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Metrie criteria of normality for complex matrices

of order less than 5

EpcArR AspPLUND!

1. Introduction

We denote a (finite-dimensional) complex Hilbert space by F. Its elements
(vectors) are denoted f, g and the scalar product of f, g€ F is written (f, g).
The norm of fEF is (f, /) =|[f||. Elements (matrices) of the algebra B (F) of
endomorphisms on F are denoted by capital letters other than B and F. The
norm of A€ B (F) is defined by || 4]|= sup HA7ll-II£I*. The adjoint 4* of 4

is defined by (4f, g)=(f, A g) for all {, g€F.

An element 4 of B(F) is called normal if it commutes with its adjoint:
A*A=44". :

As is well known, A€B(F) is normal if and only if it can be written as
a sum

m
A=73 A By, (I.1)
1
where A are complex scalars and E,€ B (F) satisfy the conditions
m
ZEk=I; E]Ek=0, f*k; Ek=E;=Ei. (1.2)
1

The set spA={Ax|E,+0} is called the spectrum of A. From egs. (I.1) and
(L.2) it is easy to conclude that for all polynomials p (t) in one variable ¢ with
complex coefficients one has

2 (4] = max |2 (). (L3)

According to a theorem of v. Neumann [1], the following converse of (1.3)
holds true. If T' is a finite subset of the complex plane and

! This article was written at the Department of Mathematics, Royal Institute of Technology,

Stockholm, while the author was holding a scholarship from the State Council for Technical
Research,
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2 (4)||= max |p (@) (L4)

for all polynomials p (t) in one variable, then A is normal and spAST.
We call eq. (I.4) a metric criterion of normality. The following criterion

| (A)*|| =l ()| for all polynomials p (¢) (L5)
is equivalent! with (I.4), because (I.5) implies

Ip (@l|= lim || o (4" [ = max, ||~ max |p (4]

Aesp(p(4)) Aesp4

by theorems of Gelfand and Dunford. Actually, as every polynomial in 4 can
be replaced by its residue modulo the minimal polynomial of 4, a sufficient
condition that A shall be normal is that (I.5) shall hold for every polynomial
p (t) of degree less than the minimal polynomial of A.

We will be mainly concerned in this article with a weakened form of (I.5),
namely

il =l 4l  ds=4-21 (1.6)

for all complex A. It turns out that (I.6) implies normality only if dim F<4.
Moyls and Marcus [2] have given another criterium of normality, whose do-
main of applicability coincides with that of eq. (1.6). If

W (4)={2|A=Af, P(f, )", FEF}

is the range of values of A4, the condition of Moyls and Marcus reads: W (4)
is equal to the convex hull of spA. They prove that this condition implies that
A is normal if dim F<4 by representing 4 as a triangular matrix (Schur’s
lemma). We give here in the last section another proof of their theorem which
uses no special representation for A.

II. A characterization of normal matrices for dim F <4

11.1. Introductory remarks

According to the provious section, the condition
|45l =1 4al>, 42=4—AI for all complex 1 (I1.1.1)

would imply that A is normal if dim F=2. Actually, the validity of eq. (IL.1.1)
as a criterion of normality for A reaches further. It is valid for dim F =4, and
if dim F equals 2 or 3, it is possible to restrict the variation of 1 and still
have a necessary condition that A shall be normal. Thus, if dim F=2 and eq.
(IL.1.1) holds for one complex value 1 only, then 4 is normal and the same

1 This equivalency was pointed out to us by Vidar Thomée.
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conclusion holds if dim F=3 and eq. (IL.1.1) is valid for all values A on some
straight line in the complex plane.
To prove this we need two auxiliary theorems.

Theorem 1. The following two statements are equivalent.
L4z =1l4fP.
2. There is a vector fEF such that A* Af=A A f=|| A|]*}.

Proof. Suppose that statement 1 is true. As dim F < oo, there is at least one
vector g EF that satisfies

l4gll =Nl 4l Mg (IL.1.2)
when statement 1 is true. From (II.1.2) one obtains
l4lFllgll=ll4a*gll<Allll4gll<|l4]*]lg]l (I1.1.3)
Obviously, equality must hold throughout in eq. (I1.1.3). Thus the equation
4 fll=114lllit (IL.L4)

is satisfied by both f=g and f=Ag. However, a necessary (and also sufficient)
condition for fE€F to satisfy eq. (IL.1.4) is A 4f=]| A|?f. Using this fact, we
verify statement 2 with f=Ag.

Conversely, 2 implies 1. For let f€F satisfy A*Af=AA"f=| 4] Then,
if one puts 4*f=g,

|42 gll= (4% A" f, A* A* 2 = (Af, AP A|=]||A|P(A* Af, )t =
14| aarf, it =[l4] A f, 4*HE=[[A[P]lg]l
This proves theorem 1.

Theorem 2. Any vector f; which satisfies Af Arfr= A4, AF f1=|| 4:|*f 1s n the null
space of A¥A— A A*. To prove A normal, one need only exhibit (dim F — 1) line-
arly independent vectors lying in the null space of A*A— A A*.

Proof. If A7 A fr=A; A5 fr=||4:|?f, a simple computation shows that
(A*A—- A A%)f,=0. The trace of A* 4 — A4 A* is, however, zero. Thus if 4* 4 —
A A* has zero as a (dim F —1)-tuple eigenvalue, the remaining eigenvalue must
be zero too. This concludes the proof of theorem 2.

11.2. The main theorem
We are now ready to prove our main theorem.
Theorem 3. If A is a subset of the complex plane and
43l =4, 4i=d4-ar1
for all A€ A, then A€B(F) is normal
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trivially if dim F=1.

if dim F=2 and A is any point.

if dim F=3 and A s any straight line.

if dim F=4 and A is the whole complex plane.

o

Proof. Statement 2 is proved directly by using theorem 1 and theorem 2.
To prove statement 3 we have to exhibit two linearly independent vectors f;.
It turns out that this may be accomplished by using vectors f; belonging to
infinite values of A. These are defined in the following way. Suppose f, ||f1]|=1,
satisfies A} 4;fa=A1 45 fi=||4a[2 /1 ie.

A*A/A_(ZAj;+lA*fz)+|3-|2f1=”A1”2h’} (IL.2.1)

AA iR AL+24" )+ AP = Al .
We rewrite egs. (I1.2.1) in the following way, using the abbreviations 1/|1| =,
dA+wA*=A,.

Ao =AM AT A fh=1217 (2P = [ 4) £ }

11.2.2
Ay i | A 44" fi= | A (AP =] 4] (I122)

Taking the difference of the two egs. (II.2.1) we get
(A*A—44%)f,=0.

If now A tends to infinity in such a way that w approaches a limit, it is pos-
sible to pick out a convergent sequence f; , whose limit f, is an eigenvector

of A,
Ay for="4g fo (I1.2.3)
and which also by continuity has the property
(A*A—-A44%)f,=0. (11.2.4)
Moreover, m,, is the smallest eigenvalue of the self-adjoint matrix 4, We dem-
onstrate this by proving that A,— (m,—¢)I is a positive self-adjoint matrix
for an arbitrary positive ¢ (the matrix A4 is said to be positive if it is self-

adjoint and (4f, f)=0 for every vector f). Namely, this matrix is this sum of
the three matrices

Ap— A A A A (AP -l L At AT 4+l
and (—mot |2 (AP= (4l I+ 1,

the first of which is positive by the definition of || 4:]|. The second and third
will be positive for all sufficiently large 4=24, corresponding to the convergent
sequence fjn.
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We are thus able to obtain two eigenvectors f, and f_,, corresponding to
the eigenvalues m, and m_, of 4, and A_,= — A4, respectively. But m_,, the
smallest eigenvalue of —.4,, is obviously the same as the largest eigenvalue
M, of A, 1If m,+ M, then for dim F =3 we have satisfied the requirements
of theorem 2 and statement 3 is proved. If m,=M,, then 4,=m,I and we
have

A*=dm,I— o> A4,

which is enough for normality in any case.

When we start out to prove statement 4 we can thus assume the existence
of f, and f_, satisfying

Aofo =Mafo } (IL.2.5)

Awf—w=wa—m

with m,<M,. As A is now the whole complex plane, we can construct in the
same way for an w'=+ * o eigenvectors f,, f_. satisfying

Aot for = Mu for } (I1.2.6)

Am’f—w’=Mw'f—w’
with m, =+ M,. Now, either we have enough vectors for use in theorem 2 to
prove A normal or else f,, f_, and [, f_, span the same two-dimensional sub-
space F,<F. As A4, and A4, are two independent linear homogeneous func-
tions of 4 and A* we conclude from eqs. (I1.2.5) and (I1.2.6) that this sub-
space is reduced by both A and 4*. Thus F, is spanned by two eigenvectors
of A corresponding to different eigenvalues A, and A, (4 acts as a normal matrix
on F, because A* A— A A* annihilates F,, therefore 4, =24, would contradict
mu,<M,). If we put o =4i(d,—24)|A —2A|"", it is easy to verify that every
vector_of F, is an eigenvector of 4,. with the same eigenvalue, namely
2Im (A, 2;)| 4 —Ay|™'. When we then repeat the construction of eigenvectors
for and f_,. corresponding to the smallest and largest eigenvalue of 4,. re-
spectively, it is clear that at least one of f,. and f_,. does not belong to F;
(i.e. the subspace generated by f, and f_,) or else A, =m, I, ie. A*=
@ ' my I —@"% A, and in either either case 4 must be normal. Thus all state-
ments of theorem 4 are proved.

I1.3. Counterexample for dim F=5.
We now construct a non normal matrix 4 of order 5 such that
|4%]| =1l 4al]>, da=4—-21I (IL3.1)
for all complex A. Let F be the direct sum of two mutually orthogonal sub-

spaces F'; and F,, dim F,=3 and dim F,=2. Let 4, 4; be represented by the
block matrices

AZ(A1 0 ) AF(AI—M1 o)= Ay 0 )
0 4,) 0 4,-21,) \0  An
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From the definition of the norm of 4 it is obvious that
|| 3]l = max {J| Az, || 4zs]f}-

We choose 4, to be a normal matrix such that

|4l =1+]A]

This can be accomplished by choosing 2, —1%3 V3 as eigenvalues of 4;. Then

we take 4, to be a non normal matrix of norm 1, e.g. A2=(g (1)), which thus
satisfies

”Azz”Sl -I-IAI
Then | 43]| = max {|| A%ll, [[- 4311} =1 A%l = | Awa |I* =] A2 ]

which proves the assertion of eq. (11.3.1).

IIL. Properties of eigenvalues which lie on the boundary of the range of
values of a matrix

Moyls and Marcus (2) have proved that the eigenvectors corresponding to
eigenvalues of 4€B(F) lying on the boundary of the range of values W (4)=
{AlA=(4f, H(f, Hh~', fEF} are eigenvectors also of A*. It then follows in the
same way as in the proof of our theorem 3 that if only one (simple) eigen-
value of A lies in the interior of W (A4) (this must always be the case when
dim F<4 and W (A4)=-convex hull of sp 4), then 4 is normal. Moyls and Marcus
prove their result representing A4 as a triangular matrix by means of Schur’s
lemma, but the theorem is really a consequence of a simple property of the
boundary of W (4) and can be proved without using any special representation.

Theorem 4. If fEF is an eigenvector of A€ B(F) corresponding to an eigen-
value A which lies on the boundary of the range of values of A4, then [ is also
an etgenvector of A*.

We prove theorem 5 by a variational method. Put f,=f+ pg and determine

dA={d[(Afu, fu) (fur fu) " Bu-o
={d[Af+udg f+pg)(f+pug, f+pg) o
=[du(dg, H+adalf, 1 (f, D=2 N dp (g, H+dalf, 9]
=dul(4g, H—Ag D H
=dul(g, A" f—-ANH(f, 7"
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Since, however, dl is restricted because 4 lies on the boundary of W (4) but
du is not, we must have

(9. A" f—1f)=0

for all g€F, which proves the theorem.
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