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On the partial differential equation
wu,,+2u,uu, +4ulu, =0

By GUNNAR ARONSSON

1. Introduction

This papér treats various aspects of the partial differential equation

(8u)282u g Oudu &u (8u)282u_
ox) oa® T oxoyoxoy \oy) oy

This equation was derived in [1] where an extension problem was studied, and it
turned out that (1) is closely connected to this extension problem (Theorems 6, 7
and 8 in [1]). The equation is quasi-linear and parabolic (4C —B*=0), and is not
of any classical type. The results from [1] will be used very little in this paper. As
far as the author knows, the equation (1) has not been treated before, apart from
the paper [1].

Let u(x, y) be a solution of (1) and let C be a trajectory of the vector field grad u.
Then it is proved in Section 2 that O is either a convex curve or a straight line, and
this result, together with a formula for the curvature of C, is fundamental for the
later sections.

In Section 3 we consider two particular classes of solutions to (1).

Section 4 is devoted to a discussion of the regularity of solutions to (1). It turns
out that a solution for which the trajectories of grad u are convex curves, is infi-
nitely differentiable.

In Section 5 we consider some differential-geometric aspects of ().

Section 6 contains an estimate for |grad «|. A consequence of this estimate is
that a nonconstant solution of (1) has no stationary points.

In Section 7 we consider solutions of (1) outside a compact set and solutions in
the whole plane. The latter ones turn out to be linear functions only.

In Section 8 we consider the behaviour of |grad «| near the boundary of a region.

Section 9, finally, contains a few results on the Dirichlet problem for (1).

In this paper, we will only consider classical solutions of (1), that is, solutions in
C?. We will not discuss extensions of the results to the case of more than two inde-
pendent variables.

(1)

2. Some preliminary considerations

A lemma on the curvature of a streamline
We introduce the notation
A@)=D2D,,+20,0,D,, + DD,
It is easy to see that
A(®) =} grad {(grad ®)?}-grad ©. (2)
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The meaning of A(®) =0 is therefore that |grad ®@| is constant along every trajectory
of the vector field grad @. Such trajectories will be called streamlines in the sequel.
Hence © is a linear function of the arc length along each streamline. It also follows
from (2) that A(®) is an orthogonal invariant. Clearly, any function @ for which
|grad @| is constant, satisfies 4(®)=0. This particular class of solutions will be
discussed in Section 3. These functions correspond to unique solutions of the exten-
sion problem in [1] (Theorems 3-5).

Consider a function ®(z, y) €C? in a neighbourhood of a point P where grad @ +0.
Introduce curvilinear coordinates u =® and v=a function which is constant along
each streamline of ®. Assume also that v €C? and grad v=0. This gives (locally) a
one-to-one mapping (z, y) <> (u, v) for which J =d(u, v)/d(zx, y) =0 and

U U+ Uy v, = 0. *)
Now we have the formulas z, =J,v,, ¢,= —J 4, y,= —J,v, and y,=J,u,, where
J,=1/J. The relation (*) can thus be written
Ty Xy T Yu Yy = 0.

Clearly, a streamline of « in the xy-plane is given by v =-constant, and arc length
along such a curve is given by

U
f Va2 + 42 du.
“p

Now the condition 4(®)=0 means that this is a linear function of U which is equi-
valent to 9/6u(a? +y%) =0, or &, %, + ¥y Yuu =0.
A careful analysis of the preceding reasoning leads to the result:

Let there be given two functions x(u, v), y(«, v) in C? for which 22 +y:>0, o2 +y% >0
and which satisfy the system

L%y +Yu Yy = 0,

Then (each function element of) the tnverse function uw=u(x, y) satisfies A(u)=0.

Example. The functions x =v cos u, y =v sin « satisfy the system and u =aretg (y/x)
satisfies A(u)=0.

Consider again a function %(x, ) € C? in a neighbourhood of a point where grad u ==0.
A streamline of u is given by u,dx —u,dy =0, where the coefficients are in C'. Any
streamline is determined by an initial point and it is a curve in O2 with continuously
varying curvature. The same holds for the level lines of %, which are governed by
w dx +u,dy=0.

The curvature of a streamline is given by

1 0 0 Uy . .
|grad «| e “ oy aret u, |grad uf* (U Uiy = U Uy Uiy U Uy Uy Uy Uiy)

1
= 2—|ngu|3grad {(grad u)2} S Uy, Uy )

Here, the last two expressions hold also at points where u,=0.
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For the level lines, we have

1

1 0 0 u ) .
orad i\ ~ %o T %o —F )= -2 +udu

1 2
_— — A(u)).
grad u|3((grad u)?*Au (u))
If « is a solution of A(u)=0, then, clearly, the curvature of a streamline can be
written
+ |grad {(grad u)*}| _ +|grad (|grad )|
2|grad u|* |grad u| '

Lemma 1. Let u(z, y) satisfy A(%)=0 in a domain D and let grad w0 in D. If C
18 a streamline of w in D, then there are two alternatives:

L. The curvature of C is =+ 0 at all points of C.
II. C is a straight line.

Consequently, the streamlines of w are convex curves and straight lines.

Proof. 1t is sufficient to prove the following assertion: If the curvature is zero at
A €C, then there is a (1-dimensional) neighbourhood of 4 along C where the curva-
ture is zero. Introduce a coordinate system such that x,=(u,), =0 and consider a
neighbourhood U of A such that u,+0 in U. We consider the streamlines as solu-
tions of an initial-value problem dy/dx =®(z, y), ¥(0) =y,, and we write y(x,) =y, =

Y%1(®1, Yo)-
Since A(u)=0, we have, for fixed z,,

‘p(yo) = Igra’d % | ©, 50 — ]gra’d U I (T1, Y1) =IP.(y1)

If «, is fixed and |2,| is small enough, then
0
3? Y1(®1,Y,) = exp [".(Ill O, (z,y(x))dz] >0
)

([3], pp. 25-27; [9], pp. 73-74).
Clearly, we also have y,=y,(y,) and dy,/dy, is finite. Therefore

d'¥ |dy, =do|dy, - dy,/dy,.

Here, dp/dy,=0 for y,=y, according to our formulas for the curvature. Hence
d¥W'/dy, =0 at y, =y,(x,, y,) which means that |grad (|grad u|)| =0 at (1, ¥, (2, ¥.))-
This completes the proof.

At the same time we have proved that if grad (|grad %|) =0 at a point of a stream-
line C, then this relation holds at all points of C, which is then a straight line. If
we consider the hodograph mapping p=u,, ¢=u,, it follows that D(u)=d(p, q)/
d(z, y) =4, —u2, <0 on C. Now let C be a curved streamline and let (r, 0) be
polar coordinates in the hodograph plane. Then grad r is orthogonal to € and not
zero, and grad § has a nonzero component along C. Hence D(%)=0 on C.

Along a curved streamline O, grad (|grad u|) and D(u) are both monzero, and
grad (|grad u|) points to the concave side of C.
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X

Fig. 1

If the streamline C is a straight line, then grad (|grad u|) and D(u) are both zero
along C.

Tt should be noticed that D(u) =1, u,, —uZ, <0 always. This means that the surface
z=u(z, y) has nonpositive Gaussian curvature. It follows easily by considering
UZ Ugy + 20U, U, Uy, +US U, aS & quadratic form in u, and w,. Finally, we observe that
a streamline C' cannot terminate inside D, since |grad «| is constant on C.

Example. We shall illustrate these things by the Cauchy-Kowalewski theorem
((4], [6], [8]). We write

Uz = — ’ll% (2u1uyury + uzuyy)

and prescribe  and », on the y-axis, in a neighbourhood of 4 —=0. Choose, for example,
u(0, y) =0 and u,(0, y) =¢(y) >0, where @(y) is analytic for |y| <d. Then there is
an analytic solution «(x, y) in a neighbourhood of 2 =y =0. Let ¢'(0) =0 and ¢'(y) +0
if ¥ ==0. Consider three cases:

1. ¢(y) has a maximum at y=0.

2. ¢(y) has a minimum at y =0.

3. ¢'(y) does not change sign at y=0.

In each case, the x-axis is a streamline and all other streamlines are curved. The
streamlines are sketched in Figs. 1-3. In Fig. 3, it is assumed that ¢'(y) >0 if y 0.

1
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\\/

Fig. 3

. . 2
3. Two particular classes of solutions to uiu, +2u, u, ., +u,u, =0

In this section we will make a few remarks on the class of functions « for which
|grad u| is constant. We will also determine all harmonic functions « which satisfy
A(u)=0.

It follows from the identity A(u)=1 grad {(grad u)?}-grad « that those functions
% €C?, for which |grad #| is constant, constitute a subclass of all solutions of 4(u) =0.
This is natural from another aspect: among all functions u(x, y) € C?, those which
are absolutely minimizing, are characterized by the differential equation A(u)=0
([1], Theorem 8). A subclass of all absolute minimals are those functions % which
are unique solutions of some extension problem of the type considered in [1]. And
the condition for this is that w€C! and that |grad u| is constant ([1], Theorems
4 and 5).

The differential equation |grad «| =constant is treated in [4], pp. 88-91 and [6],
pp. 40—43. It is well known that if the surface z =u(x, ¥) is the tangential developable
of a helix with its axis parallel to the z-axis, then |grad u|=const. Other basic
types of solutions are linear functions and functions of the form

AV(” - xo)z +(y— :’/o)2 +B.

There also exist (even infinitely differentiable) solutions whose restrictions to
different subdomains belong to different basic types (namely the first and the second).

It should be noticed that a C'-function u, for which |grad | is constant, need
not be in €2, This is shown by the function

x for z>0,y<0,

z, -
“ y){ Va2 +y? for «>0,y>0.

Here, 0%u/0y? is discontinuous across the z-axis. However, we have the following
result:

Theorem 1. Let u(x, y) €C*(QQ) and let |grad u| =M =constant in Q.

Then oufox and ou/oy satisfy Lipschitz conditions on each compact subset of .
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Fig. 4

Proof. We know from Lemma 1 in [1] that the streamlines of « are straight lines
without common points in €. Consider a compact set K< and put d =the distance
from K to Q. Take two points P, Q€K such that d,=P@ <d (Fig. 4). Let P be
fixed and @ variable in the circle PQ <d. Clearly, grad »(P)-grad %(@) 0, and from
the continuity we have grad u(P)-grad «(Q)>0. Hence the angle between grad u(P)
and grad «(Q) is equal to the smallest angle « between the corresponding stream-
lines, and we get

d d
o < arcsin ;ll <gj

Hence |4 (P) — u (@) < M- a<(Mn/2d)-d,. If P@>d, then
[uo(P) —u Q)| <2 M < (2M/d) - dy.

It follows that u, satisfies a Lipschitz condition with the constant 2M/d, and
similarly for w,.
Note that », and u, need not satisfy a Lipschitz condition, or even be uniformly

continuous in €). This can be seen from the example u = Va2 +y?in Q: (x—1)2+y2<1.
The differential equation

Awy=vlu,, +2u,u,u,, +uity, =0 (1)
has a formal resemblance to the differential equation of minimal surfaces,
(1003 ) ey — 220y Uy + (1 + 67 )2, = 0 (2)
and addition of these equations gives [1 4 (grad u)?](u,, +u,,) =0, or
Au =0. (3)

It is elear that a function u(z, y), which satisfies any two of the differential equations
(1), (2), and (3), also satisfies the remaining one. We will now determine these com-
mon solutions.

Theorem 2. If u(z, y) is harmonic in a domain D and if A(w)=0 in D, then u is
either a linear function, w=Ax + By +C, or it can be written

u =D arctg %%—E
%o

400



ARKIV FOR MATEMATIK. Bd 7 nr 28

for some point (x,, y,), such that arctg [(y —y,)/(x —z,)] is one-valued and continuous
wn D,
(In particular, it follows that (x,, y,) ¢ D.)

Proof.! Write z=x+14y and let v be the conjugate harmonic function of « in a
simply connected subdomain D; of D. This gives an analytic function w(z) =u +v
in D;. We have w'(z) = 0u/ox —1(0u/0y), which means that |w'(z)| =|grad «|.

Put w'(z) =7. On a streamline of » we have v=constant and |7| =constant.

The functions w(z) and T =w’(z) map D, onto D, and D,, respectively. We assume
that D, is chosen such that w'(z)+0 in D, and such that the mapping D,—~ D, is
one-to-one. Further, we may assume that § =arg 7 is one-valued and continuous in D, .

Now the function log|v|=log|w'(z)| is harmonic in D;. But the inverse of
w(z), z=2(w), is analytic in D,, and hence h(w)=log |t[2(w)]| is harmonic in D,
%h|0ut + 0%h[ov? =0. Since oh/ou =0, we get 0%h/ou? = 0h/(0u dv)=82hjev? =0 in D,
Hence h=c¢;+c,v, with real constants ¢y, ¢,. From the Cauchy-Riemann equations
we get 80/ou= —c,, 80/év =0, which gives 6 =c,—c,u, and log T=h +10 = (¢o +icy) —
2y (u+w) =Cy—ic,w in D,

Hence v=0C, exp (—ic;w), where C;=+0. If ¢;=0, we get w=C,2+C,, which
gives u=Ax+ By +C.

If ¢;+0, then dz/dw=1/C, exp(ic,w) and z—z,=0Cjsexp (ic;w), Cp=0, 2§ D;.
Taking the arguments of both members, we get arg (z —z,) =¢, % +¢.

This proves the result for D;, and the general result follows by analytic conti-
nuation.

There is a consequence of this theorem that may be of some interest.

We may interpret w(z, ¥) as a hydrodynamic potential: Consider a two-dimensional,
steady potential flow of an ideal liquid. If each particle has constant speed, then the
flow is either a uniform translation or otherwise the particles move in concentric
circular orbits with the speed Cfr, where r is the distance from the center of the
circles, and the constant ¢'>0 is common to all particles. (The speed of a particle
is the modulus of its velocity vector.)

4. The differentiability properties of solutions to u, u.+2u.u xy+ =0.

This section contains a result on the regularity of a class of solutlons to A(u) 0.
It is proved by application of the hodograph mapping which works only if «,,u,, —
s, +0. It is shown by an example that the result is false without this restriction.

Lemma 2. Let u(z, y) €C? in a region D and let A(u)=0 in D. Assume further that
grad u =0 in D and that w,,u,, —uZ, =0 in D.
Then u€C®(D).

Proof. Apply the hodograph mapping p=u,, ¢=1u,. (See [6], p. 521, or [2], p. 12.)
We have J=d(p, q)/d(x, y) =4,,u,, —us,+0. Hence the mapping (z, y)—(p,q) is
one-to-one and bleontlnuous in a neighbourhood of an arbitrary point in D. We
restrict our attention to such a neighbourhood. The functions x =x(p, ¢) and y =y(p, q)
are in C! and we have the well-known relations

9= pr; Py = '_qu; 9z = ——Jyp and P = qu'

1 This proof was suggested by Professor Bengt J. Andersson, Stockholm. The author’s original
proof is more complicated.
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Now we introduce the function (Legendre transform) ¥ =zp+yg—u. Clearly, ¥
is a C'-function of p and ¢, and

o¥
5:x+pxp+qyp—uxxp_uyyp:x’

ov
Eq_:pxq—*_quﬁ_y—‘uzxqﬁuyyq:y-

Hence ¥ is a C®-function of p and ¢, and

cx 1 1
IFP :8?):;]%::]“1&“

cx 1 1
lec:&_qg _:]pyz _:]u:ry’

_oy_1

il L,
The equation u3u,, +2u,u,u,, +u’u,, =0 is thus transformed into
G5y = 2pqWpg +p7¥ e = 0 (1)
and we get a linear differential equation in the hodograph plane. Next, we introduce

polar coordinates (r, §) in the hodograph plane. This can be done, since we have
assumed grad « 0. The equation (1) is then transformed into

l}}gg + T\F, =(.
Another substitution, p = —log r, gives
Yo =",

which is the well-known heat equation. It is known that every solution of the heat
equation is infinitely differentiable ([7], p. 314,[5], p. 74). Hence, ¥ €(U® as a funec-
tion of (g, §), and consequently also as a function of (p, ¢). Thus, x="Y, and y=",
are infinitely differentiable functions of p and g¢. It follows that p=u, and g=u,
are infinitely differentiable with respect to # and y. This completes the proof.

Remark. It will be proved later that the condition grad » +0 is always satisfied,
unless « is constant. This condition can therefore be omitted.! However, the condi-
tion wu,,u,, —u2, +0 cannot be omitted. One way to show this is to construct a func-
tion f(z, ) in C?, but not in C3, for which [grad f| is constant. This can be done
by using the geometric properties of such functions which were discussed in Section

3, but it involves some calculations and we prefer to describe a quite different
example.

1 Compare Theorems 6 and 7.
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Example. Consider a Cauchy problem for A(u)=0. We write the equation as
Wy = — 1 U3 (2u,, %y, +u2 u,,) and prescribe u and u, on the y-axis, in a neighbourhood
of y=0, by u(0, y)=0, 4,0, y)=1+%% From the Cauchy-Kowalewski theorem it
follows that there is an analytic solution u(x, y) in a neighbourhood of the origin.
This corresponds to case 3 of the example in Section 2. It is clear that the z-axis
is a streamline and that the other streamlines are curved. Along the z-axis, we have
4, =1, u, =0; further, 4(u)=0 gives %,, =0 and from w,u,, —u3, =0 we get u,, =0.
Along the y-axis we have %,>0, u,=0, and we know that every curved streamline
turns the convex side downwards. Therefore, we must have u,(z, y) >0 if >0, y +0
and w,(z, y) <0 if #<0, y+0. Since u, =0 on the zx-axis we must have u,, =0 there.
Consequently, v —x, w,=1 and %, =u,, =%,, =%,, =0 along the z-axis.

. u(x,y) for y=>0,
Form the function wu,(x,y)=
x for y<O0.

It follows from above that u, € C? and A(u,) =0. From our initial conditions it follows
that u,,, =0 and u,,,—6 at the origin. Therefore, u,,,(z, 0)+0 if 0<|z| < and
this shows that (u,),,, does not exist at these points. Hence, «, does not belong to
(® in any neighbourhood of the origin. Tt also follows that a continuation of a solution
of A(u) =0 need not be unique.

5. Application of differential geometry

This section contains a discussion of the “intrinsic” geometric properties of a
surface S: z=®(x, y) where A(D)=0.

Theorem 3. Let ®(z,y) satisfy A(®)=0, and grad ®=0. Consider the surface
S :2=0(x, y) and the projections on this surface of the streamlines of ®(z, y).
These image curves are both
asymplotic curves on S, and
helices with a common axis. namely the z-awis.
(For definition of a helix, see [10], p. 33).

Proof. The asymptotic directions on any surface z=®(x, y) are determined by
O, (d)? + 20, da dy + D, (dy)? = 0.

Hence, from A(®)=0, it follows that dy:dx=wu,:u, corresponds to asymptotic
curves. We also know that # is a linear function of arc length on each streamline
in the xy-plane, du/ds=C. From this it follows that we have, on the corresponding

space curve, dz/ds,=C/ V1 +C?=const. This completes the proof.

Remark. Suppose that @,,®,, —®%, <0 in a domain D. Then the surface S has
only hyperbolic points, and § has two distinct families of asymptotic curves. Ac-
cording to the theorem, one of these families consists of helices with a common
axis. Further, the geodesic curvature of such a curve is not zero.

The geometric features of the case ®,,®@,,—®3, =0 (where |grad | is constant)
were treated in Section 3 and the references cited there.

The condition grad ® +0 is in fact no restriction, in view of Theorem 6.

In the converse direction we have
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Fig. 5

Theorem 4. Let the surface S be in C2, and let S be simply covered by a family A
of asymplotic curves with nonvanishing geodesic curvature. Asswme now that all curves
in A4 are helices with a common axis [. Introduce an orthonormal coordinate system
such that the z-axis is parallel to [.

The surface S will then define a function z=®(x, y), at least locally, and this function
satisfies 4(D)=0.

Proof. Consider a curve O€ 4, a point P€C, and let ¢, n be respectively tangent
and principal normal to C at P. (Note that n is well-defined, since the geodesic
curvature is not zero.) Then ¢-% =0, and since C is a helix with the axis parallel
to the z-axis, we have n-e,—0. Further, since C is an asymptotic curve we have
N-n=0, where N is the surface normal. Hence, £, N and ¢, lie in a plane (the recti-
fying plane of C).

We must have |t-e,| <1 since, otherwise, C would have to be a straight line.
Because of the relation £+ N =0, this means that & -¢,=0. This shows that S defines,
locally, a function z=®(x, ) €C? and further, since grad ® must lie in the inter-
section of the rectifying plane of C and the xy-plane, it follows that C is the image
of a streamline of ®. Finally, C is an asymptotic curve, which means that
20, +20,0,P,, +020,,=0. (Compare the proof of the previous theorem.)

It may perhaps be of some interest to have another derivation of the parametric
representation that was derived in Section 2.

Consider a surface S : z=®(x, y), where A(®)=0, grad ® +0, and ®,, @, — D7, <0.
Then grad (|grad @|)+0 and we have locally a one-to-one mapping
(z, y)«(®, |grad ®|). Now we introduce parameters w, v on § by writing
w=®, v=|grad ®|. Then F =0, E=1/v* where the notation is that of [10], p. 58.
Tt also follows that I'}; =0 ([10], p. 107). From Theorem 3 we know that v=con-
stant corresponds to asymptotic curves.

Hence e=0 and the Gauss equation for g, takes the form Z,. =52, ((10], pp-
74-75, 107). If we write I'?,— B(u, v) and x=g,;(u, v), ¥ =@, v), 2=@5(u, v) =4,
we obtain

((pi)uu_B(u) 'U) ((pz)v = 07 ) =1) 2: 3.

Further, the parametric lines are orthogonal on 8, as well as their projections on

the zy-plane. Hence (¢,),(¢1). + {@s)u(@s)=0.
An argument in the converse direction leads to the following result:
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Suppose that there are given two functions ¢,(u, v), @,(u, v) in C? which satisty
(®)uw— B(w, v) (@), =0, 1=1, 2, where B(u, v) is an arbitrary continuous function.
Suppose also that

(@0 @1)o T (Pa)u@a)y =0
and (@0ul@e)o— (@1)u(Pe) +0

in the region in question.
By the relations

=@ (u,v), Y=g@yu,v), z=u

z is defined, at least locally, as a function of x and y. This function z = ®(x, y) satisfies
A(D)=0.

It is easy to see that this is identical with the result on parametric representation
that was derived in Section 2. First, if the above conditions are satisfied, then

(P0)ul@r)uu + (@P2)ul@oduu = Bu, )[{@1)ulpr)o+ (Pe)ul@a)e] = 0.

And if the conditions in Section 2 are satisfied, then the vector (z,, ¢,) { #0) is ortho-
gonal to (x,,y,) and to (%, ¥,) which means that the latter ones are parallel:
Ly = B(u5 U) Lys Yuu= B(u’ ?}) Yo

6. An inequality for |grad u|. Nonexistence of stationary points

An important feature of the differential equation A(u)=0 is that a nonconstant
solution has no stationary points. This is obtained below as a consequence of an
estimate for |grad u|. We begin with a lemma,

Lemma 3. Consider a function f(x)€C[A4, B] with f(A)=0 and f(B)=1. Then
there is a sequence of open intervals {I,} on [A, B), finite or denumerably infinite,
such that:

(1) The intervals I, are pairwise disjoint,

(2} fl)>0o0nall 1,

(3) 1’f Iv =(a,, bv): then Ev(f(bv) _f(av)) =1,

(4) if y€I, for some v, and x<y, then f(x) <f(y). (In particular, x€1,, y€I,, v=Fu
implies that f(x)+f(y).)

(5) 0<f(x)<lonall I,.

Proof. Form the function W(x)=sup,<ic, f(f). Since f(x) satisfies a Lipschitz
condition, so does ¥(z). Hence W(z) is absolutely continuous. Further, ¥'(x) is
non-decreasing. Write I=[4, B]. We may assume that max; f(x) =1 since, other-
wise, we can consider the interval [4, X], where X =min {z|f(x)=1}. The result
for this subinterval also gives the result for I. Hence ¥(4)=0, ¥(B)=1, ¥ (x)=0
a.e. and [§ V' (x)dz=1.

Now consider E={z|A<z<B,¥'(x)>0}. Let x,€E. Clearly, ¥(x,)=>f(xo),
and if we had W(x,)>f(z,), then ¥(x) would necessarily be constant in a neigh-
bourhood of =z, Hence W(z)=f(x,), and if x>z, then ¥(x)=sup;,<ic: ()
From this, and from ¥(z,)>0 it follows that f'(x,)>0. Choose a §>0 such that
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Wz, —0) <W(xy) <¥(x,+J) and such that f'(x)>0 for xy—0<z<w,+J. Choose
also a 4;, 0<d, <4, such that f(x,—6,) > (xy—0). On the interval xy—0; <z <z(+0
we thus have

fx)= sup f(t)>flay—0;) >¥(wo—08)= sup f()

zo— 0K t<z0—0

and hence W (x) =f(z).
Hence, E is an open set and ¥'(z)=f(x) on E. Write E=U,(a,, b,). We get

‘F(B)—‘P'(A)=Jj‘l’"(x)dx=fE‘I/"(x)dx=Zfby‘F’(x)dx

- f " F@yde=3 (5,) — Har)-

Hence, the assertion (3) is true, and it is very easy to see that (1), (2), (4), and (5)
also hold. This completes the proof.

Theorem 5. Let u(x, y) €C*(D) and let u2 t,, + 20, %, %,y +uyu, =0 in D. Let A, B
be two points in D such that the closed seqgment AB lies in D, and such that grad =0
on this segment. Then

lgrad w(4)|
% |grad w(B)]

AB #*
<—‘—‘ —_
7 T

where AB =the distance from A to B, and d =the distance from the segment AB to 0D.

Proof. The idea of the proof is the following: If we put v=|grad u|, then the
curvature of a streamline can be written (apart from sign)

40 _|grad o| _dv/dn
ds v v ’

where dv/dn denotes differentiation along a level line. Let us consider the function
v along some fixed level line {. Suppose that the curvature of the streamlines inter-
secting { is bounded: (dv/dn)/v <K, or dv/v <K dn. Integration gives f(dv/v) <K |dn,
or log (V4/V,)<K-L, where L is the length of {, and V;, V, are the corresponding
values of ». This is an inequality of the desired type. Now the curvature of the
streamlines need not be uniformly bounded, and the vague reasoning above does not
give anything. However, since the streamlines are convex curves (or straight lines), it
is possible to estimate the integrated curvature along (part of) a streamline. Accord-
ingly, the proof is based upon an integration of the formula df/ds=|grad v|/v.

Put M = |grad u(4)|, M,=|grad w(B)|, and assume that M >M,. Let [ denote
arc length along the segment A B, increasing towards B. Consider a sub-interval [
of the segment, with endpoints K, L, such that (d/dl)|grad u| <0 on I. Let I be an
open interval. Let {y} be the family of streamlines which intersect I. Note that
none of these streamlines can intersect I tangentially, since we would have
(d/dl)|grad %| =0 at such a point.

Suppose each streamline in {y} to be continued in both directions from I inde-
finitely or until it approaches ¢D. If E is the point set thus covered by these curves,
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N

o}
Fig. 6

then E is obviously open. Let s be arc length along the curves in {y}, for each of
these curves, let s=0 in the intersection with I, and let s and % increase in the
same direction. Compare Figure 6.

Put V)= |grad u|,, V,=|grad u|g. Let G be the subset of E which is defined
by 8, <s<Sz, Vy<|grad u| <V,. Here, 8,<0, 8,>0, and |8,]|, |S;| are both less
than the dlstance from [ to &D.

Clearly, G is open and connected. Write v = |grad | and consider first the mapping
(%, y)~(u, v) from G onto a set G in the (u, v)-plane. Clearly, it is one-to-one, and
we have

d(u,v) _

d(x,y)
This follows from A (%) =0. Since d(«, v)/d(x, y) is continuous and not zero, the same

sign must hold in all of G. Further, it follows that &, is also open, and that the
inverse mapping is also in C'. We get

d(z,y) _ +1
d(u,v) |grad u||grad v|

i +|grad u|-|grad v|+0.
v, Uy

Clearly, the sets G and @, are also in one-to-one correspondence with a set G, in
the (s, v)-plane. The mapping (s, v)—(u, v) follows the formula

U =@(v)+s-v
(v="1).
Here, ¢(v) is the value of % in the corresponding point on I. Clearly, ¢(v) €C!. Thus

| s+¢'(v)

0 1 =v>0.

Clearly, the mappings between (s,v) and (u,v) are in C*, and we get

d(@,y) _d(x,y) d(u,v) _ +1 e 1
d(s,v) d(u,v) d(s,v) |grad u||grad »| |grad »|’

S1<8<S, dsdv
mG = ldzd
ff v= ffV1<v<Vz grad ”l

Now we have
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Fig. 7

Before estimating the last integral, we choose 8;= —S, and such that, for any
point P on the segment AB, the closed circle Q, with center at P and radius S,
lies in D. Then the total (integrated) curvature of any curve in {y), calculated for
8; <8 <8,, is not greater than 27. This is easy to see, since y(P) is convex and the
continuation of y, beyond s=38,, s=8,, must meet &0, without intersecting itself.
We leave the details.

Now we can estimate mG:

dsdv Vs S: s
= f|gradv| L;d”fs,rgra‘dvr

From the Schwarz inequality, we get

Sy 2 Sa S ds
(f lds) <f |gradv|ds-f — =
5 51 5. |grad o]
Now consider [$:|grad v|ds. The formula for curvature of streamlines, Section 2,
reads dff/ds= +|grad v|/v, and since v is constant in this integral, we get

flgrad v|ds=fvdj ds—vf

ds
With the preceding inequality, we get

fs' ds >(S2—S1)2=2;S’_%
s lgrado|” 2m-v @

do

<
s ds <2mv.

and finally mG > (283 /7) log (V,/V,).

Now, if dv/d] <0 on the whole segment AB, or on a finite number of portions of
A B, then we can apply the previous reasoning to the whole segment A B or to each
of these portions, respectively. However, we do not know whether (d/dl)|grad u|
changes sign a finite or infinite number of times on 4B, and therefore, we must
apply Lemma 3 to the function |grad »| on the segment AB (with obvious modi-
fications). This gives a sequence of intervals I, and we also get correspondmg sets
G,. Note that 8,, S, are defined 1ndependently of I. From the condition 4 in the
lemma it follows that {@,} are pairwise disjoint. Write p,=inf; |grad u|,

408



ARKIV FOR MATEMATIK. Bd 7 nr 28

—=sup;, |grad u|. Then all p,,q, are positive and the preceding estimate gives
mG’ = (2853/7) log (¢,/p,) and m(UG,)>(28%/n) T, log (g,/p,). Now the intervals
(p,,, q,,_) are disjoint, they are sub-intervals of (Ml, M) and X,(q,—p,)=M —M,.
With the aid of Levi’s theorem we infer from this that X, log (¢,/p,) =log (M|M 1).
Hence we arrive at

Now the distance from a point in U, G, to the segment AB is at most §,, which
means that m(U,G,) <28,- AB +n83. Hence

lo —J~l[— ﬂAB%-E
8,8, 2

Here, S, can be any positive number less than d, and if we let 8, tend to d, then
we obtain the desired estimate.

It would not be difficult to formulate and prove a corresponding estimate for
any two points 4, B in D that are connected by a smooth curve in D instead of
a straight segment. We omit these details.

Theorem 6. Let u(x, y)ECXD) and let w3 u,+2u,u,u,, +usu,, =0 in D. Then
grad u 30 in all of D, unless u is constant in all of D.

Proof. This is an immediate consequence of the previous theorem.

Theorem 7. Let u(x, y) €C? in a domain D and let A(u)=0 in D. Assume also that
Ugg Uy — Uy %0 in D. Then u€0®(D).

Proof. This follows immediately from Lemma 2 and the previous theorem.

7. Solutions in a neighbourhood of infinity. Global solutions

It is possible to find all solutions of A(%)=0 in a neighbourhood of infinity, that
is, all functions satisfying 4(«) =0 outside some compact set.

Theorem 8. Let F be a compact set in the plane (R?) and let G be the convex hull of
F. Further, let A(u)=0 in R?—

Then |grad w| =constant in R2—@, and only these cases are possible:

1. u=Ax+ By+C in R?2—@Q.
2. There is a simple, closed curve T", with continuous curvature, and enclosing a
region H> @G, such that

u(R) =D-d(R, ")+ E for each R¢H.

Further, ' is convex (not necessarily strictly).
(Here, A, ..., E are constants and d(R, T') =the distance from R to I.)

Proof. (1) Let F be contained in an open circular disk .D, with boundary C. Unless
u—constant there exist M >0 and 6>0 such that |u| <M and |grad »| =6 on C.
Now let y be a streamline of » which intersects C in (at least) two points @, R.
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Then the length of y, measured between ¢ and R, is not greater than 2M/J. This
is clear, since L(y)-0 < |u(Q) —u(R)| <2M.

Let Q be an open annulus which is concentric with C. Let 7y be the radius of C
and 7;, r, the inner and outer radii of Q, respectively. Suppose that » >r,+M/4.
Consider maxg|grad «|, which is taken at P,€{. We claim that grad(|grad «|)=0
at P,. If this is not the case, then Pg lies on 0.

(2) First, let P, lie on the inner boundary of Q. It follows from our choice of r;
that p(P,) must extend to infinity at least in one direction. But then y(P,) has to
meet Q, and at these points grad (|grad «|)=0. However, according to our results
in Section 2, this contradicts the fact that grad (|grad «]) =0 at P,.

(3) Then assume that P, lies on the outer boundary of Q, and grad (|grad «|) +0
at P,. Since |grad | is maximal at Py, it follows that grad (|grad »|) is perpendicular
to 8Q at P, and it is also clear that this vector points towards the exterior of Q.
Let { be the tangent of 6Q at P,. Then y(P,) is a convex curve, and if U is a suitable
neighbourhood of P,, then y(Py) N U and QN U lie on different sides of {. (Compare
Section 2). However, since y(P,) is convex, it also follows that y(P,) does not meet
[, except at P,, and hence y(P,) extends to infinity in both directions. It is not diffi-
cult to see that the total curvature of y(P,) is not greater than m. Further, y(P,)
obviously separates the plane into two parts, D and D', one of which (D) is convex.
Clearly, any streamline in D belongs to the curved type, extends to infinity in
both directions and has total curvature <.

(4) Let P be an arbitrary point in D, and let y*+(P) be the part of y(P) where
u>u(P). Let C be the level line of « through P and let @, B be points on CN D
such that V,=|grad «(Q)| <|grad w(P)| < |grad »(R)| =V, and such that the part
of C between @ and R belongs to D. Then v=|grad u| is strictly monotonic along
Cor and v can be used as a parameter on that curve. Further, let s denote the arc
length along any streamline y of  which intersects Cgp. Let s=0 in the point of
intersection, and let du/ds>0 on y.

Consider the set covered by y+(P') when P’ varies along Cgp. This set is in one-
to-one correspondence with the set in the (s, v)-plane defined by V,<wv<V,,
0<s<oco. Further, the mapping is in C! in both directions, and d(x, y)/d(s, v) =
+1/|grad v| (compare the proof of Theorem 6). We want to estimate the measure
of the set @ in the xy-plane which corresponds to V;<v<V,, 0<s<8, where §>0
is arbitrary. As in Theorem 6 we have

Vi<v< Vs dsdv
m@G = ldxdy= T
ffc 4 ff0<s<s ]grad ”l

and, applying Schwarz’s inequality and the formula for the curvature of a stream-
line, we find
S ds S? S?
M S S S8 .
o |grad v|~ v0y(v) " vB(v)
Here, 6;(v) is the total curvature of the corresponding streamline (y(v)), evaluated

between the limits s=0 and s=28, and 8(v) is the total curvature of y(v) between
the limits s =0 and s =co. (We have 0<8,(v) <f(v) <n.) Hence, we obtain*

Ve S2dv Ve dy
G= _ =8 .
" fvlv'ew) f v-0(v)

1 The function 0(v) is measurable, since it is lower semi-continuous.
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However, it is clear that G is contained in a circle with center at @ and with the
radius (¢ +8), where d is the length of Cyz. Hence we get

s?fva W @ <n(d+ S
v, v 0(v) )

Here, V,, V,, 0(v) and d are independent of S, and 8 can be choosen arbitrarily
large. Consequently we must have
Va
f ﬂ <.
Vi v 0(,0) ‘

Choose u, >u(P), and consider the set in the (s, v)-plane defined by s-v=u; —u(P),
Vi<v<V, In the zy-plane, it corresponds to a level line C, : u=u, intersecting
yH(P) at a point P;. Now the above argument applies to P, and C, as well as to P
and C. Hence we obtain

Vs .
f b
v, V" G(U,ul)

where the meaning of the notation is obvious. Here, w;, may be chosen arbitrarily
large, and it is clear that lim,,_,. 8(v,u4,)=0, for every fixed v. Consequently,

. Vo oy

lim —— =00,
usoo J v, ¥ 0(v,%,)
which is a contradiction to the above inequality.

(5) We may therefore conclude that grad (|grad «|)=0 at P, where P, is any
point which realizes maxg|grad %|. It follows that y(P,) is a straight line, and
extends to infinity at least in one direction.

Let D; be an open circular disk with center on y(P,) and such that D; > €. Suppose
that there exists a point P ¢D,, such that y(P) belongs the curved type. It follows
from our choice of ) that y(P) extends to,infinity in one direction at least, for
instance y+(P). We may then assume that 4(P) >maxgu. Let U be a neighbourhood
of P such that we have u>maxgw in U and such that grad (|grad «|)=0 in U.
Thus, if Q€U, it follows that 9(Q) belongs to the curved type and that y*+(Q) ex-
tends to infinity. Now we are in a position to apply the same reasoning as in (4).
We only have to find an estimate for the total curvature of a streamline y in R2— D,.
However, 4 will do, and this follows easily from the fact that ¢ cannot meet the
straight line y(P,).

We arrive at a contradiction, as in 4), and may conclude that there is no curved
streamline in R?— D,. Consequently, |grad #| =constant in R2—D,.

(6) We have to prove that ‘ grad | =constant in R?—G. It is sufficient to prove
that grad (|grad |)=0 in R2—@. Suppose then that there is a point P ¢G at which
this relation does not hold. Let [ be a “half-ray”’ from P to infinity, such that [ N G =®,
and let ¢ be the point on [, closest to P, at which grad (|grad u|)=0. Since Q ¢4,
¥(Q) must extend to infinity in one direction at least, for instance y+(Q). Let @' be
a point on p+(Q), such that @ ¢ D,, and put Q@' =8. Let {R,} be a sequence of
points on PQ, tending to @. Then {y(R,)} belong to the curved type. Further, the
points {R;} on y+(R,) which correspond to the arc length s=38, are defined for »
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large enough, and tend to @'. (To see this, consider a streamline as a solution of a
differential system with initial conditions x=x,, ¥ =y, The solution depends con-
tinuously on (x,, o). Compare [9], p. 105, and Part 1 of the proof of Theorem 10.)

Consequently, R, ¢ D, for » large enough, and this contradicts the fact that |grad w| =
constant in R2— D,. This proves that |grad «| is constant in RZ—G.

(7) The next step is to find the form of the solution .

A. First, let there exist a streamline { which does not meet G. Put (4, B) =(grad u}),.
We claim that u =Az+ By +C in R? -G, for some C. Let [; be a straight line, paral-
lel to [, and separating the plane into half-planes E,, E, such that E,NG=0,
[,NG+® (Fig. 8). It is obvious that u=Az+ By+C in E,. Further, if there is a
streamline in E,, which does not meet &, then it follows, by considering the relative
positions of the streamlines, that w=Axz-+By+C in R?—@. Consider then the
opposite case, and let Q be a circle with center at some point Q€G N[, and such
that G< Q. Put C=2Q n E,. Consider the function W(P) =grad »(P) QP for a point
PeC. 1t is continuous, and since y(P) meets G, we must have ¥'(P) +0.
Consequently, W'(R) and W(8) are of the same sign, which is an obvious contradic-
tion (compare Fig. 8). This proves the assertion in the case A4.

B. Each streamline meets G. In this case, the streamlines constitute a family of
“half-rays”, emerging from @ and covering E2—@. The curve I' will be obtained
as a level line of u, enclosing (7, and it is fairly obvious from geometric reasons that
I' must be convex. The details can be filled in as follows: Let @ be any point in &
and let Q be a circle, containing @, and with center at Q. Put V'(P) =grad u(P)- QP
for P€2Q. Clearly, V' +0 and ¥ has fixed sign, for instance ¥ >0. This means that
each streamline is oriented from G to infinity. Let E be the smallest closed circle
with center at @ such that E> (. Clearly, v may be supposed defined and con-
tinuous on K. Write M —maxgzu. Let M, be any number > M. If P€0Q, let P,
be the point for which P,P =(1/42)(u(P) — M) grad %(P). When P varies over &€,
P, clearly describes the set {P’|u(P’)=M,, P'¢G}. It follows that this level line is
a simple, closed curve T', twice continuously differentiable. Further, I' encloses a
region H and it is obvious that H>@. Next, we claim that u(R)=M,+1d(R, I')
for any R¢H. Consider any R in the exterior of H, and let y(R) intersect I" in P.
Clearly, u(R) = M,+APR, and we need only prove that PR=d(R, I).

If this is not true, then there is a P; €I" such that EP, =d(R, ') <REP. But this
means that E€y(P;) and hence y(P) and p(P,) intersect at R, which is impossible.
This proves that %(R)=M,+Ad(R, I'), and it also proves that d(R, I') is taken on
for only one point on O, and this point (P) is the point where y(R) intersects I'.
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Finally, fix a point PED and let R€y(P). The tangent [ of I' at P divides R2
into half-planes E,, E,, and let E, contain the unbounded part of y(P). When R
approaches infinity along y(P), it follows from the preceding statement (italicized)
that E, N T'=0®. Consequently, I' is convex. This completes the proof.

Remark. If T' is a closed, convex curve (not necessarily strictly convex) with
continuous curvature, enclosing a region H, then one can verify that v(P)=d(P, 1)
is regular (in C?) in the exterior of H, and |grad »| =1.

We will not discuss the further geometric relations between 1" and G.

Finally, it should be pointed out that the assumptions in the theorem do nof
imply that |grad u| is constant in R2— F. This can be deduced from the example
at the end of Section 4.

Theorem 9. If u(x, y) € C*(R?) and A(u)=0 in the whole plane, then
u=Ax+ By+C.

Proof. It follows from the previous theorem that |grad u| is constant. Hence
the streamlines are non-intersecting straight lines, which means that they are
parallel and thus grad « is constant. This completes the proof.

A consequence of this theorem is, for instance, that no polynomial of degree>1
can satisfy A(u)=0 in any domain.

The same theorem also holds for the minimal surface equation, compare [2], p. 60.

8. An estimate for |grad u| in Ljapunov regions

Let u(x, y) satisfy A(«)=0 in a region D. Theorem 6 states that grad u =0 in D,
unless u =constant. This section treats the question whether |grad «| can be arbi-
trarily small near oD. It turns out that this cannot occur, if D is “smooth” and
bounded. In the opposite case, it may happen that inf;, |grad u| =0.

Lemma 4. Let «(t) be defined a.e. on Ty<t<T,, and let it be bounded, positive, and
measurable. Assume that

[} w0 <y

T,

for almost all T€(T,, Ty). Here, Ty=0, T,, C>0 and p>1 are constants. Then Ty>0
and!

T p-l
logqle pC (ess lim oc(t)) .
0

p—1 t>T1—0

Proof. Obviously, we may assume 7', > 0. Define the function §(t)>0 by

w5 [ a0f. )

To ¢

1 ess limy,y,—oa(t) =lim¢/ 7,0 (ess infircscr a(t)).
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Then f(#) is increasing and g(t) >0 for t > T,. Further §(t) <a(t) a.e. Differentiation
of (1) gives

p%_(ﬁ(T))p—lzf(_j: >/@ a.e.

or ¢

~

Hence pCp'(T)(B(T))* *=1/T, that is
4 ( 20
dT\p—1

—

ﬂ(T))p’l) 2(%, (log T') a.e.

Consequently,

T, [(™d { pC pC
1 Jsf ~(% p”l)dT=— T,y
S, ar p—1P p—1PT)

and since f(T,) <ess lim; ,7,.ox(t), we get the desired result.

Theorem 10. Let u(x, y) be a nonconstant solution of A(w)=0 in a bounded region D
which satisfies the following conditions (see Fig. 9): There exist constants K, >0, K;>0
and A, 0<A<1, such that if B is an arbitrary point on 0D, then there is a coordinale
system with the origin at B such that the part of 8D which lies in

R={(xy)||»| <K, —K,<y<3K,}
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Fig. 10

can be represented as the graph of a function y=f(x)€C[—K,, K,] for which f'(0)=0
and such that the angle between the tangents to 8D at the points (x;, f(,)) and (2, f(2,))
is not greater than min (K2|x1——x2|’1, 17), finally, all points in R with y> f(x) belong
to D, and those with y<f(x) do not belong to D.* Then |grad u| is bounded away from
zero i D, and

M, 8 K3 21
< f .
log 21+ 2 (K",

where m=infy, |grad w| and M, =inf |grad u|, this infimum being taken over those
points in D for which the distance to the boundary 8D is at least K.

This will be proved by the same type of estimates as those used in Theorem 5,
but here we must study the behaviour of |grad «| at the boundary. Therefore, we
cannot use any uniform lower bound for the length of a streamline, and we must
find new estimates for the total curvature and for the measure of a set which is
covered by ‘“short” streamlines. Such estimates can be obtained using the convexity
of the streamlines and the smoothness of 8D. However, this can be done only if
the streamline turns its convex side to 0D, as suggested in Fig. 10, 4. (Fig. 10, B,
suggests a case that is to be avoided). Consequently, much attention must be paid
to the position of the streamlines relative to ¢.D. '

Proof of the theorem

(1) Let B be an arbitrary point on 8D, and introduce the corresponding coordinate
system. Let 4 be the point (0, 2K,) and R={(z, y)| |z| <K, —K,; <y <3K,}. Write

M =|grad w(4)|> inf |grad w(P)|=M,,

d(P,0D)=K:

and my;= inf |grad u(0,y)|.
O<y<2K,
If m, =M, there is nothing to prove. If m; <M, take £>0 such that m, +e<M,
and let C be a point on the segment 4 B such that |grad u(C)| =m, +e¢. Put v(z, y) =
|grad u(z, y)|. We will consider the function v(y) =v(0, y) for yo<y <y,=2K,.
According to Lemma 32 there is a finite or denumerable sequence of open intervals
I, on [y¢, y4] such that

1 A region satisfying these conditions is often called a Ljapunov region.
2 Applied to @(t) = —v(—t).
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(A) The intervals I, are pairwise disjoint.

(B) dv/dy>0 and m, +e<vy)<M on U=U,1,.

(C) If I,=(p, g,), then ZV(O(QV) —v(p,)) =M —my —&.
(D) 1f , €U and y, <y, <y,, then v(y,) <v(ys).

For an arbitrary y€[yc, y,], let p(y) be the streamline of u passing through (0, y),
and we consider it only in RN D. Let it be continued up to the boundary of RN D
in both directions from (0, y), and let «(y) be the length of y(y). The case «(y)=oco
is not yet excluded. However, we claim that «(y) is lower semicontinuous:
o(yo) <lim,_,,, a(y). To see this, consider a streamline as a solution of a differential
system

dz_
ds |grad u|
dy_  u
ds |grad u|’

with initial conditions x(sy)=,, y(sy) =%, We know from ordinary differential
equations ([9], p. 105) that the solution depends continuously on (x, ¥,), which
gives the result.

(2) Next, we claim that each streamline of u, considered in B N D, has total curva-
ture <3z and finite length. Consider a streamline y and assume that the total curva-
ture is >3z, Then there are two successive vertical (parallel to the y-axis) tangents
l;; I, such that the curve $ between the points of tangency 4, B, is convex down-
wards (y"'(s)>0). (See Fig. 11). Let C, D be the points where [, [, intersect the line
y=3K,. Now $ and the segments AD, DC and CB enclose a convex domain
Q< RN D, and Q< D. The ares of ¥ in Q have finite length, since « is bounded in
Q. Therefore y, continued beyond 4 and B, must have well-defined endpoints on
o€, and it follows easily from the convexity of y that these endpoints are situated
on CD. Tt also follows that the total curvature of the parts of y between these end-
points and 4, B cannot be greater than 1z for each.

Hence, the total curvature of y in BN D is not greater than 27, contrary to our
assumption that it is greater than 3n. So the total curvature of any streamline y
in B N D is not greater than 3x, and it follows from this that the length of y is finite.
In particular, the function «(y) introduced above is always finite. Finally, every
streamline in £ N D has well-defined endpoints on &(R N D).

(3) Consider the set Uy,={y|y€U, a(y)<K,}. (If this set is empty, then the
estimates under (6) below are unnecessary.) We know that p(y) has well-defined
endpoints on &(RN D)=E, U E,U E;U E,, where

E, =the graph of y=f(z), for —K,<z<K,,

Ey={zx=—K,, {(—~K,)<y<3K,},

E,={—K,<xz<K,,y=3K,} and

E,={z=K,, {(K,)<y<3K,}.

It is clear that if y,€U,, then both endpoints of y(y,) are situated on E,. Let us

study this case a little further. We know that #’(s) =0 at P =(0, y,),! where (x(s), y(s))
are coordinates along y(y,). We can assume that y is oriented in such a way that

1 This follows from dv/dy==0 on UD U,.
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x'(s)>0 at (0, y,). Now we want to show that the endpoint for decreasing s is situated
at @ point (x, f(x,)) with £, <0 and the endpoint for increasing s is situated at (x,, f(x,))
for some x,>0. (See Fig. 12.) It is sufficient to prove the result for y+. Now v is con-
stant along p(y,), and thus it follows from property D of U I, that y*(y,) cannot
meet the segment AP. Since a(y,) <K, and since the distance from any point on
AD to E, is >K,, it is clear that y* cannot meet the segment 4 D(*). It remains
to show that y+ cannot meet the (open) segment BP. But this follows from the con-
vexity of y(y,), if we note that »'(y,) >0 implies that y(y,) turns its concave side
upwards at P.

This proves our assertion regarding the endpoints. Next, we will prove that
the whole curve y(y,) can be represented by the graph of a function y=g(x), where
9@)€ Oy, 3], amd g(w,) =f(x,), g(ey) — f(s).

It is obvious that yp(y,) can be represented as y=g(x) in a neighbourhood of
P =(0, y,), and that g'(x) is increasing. Let X be the greatest number, such that y+
can be represented by y=g(x) on (0, X ) Obviously, we need only consider the case
lim,,x_¢¢'(x) = +o0, ¥ =lim,,x ¢ g(*) > f(X). The means that y+ has a vertical tan-
gent at Q@ =(X, Y). But then the set g(x)<y<3K1, 0<z<X, is a domain Q, con-
taining (2(sg-+e¢), y(sg+¢)) for & small enough, and y* cannot meet the boundary
of this domain (compare the reasoning above). But this contradicts the fact that
the endpoint of ¢+ lies in the exterior of Q. Hence lim,_, x_q ¢'(x) < oo, and it is clear
that lim,, x o g{x)=f(X). Write x,=X. The same reasoning as above leads to a
number z; <0 with analogous properties.

Now we claim that the statements regarding the endpomts of y(y,) and the func-
tion representation of y(yo) are valid also for y(yo), if o€ U and y,<y,. First of all,

7(4o) must be contained in Q(yy) ={(x, y) |2, <z <m, f(x) <y <g(x)}. Therefore, the
endpomts of y(yo) lie on E,. Now, all the above arguments regardlng y(y,) apply
to y(yo) except one, Whlch is labelled by (*). But that argument is not needed,
in view of the inclusion y(yo) < Q(y,).

417



G. ARONSSON, On a partial differential equation

M

[

A(0,2K))

22 o>

P{o, 4=

/(l_(s-)

C

Ky 8 x4,

Fig. 12

Consequently, the above results are valid for y(yo) if yo€{y|y€U, y <sup U,}.
From now on, we denote by y, an arbitrary number in this set.
If we consider again the function representation of y(y,), then we have

f(@) <g' (@) <g'(25) <f'(@5)-
This means that the total curvature 8(y,) of y(y,) is at most K,(x, —,)4, which gives
6(yo) < Ky x(y,) .
Next, we want to estimate the measure of
Qlyy) = {(x, y) |2, <z <2, f(x) <y <g(w)}.

Since g''(x) >0, we have

o) <g@) gl + L glan) — () =La).
Hence

T3 T3

(g(w)—f(x))dx<f (U=2) — f(2)) de < 2(z, — ;) max |f(x)].

N IKTIE T,

m(y,) = f

But f(0) =0, and if we write ¢ =arectg (f'(z)), then

| @) | =ltyp| <4/n-|g| <4/7- ;||
Hence |f(z)| <[4/7(1 + 1)) K,|«|'*%. This gives
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8 ,
myo) < . Koy — 2,
and since (5 — 1) < ot{yf) We get

Q) < K fel)*

(These are the estimates announced immediately after the statement of the theorem.
Note that the situation is similar to that in Fig. 10, 4.)

(4) Under point (1) we established a mapping v=|grad «(0, )| from an open
subset U of y,<y<y, to an open subset V of m, +e<v <M. The intervals in U
and V are in pairwise correspondence, and »(y) is an increasing function, considered
on U. Further, mV =M —m, —e. The set U, was introduced in point (3). Put ¥ =
sup U,. If YEU, we remove it from U, and all the properties of U mentioned above
remain true. Thus, in any case, ¥ will separate U into two parts, U, with y>Y
and U, with y<Y. At the same time, V is separated into V,=v(U,) with v>¢(Y)
and Vy=v(U,) with v<v(Y) Clearly, mV,=M —v(Y) and mV,=v(Y)— — My —&.

(6) The next step is to estimate log [M[v(Y)]. Let us write Ul— U,I,, and
I,=(a,,b,). Let G, be the set covered by y(y) for y € I,. Clearly, G, is an open set,
and hence measurable As in the proof of Theorem 5, we change to coordinates
(s, v), where s is arc length along y(y)(s=0 at (0, y)) and v=|grad «|. The set &,
corresponds to a set of the form v(a,) <v<w(d,), p(v)<s<W(v). Evidently, ¥(v)
is lower semicontinuous, ¢(v) is upper semicontinuous, and ¥'(v) —@(v) = (y), where
v=v(y). It follows from the semicontinuity that there are two sequences of step
functions {¥,(v)}, {@.(v)}, the first one increasing and the second decreasing, such
that ¥, (v) /W (v) and @,(v) \g@®) on v(a,) <v<w(b,). Further, we may assume that
@, and ¥, have the same points of discontinuity. Consider then a domain G, , of
the type v(a,) <v<wv(b,), g,(v) <s <¥,(v). From the reasoning in the proof of Theo-

rem 5 it follows that
v(b,) . 2
5 [Tl =i,
v(ay) v-6

where 0 is some fixed bound for the total curvature of each streamline in ‘question.
We have shown in point (2) that we can take § —37. Hence

v(5,)

1 d
va, n = E_{ f (an(U) - <Pn(”))2 ;v

v(a,)
But m@, , <m@,, and a passage to the limit gives (by Levi’s theorem)

1 v (D) dv 1 v(b,) dov
G,>— W(v) - — 2
m - DW( () = g@) =5 ar @

According to the definition of U, and U,, we have a(v) > K, for v€U,. Hence

K3 v(b,)
mG, = 3 log o)’
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Since the sets G, are disjoint and contained in B N D we get: X, mG, <m(R N D)' <TK3.
Finally, we arrive at

log => log )

(6) The remaining difficulty is to estimate log [v(Y)/m,+¢]. This is done by
means of the estimates that were derived under (3) above. There, we considered
an arbitrary y,€U, and proved that y(y,) can be represented by the graph of
y —g(2) €Oz, 5], and g(@,) = [(z,), 9(@,) — f(z). We also estimated 0(y,) and m€(y,)-
Besides the set (y,), we introduce w(y,) =the set covered by all y(y), for y€U,
and y <y,. Clearly, w(y,)<(y,), and hence

(o) <> Kolalyo) ™.

Let H, be the set covered by y(y) for y€1,’, where I,”=(c,, d,) is an open interval
in Uy N {y|y<y,}. By a reasoning, similar to that used above, we have

v(d,,)
a(v
mHu/f (
ey 0(v

Here, 6(v) is the total curvature of the corresponding streamline, and we have from
(3): B(v) <K, a(v)*. (Sometimes «, f, ete. are written as functions of y and sometimes
as functions of »; however, this should not cause any confusion.)

This gives
1 (v _,dv
mH, > a(v)?t—.
2Jvie,) v

Now w(y,)= U H,, where the union is formed with all H , as described above. (H,
corresponds to an interval in U, N {y|y <y,}.) Since the sets H, are disjoint, we get

v(d,) d
m(U H,) >i§ 0

K5 Joey v
The intervals (v(c,), v(d,)) in V, cover (m,+e,v(Y)) except for a set of measure

zero. Therefore, we can write

1 (¥ d
m(o(y,)) Z 7 { “(”)242, with vy =v(y,).
K, ).+ v

If we put S(v) =a(v)* %, we get
214

[" 6™ < Kamfotyo) <2 K3 Bog)

J my+e

for almost all v, on (m, -+¢, v(Y)). Further, a(y) <K, V2 for all y€U,. This is clear,
since |dy/dx| <1 on y(y) and x, —x, <K,. Application of Lemma 4 then gives
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»(Y) (2+}L)4K2
ml-l-e\

log (K, Vé

Simplification gives: log [v(Y)/m, +] <(8K3/A) (K,)2%
(7) Combination of our estimates gives, after making ¢ tend to zero,

M 8K3
log —!<2la+—-2(K,)**
gm]_ A ( 1

Obviously, this holds also if we write m =inf,, |grad «| instead of m,. This completes
the proof of the theorem. (Phew.)

Corollary. Suppose that the region D can be written as D= ¥ D,, where each D,
satisfies the conditions of Theorem 10. Suppose also that w is a nonconstant solution
of A(u)=0in D. Then |grad u| is bounded away from zero in D.

Proof. This follows immediately from Theorem 10. The result means that Theorem
10 is extended to a class of (not all) domains with corners (or even cusps). However,
in these cases, the angle of the corner (measured in D) is greater than .

Remark. Roughly speaking, Theorem 10 says that for a nonconstant solution u
on a smooth domain, |grad | is bounded away from zero. However, |grad u|
need not be bounded from above. This can be seen from the example u =arctg (y/z)
on D : (x—1)?+y*<1. Further, there are domains with corners for which the theo-
rem is not true. This is shown by the following example.

Example. Consider a Cauchy problem for A(u)=0. We write the equation as
Ugp = (— 1U2) (2w, %, %,y +u> u,,) and prescribe u, u, on the positive y-axis by #(0,y) =0,
u(0, y) =y.

Take an arbitrary y,>0. Aceording to the Cauchy-Kowalewski theorem there is
a solution w(z, ¥) =21 10 ¥ 2™(¥ —Y,)", Where the series converges normally in a
neighbourhood U of (0, y,). We may choose U as a circle with its center at (0, ).
Now take an arbitrary y, on (0, y,). Put 4 =(y,/y,) (0 <<A<1). By the transformation
' =wfk, y' =y/A, U is mapped onto a circle U, with center at (0, y;). (Fig. 13). The
function u,(x, y) =A2u(x/A, y/2) is analytic in U,, satisfies A(w,)=0, and we have

ouy Y P\ 1_nyl_
(ax)wzo “‘1(0’1) ARy

Hence, u,(z, y) is a solution of the same Cauchy problem.

If y, is allowed to vary over the interval 0 <y, <¥,, then the corresponding circles
U, will form a domain with a corner at the origin. If we can show that two function
elements of this type agree on their common domain of definition, then we have
the desired counterexample, since lim,_, o [grad (0, y)| =

Consider then two function elements («,, U,) and (4, Ul) Clearly, all derivatives
of u; and #, agree on the part of the y-axis where both functions are defined, and
now the result follows from the uniqueness of analytic continuation.
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9. A theorem on the boundary value problem and some consequences

This section treats the Dirichlet problem for our differential equation 4(x)=0.
The discussion is admittedly very incomplete. To summarize, it is proved that a
solution of the Dirichlet problem is unique, if there is any, and a few instances,
where there are no solutions, are also described.

Theorem 11. Let D be a bounded domain and let w(x,y), %(w, y) be functions in
C¥D) N CO(D). Assume that A(u)=A(#)=0 in D. Then we have, for (z, y)ED,

min (v —4) <u(z,y) —d4(r,y) <max (u—u).
oD oD

Proof. Clearly, it is sufficient to prove that

max |u —4|=max |u—|.
5 oD

Assume then that maxp|u —i| is taken at P€D. Then (grad u),=(grad @)p, and
according to Theorem 6, we may assume that both are non-zero. Consider then the
case where grad (|grad u|)=grad (|grad #|)=0 at P. Here, u and % have the same
streamline through P. It is a straight line, and we have « — @ =constant along this
line. Since this line must meet &.D, the result is proved in this case.

Therefore we may assume, for example, that grad (|grad «|) =0 at P. This means
that the streamlines of « in a neighbourhood of P belong to the curved type and
also that ¥ €C® near P.
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Now we employ the well-known method of deriving a differential equation satis-
fied by w =u —%. Compare [2], p. 54-55.
Uy + 2y, Uy + UL Uy, =0,
Wa gy + 20, Uy Gy, + Wy By = 0.
Write A =uZ, B=wu,u,, C=u2, A =1iZ, etc. Subtraction then gives

Ay ~Tiyg) + 2By — i) + C(thyy —Tigy) + (A — A) + 2y (B — B) + 1, (C — 0) 0.

Here, A —~f~f = (g — Uy) (U +Us) =0 (U, +Uy),
B _? = (uxuy _dzuy) + (dzuy —dzdy) =Y, +wyd2’
C—C=..=w,(u,+1,).
We get the equation
Awy+2Bw,, + Cwyy + Do, + Ew, =0, (1)
where D = G (w, +4,) + 24,4,
and B =24, %, + i, (v, 1)

Now, we transform the equation (1) to canonical form in a neighbourhood of P
(Compare [8], p. 49). We change to new coordinates (&,7), and assume that the
mapping (x, ¥)—> (£, %) is one-to-one and in C?, as well as the inverse. To obtain
the canonical form, we assume that w,&, +u,£,=0. Such a function &(x, y) is, for
example, |grad |. The equation (1) will then be transformed into (we omit the
caleulations),

P y QW
— (Vu Vy) +—3§

37]2 (AEII+2B§IJI+O§1111+D§1:+E§y)
a
+3’:7—0(A7721+2B77w+0771/11+D77::+E7]y) =0. (2)

Here, Vu=(u,, u,), Vn=(1,n,). For y(z,y), we can take a linear function 5=
oz + By, for which aw,(P)-+pu,(P)+0, or, we can also take 7 =u(x, y). Now we must
analyse the coefficient for dw/0& in (2), evaluated at the point P. From «,&,+u,&,=0,
we get

Uyl -+ uyé-zy = — (U &+ uxygy)’
uzgzy -+ uygyy = (uw& + uyyéy)'

Multiplication by u,, u,, respectively and addition gives
AEII + 23511/ - Ogyyzug gz:c + 2uzuy§xy + ulzl Eyll
= (g Ep Uy T Uy Ey T Uy Epty Ty £y 2.

Since grad w and gradé are orthogonal, we may write & =A2u,, & = —Au,, with
A=+ |grad&|/|grad «|. Then the above expression is reduced to

2 2
Ay uz — Uy Uy + Uy Wy Uy — Uy Uy Uy ).
At P, grad u=grad 4, and we obtain

DE, + EE, = M Du, — BEu,) = 2 Ml il i, & Ty T — gy U — Ty Ty 0y,
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which is the same expression as above, except that u is replaced by @ and it is
multiplied by (—2). With the aid of the formulas for the curvature of a streamline
of w or i, derived in Section 2, we get

Al T 2B§Iy + OEyy +DE,+ Efy =2(|grad ulagz - 2|gl‘ad ’li'sgg)

= 3177 9%V 1 P
Z|grad u| (ds 2d§) y which holds at

Here df/ds, df/ds, are the curvatures of the corresponding streamlines.

Next, we claim that this expression is not zero.

To see that, assume that df/ds=2(df/ds)=+0. Then the streamlines of u, i have
the same tangent vectors and parallel curvature vectors at P (See Fig. 14).
Put M= |grad u(P)| = |grad @(P)|. Along the ‘“‘open” arcs RP, PQ, we have
difds=M, du/ds<|grad u| <M, and (d/d3) (u—%)<0, if R, are sufficiently close
to P. However, this contradicts the fact that (v —@) has a local extremum at P.

This proves that the coefficient of dw/d€ in (2) is +0 in a neighbourhood of P.
Now we can choose the function &(x, y) and the sign of 1 such that the coefficient
of 0w/o& is negative. Then the equation (2) takes the form

Po oo w
F(Em e = g + GEmG =0, ®
where the functions F(£, n), G(&, ) are continuous and F(§, ) >0.

In the (&, 7)-plane we consider a rectangle R:&p—d<E<&p, np—0<9n<nyp+d.
At the point (£p, 7p), @ takes an extremum which is a positive maximum or a negative
minimum. From the maximum principle for parabolic equations ([5], p. 34, Theo-
rem 1) we infer that w =constant in R.

Consider the streamline y of % through P. It belongs to the curved type and it
follows from the above reasoning that the subset of y, where |w| takes its maximum,
is open. But this set is also closed (possibly after addition of the endpoints of y).
This proves that w = constant on p, which completes the proof.

Clearly, this theorem contains the two-dimensional version of Theorem 9 in [1].

Theorem 12. In a bounded domain, there is at most one solution of Dirichlet’s prob-
lem for A(u)=0.

Proof. This is a consequence of the previous theorem.
With the aid of this uniqueness theorem and Theorem 6, we can easily construct
examples for which the Dirichlet problem has no solution.
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Theorem 13. Consider the Dirichlet problem for A(u)=0 on a bounded domain D
and with given continuous boundary values @(z, y). Suppose that D is symmetric with
respect 1o the origin (that is: (z, y) €D whenever (—x, —y)€ D), and suppose that the
origin belongs to D. Finally, we assume that @(x, y)=@(—x, —y) for all (x,y)€E0D
and that @ = constant.

Then the Dirichlet problem has no (classical) solution.

Proof. If there was a solution u(x, y), then u(—=z, —y) would also be a solution.
From the preceding theorem it follows that u(z, y) =u( —x, —y). Differentiate with
respect to x and then put z=y=0. This gives %,(0, 0) =0, and in the same way it
follows that #,(0, 0) =0.

Hence the origin is a stationary point for «, which means that u(x y) =constant.
This contradicts ¢ = constant, and the theorem is proved.

Example. Let D be a circle with its center at the origin, and let ¢(, y) =2 " 1y* "1
where m, n are non-negative integers. Then our Dirichlet problem has no solution.
The same is true for ¢(x, y) =2*"y*", if m, n are non-negative integers and m +n>0.

We mention another result of the same type:

>

Theorem 14. Let D be symmetric with respect to the y-axis and let (0, y,), (0, y,) be
two points on 6D such that (0,y)€D for y,<y <y, Further, let @z, y)=¢(—=,y),
@0, y,) =90, y,) and ¢ constant.

Then the Dirichlet problem for A(u)=0 has no solution.

Proof. If there was a solution u(x, y), then u(—x, y) would also be a solution,
which means that u(x, y) =u(—z, y). This gives %,(0, y) =0. Hence %,(0, y) =0, and
this contradicts ¢(0, y,) =¢(0, ys).

In connection with the boundary value problem, it should be mentioned also that
Theorems 1, 2 and 7 in [1] give some information on a possible solution of that
problem.
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