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Stochastic processes and integral equations

By UrLr GRENANDER

1. In the following we shall consider stochastic processes, 1.e. real functions
z (t, ) of the two arguments ¢ and w. ¢ will denote a real parameter in a
finite or infinite interval T. w will be a point in an abstract space £2, on which
18 defined a measure of probability in the usual way. For fixed t€ 7, z (t, m)
18 supposed to be measurable in £ and the following integrals existing

[m fxtc)dp(a) = K ux(t)

0= BBE w0 - m@)
Moreover, we suppose that » () is continuous in the mean, i.e.
Elzx@t+h —2®]?~0

for every t as h--0. Let T ==(a,b)! Suppose that we know #(s,7) and that
m (t) 18 an unknown constant = m, which is to be estimated. Under certain as-
sumptions it can be shown that one is led to consider estimates of the form

where f(f) is quadratically integrable and the integral is taken in the sense of
Karhunen ([ber lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann Ae
Rei Fenn, series A, I, 37, Helsinki 1947). To determine the best estimate of
this form we demand that #” will be unbiased and of minimum variance, i.e.

[ £Em™ =m

VE [ -~ m)? = min.
But this implies

hob
1 [ = f ‘/)r (. f()fOhdsdt=min,
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As [[r(s,0)f(s)f(®)dsdt = E[[ [z () —m@®)] f()d?]* = 0, the kernel r (s, ?) has

positive eigen-values, so that we can apply the theorem of Mercer and obtain

o= ST 0

- A
with the characteristic elements 1 and ¢ to the integral equation

) =A1fr(s.t)pdt.
Putting a, = [ ¢, (t)dt and c. = [ (t) @, (t)dt we get the conditions

o o0 oG cg

N o ' U .
Z,cwaﬂ,:l, Z‘C;‘<°°’ ZT:mm.
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In order to get convergent series we must separate several cases. We state
only the main result obtained by applying the Schwarz inequality:
The estimates

n b
my = 1~}‘_,a.,z..fx(w..,(t)dt; n=12 ...
1

9 a
@ Ay

-

satisfy the relations
Emp=m; E[m;,—m]*{GLB.Iasn—>oco.
When ms, converges in the mean, its limit is unbiased and of minimum variance.

2. There are obvious generalizations of the above. But to treat the general
problem of unbiased estimation we must use another method. 2 may be an
N-dimensional Euclidean space, corresponding to an N-dimensional stochastic
variable, or it may be some appropriate subset of all real functions, corre-
sponding to a stochastic process. On £ is defined a measure of probability
P (w, 8) depending upon a real parameter 8, a = 86 < b. To each § corresponds
the Hilbert space L, (£, A) of quadratically integrable {unctions with respect to
Py and with the usual quadratic metric.

Consider the operation

Tog=[g(@)dP(w.0): €Ly (2.6).

Let the following conditions be satisfied:

A L,(2,6) shall be the same for all § (consisting of the same elements, but
usually with different metric) and the topological structure shall be in-
dependent of 4.

B T, shall transform L, () into L,(0; «, b).

C The functionals T4 shall be of uniformly bounded norm

lTﬁgng'gH:a; a =< 60 < b.
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It is possible to show that for the validity of A—C the following simpler condi-
tions are sufficient. Let

IT=la<zy<b; =12 ...70}
be an arbitrary finite-dimensional interval and demand that for every I:

a. P(I, 8) shall be continuous in 6.
b. P(1,#y<C-P(I,0§") for every # and 6.

Under the assumptions A—C it can be proved. using an important theorem
of Hilbert concerning completely continuous infinite quadratic forms that there
exist two ortho-normal systems {y, (A)} and g, (w)} and a sequence of numbers
{2} so that

9. (0) =4 [ . (0)d P (w,0).

Now again we must distinguish between various cases. Let us suppose, e. g
that {y,| is complete! Then the following theorem is easilv obtained:

Theorem I. Under the said conditions it is necessary and sufficient for the exist-
ence of an unbiased estimate 6 € Ly(Q) of 6 that

b
Z,}f, ci << oo where ¢, = f&y),, #dé

This is, of course, connected with the theorem of Picard for usual integral
equations.

3. We shall now treat a different problem with similar methods. Let o be
a bounded measure on the real axis, and x(f) a stochastic process with
{r(s, )] < K. Then studying the integral equation

z(co)z)lfx(t)]‘(t)dc(t); 2€ Ly(x); f€ Ly(o)

it is easy to show that the process can be represented as

r(t) = ";/; )

where both 2z, and @, are obtained as eigen-functions to symmetric integral
equations. This is only a simple generalization of a result due to Karhunen.
(Zur Spektraltheorie stochastischer Prozesse, Ann Ac Seci Fenn, senes AT 34,
Helsinki 1946.) But for an orthogonal process Z (1) with 1Z (1) * = o (1), one
can prove, using Parsevals relation and the defiring properties of an orthogonal
process:
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Theorem II. )
A s

2 [ (@) d o (x)

1 —

Z ()=

where {z,} is a CON system in Lo (Z) and l@.} is a CON system in Ly(0).
Applying this to the above one gets
Theorem III. The process can be represented as

K

w(t)= [t HAZ()

—

where for every ¢ [(t, 1) € Ly (o) as a function of A and Z (1) is an orthogonal
process with || Z ()2 = o ().

Detailed proofs and various further developments. of -the methods used here
will be reserved for a later publication.
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