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On the partial differential equation 
u~uxx+ 2 UxUyUxy+u~uyy=O 

B y  GUI~NAR ARONSSON 

1. Introduction 

This pap6r treats various aspects of the partial differential equation 

(~u~ 2B2u _~uBu B2u /Bu\2B2u 
Bx]--I ~ + 2  - -  + t ~ y )  ~ = 0 .  (1) 

Bx By BxBy 

This equation was derived in [1] where an extension problem was studied, and it 
turned out that  (1) is closely connected to this extension problem (Theorems 6, 7 
and 8 in [1]). The equation is quasi-linear and parabolic (AC-B2=O), and is not 
of any classical type. The results from [1] will be used very little in this paper. As 
far as the author knows, the equation (1) has not been treated before, apart from 
the paper [1]. 

Let u(x, y) be a solution of (1) and let C be a trajectory of the vector field grad u. 
Then it is proved in Section 2 that C is either a convex curve or a straight line, and 
this result, together with a formula for the curvature of C, is fundamental for the 
later sections. 

In  Section 3 we consider two particular classes of solutions to (1). 
Section 4 is devoted to a discussion of the regularity of solutions to (1). I t  turns 

out that  a solution for which the trajectories of grad u are convex curves, is infi- 
nitely differentiahle. 

In  Section 5 we consider some differential-geometric aspects of (1). 
Section 6 contains an estimate for ]grad u]. A consequence of this estimate is 

that  a nonconstant solution of (1) has no stationary points. 
In  Section 7 we consider solutions of (1) outside a compact set and solutions in 

the whole plane. The latter ones turn out to be linear functions only. 
In  Section 8 we consider the behaviour of [ grad u ] near the boundary of a region. 
Section 9, finally, contains a few results on the Dirichlet problem for (1). 

In  this paper, we will only consider classical solutions of (1), that  is, solutions in 
C 2. We will not discuss extensions of the results to the case of more than two inde- 
pendent variables. 

2. Some preliminary considerations 

A l e m m a  on the curvature o f  a streamline 
We introduce the notation 

I t  is easy to see that 
A((I)) = �89 grad {(grad d)) 2} .grad O. 

27:5 

(2) 
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G. ARO~SSO~, On a partial differential equation 

The meaning of A(O) = 0 is therefore tha t  [grad O[ is constant  along every t ra jec tory  
of the vector field grad (I). Such trajectories will be called streamlines in the sequel. 
Hence (P is a linear function of the arc length along each streamline. I t  also follows 
from (2) tha t  A((])) is an orthogonal  invariant.  Clearly, any  function (I) for which 
[grad (I)[ is constant ,  satisfies A((I))=0. This part icular  class of solutions will be 
discussed in Section 3. These functions correspond to unique solutions of the exten- 
sion problem in [1] (Theorems 3-5). 

Consider a function (I)(x, y) E C u in a neighbourhood of a point  P where grad (I) #0 .  
In t roduce  curvilinear coordinates u = (I) and v = a function which is constant  along 
each streamline of (I). Assume also tha t  v E C 2 and grad v #0 .  This gives (locally) a 
one-to-one mapping (x, y ) o ( u ,  v) for which J = d ( u ,  v)/d(x, y ) # 0  and  

u~v~ + u~v~ = O. (*) 

Now we have the formulas x u = J i  Vy, X v = - - J 1  u~, Yu = - - J 1  Vx and Yv = J1 u~, where 
J1 = 1/J.  The relation (*) can thus be wri t ten 

xuxv + y~yv = O. 

Clearly, a streamline of u in the xy-plane is given by  v = constant ,  and arc length 
along such a curve is given by  

/ u  r / ~  
x~ + y~ du. 

p 

Now the condition A((I))=0 means tha t  this is a linear funct ion of U which is equi- 
valent  to 2 2 ~/~U(Xu + y~) =0,  or xux~  + y~yu~ =0.  

A careful analysis of the preceding reasoning leads to the result: 

whwh xu +y~ >0,  Xv + y ,  > 0  Let there be given two/unct ions  x(u, v), y(u, v) in  C 2 /or " 2 2 2 
and which satis/y the system 

x~x,  + y~yv = O, 

XuX~ § Y~Y~u = O. 

Then (each/unction element o/) the inverse/unct ion u =u(x ,  y) satisfies A ( u ) = 0 .  

Example.  The functions x = v cos u, y = v sin u satisfy the system and  u = arctg (y/x) 
satisfies A ( u ) = 0 .  

Consider again a function u(x, y) E C 2 in a neighbourhood of a point  where grad u #0 .  
A streamline of u is given by  u y d x - u ,  dy=O, where the coefficients are in C 1. A n y  
streamline is determined by  an  initial point  and it is a curve in C ~ with continuously 
varying curvature.  The same holds for the level lines of u, which are governed by  
uxdx + u~dy=O. 

The curvature  of a streamline is given by  

I g r a d u l  u ,  + y~y a r c t g u ,  
1 

i gra d ul a (u~u~ - uxu~uzx + uxu~u~ - u~ uxy) 

1 
21gra d u[3grad {(grad u)2} �9 ( - u~,u~). 

Here, the last two expressions hold also at  points where uz = 0. 
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For  the level lines, we have  

1 1 
, grad u , ( - uy ~ + ux ~ ) arctg ( - U~) - , grad u la (u~ uxx - 2 ux uy uxy + u~ uyy) 

1 
- I grad  u I a ((grad u)2 Au - A (u)). 

I f  u is a solution of A(u)=0, then,  clearly, the curva ture  of a s t reamline can be 
wri t ten  

_+ I grad  {(grad u)2}l = -I- I grad  (I grad  u I)l 
2 Igrad u I s I grad  u I 

L e m m a  1. Let u(x, y) satis/y A(u)=0 in a domain D and let grad  u:~O in D. I / C  
is a streamline o~ u in D, then there are two alternatives: 

I. The curvature o /C is 4 0 at all points o/C. 
I I .  C is a straight line. 

Consequently,  the s t reamlines of u are convex curves and straight lines. 

Proo/. I t  is sufficient to  prove  the  following assertion: I f  the  curva ture  is zero a t  
A E C, then  there is a (1-dimensional) neighbourhood of A along C where the  curva-  
ture  is zero. In t roduce  a coordinate sys tem such t h a t  XA=(U~)A=0 and consider a 
ne ighbourhood U of A such tha t  ux 4 0  in U. We consider the s t reamlines as solu- 
t ions of an init ial-value prob lem dy/dx=Cg(x, y), y(O)=Y0, and we write y(xl)=Yl = 
yl(Xl, Y0)" 

Since A(u) =0,  we have,  for f ixed xi, 

~(Y0) = ]grad u 1(0. y.) = ]grad U](x,. v,) = ~(Yl).  

I f  x 1 is f ixed and  [xl] is small  enough, then  

~--~oYl(xDYo) = [S~' Ov(x,y(x))dx] > 0 exp 

([3], pp.  25-27; [9], pp.  73-74). 
Clearly, we also have  Yo=Yo(Yl) and dyo/dy 1 is finite. Therefore 

d ~  / d y l  = d ~ / d y o  " d y o / d Y l .  

Here,  dg/dyo=O for Yo=YA according to  our formulas  for the curvature .  Hence  
dlt?/dyl = 0 a t  YI = Y l ( X l ,  YA) which means  t ha t  ]grad ([ grad u ])[ = 0 a t  (xi, y~(xi, YA)). 
This completes  the  proof.  

At  the same t ime we have  p roved  t h a t  if grad  ( [ grad  u ] ) = 0 a t  a point  of a s t ream-  
line C, then  this relat ion holds a t  all points  of C, which is then  a s t ra ight  line. I f  
we consider the  hodograph  mapp ing  p=ux, q=uy, it follows t h a t  D(u)=-d(p, q)/ 
d ( x ,  - 2 y)=uxxuyy-u~y = 0  on C. Now let C be a curved s t reamline and  let (r, 0) be  
polar  coordinates in the  hodograph  plane. Then grad  r is or thogonal  to C and not  
zero, and  grad  0 has a nonzero componen t  along C. Hence  D(u)40  on C. 

Along a curved streamline C, g r a d ( [ g r a d  u])  and D(u) are both nonzero, and 
grad  (] grad  u] ) points to the concave side of C. 
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J 

Fig. 1 

I]  the streamline C is a straight line, then grad ( Igrad u I) and D(u) are both zero 
along C. 

I t  should be noticed tha t  D(u) =-zt,x uyy -u2zy <~ 0 always. This means tha t  the surface 
z = u ( x ,  y) has nonposit ive Gaussian curvature.  I t  follows easily by  considering 

2 Uxx + 2u, u~u,y +u~ uyy as a quadratic form in u,  and uu. Finally, we observe tha t  Ux 

a streamline C cannot  terminate  inside D, since ]grad u I is constant  on C. 

Example.  We shall illustrate these things by  the Cauchy-Kowalewski  theorem 
([4], [6], [8]). We write 

1 
+ u ~ u~) u x z -  2 (2uzZlyUxy 2 

ux 

and prescribe u and u~ on the y-axis, in a neighbourhood of y =0 .  Choose, for example,  
u(0, y ) = 0  and ux(O, y)=~v(y)>0,  where ~v(y) is analytic for [y] <5.  Then there is 
an analytic solution u(x, y) in a neighbourhood of x = y - 0 .  Let  (v'(0) = 0  and ~v'(y) 4 0  
if y 40 .  Consider three cases: 

1. qv(y) has a max imum at  y =0.  
2. ~(y) has a min imum at y = 0. 
3. q~'(y) does not  change sign at  y = 0 .  
I n  each case, the x-axis is a streamline and all other streamlines are curved. The 

streamlines are sketched in Figs. 1-3. I n  Fig. 3, it is assumed tha t  ~ ' ( y ) > 0  if y #0 .  

J 

J 
J 

- >  

Fig. 2 
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Fig. 3 

2 2 3. Two particular classes  o f  so lut ions  to u x u x x - { -  2 ux Uy Uxy-t- Uy Uyy = 0 

In  this section we will make a few remarks on the class of functions u for which 
]grad u[ is constant. We will also determine all harmonic functions u which satisfy 
A(u) =0.  

I t  follows from the identity A (u)-: �89 grad ((grad u)2) �9 grad u that  those functions 
u 6 C a, for which I grad u I is constant, constitute a subclass of all solutions of A(u)  = O. 
This is natural  from another aspect: among all functions u(x, y) 6C 2, those which 
are absolutely minimizing, are characterized by  the differential equation A ( u ) = 0  
([1], Theorem 8). A subclass of all absolute minimals are those functions u which 
are unique solutions of some extension problem of the type considered in [1]. And 
the condition for this is that  u 6 C  1 and that  ]grad u] is constant ([1], Theorems 
4 and 5). 

The differential equation ]grad u] = constant is treated in [4], pp. 88-91 and [6], 
pp. 4043 .  I t  is well known tha t  if the surface z =u(x ,  y) is the tangential developable 
of a helix with its axis parallel to the z-axis, then ]grad u[ =const.  Other basic 
types of solutions are linear functions and functions of the form 

A V(x - xo) 2 + (y - yo) 2 + B.  

There also exist (even infinitely differentiable) solutions whose restrictions to 
different subdomains belong to different basic types (namely the first and the second). 

I t  should be noticed tha t  a Cl-function u, for which l grad u I is constant, need 
not be in C 2. This is shown by the function 

x for x > O , y <  O, 

u(x,y)  Vxi-+y 2 for x>O,y>~O. 

Here, a2u/~y ~ is discontinuous across the x-axis. However, we have the following 
result: 

Theorem 1. Let u(x, y) 6 Cl(gl) and let ]grad u [ = M = constant in ~1. 

Then ~u/~x and ~u/~y satis/y Lipschitz conditions on each compact subset o/ gl. 
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Fig. 4 

Proo/. We know from Lemma 1 in [1] t ha t  the streamlines of u are straight lines 
wi thout  common points in ~ .  Consider a compact  set K c  ~ and pu t  d = t h e  distance 
from K to  ~ .  Take two points  P, Q E K  such tha t  d i = ~ < d  (Fig. 4). Let  P b e  
fixed and Q variable in the circle ~QQ < d. Clearly, grad u(P). grad u(Q):V O, and from 
the  cont inui ty  we have grad u(P).grad u(Q)> 0. Hence the angle between grad u(P) 
and grad u(Q) is equal to the smallest angle g between the corresponding stream- 
lines, and  we get 

dl ~ dl 

Hence lux(P)-ux(Q)l<~M.o~<~(Myr/2d).dl.  If  PQQ>d, then 

I%(P) - u~(Q) I <. 2 M  <~ (2Mid)"  d 1. 

I t  follows tha t  u~ satisfies a Lipschitz condition with the constant  2M/d, and 
similarly for %. 

Note  tha t  % and % need no t  satisfy a Lipschitz condition, or even be uniformly 
continuous in ~ .  This can be seen from the example u = V ~ + y  2 in ~ :  (x -- 1) 2 +y~ < 1. 

The differential equation 

2 A(u)=--u~%x + 2%%Uxy + uy%y = 0 (1) 

has a formal resemblance to the differential equation of minimal surfaces, 

2 )uxx _ 2u~%%u + (1 2 _ + ux )%~ - 0 (2) (I + %  

and  addit ion of these equations gives [1 + (grad u)2J(uxz +%y)=0,  or 

Au = 0. (3) 

I t  is clear t ha t  a funct ion u(x, y), which satisfies any  two of the differential equat ions  
(1), (2), and (3), also satisfies the remaining one. We will now determine these com- 
mon  solutions. 

Theorem 2. 1 /u ( x ,  y) is harmonic in a domain D and i/ A (u )=0  in D, then u is 
either a linear/unction, u = A x  + By  + C, or it can be written 

u = D arctg y - Yo + E 
X - -  X 0 
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/or some point (Xo, Yo), such that are tg  [ ( y - y o ) / ( x - x o ) ]  is one-valued and continuous 
in D. 

(In par t i cu la r ,  i t  follows t h a t  (xo, Yo)r D.) 

Proo/3 W r i t e  z = x + i y  and  let  v be the  conjuga te  harmonic  funct ion of u in a 
s imply  connected  subdomain  D 1 of D. This  gives an  ana ly t ic  funct ion w ( z ) = u  +iv 
in n 1. W e  have  w' ( z )=~u/~x - i (~u /~y ) ,  which means  t h a t  w'(z) = grad  u] .  

P u t  w (z)=T. On a s t reaml ine  of u we have  v = c o n s t a n t  and  T = c o n s t a n t .  
The funct ions  w(z) and  T =w'(z) m a p  D 1 onto D w a n d  D~, respect ively .  W e  assume 

t h a t  D 1 is chosen such t h a t  w'(z)4=0 in D 1 and  such t h a t  the  mapp ing  D I - ~ D  w is 
one-to-one.  Fu r the r ,  we m a y  assume t h a t  0 = a r t  T is one-valued  and  cont inuous  in D~. 

Now the  funct ion log Iv I = log ]w ' ( z ) [  is ha rmonic  in D, .  Bu t  the  inverse of 
w(z), z=z(w),  is ana ly t i c  in Dw, a n d  hence h (w)= log  [T[z(w)][ is harmonic  in Dw: 
~2h/~u2 + ~h/~v 2 = 0. Since ~h/~u = 0, we get  ~2h/~u2 = ~2h/(~u ~v) = ~2h/~v2 = 0 in D w. 
Hence  h=co+ClV , with  real  cons tan ts  Co, c 1. F r o m  the  C a u c h y - R i e m a n n  equat ions  
we get  ~O / ~u = - cl, ~O / ~v = 0, which gives 0 - c 2 - c1 u, and  log T = h + iO = (c o + i%) - 
ic l(u + iv) = C O - ic 1 w in D~. 

Hence  T = C  1 exp  ( - i c l w ) ,  where C140 .  I f  c1=0  , we get  W = C l z + C  2, which 
gives u = A x  + B y  + C. 

I f  c1~0  , t hen  d z / d w = l / C l  exp(iclw ) and  Z - Z o = C 2 e x  p (iclw), C240,  zo~D 1. 
Taking  the  a rguments  of bo th  members ,  we get  arg ( z - % ) = C l U  + c  a. 

This proves  the  resul t  for D1, and  the  genera l  resul t  follows b y  ana ly t i c  conti- 
nuat ion .  

There  is a consequence of this  theorem t h a t  m a y  be of some interest .  
We  m a y  in te rp re t  u(x, y) as a h y d r o d y n a m i c  poten t ia l :  Consider a two-dimensional ,  

s t e a d y  po ten t i a l  flow of an  ideal  l iquid. I f  each par t ic le  has  cons tan t  speed, t hen  the  
f low is e i ther  a uniform t r ans l a t ion  or otherwise the  par t ic les  move  in concentr ic  
c ircular  orbi ts  wi th  the  speed C/r, where  r is the  d is tance  f rom the  center  of the  
circles, and  the  cons tan t  C > 0  is common to all par t ic les .  (The speed of a par t ic le  
is the  modulus  of i ts ve loc i ty  vector.)  

2 2 4. The differentiabil ity propert ies  o f  so lut ions  to ux uxx + 2 ux Uy uxy + uy Uyy = 0. 

This sect ion contains  a resul t  on the  regu la r i ty  of a class of solut ions to  A ( u ) = 0 .  
I t  is p roved  b y  app l ica t ion  of the  hodograph  mapp ing  which works  only if uxxuy~- 
u~y 4 0 .  I t  is shown b y  an  example  t h a t  the  resul t  is false wi thou t  this  res t r ic t ion.  

L e m m a  2. Let u(x, y ) E C  2 in a region D and let A(u) = 0  in D. Assume/ur ther  that 
g r a d  u 4=0 in D and that Uxx%y-U2xy :~0 in D. 

Then u E C~176 

Proo/. A p p l y  the  hodograph  mapp ing  p - u ~ ,  q =u~. (See [6], p. 521, or [2], p. 12.) 
W e  have  J - d ( p ,  q)/d(x, y ) = U x x U y y - u ~ 4 0 .  Hence  the  ma pp ing  (x, y)->(p, q) is 
one- to-one and  bicont inuous  in a ne ighbourhood  of an  a r b i t r a r y  po in t  in D. We 
res t r ic t  our a t t en t ion  to  such a neighbourhood.  The funct ions  x = x(p, q) and  y = y(p, q) 
are  in C 1 and  we have  the  wel l -known rela t ions  

qy : gxp; py : -- Jxq; qx = -- JY~ and  px = Jyq. 

1 This proof was suggested by Professor Bengt J. Andersson, Stockholm. The author's original 
proof is more complicated. 
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Now we introduce the funct ion (Legendre transform) q a ' = x p + y q - u .  Clearly, q~ 
is a Cl-function of p and q, and 

7 -  = x + pxp  + qy~, - u x x v - % ~,~, = x ,  
o p  

~tF 
77_ = pxq  + qyq + y - u~ xq - % yq = y .  

Hence Re is a C2-function of p and q, and 

?x 1 1 

~ ' P  - ~ p  - ~1 q~ = [1 u ~ ,  

~  - 
~ x  1 1 

qeqq ~Y 1 1 

2 �9 The equation u:: Ux,: + 2u~ uy u~y + u~ %y = 0 is thus t ransformed into 

q2~-Fpp -- 2pqWpq  + p~Wq,~ = 0 (1) 

and we get a linear differential equation in the hodograph plane. Next,  we introduce 
polar coordinates (r, 0) in the hodograph plane. This can be done, since we have  
assumed grad u #0 .  The equation (1) is then t ransformed into 

~F00 + rq e, = 0. 

Another  substitution, ~)= - l o g  r, gives 

tFoo = q~,  

which is the well-known heat  equation. I t  is known tha t  every solution of the heat  
equation is infinitely differentiable ([7], p. 314,[5],  p. 74). Hence, ~F E C ~176 as a func- 
t ion of (~, 0), and consequently also as a funct ion of (p, q). Thus, x =tFp and y =VFq 
are infinitely differentiable functions of p and q. I t  follows tha t  p =ux and  q = % 
are infinitely differentiable with respect to x and y. This completes the proof. 

R e m a r k .  I t  will be proved later t ha t  the condition grad u 4 0  is always satisfied, 
unless u is constant.  This condition can therefore be omitted. 1 However,  the condi- 
t ion Uxx%y-U2x~ ~-0 cannot  be omitted. One way  to show this is to construct  a func- 
tion f i x ,  y )  in C ~, but  not  in C a, for which I g r a d / I  is constant.  This can be done 
by  using the geometric properties of such functions which were discussed in Section 
3, bu t  it involves some calculations and we prefer to describe a quite different 
example. 

Compare Theorems 6 and 7. 

402 



ARKIV FOR MATEMATIK. B d  7 n r  28  

Example. Consider a Cauchy problem for A(u)=0.  We write the equation as 
uz~ = - 1/u2z (2Ux% u~y + u~ uyy) and prescribe u and ux on the y-axis, in a neighbourhood 
of y=O, by u(0, y)=O, uz(O, y ) = l §  a. From the Cauchy-Kowalewski theorem it 
follows that there is an analytic solution u(x, y) in a neighbourhood of the origin. 
This corresponds to case 3 of the example in Section 2. I t  is clear that  the x-axis 
is a streamline and that the other streamlines are curved. Along the x-axis, we have 

2 ux= l ,  % = 0 ;  further, A(u)=0  gives u ~ = 0  and from U~xU~y-u~ =0 we get u ~ = 0 .  
Along the y-axis we have ux > 0, uy = 0, and we know that every curved streamline 
turns the convex side downwards. Therefore, we must have uy(x, y )>0  if x >0, y 4 0  
and uy(x, y )<0  if x <0, y 40.  Since uy =0  on the x-axis we must have uyy =0  there. 
Consequently, u - x ,  ux = 1 and % =Uxx-u,~-uyy =0  along the x-axis. 

Form the function u l ( x , y ) = l  u(x'y) for y>~O, 
(x for y~<O. 

I t  follows from above that  u 1E C 2 and A(Ul) =0. From our initial conditions it follows 
that u~yy=0 and u~y~y=6 at the origin. Therefore, %yy(x, 0 ) 4 0  if 0 <  Ix[ <8 and 
this shows that  (ul)yyy does not exist at these points. Hence, u I does not belong to 
C a in any neighbourhood of the origin. I t  also follows that  a continuation o /a  solution 
o/ A(u) =0  need not be unique. 

5. Application of differential geometry 

This section contains a discussion of the "intrinsic" geometric properties of a 
surface S: z=~P(x, y) where A((:I))=0. 

Theorem 3. Let (I)(x,y) satis/y A((I))=0, and grad(I)40.  Consider the sur/ace 
S : z=O(x,  y) and the projections on this sur/ace o/the streamlines o/OP(x, y). 

These image curt,es are both 
asymptotic curves on S, and 
helices with a common axis. namely the z-axis. 

(For definition of a helix, see [10], p. 33). 

Proo/. The asymptotic directions on any surface z = (I)(x, y) are determined by 

~Pxx(dx) ~ + 2@xydx dy § r 2 = O. 

Hence, from A((I))=0, it follows that d y : d x - % : u x  corresponds t o  asymptotic 
curves. We also know that u is a linear function of arc length on each streamline 
in the xy-plane, du/ds = C. From this it follows that we have, on the corresponding 
space curve, dz/ds 1 : C/~l + ~ = c o n s t .  This completes the proof. 

Remark. Suppose that O,zqbyy-(I)~x~<0 in a domain D. Then the surface S has 
only hyperbolic points, and S has two distinct families of asymptotic curves. Ac- 
cording to the theorem, one of these families consists of helices with a common 
axis. Further, the geodesic curvature of such a curve is not zero. 

The geometric features of the case (Px~(I)yy-(I)2xy =0  (where [grad u[ is constant) 
were treated in Section 3 and the references cited there. 

The condition grad (I) ~=0 is in fact no restriction, in view of Theorem 6. 
In the converse direction we have 
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( 

Y 
Fig. 5 

Theorem 4. Let the sur/ace S be in C ~, and let S be s imply  covered by a /amily ~4 
o /asymptot ic  curves with nonvanishing geodesic curvature. Assume now that all curves 
in A are helices with a common axis 1. Introduce an orthonormal coordinate system 
such that the z-axis is parallel to l. 

The sat]ace S will then de/ine a ]unction z = O(x, y), at least locally, and this ]unction 
satis/ies A (69) = O. 

Proo]. Consider a curve C E A, a point  P E C, and let _t, n be respectively tangent  
and  principal normal  to C at P.  (Note tha t  _n is well-defined, since the geodesic 
curvature  is not  zero.) Then _t._n=0, and since C is a helix with the axis parallel 
to  the z-axis, we have n .e~=0.  Further ,  since C is an asymptot ic  curve we have 
N ' n  = 0, where N is the surface normal.  Hence, _t, N and  % lie in a plane (the recti- 
fying plane of C). 

We must  have ]_t-_e z ] < 1 since, otherwise, C would have to be a straight line. 
Because of the relation _t.N = 0, this means tha t  N.e~ =4=0. This shows tha t  S defines, 
locally, a funct ion z =q)(x, y )EC 2 and further, since grad (I) must  lie in the inter- 
section of the rectifying plane of C and the xy-plane, it follows tha t  C is the image 
of a streamline of (P. Finally, C is an asymptot ic  curve, which means tha t  
O~ Ox~+2OxO~Ox~ 2 +O~O~y=O. (Compare the proof of the previous theorem.) 

I t  m a y  perhaps be of some interest to have another  derivation of the parametr ic  
representat ion tha t  was derived in Section 2. 

- O x y < O .  Consider a surface S : z =d)(x, y), where A(O) =0 ,  grad �9 4=0, and Ox~Oyy 2 
Then  grad ( Igrad ( I ) ] )#0  and we have locally a one-to-one mapping 
(x, y)o((I) ,  grad (I)) .  Now we introduce parameters  u, v on S by  writing 
u=(I) ,  v =  grad (I) . Then F = 0 ,  E = l / v  2, where the notat ion is t ha t  of [10], p. 58. 
I t  also follows tha t  F ~ I = 0  ([10], p. 107). F rom Theorem 3 we know tha t  v = c o n -  
s tant  corresponds to asymptot ic  curve3. 

Hence e = 0  and the Gauss equation for _xu~ takes the form _xu~=F~lx, ([10], pp. 
74-75, 107). If  we write F~I=B(u ,  v) and x=q)l(u, v), y=~2(u,  v), z=~a(u ,  v ) - u ,  
we obtain 

(~,)~ - B ( u ,  v )  (q~z)~ = O, i = 1, 2 ,  3.  

Further ,  the parametr ic  lines are orthogonal  on S, as well as their projections on 
the xy-plane. Hence (~1)~(~1)~ + (~2)~(~2), =0 .  

An argument  in the converse direction leads to the following result: 
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Suppose tha t  there are given two functions qpl(u, v), ~ (u ,  v) in C 2 which satisfy 
(q)~)uu-B(u, v)(~)~ = 0, i = l, 2, where B(u, v) is an arbi trary continuous function. 
Suppose also tha t  

and 

in the region in question. 
By the relations 

(~ )u(~ l ) ,  + ( ~ ) u ( ~ ) v  = 0 

( ~ ) ~ ( ~ ) , -  ( ~ ) ~ ( ~ ) u  =~ 0 

x = ~ l ( u ,  v ) ,  y = ~ 2 ( u ,  v ) ,  z = u 

z is defined, at least locally, as a function of x and y. This function z =@(x, y) satisfies 
A(O) =0.  

I t  is easy to see that  this is identical with the result on parametric representation 
that  was derived in Section 2. First, if the above conditions are satisfied, then 

(~1)~(~1)~u + (~)u(9~)~  = B(~,  v)[(~l)u(~)~ + (~ )u(~)~]  = 0. 

And if the conditions in Section 2 are satisfied, then the vector (Xu, y~) (40)  is ortho- 
gonal to (xv, yv) and to (X~u, y~) which means that  the latter ones are parallel: 
Xuu= B(u, v)x~, y ~ =  B(u, v)y~. 

6. An inequality for I grad u I" Nonexistence of  stationary points 

An important  feature of the differential equation A(u)=0 is that  a nonconstant 
solution has no stat ionary points. This is obtained below as a consequence of an 
estimate for I grad u ]. We begin with a lemma. 

Lemma 3. Consider a /unction /(x)ECI[A, B/ with / (A)=0  and / ( B ) = I .  Then 
there is a sequence o/ open intervals (Iv} on [A, B], ]inite or denumerably infinite, 
such that: 

(1) The intervals 1~ are pairwise disjoint, 
(2) /'(x) >0  on all lv, 
(3) i / Iv=(a~,  by), then X,(/(b,)-/(av) ) =1,  
(4) i / y  e l v /o r  some v, and x <y,  then/(x) </(y). (In particular, x e Iv, y e Iz,  v 4 #  

implies tha t / (x )  4/(y).) 
(5) 0 < ] ( x ) < l  on all Iv. 

Proo/. Form the function ~(X)=SUpA<t<x ](t). Since /(x) satisfies a Lipschitz 
condition, so does ~F(x). Hence ~F(x) is absolutely continuous. Further,  ~F(x) is 
non-decreasing. Write I = [ A ,  B]. We may  assume that  m a x 1 / ( x ) = l  since, other- 
wise, we can consider the interval [A, X], where X = m i n  {x I](x)= 1). The result 
for this subinterval also gives the result for I .  Hence W(A)=0,  ~F(B)= l, ~F'(x)/>0 
a.e. and ~BI'F'(x)dx=I. 

Now consider E={x]A<x<B,~F ' (x )>O) .  Let xoEE. Clearly, ~F(Xo)>~/(xo), 
and if we had ~F(x0)>/(x0), then ~F(x) would necessarily be constant in a neigh- 
bourhood of %. Hence ~F(Xo)=/(Xo), and if x>~x o, then ~F(x)=SUpxo~<x/(t). 
From this, and from ~F'(x0)>0 it follows that  ] '(xo)>0. Choose a ~ > 0  such that  
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~F(Xo-(5)<~F(Xo)<~F(Xo+(~) and such that  / ' ( x )>0  for Xo-(~x<~Xo+(~. Choose 
also a ~1, 0<~1 ~(~, such t h a t / ( x o - ~ l )  >~F(x0-(~ ). On the interval x o-51 <~X~Xo+(~ 
we thus have 

/(x) = s u p  /(t) >1/(Xo- ~1) > ~ ( x 0  - 8)  = s u p / ( t )  

and hence ~F(x) =/(x). 
Hence, E is an open set and ~F'(x)=/ '(x) on E. Write E = [.J,(a,, b,). We get 

II v 

d a v 

Hence, the assertion (3) is true, and it is very easy to see that  (1), (2), (4), and (5) 
also hold. This completes the proof. 

2 2 Theorem 5. Let u(x, y)EC~(D) and let ux uxx +2u~UyUxy +u~uyy =0  in D. Let A, B 
be two points in D such that the closed segment A B  lies in D, and such that grad u # 0  
on this segment. Then 

- -  :r l2  ]grad u(A)] ~ < : ~ +  ~ ,  
log L gra d u(B)] 

where A--B=the distance/rom A to B, and d=the distance ]rom the segment A B  to ~D. 

Proo/. The idea of the proof is the following: If  we put  v =  ]grad u], then the 
curvature of a streamline can be written (apart from sign) 

dO ]grad v ] _ d v / d n  
ds v v 

where dv/dn denotes differentiation along a level line. Let us consider the function 
v along some fixed level line l. Suppose that  the curvature of the streamlines inter- 
secting l is bounded: (dv/dn)/v <~K, or dv/v ~Kdn .  Integrat ion gives S(dv/v)~K~dn, 
or log (V2/V1)~K.L,  where L is the length of l, and V 1, V 2 are the corresponding 
values of v. This is an inequality of the desired type. Now the curvature of the 
streamlines need not be uniformly bounded, and the vague reasoning above does not 
give anything. However, since the streamlines are convex curves (or straight lines), it 
is possible to estimate the integrated curvature along (part of) a streamline. Accord- 
ingly, the proof is based upon an integration of the formula dO/ds = I grad v I/v. 

Put  M =  ]grad u(A)[, M 1 = [grad u(B)[, and assume that  M > M  1. Let l denote 
arc length along the segment AB,  increasing towards B. Consider a sub-interval 1 
of the segment, with endpoints K, L, such that  (d/dl) ]grad u [ < 0 on I .  Let I be an 
open interval. Let {~} be the family of streamlines which intersect I .  Note tha t  
none of these streamlines can intersect I tangentially, since we would have 
(d/dl) [ grad u [ = 0 at  such a point. 

Suppose each streamline in (~} to be continued in both directions from I inde- 
finitely or until it approaches ~D. If  E is the point set thus covered by  these curves, 
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Fig. 6 

then  E is obviously open. Let  s be arc length along the curves in {~}, for each of 
these curves,  let 8 = 0  in the intersection with I ,  and  let 8 and u increase in the 
same direct ion. Compare Figure 6. 

:Put Vi = grad u L, V~ = [grad u [ K. Let  G be the subset of E which is defined 
by  S 1 < s  < S  2, V 1 < grad u < V s. Here, S 1 < 0, S 2 ) 0,  and S 1 [, [ S 2 are both  less 
than  the distance from I to ~D. 

Clearly, G is open and connected. Wri te  v = [ grad u [ and consider first the mapping  
(x, y)-> (u, v) f rom G onto a set G 1 in the (u, v)-plane. Clearly, it is one-to-one, and 
we h a v e  

This follows from A(u)=0. Since d(u, v)/d(x, y) is continuous and not  zero, the same 
sign must  hold in all of G. Further ,  it follows tha t  G 1 is also open, and tha t  the 
inverse mapping  is also in C 1. We get  

d(x,y) _ +_ 1 
d(u,v) [grad u i lg rad  v]" 

Clearly, the sets G and G1 are also in one-to-one correspondence with a set G~ in 
the (8, v)-plane. The mapping (s, v)-~ (u, v) follows the formula 

u = ~ ( v )  + 8 . v  

(v = v). 

Here, ~(v) is the value of u in the corresponding point  on I .  Clearly, ~(v)E C 1. Thus 

d(x,y) 
d(s,v) 

:Now we have 

d(u,v)_ 8+~l'(V ) = 
0 v > O .  

Clearly, the mappings between (s,v) and (u,v) are in C 1, and we get  

_ _ = d ( x , y )  d(u,v)_ •  ! l 
d(u,v) d(8,v) [gad uiigrad vi v =  Igrad vl" 

f f G I f  s~<s<s~ dsdv 
mG = I dxdy = i gra d v l. 

J J V,<v<V~ 
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Fig. 7 

Before es t imat ing the  last  integral,  we choose $ 1 = - S ~  and such tha t ,  for any  
point  P on the segment  AB, the  closed circle f~e with center  a t  P and  radius S~ 
lies in D. Then the to ta l  ( integrated) curva ture  of any  curve in {y), calculated for 
SI<S<S2, is not  greater  than  27~. This is easy to see, since y(P) is convex and  the  
cont inuat ion of y~ beyond  s = S~, s = $2, mus t  meet  ~f~p wi thout  intersecting itself. 
We leave the details. 

Now we can es t imate  raG: 

f f dsdv ~v, ~s, ds 
mG = ]grad v I dv - -  iv ,  i s ,  [grad v I" 

F r o m  the Schwarz inequali ty,  we get  

Js, ]grad vl" 

1Wow consider ySs~ grad  r ids .  The  formula  for curva ture  of s treamlines,  Section 2, 
reads dO/ds = + [grad vl/v , and since v is constant  in this integral ,  we get  

f[gradv]d =f d =vf]  d <2=v. 
With  the  preceding inequali ty,  we get  

fs " ds (82-81) 2 28~ 
1 ]grad vl >~ 2~e.v ~ ' v  

and  finally mG >~ (2 S~/ze) log (V2/Vl).  
Now, if dv/dl<O on the whole segment  AB, or on a finite number  of por t ions  of 

AB, then  we can app ly  the previous reasoning to the whole segment  AB or to each 
of these portions,  respectively.  However ,  we do not  know whether  (d/dl)]grad u I 
changes sign a finite or infinite number  of t imes on AB, and  therefore,  we mus t  
app ly  L e m m a  3 to the funct ion Igrad u I on the segment  AB (with obvious modi-  
fications). This gives a sequence of intervals  I v and  we also get corresponding sets 
G~. Note  t ha t  S1, S 2 are defined independent ly  of I .  F r o m  the condit ion 4 in the 
l emma  it follows tha t  {Gv} are pairwise disjoint. Wri te  p ~ = i n f x ~ l g r a d u [ ,  
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qv= supi~ [grad u I . Then all Pv, qv are positive and the preceding estimate gives 
mG, >1 (2S~/~) log (q~/p~) and m(U G~) >~(2S~/z) Z ,  log (qv/P~). Now the intervals 
(p~, q~) are disjoint, they are sub-intervals of (/1/1, M) and Z ~ ( q ~ - p , ) = M - M  1. 
With the aid of Levi 's theorem we infer from this that  Zv log (q~/pp) =log (M/M1). 
Hence we arrive at  

M 
log ~11~< 2~m(U~G~) .  

Now the distance from a point in U,,G,, to the segment A B  is at  most $2, which 
means that  m( U v Gv) ~< 2S2" A B  § Hence 

M .< ~ A B  ~s 
log ~ $2 2 " 

Here, S 2 can be any positive number less than d, and if we let S 2 tend to d, then 
we obtain the desired estimate. 

I t  would not be difficult to formulate and prove a corresponding estimate for 
any two points A, B in D that  are connected by a smooth curve in D instead of 
a straight segment. We omit these details. 

2 2 Theorem 6. Let u(x,y)EC2(D) and let uxux~+2ux%Ux~+U~Uy~=O in D. Then 
grad u 4 0  in all o/ D, unless u is constant in all o / D .  

Proo/. This is an immediate consequence of the previous theorem. 

Theorem 7. Let u(x, y)EC 2 in a domain D and let A (u )=0  in D. Assume also that 
. , 2  �9 uxx%y-ux~ :4-0 ~n D. Then uEC~176 

Proo]. This follows immediately from Lemma 2 and the previous theorem. 

7. Solut ions  in  a ne ighbourhood  o f  infinity. Global so lut ions  

I t  is possible to find all solutions of A ( u ) = 0  in a neighbourhood of infinity, tha t  
is, all functions satisfying A ( u ) = 0  outside some compact set. 

Theorem 8. Let F be a compact set in the plane ( R ~) and let G be the convex hull o] 
F. Further, let A(u) =0 in R 2 -  F. 

Then [ grad u ] = constant in R 2 - G, and only these cases are possible: 

1. u = A x + B y + C  in R ~ - G .  
2. There is a simple, closed curve F, with continuous curvature, and enclosing a 

region H D  G, such that 

u(R) = D.d(R,  F ) + E / o r  each RCH.  

Further, F is convex (not necessarily strictly). 
(Here, A .. . .  , E are constants and d(R, F) =the distance/rom R to F.) 

Proo/. (1) Let F be contained in an open circular disk D O with boundary C. Unless 
u -  constant, there exist M > 0 and ~ > 0 such that  [u [ ~ M and [grad u [ ~> ~ on C. 
Now let ~ be a streamline of u which intersects C in (at least) two points Q, R. 
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Then the length of y, measured between Q and R, is not greater than 2M/5. This 
is clear, since L(y).(~ • lu(Q) -u(R)]  <2M. 

Let ~ be an open annulus which is concentric with C. Let  r 0 be the radius of C 
and rl, r z the inner and outer radii of s respectively. Suppose that  r I > r  o +M/c~. 
Consider maxhIgrad  u ], which is taken at Po C ~.  We claim that  grad(Igrad u ]) = 0 
at  P0. I f  this is not the case, then Po lies on ~s 

(2) First, let Po lie on the inner boundary of s I t  follows from our choice of r 1 
tha t  Y(P0) must extend to infinity at least in one direction. But then Y(Po) has to 
meet ~ ,  and at these points grad ( ] grad u [ ) = 0. However, according to our results 
in Section 2, this contradicts the fact that  grad (] grad u I ) # 0  at  Po. 

(3) Then assume tha t  Po lies on the outer boundary of s and grad (] grad u I) =#0 
at  Po. Since I grad u] is maximal at  Po, it follows that  grad (] grad u [) is perpendicular 
to ~ at Po, and it is also clear that  this vector points towards the exterior of ~ .  
Let  l be the tangent of ~s at Po- Then Y(Po) is a convex curve, and if U is a suitable 
neighbourhood of Po, then Y(Po) fl U and s N U lie on different sides of l. (Compare 
Section 2). However, since Y(P0) is convex, it also follows that  Y(Po) does not meet 
l, except at  P0, and hence Y(Po) extends to infinity in both directions. I t  is not diffi- 
cult to see that  the total  curvature of Y(P0) is not greater than ~. Further, Y(P0) 
obviously separates the plane into two parts, D and D' ,  one of which (D) is convex. 
Clearly, any streamline in D belongs to the curved type, extends to infinity in 
both directions and has total curvature ~ ~r. 

(4) Let P be an arbi trary point in D, and let y+(P) be the par t  of y(P) where 
u>~u(P). Let C be the level line of u through P and let Q, R be points on C N D 
such that  VI=  ]grad u(Q)] < ]grad u(P)] < ]grad u(R)] = V2 and such that  the par t  
of C between Q and R belongs to D. Then v = ] grad u ] is strictly monotonic along 
Con and v can be used as a parameter  on that  curve. Further,  let s denote the arc 
length along any streamline y of u which intersects Con. Let s - 0  in the point of 
intersection, and let duffs > 0 on y. 

Consider the set covered by  y+(P') when P '  varies along CQn. This set is in one- 
to-one correspondence with the set in the (s,v)-plane defined by  VI~v<~V2, 
0 ~ < s < ~ .  Further,  the mapping is in C 1 in both directions, and d(x, y)/d(s, v)=  
_+ 1/]grad v] (compare the proof of Theorem 6). We want to estimate the measure 
of the set G in the xy-plane which corresponds to Vl<v< V 2, 0 < s < S ,  where S > 0  
is arbitrary. As in Theorem 6 we have 

raG= ldxdy= vj0<s<s Ig tad v] 

and, applying Schwarz's inequality and the formula for the curvature of a stream- 
line, we find 

s ds S 2 S 2 
[grad v[ ~> v 0 ~ )  > vO(v)" 

Here, 01(v ) is the total curvature of the corresponding streamline (y(v)), evaluated 
between the limits s = 0  and s - S ,  and O(v) is the total  curvature of y(v) between 
the limits s - 0  and s - o o .  (We have O<Ol(V ) <0(v)~7~.) Hence, we obtain 1 

f v, S2 dv 2 i" v~ dv 
ma>  v.O(v) g~ 

1 The  func t ion  O(v) is measurab le ,  since i t  is lower  semi-cont inuous .  
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However ,  it is clear t ha t  G is contained in a circle with center a t  Q and with the  
radius (d-[-S), where d is the length of CQR. Hence  we get 

S ~ (v ,  dv <~ .< +S)2.  
J r ,  v" O(v) mG ..~ ~(d 

Here,  Va, V2, O(v) and d are independent  of S, and  S can be choosen arbi t rar i ly  
large. Consequently we mus t  have  

dv 

~,~ v . O(v) 

Choose u 1 >u(P) ,  and  consider the set in the (s, v)-plane defined b y  s ' v  = u  1 - u ( P ) ,  
V~<~v<~ V 2. I n  the xy-plane, it corresponds to a level line C x : u = u  1 intersecting 
7+(P) a t  a point  P r  Now the above a rgumen t  applies to P1 and  G 1 as well as to  P 
and  G. Hence  we obtain  

f v, dv ~ ,  

~, v"  O(v,u~) 

where the meaning of the nota t ion  is obvious. Here,  u 1 m a y  be chosen arb i t rar i ly  
large, and  it is clear t ha t  l im . . . .  O(v, Ul) = 0, for every  fixed v. Consequently,  

f v~ dv 
l im ~ ,  

~ - . ~  ~ v .  O(v, u O  

which is a contradict ion to the  above  inequality.  
(5) We m a y  therefore conclude t ha t  grad  ( Igrad  ~ 1 ) = 0  a t  P0 where Po is any  

point  which realizes m a x ~ I g r a d  u] .  I t  follows tha t  7(P0) is a s t ra ight  line, and  
extends  to infini ty a t  least  in one direction. 

Le t  D 1 be an open circular disk wi th  center on Y(Po) and such t h a t  DaD ~). Suppose 
t h a t  there exists a point  P r such t h a t  7(P) belongs the curved type.  I t  follows 
f rom our choice of ~ t h a t  7(P) extends  to, infinity in one direction a t  least, for 
instance 7+(P). We m a y  then  assume tha t  u(P) > m a x s u .  Let  U be a neighbourhood 
of P such t ha t  we have  u > m a x ~ u  in U and such tha t  grad  ( ] g r a d u l ) # 0  in U. 
Thus,  if Q E U, it follows t h a t  7(Q) belongs to the curved type  and  tha t  7+(Q) ex- 
tends to infinity. :Now we are in a posit ion to app ly  the same reasoning as in (4). 
We only have  to find an es t imate  for the to ta l  curva ture  of a s t reamline V in R 2 - /91 .  
However ,  4z  will do, and  this follows easily f rom the fact  t h a t  T cannot  meet  the 
s t raight  line 7(P0). 

We arr ive a t  a contradiction,  as in 4), and  m a y  conclude t ha t  there is no curved 
s t reamline in R 2 - /91 .  Consequently,  ] grad  u ] = constant  in R 2 /9~. 

(6) We have  to prove  t ha t  I grad u I = constant  in R z -  G. I t  is sufficient to prove  
t h a t  grad ( [ grad  u I ) = 0 in R 2 - G. Suppose then  t ha t  there is a point  P (~ G at  which 
this relat ion does not  hold. Le t  I be a "ha l f - ray"  f rom P to infinity, such tha t  l N G = (D, 
and  let Q be the point  on l, closest to P,  a t  which gra d ( ] grad u I ) = 0. Since Q ~ G, 
7(Q) mus t  ex tend  to infini ty in one direction a t  least, for instance v+(Q). Let  Q' be 
a point  on 7+(Q), such t h a t  Q ' ~ / ) I ,  and pu t  QQ---'=S. Let  {R~} be a sequence of 
points  on PQ, tending to Q. Then {7(R,)} belong to the curved type.  Fur ther ,  the  
points  {R; } on 7+(Rv) which correspond to the are length s = S ,  are defined for 
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E2. ~4 

Fig. 8 

large enough, and tend to Q'. (To see this, consider a streamline as a solution of a 
differential system with initial conditions x =x o, y =Yo. The solution depends con- 
tinuously on (x 0, Y0). Compare [9], p. 105, and Part  1 of the proof of Theorem 10.) 
Consequently, R: {~/~1 f o r  ~ large enough, and this contradicts the fact that  I grad u I = 
constant in R 2-111. This proves that  ]grad u] is constant in R 2 -  G. 

(7) The next step is to find the form of the solution u. 

A. First, let there exist a streamline l which does not meet G. Put  (A, B) = (grad u)t. 
We claim that  u = Ax + By + C in R 2 -  G, for some C. Let/1 be a straight line, paral- 
lel to l, and separating the plane into half-planes El, E 2 such tha t  E~ N G=(I), 
l 1 N G::~(I ) (Fig. 8). I t  is obvious tha t  u = A x + B y + C  in E~. Further,  if there is a 
streamline in El, which does not meet G, then it follows, by  considering the relative 
positions of the streamlines, tha t  u = A x + B y + C  in R2-G.  Consider then the 
opposite case, and let ~ be a circle with center at some point Q E G N 11 and such 
that  G c  ~.  Put  C = ~ N El. Consider the function ~F(P) =grad  u(P). QP for a point 
PEC. I t  is continuous, and since y(P) meets G, we must  have ~tz(P) #0.  
Consequently, q~(R) and ~F(S) are of the same sign, which is an obvious contradic- 
tion (compare Fig. 8). This proves the assertion in the case A. 

B. Each streamline meets G. In  this case, the streamlines constitute a family of 
"half-rays", emerging from G and covering R 2 -  G. The curve 1 ~ will be obtained 
as a level line of u, enclosing G, and it is fairly obvious from geometric reasons tha t  
I ~ must  be convex. The details can be filled in as follows: Let Q be any  point in G 
and let ~ be a circle, containing G, and with center at Q. Put  ~F(P)=grad u(P).QP 
for P E ~ .  Clearly, ~F # 0  and ~t z has fixed sign, for instance LF>0. This means tha t  
each streamline is oriented from G to infinity. Let E be the smallest closed circle 
with center at  Q such that  E D  G. Clearly, u may  be supposed defined and con- 
tinuous on ~E. Write M~maxo~u.  Let M 0 be any n u m b e r > M .  I f  P E ~ ,  let P1 
be the point for which PIP=(1/2~)(u(P)-Mo)grad u(P). When P varies over ~ ,  
P~ clearly describes the set {P' ] u ( P ' ) = M  0, P '  ~G}. I t  follows that  this level line is 
a simple, closed curve F, twice continuously differentiable. Further,  F encloses a 
region H and it is obvious tha t  HDG. Next, we claim that  u(R)=Mo+2d(R, F) 
for any R CH. Consider any R in the exterior of H, and let ~(R) intersect F in P. 
Clearly, u(R) = M  0 +;tP--R, and we need only prove that  P---R =d(R, F). 

I f  this is not true, then there is a PxEF such that  R-P~=d(R, F)<R--P. But  this 
means that  RET(P~) and hence ?(P) and ~(P~) intersect at  R, which is impossible. 
This proves that  u(R)=Mo+~d(R, F), and it also proves that  d(R, F) is taken on 
/or only one point on C, and this point (P) is the point where T(R) intersects F. 
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Finally, fix a point PE1 ~ and let RE•(P). The tangent l of F at P divides R 2 
into half-planes El, E2, and let E 2 contain the unbounded par t  of 7(P). When R 
approaches infinity along y(P), it follows from the preceding statement (italicized) 
that  E 2 f3 1 ~ = (I). Consequently, 1 ~ is convex. This completes the proof. 

Remark. I f  F is a closed, convex curve (not necessarily strictly convex) with 
continuous curvature, enclosing a region H, then one can verify that  v(P)=d(P, F) 
is regular (in C 2) in the exterior of H, and ]grad v I = 1. 

We will not discuss the further geometric relations between F and G. 
Finally, it should be pointed out that  the assumptions in the theorem do not 

imply tha t  I grad u I is constant in R 2 -  F. This can be deduced from the example 
a t  the end of Section 4. 

Theorem 9. I /u(x,  y) EC2(R 2) and A(u) = 0  in the whole plane, then 

u = A x + B y + C .  

Proo/. I t  follows from the previous theorem that  ]grad u] is constant. Hence 
the streamlines are non-intersecting straight lines, which means that  they are 
parallel and thus grad u is constant. This completes the proof. 

A consequence of this theorem is, for instance, that  no polynomial of degree > 1 
can satisfy A(u)=0 in any  domain. 

The same theorem also holds for the minimal surface equation, compare [2], p. 60. 

8. An est imate for l grad u I in Ljapanov regions 

Let u(x, y) satisfy A(u)=0 in a region D. Theorem 6 states that  grad u=~0 in D, 
unless u =constant .  This section treats the question whether I grad u I can be arbi: 
trarily small near ~D. I t  turns out tha t  this cannot occur, if D is "smooth"  and 
bounded. In  the opposite case, it may  happen that  inf ,  ]grad u I = 0. 

Lemma 4. Let a(t) be de/ined a.e. on T 0 < t <  T1, and let it be bounded, positive, and 
measurable. Assume that 

f~ a(t) ~ < C(~(T)F 

]or almost all TE(To, T1). Here, T0>~0 , T1, C>O and p > l  are constants. Then T 0 > 0  
and 1 

lOgToT 1 ~< ~PC (ess tliT~m 0 ~(t)) p-1. 

Proo/. Obviously, we may  assume T O > 0. Define the function fl(t)>~ 0 by 

1 fT dt 
( f l(Tll '=~ JT ~(t) ~" (1) 

1 ess limt...Tl_Oae(t ) =limt,~T,_ 0 (ess inft,<t<T,~(t)). 
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Fig. 9 

Then fl(t) is increasing and fl(t) > 0 for t > T 0. Further fl(t) <. ~(t) a.e. Differentiation 
of (1) gives 

d~ 
P dT" (fl(T))~-~ - ~ T  ) ~ fl(T) ~ -~  a.e. 

Hence pCfi'(T)(fl(T)) ~ 29 l / T ,  that  is 

L/pc ) d 
dT \p  - 1 (fl(T))" 1 ~ dT (log T) a.e. 

Consequently, 

log T~ 0TI-<~ 'To ~r'ddT ~p[pC-~I ( f i ) ' - I~dT=-PC1 f i ( T i ) ' - ~ ] p -  

and since fl(T1)~ ess limt-+Tl-o~(t), we get the desired result. 

Theorem 10. Let u(x, y)be a nonconstant solution o / A ( u ) = 0  in a bounded region D 
which satisfies the/ollowing conditions (see Fig. 9): There exist constants K 1 > O, K s > 0 
and ~, 0 <~ ~ 1, such that i/ B is an arbitrary point on ~D, then there is a coordinate 
system with the origin at B such that the part o /~D which lies in 

R = {(x, y)[ Ix I <~K1, -KI<~y<3K1} 
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A 
Fig. 10 

can be represented as the graph o/a/unct ion y=/(x)ECI[-K1,  K 1 ] / o r  which/'(0) = 0  
and such that the angle between the tangents to ~D at the points (x~, /(Xl) ) and (x2,/(x2) ) 
is not greater than min (K 21Xl - x2 ] ~, �88 finally, all points in R with y >/(x) belong 
to D, and those with y</(x)  do not belong to D. ~ Then ] g r a d u  I is bounded away/rom 
zero in D, and 

log M1~<217e+ (K1) 2'l, 
m 

where m =in f  D ]grad u I and M 1 =in f  I grad  u I , this infimum being taken over those 
points in D/or  which the distance to the boundary ~D is at least K~. 

This will be p roved  b y  the same type  of es t imates  as those used in Theorem 5, 
bu t  here we mus t  s tudy  the behaviour  of I grad  u I a t  the boundary .  Therefore,  we 
cannot  use any  uniform lower bound for the  length of a streamline,  and  we mus t  
f ind new es t imates  for the to ta l  curva ture  and  for the  meamlre of a set  which is 
covered b y  " sho r t "  streamlines.  Such es t imates  can be obta ined using the convexi ty  
of the  s t reamlines and  the smoothness  of ~D. However ,  this can be done only if 
the  s t reamline turns  its convex side to ~D, as suggested in :Fig. 10, A. (Fig. 10, B, 
suggests a case t ha t  is to be avoided).  Consequently,  much  a t ten t ion  mus t  be pa id  
to the posit ion of the  s t reamlines  relat ive to ~D. 

Proo/ o/ the theorem 

(1) Let  B be an a rb i t r a ry  point  on ~D, and  introduce the  corresponding coordinate 
system. Let  A be the point  (0, 2 K  0 and  R = ( ( x ,  y)] ]x I <K1, - K I < y < 3 K I } .  Write  

M = l g r a d  u(A) t~  inf Igrad u(P)] =M1,  
d(P,OD)~ Kt 

and  m l =  inf Igrad u(O,y)l. 
0<y<2K1 

I f  m 1 = M ,  there is nothing to prove.  I f  m I < M ,  take  s > 0  such t ha t  m 1 + s < M ,  
and  let C be a point  on the segment  A B  such tha t  Igrad u(C)] =ml +s. P u t  v(x, y) = 
]grad u(x, Y) I" We will consider the funct ion v(y)=v(0, y) for yc<~y<~yA = 2 K  x. 

According to L e m m a  3 2 there is a finite or denumerable  sequence of open in terva ls  
I~ on [Yc, YA] such tha t  

1 A region satisfying these conditions is often called a Ljapunov region. 
2 Applied to ~0(t) = - v( - t). 
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(A) The intervals I ,  are pairwise disjoint. 
(B) dv/dy>O and m x + e < v ( y ) < M  on U =  [J~l~. 
(C) If  1~ = (p,, q~), then 2~(v (q~) -v (p~) )=M-m 1 -~.  
(D) I f  ylE U and  yl<y2<~yA, then v(yl) <v(y2). 

For  an  arbi t rary  y E [Yc, YA], let ?(y) be the streamline of u passing th rough  (0, y), 
and we consider it only in R/3 D. Let  it be continued up to the boundary  of R/3 D 
in both  directions from (0, y), and  let ~(y) be the length of 7(Y)" The case :r 
is not  ye t  excluded. However,  we claim tha t  :r is lower semicontinuous: 
~(Y0) ~<lim~_~y, ~(y). To see this, consider a streamline as a solution of a differential 
system 

dx ux 
ds ]grad u I' 

dy _ uu 

ds ]grad u I' 

with initial conditions X(So)=Xo, y(So)=y o. We know from ordinary differential 
equat ions ([9], p. 105) tha t  the solution depends continuously on (x0, Y0), which 
gives the result. 

(2) Next,  we claim tha t  each streamline of u, considered in R/3 D, has total  curva- 
ture ~< 3zt and finite length. Consider a streamline y and assume tha t  the total  curva- 
ture is > 3ze. Then there are two successive vertical (parallel to  the y-axis) tangents  
ll, 12, such tha t  the curve ~ between the points of t angency  A, B, is convex down- 
wards (y"(s) >0).  (See Fig. 11). Let  C, D be the points where ll, 12 intersect the line 
y = 3 K  1. Now ~ and the segments AD,  DC and CB enclose a convex domain 
~ =  R/3 D, and ~ c  D. The arcs of y in ~ have finite length, since u is bounded in 
~ .  Therefore y, continued beyond  A and B, mus t  have well-defined endpoints on 
~ ,  and  it follows easily f rom the convexi ty  of y tha t  these endpoints  are si tuated 
on CD. I t  also follows tha t  the total  curvature  of the par ts  of y between these end- 
points and  A, B cannot  be greater than  �89 for each. 

Hence, the total  curvature  of y in R f~ D is not  greater than  2~r, cont rary  to our 
assumption tha t  it is greater than  3~. So the total  curvature  of any  streamline y 
in R N D is not  greater than  3~r, and  it follows from this t ha t  the length of y is finite. 
I n  particular,  the funct ion ~(y) introduced above is always finite. Finally, every 
streamline in R/3 D has well-defined endpoints on ~(R/3 D). 

(3) Consider the set U o = ( y ] y e U  , ~(y)<K1}.  (If this set is empty ,  then the 
estimates under  (6) below are unnecessary.) We know tha t  ~(y) has well-defined 
endpoints  on ~(R f3 D) = E  1 U E 2 U E 3 U E~, where 

E l = t h e  graph of y=/(x) ,  for -KI<~x<~K1, 

E~ = {x = - K~,/(  - K1) < y < 3 K 1 }  , 

E ~ = { - K I  <x<~K 1, y=3K1} and 

E a = {x = K1, / (KI)  < y < 3K1}. 

I t  is clear t ha t  if yoE Uo, then both  endpoints  of Y(Y0) are si tuated on E 1. Let  us 
s tudy  this case a little further. We know tha t  x'(s) # 0  at  P = (0, yo), 1 where (x(s), y(s)) 
are coordinates along ?(Y0). We can assume tha t  Y is oriented in such a way  t h a t  

1 This follows from dv/dy~O on U~  U 0. 
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x'(s) >0  at (0, Yo)- Now we want to show that the endpoint/or decreasing s is situated 
at a point (xl, / (Xl)  ) with x 1 <0 and the endpoint /or increasing s is situated at (x2,/(x2) ) 
/or some x 2 > 0. (See Fig. 12.) I t  is sufficient to prove the result for ~+. Now v is con- 
stant along ~(Y0), and thus it follows from property D of U I , ,  that  ~+(Yo) cannot 
meet the segment AP. Since ~(Y0)<K1, and since the distance from any point on 
A D  to E 1 is >K1, it is clear that ~+ cannot meet the segment AD(*). I t  remains 
to show that  ~+ cannot meet the (open) segment BP. But this follows from the con- 
vexity of ~(Yo), if we note that  v'(yo)>0 implies that Y(Y0) turns its concave side 
upwards at P. 

This proves our assertion regarding the endpoints. Next, we will prove that  
the whole curve ~(Yo) can be represented by the graph o/ a/unction y -g(x ) ,  where 
g(x) E CI[Xl, x2] , and g(xi) :/(Xl) , g(x2) =/ (X2) .  

I t  is obvious that ~(Yo) can be represented as y=g(x) in a neighbourhood of 
P = (0, Y0), and that g'(x) is increasing. Let X be the greatest number, such that ~+ 
can be represented by y =g(x) on (0, X). Obviously, we need only consider the case 
limx-.x_0 g'(x) = + ~ ,  Y =limx_.x_0 g(x) >/(X). The means that ~+ has a vertical tan- 
gent at Q=(X,  Y). But then the set g(x)<y<3K1, 0 < x < X ,  is a domain ~, con- 
taining (x(sQ § y(sQ-~e)) for e small enough, and ~,+ cannot meet the boundary 
of this domain (compare the reasoning above). But this contradicts the fact that  
the endpoint of ~,+ lies in the exterior of ~2. Hence limx-.z o g'(x) < ~ ,  and it is clear 
that  limx~,x o g(x)=/(X). Write x2=X. The same reasoning as above leads to a 
number x 1 < 0 with analogous properties. 

Now we claim that the statements regarding the endpoints of ~(Y0) and the func- 
tion representation of Y(Yo) are valid also for y(Y0), if Yo E U and Y0 <Y0. First of all, 
r(Yo) must be contained in ~(Yo)= ((x, y) lxl <x<x2,/(x)  <y <g(x)}. Therefore, the 
endpoints of y(Yo) lie on E 1. Now, all the above arguments regarding ~(Yo) apply 
to ~(Y0) except one, which is labelled by (*). But that argument is not needed, 
in view of the inclusion ~,(y0)c ~(Y0). 
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Fig. 12 

Consequent ly ,  the  above  resul ts  are  va l id  for 7(Yo) if yoE{ylyEU, y < s u p  U0}. 
F r o m  now on, we denote  b y  Yo an  a r b i t r a r y  number  in this  set. 

I f  we consider  aga in  the  funct ion  represen ta t ion  of ~(Y0), then  we have  

f f (Xi)  ~ ' ( X I )  < g ' ( X 2 )  ~ f f ( x 2 ) .  

This means  t h a t  the  to ta l  cu rva tu re  O(yo) of ~(Yo) is a t  most  K~(x 2 - x i ) ~ ,  which gives 

O(Yo) <~ Ks a(Yo) ~. 

Next ,  we wan t  to  es t imate  the  measure  of 

~(yo) = {(x, y) lx, <x  <x2, /(x) < y  <e(x)} .  

Since g"(x)>0, we have  

/ (X) ~ ~(X) ~ g(Xi)  -~ X --  X 1 (~(X2) __ g (Xi )  ) = ~(X). 
X 2 - -  X 1 

Hence  

mf~(yo)= (g(x)-l(x))dx<~ (l(x)-/(x))dx<~2(x2-x~) m a x  I/(~)1. 
1 ~ X I ~ X ~ X 2  

B u t / ( 0 )  = 0 ,  and  if we wri te  ~ = a r c t g  (/'(x)), t hen  

It'(x) I = ItJ~l < 4 / ~ - I ~ 1  < 4 / ~ .  K~I~I ~. 
Hence I/(=)1 < [4/~(1 + Z)]Kslxl~< This gives 
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m~(yo) <~ 8. K~(x 2 , Xl)2+a ' 
7~ 

and since (x2 - xl) < ~(Y0) we get 

m~(yo) <~ 8.  K2(~(y0))2+~ 

(These are the estimates announced immediately after the s ta tement  of the theorem. 
Note  tha t  the si tuation is similar to tha t  in Fig. 10, A.) 

(4) Under  point  (1) we established a mapping v =  I grad u(0, y)] f rom an open 
subset U of yc<<.y<~yA to  an open subset V of m~ +e  ~<v~<M. The intervals in U 
and  V are in pairwise correspondence, and  v(y) is an increasing function, considered 
on U. Further ,  m V = M - m  x-e .  The set U 0 was introduced in point  (3). Pu t  Y =  
sup U o. I f  Y E U, we remove it f rom U, and  all the properties of U mentioned above 
remain true. Thus, in any  case, Y will separate U into two parts, U x with y > Y 
and U 2 with y <  Y. At the same time, V is separated into VI=v(U1) with v>v(Y)  
and V~=v(U2) with v<v( Y). Clearly, m V I = M - v (  Y) and m V 2 = v ( Y ) - m l - e .  

(5) The next  step is to estimate log [M/v(Y)]. Let  us write U I =  [J~I~, and  
I:=(a~, by). Let  G~ be the set covered by  7(y) for yEI: .  Clearly, G v is an open set, 
and  hence measurable. As in the proof of Theorem 5, we change to coordinates 
(s, v), where s is arc length along 7(y) ( s -O at  (0, y)) and v =  [ g r a d u [ .  The set Gp 
corresponds to a set of the form v(av)<v<v(bv) , q)(v)<s<ViZ(v). Evident ly ,  ~F(v) 
is lower semicontinuous, ~v(v) is upper  semicontinuous, and ~F(v)-~v(v)=~(y), where 
v =v(y).  I t  follows from the semicontinui ty tha t  there are two sequences of step 
functions {~F~(v)}, {~vn(v)}, the first one increasing and the second decreasing, such 
tha t  ~F~(v)S~F(v) and ~(v)" -~(v)  on v(a,)<v<v(b,) .  Further ,  we m a y  assume tha t  
r and ~F~ have the same points of discontinuity.  Consider then a domain G~.n of 
the type  v(a~)<v<v(b~), q~n(v)<s<~F~(v). From the reasoning in the proof of Theo- 
rem 5 it follows tha t  

mG~ n ~ f|'(bp (~F~(v)- q%(v)) 2 dv, 
�9 ,j v(av ) V " 0 

where 0 is some fixed bound for the total  curvature  of each streamline in question. 
We have shown in point  (2) tha t  we can take 0 = 3~. Hence 

l fV(b~,) mG~, ~ >~ (T,(v)  - cfn(v) ) e dv 
,] v(av ) V 

But  mG~.n <~mG v, and a passage to the limit gives (by Levi 's  theorem) 

mG~ >~ 3~ Jr(%) ! (~F(v) - of(v)) 2 dVv - 3~ J~(a~) ~ v "  

According to the definition of U o and U1, we have ~(v)>~K 1 for vE U 1. Hence 

v(b~) mG~ > _K~ log - - .  
37e v(a,) 
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Since the sets G~ are disjoint and contained in R N D we get: 2~ mG~ <~m(R n D)<~ 7K~. 
Finally, we arrive at  

M = E log v(b~) 
log v(Y) ~ v(aa <<.21~. 

(6) The remaining difficulty is to estimate log [v(~Y)/ml~-~ ]. This is done by  
means of the estimates tha t  were derived under  (3) above. There, we considered 
an  arb i t rary  y0E U s and proved tha t  ~(Yo) can be represented by  the graph of 
y =g(x)E Cl[xl, xe], and g(xl)=/(Xl), g(x~)=/(xe). We also est imated O(yo) and m~(yo). 
Besides the set ~(Yo), we introduce ~o(y0)-the set covered by  all y(y), for yE U s 
and  y <Y0. Clearly, co(y0) = ~(Y0), and  hence 

m(~o(yo) ) ~< 8 K~(:c(y0))2+~" 
7~ 

Let  H v be the set covered by  Y(Y) for yEI:', where I~'=(c,, d,)is an open interval 
in U s N {YlY < Yo}. By a reasoning, similar to tha t  used above, we have 

r, (~)  a(v) ~ 
mtL > .1vI(c~) v~O(v) dv. 

Here, O(v) is the total  curvature  of the corresponding streamline, and we have from 
(3): O(v) <~K2~(v) ~.. (Sometimes ~, 0, etc. are writ ten as functions of y and sometimes 
as functions of v; however, this should not  cause any  confusion.) 

This gives 
I ~('~P v2 ~dv 

mH~> K2J~(~) ( ) V" 

Now eo(yl)= U H~, where the union is formed with all H ,  as described above. (H,  
corresponds to an  interval in U s N {YlY <Yo}.) Since the sets H~ are disjoint, we get  

m( U U') >~ ~ ~ j v(c~) 

The intervals (v(c~), v(dv) ) in V 2 c o v e r  (m1+8 , v(Y))  except  for a set of measure 
zero. Therefore, we can write 

m(w(yo)) >~ - -  K2j,~,+ a(v) 2 adV,v with vo=v(yo). 

If  we pu t f l (v )=~(v )"  , w e g e t  

2+4 

fro~ (V) dv i+~ fl v < K~m(o)(~o)l <S~K~(fl(vo))~ 

for almost  all v 0 o n  (m 1 +~ ,  v(Y)) .  Further ,  ~ ( y ) < K  1 V2 for all y E U s. This is clear, 
since [dy/dx] ~< 1 on y(y) and x 2 - x  I < K  1. Application of Lemma 4 then gives 
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log v ( Y )  ~< (2 § ~)4K~ (K~ 1/2) 2~. 
m 1 + e ~ 

Simplification gives: log [v( Y)/m 1 + e] ~< (8K~/~t) (K1) 22. 
(7) Combination of our estimates gives, after making ~ tend to zero, 

K 2 
log M1 ~< 2 1 ~ +  ~ (K1)2a. 

m I 

Obviously, this holds also if we write m = infz ] grad u ] instead of m 1. This completes 
the proof of the theorem. (Phew.) 

Corollary. Suppose that the region D can be written as D = (.J N D,, where each D v 
satis/ies the conditions o/ Theorem 10. Suppose also that u is a nonconstant solution 
o /A(u)  = 0  in D. Then ]grad u[ is bounded away/rom zero in D. 

Proo/. This follows immediately  from Theorem 10. The result means tha t  Theorem 
10 is extended to a class of (not all) domains with corners (or even cusps). However ,  
in these cases, the angle of the corner (measured in D) is greater than  ~. 

Remark. Roughly  speaking, Theorem 10 says tha t  for a nonconstant  solution u 
on a smooth  domain, [grad u [ is bounded away  f rom zero. However,  [grad u [ 
need not  be bounded from above. This can be seen from the example u = arctg (y/x) 
on D :  ( x - 1 )  2 §  Further ,  there are domains with corners for which the theo- 
rem is not  true. This is shown by  the following example. 

Example. Consider a Cauchy problem for A(u)=0.  We write the equat ion as 
uxx = ( - 1/u~) (2uxuy Uxy + u~ u~y) and prescribe u, u~ on the positive y-axis by  u(0, y) = 0, 
ux(0, y ) = y .  

Take an  arb i t rary  Y0 > 0. According to the Cauchy-Kowalewski  theorem there is 
a solution u(x, y) = ~ . n = 0  a x m" "n m.~ (Y--Yo) , where the series converges normal ly  in a 
neighbourhood U of (0, Y0). We m a y  choose U as a circle with its center at  (0, Y0). 
:Now take an arbi t rary  Yl on (0, Y0). Pu t  ,t = (Yl/Yo)(0 <~t < 1). B y  the t ransformat ion 
x' =x/]~, y' =y/2, U is mapped  onto a circle U 1 with center at  (0, Yl). (Fig. 13). The 
funct ion ul(x , y)=~2u(x/X, y/,~) is analyt ic  in U1, satisfies A(ul)=0,  and we have 

8x/x_o=~2ul  O, .~=~  . ) . ~ = y .  

Hence,  ul(x , y) is a solution of the same Cauchy problem. 
I f  Yl is allowed to va ry  over the interval 0 < Yl < Y0, then the corresponding circles 

U 1 will form a domain with a corner at  the origin. I f  we can show tha t  two function 
elements of this type  agree on their common domain of definition, then we have 
the desired counterexample,  since limy_~+0 I grad u(0, y)] =0 .  

Consider then two function elements (ul, U1) and (ul, U1)- Clearly, all derivatives 
of u 1 and ~1 agree on the par t  of the y-axis where both  functions are defined, and 
now the result follows from the uniqueness of analytic continuation. 
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Fig. 13 

9. A theorem on the boundary value problem and some consequences  

This section treats  the Dirichlet problem for our differential equat ion A ( u ) = 0 .  
The discussion is admit tedly  ve ry  incomplete. To summarize,  it is proved tha t  a 
solution of the Dirichlet problem is unique, if there is any,  and a few instances, 
where there are no solutions, are also described. 

Theorem 11. Let D be a bounded domain and let u(x, y), ~(x, y) be /unctions in 
C2(D) N C(D). Assume that A ( u ) = A ( ~ ) = O  in D. Then we have, /or (x, y ) E D ,  

min (u - ~) <~ u(x, y) - ~(x, y) ~ max (u - ~). 
OD OD 

Proo/. Clearly, it is sufficient to prove tha t  

max  [ u - ~  I = m a x  ] u - ~ [ .  
OD 

Assume then tha t  max~ I u -  fi ] is taken at  P 6 D. Then (grad U)p = (grad fi)p, and 
according to Theorem 6, we m a y  assume tha t  both  are non-zero. Consider then the 
case where grad (]grad u I ) = g r a d ( [ g r a d  f i ] ) = 0  at  P. Here, u and ~ have the same 
streamline through P.  I t  is a straight  line, and we have u -  fi = constant  along this 
line. Since this line must  meet  ~D, the result is proved in this case. 

Therefore we m a y  assume, for example, tha t  grad ( I grad u I ) 4 0  at P .  This means  
tha t  the streamlines of u in a neighbourhood of P belong to the curved type  and  
also tha t  u 6 C ~~ near P .  
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Now we employ the well-known method of deriving a differential equation satis- 
fied by  eo = u -  ~. Compare [2], p. 54-55. 

2 u~ u ~  + 2 u~ u u u ~  + u~ uy~ - O, 

Ux Uxz § u~ uyy = O. 

Write A =u~,  B =u~uu, C =u~, ~ = ~ 2 ,  etc. Subtraction then gives 

A (u~x - ~ )  + 2B(u~y - ~%) + C(uuu - ~uu) + ~t~(A - f l )  + 2 ~ ( B  - B) + ~%(C - C) = O. 

Here, A - ~  = (uz -~tz)(ux + ~tz) =w~(u z + ~ ) ,  
B - B  = (u~u~ - ~ u y )  + (~t~u~ -~txa~) =~o~uy +o~t~ ,  
c -  0 . . . . .  ~(u~ +~) .  

We get the equation 

Aeox~ + 2B(o~ + C w ~  + De% + Ewy = 0, (1) 

where D = ~ ( u z  + ~ )  + 2~z~ u~ 

and E = 2 ~  z + ~yy(uy +~y). 

Now, we transform the equation (1) to canonical form in a neighbourhood of P 
(Compare [8], p. 49). We change to new coordinates (2, ~), and assume tha t  the 
mapping (x, y )~ (~ ,~ )  is one-to-one and in C ~, as well as the inverse. To obtain 
the canonical form, we assume tha t  u ~ + u y ~ = 0 .  Such a function ~(x, y) is, for 
example, ]grad u]. The equation (1) will then be transformed into (we omit the 
calculations), 

~2~2 (Vu �9 V~) 2 + v~ ~ -  ( A ~  + 2 B ~  + C~:~y + D ~  + E ~ )  

~eo A + ~ ( ~ + 2 B ~  § C ~  § nzlz § E~]~) = 0. (2) 

Here, Vu=(uz,  u~), V ~ = ( ~ ,  ~]u). For ~(x, y), we can take a linear function ~]= 
o~x+fiy, for which zcuz(P ) +f iu~(P)#0 ,  or, we can also take z l =u(x ,  y). Now we must  
analyse the coefficient for ~eo/~ in (2), evaluated a t  the point P. From ~ : ~  § u ~  = 0, 
we get 

U x ~  + u~$~ = - ( u ~  + Ux~) ,  
u ~  + u ~ ,  = - ( u~$x + u ~ ) .  

Multiplication by u~, u~, respectively and addition gives 

A ~ + 2 B ~  - -  ~ + C ~  = Ux ~ + 2 Ux % ~ + u~ ~ 

= - (u~ ~ ux + Ux~ ~ u~ + u ~  ~ %  + u ~  ~ %). 

Since grad u and grad~: are orthogonal, we m a y  write ~z=2g~, $~=-/~gx, with 
X = __+ ] grad el/]  grad u I . Then the above expression is reduced to 

2 § 7~yyUx,l~y - -  ~xxT~xUy) .  ,~(u~ u~ - u ~  ~ 

At P, grad u = grad ~, and we obtain 

D~ z + E$~, = ,~[Ou~ - Euz] = 2),((ezx~z4 ~ § " -e ~ ~2 Ux~ U~ - u~  Ux - ~ ~ ~ ) ,  
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Fig. 14 

which is the same expression as above, except that  u is replaced by  ~ and it is 
multiplied by ( - 2 ) .  With the aid of the formulas for the curvature of a streamline 
of u or fi, derived in Section 2, we get 

ul A ~  + 2 B ~  + C~y + D ~  + E ~ =  ,~{Igrad u adOds - 21grad ~ ad0 
k 

a/dO 2 d0~ which holds at P .  =algradu I Z -  

Here dO/ds, dO/dS, are the curvatures of the corresponding streamlines. 
Next,  we claim tha t  this expression is not zero. 
To see that,  assume that  dO/ds =2(dO/dg) 4=0. Then the streamlines of u, ~ have 

the same tangent vectors and parallel curvature vectors at  P (See Fig. 14). 
Put  M =  I g radu(P)  = g radu(P) l .  Along the "open" arcs RP, PQ, we have 
d~/dg = M, du/d~ <~ grad u < M, and (d/d~) (u - fi) < 0, if R, Q are sufficiently close 
to P. I~owever, this contradicts the fact that  ( u - ~ )  has a local extremum at  P. 

This proves that  the coefficient of 0eo/0~ in (2) is # 0  in a neighbourhood of P. 
Now we can choose the function ~(x, y) and the sign of )~ such that  the coefficient 
of aco/0~ is negative. Then the equation (2) takes the form 

F(~,~)0%~ 0~ 0~ @~ a~: ~a(~'v)~ =~ (3) 

where the functions F(~, ~), G(~, v/) are continuous and F(~, V) >0.  
In  the (~, ~)-plane we consider a rectangle R : ~e-(~ ~< ~ ~< ~p, ~e-(~ ~<~ ~<~P + 8. 

At the point (~p, ~p), ~o takes an extremum which is a positive maximum or a negative 
minimum. From the maximum principle for parabolic equations ([5], p. 34, Theo- 
rem 1) we infer that  o~ =cons tant  in R. 

Consider the streamline 7 of u through P. I t  belongs to the curved type and it 
follows from the above reasoning that  the subset of y, where [ m I takes its maximum, 
is open. But  this set is also closed (possibly after addition of the endpoints of y). 
This proves tha t  r = constant on ~, which completes the proof. 

Clearly, this theorem contains the two-dimensional version of Theorem 9 in [1]. 

Theorem 12. In  a bounded domain, there is at most one solution o/Dirichlet's prob- 
lem/or A (u) = O. 

Proo/. This is a consequence of the previous theorem. 
With the aid of this uniqueness theorem and Theorem 6, we can easily construct 

examples for which the Dirichlet problem has no solution. 
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Theorem 13. Consider the Dirichlet problem /or A ( u ) = 0  on a bounded domain D 
and with given continuous boundary values q~(x, y). Suppose that D is symmetric with 
respect to the origin (that is: (x, y) E D whenever ( - x ,  - y )  E D), and suppose that the 
origin belongs to D. Finally, we assume that q~(x, y ) = ~ ( - x ,  - y )  /or all (x, y)E~D 
and that q~ ~ constant.  

Then the Dirichlet problem has no (classical) solution. 

Proo/. If  there was a solution u(x, y), then u ( - x ,  - y )  would also be a solution. 
F rom the preceding theorem it follows tha t  u(x, y )=-u( -x ,  - y ) .  Differentiate with 
respect to x and then pu t  x = y = 0 .  This gives ux(0, 0 )=0 ,  and in the same way  it 
follows tha t  uy(0, 0 )=0 .  

Hence the origin is a s ta t ionary  point  for u, which means tha t  u(x, y)---constant.  
This contradicts  ~ ~ constant ,  and the theorem is proved. 

Example. Let  D be a circle with its center at  the origin, and let ~(x, y) = x  2 ,~§ n+l, 
where m, n are non-negative integers. Then our Dirichlet problem has no solution. 
The same is t rue for q~(x, y)=x2my en, if m, n are non-negative integers and m §  >0 .  

We mention another  result of the same type:  

Theorem 14. Let D be symmetric with respect to the y-axis and let (0, Yl), (0, Y2) be 
two points on ~D such that (0, y )ED ]or yl <y<y2. Further, let q~(x, y )=q) ( - x ,  y), 
~(0, Yl)=~(0, Y2) and q~ :~ constant.  

Then the Diriehlet problem/or A(u) = 0  has no solution. 

Proo/. I f  there was a solution u(x, y), then u ( - x ,  y) would also be a solution, 
which means tha t  u(x, y )=-u( -x ,  y). This gives u~(0, y ) = 0 .  Hence u~(0, y ) 4 0 ,  and  
this contradicts ~(0, yi) =q~(0, Y2)- 

I n  connection with the boundary  value problem, it should be mentioned also tha t  
Theorems l, 2 and 7 in [lJ give some information on a possible solution of t h a t  
problem. 
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