, then we would 
have I m  q5 N L =  0, which is impossible since L is essential in M. Hence L 
cannot be neat  in M. 

Theorem 5 now gives 

Theorem 10. Let A be locally noetherian and suppose M is split by all its neat 
subobjects. M is then a direct sum o/ coirreducible objects M~ such that all quotient 
objects ~ O, M~ o/Ms have non-zero socles. 

Dept. o] Mathematics, Chalmers Institute o] Technology, G6teborg S, Sweden 

431 



B, STEI"~STR(JM, Direct sum decompositions in Grothendieck categories 

R E F E R E N C E S  

1. BASS, H., Finitistic dimension and  a homological generalization of semiprimary rings, Trans. 
Amer. Math. Soc. 95, 466-488 (1960). 

2. CARTA~, H., and E~LE~BERO, S., Homological Algebra. Princeton, 1956. 
3. EILE~CBERG, S., Homologieal dimension and syzygies, Ann. of Math. 64, 328-336 (1956). 
4. FAITH, C., and UTUMI, Y., Quasi-injeetive modules and  their  endomorphism rings, Arch. 

Math. 15, 166-174 (1964). 
5. GABRIEL, P., Des categories ab~liennes, Bull. Soc. Mat. France 90, 323-448 (1962). 
6. GROTHE~CDIECK, A., Sur quelques points d'algSbre homologique, Tohoku Math. J.  9, 119-221 

(1957). 
7. goE~cso~r R. E., and WorcG, E. T., Quasi-injective modules and  irreducible rings, Journa l  

London Math. Soc. 36, 260-268 (1961). 
8. MACLA_~E, S., Homology. Springer, Berlin, 1963. 
9. MATLIS, E., Inject ive modules over noetherian rings, Pacific J.  Math. 8, 511-528 (1958). 

10. :NOUAZI~, Y., Categories localement de type  fini et  categories loealement noeth@iennes, 
C. R. Acad. Sc. Paris 257, 823-824 (1963)- 

11. PAI'P, Z., On algebraically closed modules, Publ. Math. Debrecen 6, 311-327 (1959). 
12. Roos,  J.-E., Sur la condition AB 6 et ses var iantes  dans les categories abeli~nnes, C. 1~. 

Aead. Sc. Paris  264, 991-994 (1967). 
13. STENSTR6M, B., Pure submodules, Arkiv  f6r Mat., 7, 159-171 (1967). 
14. STE~STR6M, B., High submodules and  purity,  Arkiv f6r Mat. 7, 173-176 (1967). 

4 3 2  

Tryckt  den 9 april 1968 

Uppsala 1968. Almqvist & Wiksells Boktryckeri AB 


