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1. We denote by R the class of functions f(z) that are analytic in a circle
|z]| < R. Two funetions f(z) and g(2) of R are called equivalent if f(z) is
transformed into ¢ (z) by

(1) multiplication with a constant of modulus 1,
(ii) a transformation 2’ =ze'® (a real), _ , ' _
(iii) replacing of all coefficients in the power series of f(z) by their conjugate
values.

Thus
g(2) =P f(ze') or g(z) =é€Ff(26").

We also call two harmonic functions % (z) and u,(z) or two curves ¢ and ¢,
equivalent if one is transformed into the other by

(i) rotating the z-plane an angle a about z =0,
(i) reflection in a straight line through z=20.

Thus

uy (2) = u(z€%) or wu(z) = u(Ze').

We obtain immediately that if f(z) and g(z) of R are equivalent, then the
harmonic functions log |f| and log |g| are equivalent. _

Let f(z) belong to R. Given r < R, we put z=re? and define ¢;(r,a) as
the set of @, 0 < ¢ < 27, such that |f(re?)| <a in ¢. Denoting by @ (r, a)
the measure of ¢; we will call @; the M-function of f(z).

According to the definition, @ is a non-decreasing function of a. 1f M {(r)
and m(r) denote as usual the maximum and minimum of |f(2)} for |z| =1,
then @;=0 for a <m(r) and @; =27z for a > M(r). It is easily seen that
if f(2) and g(z) are equivalent, then @; and P, are identical for all r < R.

In the following we always exclude the case that f(z) is a power of z,
f(z) =az™ 1In this case the obtained results are trivial. Therefore we assume
that m (r) < M (r),! and that @;(r,a) is increasing in the interval m(r) <a < M(r).

! There is at most one value of r for which m(r) = M (r). This special value is of no
interest here. See BLUMENTHAL (1), Varmox (2). .
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B. ANDERSSON, On equivalent analytic functions

The function ¥;(r, ) is defined in t}'1e interval 0 < @ < 27 as the measure
of the set B (®;ir,a) <0), a > 0. Then @ (a) and W (f) are inverse functions,
and from the definition it follows that

mE (P, 0) < a) = Dj{r, a) = me(r, a).

This eciuality gives the following lemma, which in this case, according to
the simple character of the function |f(re‘?)|, nearly seems to be trivial.!

Lemma 1. G(o) 4s a function, defined for m(r) < o < M (r). Then we have

27 27
[G1¥(r,01d6 = [G[If(rein)|]dg
[ (4]

whenever one of the integrals exists.

Hence
Cor. If f(2) and g (2) have identical M-functions for |z|=r, @;(r, a) = D, (r, a), then -

27 ‘ 2
[eliteeniiae=[ellorenllde.
0

It is now convenient to study the distribution of values of an analytic func-
tion in connexion with the functions @ and Y.
We have the following theorem:

Theorem 1. Let f(z) and g(2) be functions of R and have identical M-func-
tions in an interval 0 <r < r,. Then the functions are equivalent.

Before we give the proof, we require some preliminary studies and remarks.
Put '

f(z)=kz42Anz”, 4y=1
. n=0
g(2) = ky 2 D, Bu 2™ By=1
n=90

We apply lemma 1 for §{c) = ¢® Then for all r <7y,

o0 00
lklz r2e 2 |An|2 72n — “C1 Iz ,,.2412 IB" Iz -y
H n=0 n=0
ence

(1) lk|=|k1|, 9=, |An|=an|: n=2012 ...

' J. v. NEUMANN (3) states a similar lemma for more general real functions.
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We denote by &¥; the class of functions of R with power series of the form

1+ Zanzn ‘

n=s

and satisfying the following conditions,

(1) as = %
(1) the highest common divisor of the indices n for which a, # 0 is 1.
Then f(z) and ¢(z) can be expressed
f&) = ke fi(c2™), g(2) = k12 g1 (c12™)
where f,(z)€ K, g1(2) € HN;,. (1) gives immediately
s=us, lel=]|e], m=my.

Further it is easily seen that f,(z) and ¢, (z) have identical M-functions for
0<r=yp, p=|c|r It is therefore sufficient to prove the theorem for func-
tions of the same class MN;.

2. Consider the harmonic function
u(z) = log |/ (2)]

where f(z) € ;. u(z) is regular in the circle |2] <R, where f(z) is holo-
morphic, with the exception only of the finite number of zeros of f(z). On
the circle |z| =7, |f(re'?)| is a continuous function of ¢ and attains its extreme

. . . 7 . .
values in those points on the circle where d—u = 0. When 7 varies, the loci of
@

. 0 . .
these points are the level curves (#f =0, and they are in the following called
'
extreme value curves (e.c.). These curves and the values of |f| attained on
them have been examined by BLUMENTHAL (1), who shows their simple ana-
lytic character. -
Let us write

u + v =1log f

# and v are harmonic functions, regular in the neighbourhood of z = 0. Con-
sider the function

' 1 (0w 0w\ _ 1{0u . 0u\_ f(2)
* e o B e S Rl

or
w=2"P(2),* F0)=1

' We denote by &P (z) a general power series of z with positive radius of convergence.
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w(é) is meromorphic in |z| < R, and the e.c.’s of f(z) are determined by

3) g—;j:—g:w} —o.

It is possible to divide the circle |z| <R in a finite number of annular
regions I,
r <|z| <7ry41, 79=0, m1=R

so that in each annular I', we have an even number 2n, of connected e. ¢c.’s
and each of them can be expressed in polar coordinates ¢ = ¢ (r), where @(r)
is analytic in - the interval r, <7 <r.11. On a circle |2|=7r in I’ the mo-
dulus |f(z)| attains its maximum and minimum values in the points where the
circle intersects the e.c.s. The value of [f(z)| on an e.c., expressed as a
function of », is called an extreme value function (e.f.). This function is
analytic in 7.

Consider an e.c. @ = @,(r); the e.f. ohtained on @y(r) is u(r). Then we
have on the e.c.

Ou du _Ou  dudgy dlog u(r)
dp 7 dr 9r odgdr  dr

4 u_ 0w Oudgy
drdp  drde 0¢* dr

d*u__ 0w , 0%u dgy __d*log pu(r)

i or  orog dr dr
Further, % is harmonic

Au=22 208 22 % _,

From these conditions we obtain the following equatiou for the e, c.:

) (&‘) (%)2 Sl _14d (d log p(r) (T)).
0  qen \\dr ] " 73 rdr\ dlogr
. . (02 u
If |f(2)] attains a maximum on ‘the e. c., then i < 0. Thus
io(r)
a4 (d log ﬂ(")) 0.
dr \ dlogr

log 4 (r) is therefore a convex function of log r. In the same way we obtain
that if u(r) is a minimum e.f., then log x(r) is a concave function of log r.
According to their analytic properties, two e.f.’s are equal only for a finite
number of values of » if they are not identical in an interval. Further, a
minimum function cannot be identical with a maximum function.
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In the proof of theorem 1 we use the following lemma:

Lemma 2. Suppose that the function f(z) attains on an e.c. p = @o(7r) an
e. f. u{r), identical with an e.f. of g(z), attarned on an e.c. ¢ = @, (r). Further,
putting

u=log |f|, u =log]|g|

(57),.0,= (357)
09 n \0¢* )0

then f(z) and g(2) are equivalent.

if we have

From (4) we see that in an interval ' <7 < 7" we have

dpo _don - dpo_ _don
dr dr dr dr

In both cases the e.c.’s are equivalent. Then there is a function ¢y (2) equi-
valent to g(z) that attains the e.f. u(r) on the e.c. ¢ = @o(r). Put
U=log |f| —log |g4]- '
Hence for ¢ = @, (r) we have
U=0, EI:O. P <r<y’
de
Then, from the well-known properties of harmonic functions it follows immediately
that ¢/ = 0. Thus f(z) = €'’ g, (2) and f(2) is therefore equivalent to g(2).

3. We now pass to a detailed study of the function @;(r, @). Here we shall
suppose, for the sake of simplicity, that f(z) belongs to a class &, and that
0 <7 =<7, where 7; can be chosen sufficiently small for every circle |z] =7 <,
to intersect only the e.c.’s ending at z =0, and for each e. c. to be intersected
only once. Two e.f’s are equal for such a value of 7 only if they are identical
in the whole interval. Further, f(z) < 0 in the circle |2z| < r;.

Studying the function w(z) defined above, we see that there are 25 e.c.’s
abutting at z=0, s e.c.’s where |f(z)| attains a relative maximum, and s e. c.’s
where the extreme value is a relative minimum.

On a circle [z =7, u=1log [f(reir)| is an analytic function of ¢ at every
point zy = re*re. Thus, for small values of | — @]

(5) u(ret?) — u(retfo)= i ln (;"q)@:)i (p — @o)™
n=1"*— ’
Further
(© [ rein) | — [Freim)] = | (reim] [orceD=wosro 1]

If 2, is not a point on an e.c., we have (Z—u) # 0. Then from (5) and (6)
’ P/
we obtain

81



B. ANDERSSON, On equivalent analytic funciions

=T 1 g P (0) =

(7) 1'% Po = o (du) ‘j ( ())3 (/ (O) 1
0¢/a

where ' )

a=|f(rév)], ag=If(re")]|.
If 24 is a point on an e.c., then (%) == 0, and if 7y is sufficiently small, we

. 42 %

can assume that (3(;;) 7 0. Put |f(z0)| = p(r), where u(r) is the corresponding

e.f. Then, in the nelghbourhood of ¢ = ¢, we obtain the inverse functlon

P> @0 @—go= /2*@——— ; PVia— ua)

?<0; go— 9= | 2%%)—57)(—1/]_&“—”@1)
| w0 (54).

where the root is positive.

We have @D;(r,a)=0 for a<<m(r). I ay is not an extreme value on
|z] =7, m(r) <ay< M(r), then |f(z)| attains the value a, in a finite number
of points on the circle. If o — ay is positive and sufficiently small, then

(8)

Dy (r, a) — Dy(r, ag) = mey (@ < |[ D] < a)
is the sum of a finite number of intervals of the form (7). Thus

{ Dy (r, a) = Dy (r, ay) + (@ — ag) Py (a — ay)

9
) PL(0)>0

Now @ and a, can be permutated, and we have the same expansion for a < aq.
By power series of this form @;(r,a) can be continued from @, to the nearest
extreme values. The minimum e. f.’s attained on |z| = r are m,(r), the maximum
e.f’s are M;(r). Then, by the choice of it follows that

0<mr)=m{r) < mg(r) = - = ms(r)
My(r) = Msa(r) = -+ < My (r)= M (7).
There are A; e.f.’s identical with m;(r) and A; e.f’s identical with M;(r).
Putting ag = m;(r) we have for a <m;(r) an expansion of the form (9). To
this expansion (regular in a,), we must add, by analytic continuation (for
a > m;(r)), the contribution from the intervals containing the k; points 2, =7 ¢'"»

where |f(re'9»)| = m;(r). The lengths of these intervals are calculated from (8).
We obtain for a > m;(r)
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Y(r, )

D(r, a) M(r)

Mjfr)

o

m(r) Mr)
Fig. 1. The functions D (r, a) and ¥(r, 0).

Va—m;(r) P,Va—m;®),

_ . 2V2 (¢ 1
(10) Q}(lr’ (l) - @(7‘, m?(r» + Vm Z’p[ l/(_(‘fq)—
¢tz

P (0)=1.

~ Similarly we obtain the behaviour of @ (r,a) at a maximum value M;(r).
For a > M;(r) we have a regular expression of the form (9) and for a << M;(r)
we have

212 1 -
(11) D(r,a) =B, M;0)— o | D e\ VM;(r) —a P, (VM (r)~a)s

o,

the sum being taken for the A; points z, = re'¥» where |f(retr)| = M;(r).

It is clear that the function @ (r, a) has this simple analytic character in
the whole interval 0 <7 < R. The expansions in the neighbourhood of extreme
values may be somewhat altered, however, on a finite number of circles.

4, Consider the function

(12) w=st =2y D) =
Then for small r we obtain for the e.c.’s

%g= —T{w}=—r'sinsp (1 + 07

Pu

e = —sricossgp (1 + OW).
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Denote the e.c’s ending at z=0 by ¢, (#»=0,1,...,25~—1), Where the
index » is subjected to the condition that the angle between the positive real

axis and the tangent of ¢, at 2=0 1is v%-
Then for ¢, we have
[ @ =v§(1 + 0)
(13) )
l (g—é;) — (=11 (1 + 0)

Suppose f(z) and ¢(z) of & have identical M-functions for small r, thus
fulfilling the condition in theorem 1. Then @&;(r,a) and @D, (r, a) have the
same singularities in their analytic character. Bach e.f. u(r) of f(z) in the
neighbourhood of z =0 is therefore an e.f. of g(z). Suppose u(r) is a h-tiple
e.f. of f(z) and a A’ -tiple e. . of g (2). Then h="H.

For if u(r) is a minimum function (or a maximum function) the coefficient

of Va— u(r) (respectively Vu(r) —a) in the developments of ®j(r,a) and
@, (r, a) to the right (left) of u (r) are identical. Then if u; = log |g| we obtain

from (10) and (11)
Pyt Puy |7
o S([5a ) -2 (501,

the sums being taken for the % e.c.s ¢, respectively the % e.c.s ¢,, where
f(z) and g (z) attain the e.f. u(r). By (13) we write this condition for small 7:

8 8
hr 21+ 0@) =Hkr 2(1 + 00)

and the result A == 24" follows immediately.
The proof of theorem 1 now follows from the following lemma.

Lemma 3. Every function f(z) of Vs has in the neighbourhood of z =0 at
least one e. f., non-tdentical with any other e.f.

Suppose the lemma holds. Then f(z) and g(z) have an e.f. u(r) with the
multiplicity A= 4"=1. The corresponding e.c. of f(z) is ¢ = ¢, (r) and of
g(2), ¢ = @4 (r). Then from (14)

()= (58
‘9‘P2 1% 0 ‘Pz ()

Then from lemma 2 we obtain that f(z) and g (z) are equivalent, and this
proves theorem 1.

Proof of lemma 3. Consider the function w(2) defined by (12). Let the e.f.
on the e.c. ¢, be uy(r). Then

dlog m(r) _ [ 0u) _
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In the neighbourhood of 2 =0, w =0 the inverse function z (w) has an expan-
sion of the form

z=1tP () P0)=1

w =1
Hence
(16) logz=logr +ip=1logt+ Q)
where ;

Qty=Dleatr
n=1
(17)
0<¢<2a, 0<argi<2nm.

The e.c.’s ¢,, (v=10,1, ..., 2s — 1) correspond to the real axis in the w-plane,

and by the suitable choice of the index » (cf. p. 84) we obtain that the e.c.
¢, is represented by the straight line in the ¢-plane

argtzv% v=0,1,...,2s—1)
0=<|t|<os.

Putting ¢ = Qe”s_ we obtain the following equation for ¢, [from (15), (16), (17)]

logr=1log o + R{Q (v 0)}

(18) tp\;:v% + J{Q (w0’ o)}
- v s.__d Iog Iu"(,r)
(=17 = d (log )

T
where w =e¢°. If v is even, i, (r) is a maximum function; if » is odd, the
e.f. is a minimum function.
The function () in (16) is regular at = 0. We write

k
Q)= 2" Q;(¢)
j=1
where !
0<oy <oy <or=<s, n;=0, 0) 0.

Therefore in the power series of (2(f) we have Cnjato; # 0 and all coefficients
cn 7 0 have indices of the form n = Ns + o;. Now the highest common divisor
(01, g, ..., Ok, 8) = 1. )

Let us assume that this divisor is m > 1. Then Q(t) is a regular function
of ™ and we obtain
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o= m Py ("), Py 0)=1
=z Py (™)
8

m-
w==z " g)4(zm)

Here m|s and w is a regular function of 2. Then it is easily seen that f(z)
s a regular function of 2™, m > 1, which is impossible if f(2) belongs to a
class ;.

If s>1, two e.f’s in the neighbourhood of z =0 may be identical. As
maximum functions are increasing, and the minimum functions decreasing func-
tions of 7, the identical e. f’s must be of the same kind. Suppose

, tho (1) = s, (7).
Then we can write

(19) nw=v+2m (mod 2 s)

0<m=s—1.

From the equations (18) follows that on ¢, and c,,, ¢ is the same function of
r and conversely log r must be the same function of ¢. Hence

R{Q (0" 0)} = R{Q (w™ o)}

or
C(R{Z Cn ™" g"} =R {Z Cn ™" Q”} .
1 ) 1
If ¢, =|cws +07»l ¢'PNs+oj £ O we have

7 7
cos (ajv; + ﬁNst,) = ¢o8 (om " + Baws +o'j)
or from (19)

cos (a,- (v + 2m)% + ﬂNSH],) = cos (ajvy—; + /3N8+aj).

Therefore at least one of the following two conditions holds.

(4) ojm =0 (mod s)
s
{B) o (v +m) + ;ﬂNH(,j =0, (mod s)
We express s in a standard form of primes

s=p;’1p'2’2...p;’q

where p; are distinct primes >1, ¢; = 1. The primes may be arranged as
they appear in the following calculation.
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Since (oy, Os, ..., 0k, s) =1 there is at least one o; not divisible by
pi(:=1,2,...,h). We denote by 6(p,, s, ..., pr) the subsequence of {o;}
with the property that each ;€0 (p,, ..., pr) is not divisible by at least one of
the primes pq, ..., vx. ‘

Suppose that f(z) has two identical e.f.’s corresponding to the couple (v, )
or (v,mg) by (19). We write

(mo, ) = pirpg ... ot oA L
0=y <a, " 1=h=gq
For no ;€6 (py, ..., pa) the condition (A) can hold. Thus

oj (v + my) + iﬁm fo; = 0 (mod s)

;€0 (py, ..., D).

Now suppose that u, (r), v =» + my (mod s), is identical with another e. f.
and that the corresponding number m determined by (19) is m;. The tangent
of ¢,» at the origin is a bisectrise to the tangents of ¢, and ¢,,. We now study
the conditions (A) and (B) for the couple (¥, m;).. (B) can be written

B) aj (v + my + my) + 7%/5’1% +0; = 0. {mod s)

If 6;€60(py, ..., pr), the conditions (A) and (B) for m, are identical and we
obtain p{*|m,, ..., pia|m; and thus pupg...pa|m,. If =g, we should
have s|m;, which is impossible, since 0 <<m; < s — 1. Then u, (r) could not
be identical with any other e.f., and lemma 3 holds.

If A <<q we put

— i1 WAL PO
(my, ) = pPrpy ... pgk-p it Lo w Dyt

0 <y <aq, h<<h <gq.
It 0;€0(py, Py, ..., p») the condition (B) holds. Now repeating the argu-
ment, suppose that u,~ (r), "’ =v + my + m; (mod s), is identical with another
e.f., corresponding to the number m,. Then we must have pXpg ... " |ms,
and this is possible only if A" <<q. Then we go on studying the e.f. u.~ (),

L

v =y + my + my + my (mod s). The corresponding number mg must be divis-
ible by pfipe ... px", B > k. After a finite number of such steps, we obtain

an e.f. u,(r) which is identical with another e.f., only if the corresponding
number m is divisible by s, which is impossible. This proves lemma 3 and the
proof of theorem 1 is now complete.

5. We denote as usual the mean values of |f(z)] on circles |2| =7 for real p 5 0.

A f e pag|”
0

We shall state the following theorem.
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Theorem 2. Let f(z) and g(z) be functions of R and let the mean values
My(f,r) and My(g, 1) on a circle |z| = r =< R be equal for an infinite number of p,
P=D1,DP2, ---Dn, - - - hmlpnlzoo

Then, for tkzs 7, the M-functions @;(r, a) and D, (r, a) are identical, and all
mean values are tkerefore equal.

It is sufficient to prove that the functions Wj(r, 6) and ¥, (, 6) are identical
for this 7.
By lemma 1 we have

27 27
(20) [ ¥, 0pndb— [ ¥ (r, 6y d0 =0
0 o
n=12 ...

From the simple analytic character of the functions @ and ¥ we see that the
values of 6 for which the functions ¥(r,0) and ¥, (r,0) may be distinct,
form a finite number of intervals. Suppose @, < 8 <6, is the last of these
intervals and suppose that the sequence {p,} has the limit point + oo.

We can assume that ¥;(r, 0) > W, (r, 6) for 6, <8< 0,. It is evident that
if (20) holds for one pn < 0, then 6, > 0. Put for §; <0 < 0,

Yir,0) =a(l +¢@), Y (r,0)=a(l+ y®)
a= ¥ (r,0) = ¥ (r, 6,). a>0
We have ¢ (6) — vy (6) > 0 for 6, <8 <6, and

62

f (p@ —yp@)dl=w

8,
where o > 0. '
Now from (20) we have for p, > 0:

0< o™ [{[L+ p@PF*—[1 + p(@OF 6 =

6y
= [[¥, (r, 0)" — P (r, )" 46 < a™ 6.
0
Hence for p, > 0: -

1) 0< [ 11 +p @) {[1 + ‘El(i’i—w;(/’;f)]p"—- 1}d0 <.

For =0, p =1 we have the inequality
(1+z—1=pz.
(@

@) — v ()
1

Using this inequality for z = )~ »(0)
+y (@)

we obtain from (21) for p, =1,
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%]
0<puf[1+ 9@ [p ©) —y @] d6 <6;.
Hence o

0<Jg'z[¢<0>—w(0)]d0=w<%-

For pn, - oo we obtain w = 0, which shows the impossibility of the existence
of the interval (6, 6,), and the functions ¥;(r, ) and W, (r, 0) must be
identical.

If 4+ oo is not a limit point of {p,}, then lim p, = — co. For this case we
prove similarly that there cannot be any first interval (nearest to # = 0) where
Yi(r,0) = ¥y (r,0). This proves the theorem.

Theorem 3. Let f(z) and g(z) be functions of R, and let the M-functions
Dy (r,a) and Dy(r,a) be identical for an infinite number of r, r =71, =R
(t=1,2,...). Then the functions f(z) and g(z) are equivalent.

The functions (f @)™, (¢ @)", (m =1, 2,3, ...) are all analytic in |z| < R. Put

o0 oo

(f@)m = Z A(m) (g = ZB(m) 2.

Then for r =17y, 79, ..., Tn, ...

(22) MZR(f,r) = M5™ (g, 7)

or

(23) DA Eran= 3| Bm2p2n,
* n=0 n=0

These power series are convergent for r << R -+ & if § is a sufficiently small
positive number, and we obtain immediately that |4 | = | B™| for all m and n.

The equality (22) therefore holds for all  in the interval (0, R). By theorem 2
f(z) and y(2) have identical M-functions in the interval (0, R). Then by
theorem 1 the functions are equivalent.

6. The following lemma gives another proof of theorem 1 for functions that
can be referred to the class 9Y;.

Lemma 4. Let f(z) and g(2) of R have power series of the form

o0 o
z)=2avz”, g(z)=>_:,bvz”
v==0 =0

where aga; < 0. Put

oo o0

@y =Da?z, () wa) 2

y=0 »=0
a® =q,, bV =b,.
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Suppose that

|b(11)| == la(p)[
v v
for v=20,1,...,n and p = py, D2, . .., Du, where py are real and unequal.
Then
: by = @, & &tvP), y=20,1,...,n
or
b, = a,ervh, v=0,1,...,n

where o and f are real.

The lemma says that there is a function ¢, (z) = Zb; z¥ equivalent to g (2),
such that b, =a,, v=0,1, ..., n. Therefore in the proof we can substitute
g(z) by a convenient equivalent function.

It is easily seen that the lemma is true for » =1. We may suppose
ay = by =1 and a, real and positive. We write .

o
(far=1+ DaPz, alV = a,
v=1
(g =1+ 2P 2, BV = b,
v=1,
Putting
Iz _
App= Q=77 cairgle . gimoiedl
" %'/Ltl R e B mowtl
the summation being over
[ =0, My g o e = 4

L + 2 + 4 (m— o+ 1) prmr1 =m0
we obtain

al) = i (p) Y S

u=1 M
Similarly we write

w=1

We prove the lemma by induction. The lemma is true for n =1, let it be
true for » — 1. Then we may suppose

bl = a4, bg = oy - .y bn~l = 0p—1-
Then
' Bpy = An,, L=23,..,n
The equalities
(6P| = |aP], D= D1, Dgs - - - Pn
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can be written

p:p17p25~--9pn
or

(217) (onl —loaft) + 3 (z) {(an Ao+ ) — (o B+ Dn i)} =0

=2

D= D1, P25 - Pn-.

Since px are unequal, the determinant
(1’1), (1’1) (1’1)
1 2177 \n
1 2)7 "7 \n

pl Pe-..Dn ___
‘2 I3 l H (pe — pr)

— 1>k

does not vanish. Therefore

[6n] = | an]
and
a/nliny. + dnAny = bnfin‘u + bnAn# u = 2, 3, PR

If Anu # 0 these conditions give

(24) arg (an Ap,) = + arg (ba Any) w=273...,m
Now we shall prove: If all the coefficients a,, as, ..., an—1 are real, then we
must have b,==a, or b, = @.. If at least one of the coefficients a,, ..., ¢t

is complex, then we must have b, = a,. If a, = 0 there is nothing to prove.
As Ann=a} is real and positive the condition (24) gives that either by, == as
or by=d,. Then the lemma is proved in the first case. If am, m <<m, is the
first complex coefficient, we see that

An;n—m+1 = (n —m + 1) ay ™ Qm
+ (a polynomial of a,, a,, ..., @m-1)

{ .
cannot be real. Putting in (24) x=n and then y=n —m + 1 we obtain
b, = a,. This proves the lemma.
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B. ANDERSSON, On equivalent analytic functions

Now suppose the conditions of theorem 1 are fullfilled and f(0) f (0) # 0.
Then from the corollary of lemma 1 follows that

M2p(f,7'):M2p(g,T), p:1,2,.--,’ﬂ,...

in an interval 0 <<r <r;. Then we have (compare the proof of theorem 3)
|6 =|a®| for all integers p and n. Then from lemma 4 the functions f(2)

and g¢(z) are equivalent.
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