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1. Introduction 

Suppose that  E is an open connected set in a k-dimensional Euclidean space. 
We say that  a real-valued function u (x) in E is subharmonie if it satisfies the 
following conditions (Rad6 [3], §§ 1.1, 2.3): 

(i) u(x) is bounded above on every compact subset o[ E. 
(ii) u (x) is upper semicontinuous on E, i.e. /or every real number a the set 

o[ points x, where 
u (x) < a, 

is an open set. 
(iii) For every k-dimensional compact sphere S R (~) c E, with centre ~ and radius 

R, we have 

<1 f u(~)_SR u(z)dx, (1) 
ZR(D 

where S~ denotes the volum~ o/ the sphere, and where the integration is 
carried out with respect to the (k-dimensional) Lebesgue measure. 

Let us now suppose that  F(x) is a given non-negative, upper semicontinuous 
function on E. We allow the function to assume the value + ~ .  We shall 
then consider the class {F) of all subharmonie functions u(x),  such that  

u (z) _< F (x) 
for every x E E. 

I t  is easy to realize tha t  if two functions u 1 (x) and u2 (x) belong to {F), 
then the same is true for the function 

yfax {ul (x), u~ (x)}. 

The corresponding property holds for any finite number of functions in {F}. 
Our aim in this paper is to show that  under certain conditions also the function 

M (z) = sup u (x) 
us{F} 

belongs to {F}, i.e. that  F(x)  has a largest subharmonic minorant. 
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y. no~r t ,  St&harmonic minorant of a given function 

Because of our assumption tha t  F >  0, we see tha t  for any  u E {F} 

Max {u (x), 0} e {~} .  

Hence, if we denote by  {F*} the class of all non-negative functions in {F}, we 
obviously have 

M (x) = sup u (x). 
u~{F +} 

The above-mentioned problem is trivial if k =  1, for then the class of sub- 
harmonic functions coincides with the class of convex functions. I f  k _  2, how- 
ever, the question has been discussed in several papers. A main result is the 
following theorem by  SjSberg [4] and Brelot [1] (el. also Green [2]). 

Theorem 1. M (x) is subharmonic i/ and only i/ it is bounded on every compact 
subset o/ E. 

Hence we can confine ourselves to the problem of  finding conditions on E 
and on F (x), under which M (x) is bounded. This problem was discussed for 
k = 2 by  SjSberg [4]. Our results are, however, somewhat  more general, and we 
shall use elementary methods, which can be carried over to the corresponding 
problem for more general classes of functions. Thus our results will remain t rue 
for the class of functions which we obtain if the right-hand member  of the 
inequality (1) is exchanged for 

B f u(x)dx, SR 
ZR (D 

where B is any  fixed number  _ 1. Moreover, the proper ty  "upper  semicontinuous" 
in the s ta ted definitions may  be exchanged for "measurable"  without  affecting 
the results. 

Theorem 1 is true even if we make these modifications. The necessity par t  
is obvious, and we shall briefly sketch a proof of the sufficiency. We form the 
function 

H (x) = Min {F (x), G (x)}, 
where for any  ~ E E,  

a ( ~ ) =  
nlSR(~)CE ue{F+}~R SR(~) 

Obviously u (x) _< H (x) _< F (x) 

for any  x E E and any u E {F+}. Fur thermore it can be shown tha t  H(x) ful- 
fils the three in the above-mentioned way modified conditions in the definition 
of subharmonicity.  The only difficult pa r t  is the verification of (ii); however, 
for any fixed R, the function 

f u(x) x d 

zR CD 

430 



ARKIV F6R MATEM_KTIK. Bd 3 nr 39 

is continuous, uniformly in u, at  every point ~ with 2R (~)c  E, and this has 
the effect tha t  the functions 

"f sup ~ u(x)dx 
u e{F+} R 

SR(D 

are continuous functions of } whenever they are defined, thus G (}) is upper 
semieontinuous. Apparently the above-mentioned properges of H (x) imply tha t  
it is the largest function in the class {F+}. Hence the existence of a "subharmonic" 
M (x) is secured. 

I t  may  be observed that, with this change in the definitions, Theorem 1 
is no longer trivial in the case k =  1. 

2. A general sufficient condition 

In  the case /c= 2 the following theorem was known by Beurling (cf. [4] p. 
319). However, no proof has been published. 

Theorem 2. M (x) is bounded on every compact subset o[ E i/ /or some e > 0 

f [log + F (x)] k-1+8 d x  < oo. 
E 

To prove the theorem we need the following lemma, where u (x) is an arbitrary 
function in the class iF+}, and where l~ is the measure of the set E~ where 

e'<u(z) < d  +1. 

I, is finite for v > 0, if the condition in the  theorem is fulfilled. 

Lemma 1. Let D be a positive constant and ){ a positive integer, both so large that 

e 1 
Dk Sx +-~ <_ 1, 

where S 1 is the volume o/ the k-dimensional uni t  sphere. Then the/ol lowing is true: 

I ]  /or some integer v and some point x~ 6 E 

(x,,) > e ~ ( 2 )  

and SR (x~) c E,  

1 

where R > D (l~_a + l~-;.+x + ... + l,,) ~, 

then SR (xv) contains a point X~+l, where 

U (~:v+l) ~ d+X* 
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Proo/ o/ Lemma 1. Suppose tha t  u(x)<e "+a in SR (x,). 
tha t  this implies a contradiction. 

We are going to show 

1 
(2) and (1 )g i ve  e'<_u(x,)<_~ I u(x) dx. (3) 

S R (x v) 

Now let us denote by, S '  the set of all points in SR (x,) which do not  belong 
to the set 

lJ E . .  

Apparent ly  u(x)<_e "-~, if x E S'. Hence the right-hand member  of (3) is 

l f u(x)d* l f < s~ + ~ ~ (~) d:~ 

~ E n S" 

1 e,+l 1 [ eR e 1~ -s~<-- q'-~+ +l')+~ e-as~<e I , ~ + J  ] 

which is impossible. 

Proo[ o[ Theorem 2. Let D and t be chosen in the way described in Lemma 1. 
Suppose tha t  for some point x~ E E and for some u E {F +} 

u ( x . ) _ > e " ,  

where n is an integer satisfying n >4 .  Then according to Lemma  1 every 
sphere around x.  with a radius 

1 

> D ~ (l ,_~+-. .  +l~) ~ 
~=Tt 

contains either a boundary point of E or a point Xm E E where 

u(zm)>_e". 

However,  since u (x) is bounded on every compact  subset of E, this implies 
tha t  the distance between x ,  and the boundary of E is 

1 ~ 1 1 

< D (l,_a + + l~) ~ _< D ~ _ . . -  ( l , _ a  + . . .  + l , )  
n 

oo 1' ~ 1 k - l +  e 1 

_ < D ( I +  1) Z ~ -  1) Z ~ k. l, - D ( 2 +  k_--vci~ v l, 
n-)~ n--2 ~ k 

Using H61der's inequality, we see tha t  the right-hand member  is 
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k-1 1 

n k n - 2  J 

1 1 

E E 

1 

F ( z ) ]  ~ - l + ~ d x  , 

where  (~. is i n d e p e n d e n t  of the  choice of u(x) a n d  t ends  to  O, when n-->c~. 
Hence  if we have.  a t  some p o i n t  in E ,  

M (x) > ~ 8 , 

we m a y  conclude t h a t  t h e  d i s tance  be tween  th is  po in t  a n d  t h e  b o u n d a r y  of E is 

1 

~ [log + . F ( x ) l k - l + ' e d x  . 

E 

This  shows t h a t  M (x) is bounde d  on a n y  subse t  of E which  is s i t u a t e d  a t  a 
pos i t ive  d i s tance  f rom the  b o u n d a r y  of E,  and  hence  the  t heo rem is p roved .  

Remark. The  theo rem is a p p a r e n t l y  st i l l  t rue  unde r  a weaker  a s sumpt ion ,  
n a m e l y  if for eve ry  compac t  se t  C c E the re  exis ts  a n u m b e r  e > 0 such t h a t  

f [log + F(x)]k-l+~dx< ~ .  
C 

3. A s imi lar  t h e o r e m  under  m o r e  restr ict ive  a s s u m p t i o n s  

I f  k = 2 ,  the  case when 
F (Z 1, X 2) = F (x l ) ,  

where  x 1 a n d  x 2 are  t he  Car tes ian  coordinates ,  a n d  when  E is a rec tang le  wi th  
i t s  sides para l le l  to  the  coord ina te  axes,  is of p a r t i c u l a r  in teres t .  I n  t h a t  case 
t he  exponen t  l + e  in Theorem 2 m a y  be exchanged  for  1. This is a n  easy  
consequence of Theor~me I I I  in  SjSberg [4]. W e  tha l l  now s t u d y  the  corre- 
sponding  p rob lem for an  a r b i t r a r y  k. 

W e  assume t h a t  x 1, x 2 . . . . .  x k are  Car tes ian  coord ina tes  of t he  space.  Le t  p 
be  a posi t ive  in teger  < k ,  and  le t  0 be an  open se t  in  t he  p -d imens iona l  
Euc l idean  space which has  the  Car tes ian  coord ina tes  x 1, x 2 . . . . .  x p. at a n d  b~, 
where i = p +  1, p +  2 . . . . .  k, are  a s sumed  to be f in i te  rea l  numbers .  

W e  define E as  the  se t  of a l l  po in t s  which sa t i s fy  

(x:, x 2 . . . .  x p) E 0 

and  a~<x'<b~ i = p + l , p + 2  . . . . .  k. 
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Then we let _~ be any  function, defined in E, which only depends of the first 
p coordinates, i.e. 

F (x) = F (x 1, x ~ . . . . .  x~).  (4) 

Let  m E  denote the Lebesgue measure of E.  There exists a function y(m),  
defined and non-increasing in the interval O < m  < m E  and such that ,  for 
every Y0, the one-dimensional measure of the set where y (m)> Y0 is the same 
as the k-dimensional measure of the subset of E, where F (x)> Y0- 

Theorem 3. M (x) is bounded on every compact subset of E i/ 

m E  1 

f log + y (m) d (m ~) < ~ .  
0 

For  the proof we need the following lemma, where u (x) is an arbi t rary  func- 
tion in the class {E +} and where m, is the measure of the set F,, where 
F (x)> e ~. Obviously m, is finite if v > 0, and if the condition in the theorem 
is fulfilled. 

Lemma 2. Let D be a positive constant and 2 a positive integer, both so large that 

e2  ~-v 1 
+ ~ _ < 1 .  

D ~ 21 1-I (b~ - a d  
p + l  

Then the /ollowing is true: 

I /  /or some integer v and some point x~ E E 

u(x~)>e" (5) 

and Sn (x,) c E,  

1 

where R > D mV~_~ , 

then Sn (x~) contains a point 3c~+ 1 where 

u (X~÷l) > e "+1. 

Proof o/ Lemma 2. The condition (4) and our special choice of the set E 
imply  tha t  F,_a consists of the points, which satisfy 

(x 1, x ~ . . . . .  x ") 6 F:_~ 

and a~<x~<bi, i = p + l , p + 2  . . . . .  k, 

where F'_~ is a certain p-dimensional set. Moreover, the set 

2 = 2R (x,) n F~_~ 
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is included in the set, which is characterized by  the conditions 

(x 1, x ~ . . . . .  z ~) e F ' _ ~  

and x~-R<x~<x~+R, i=p~-l, p + 2  . . . . .  k, 

if we let (x I . . . . .  x~) denote the coordinates of x~. Hence the measure of the set S is 

(2R) ~-~ 

1-[ (b, - a,) 
~+1 

We suppose tha t  u (x)< e "~1 in SR (x~), and are going to show tha t  this im- 
plies a contradiction. By  (5) and (1) we have 

< 1  f u (x )d~ .  e ~ <_ u (x~) _ SR (6) 

We denote by  S'  the set of all points in Sa (x,) which do not  belong to the 
set S. Apparent ly  u(x)<e ~-a if x E S' .  Hence the r ight-hand member  o f  6 is 

S S" 

1 (2R) ~-" 1 e~[D e2k-~R k + 1 ] _ e , "  < - -  e r + l  ~ r ~ - a  J r  e~-;(  ~ R  < 

- -  S n  l-I (b~ - a i )  ~ S n  YI (b~ - a~) 
p + l  p + l  

This gives a contradiction, and hence the lemma is true. 

Proo[ o/ Theorem 3. Let  D and ~t be chosen ha the way described in Lemma 2. 
Suppose tha t  for some point xn E E and for some u E ( F  +} 

u ( x , ) > e  ~, 

where n is an integer satisfying n >  2. Then, using Lemma 2, we m a y  as in the 
proof of Theorem 2 conclude tha t  the distance from xn to the boundary of E is 

rav 

0 

my m v mrL _.~ 

_< D ~ d (m ~ ) _< D log + y (m) d (m ~) = D log + 
n - ~  . n - 2  

m~+ 1 m~+ 1 0 

1 

y(m)d(m~), 

and since ghis tends to 0, when n - ->~ ,  the theorem is proved. 

435 



Y. DOMAR, Subharmonic minorant of a given function 

Remark 1. I f  p =  1, the  condition in the  theorem is equivalent  to  

f log + F (x) d x < oo. 
E 

I f  p >  1, the  condit ion is fulfilled if for some e > 0  

f [log + F(x)]V+~dx< ~ .  
E 

Remark 2. As Theorem 2 this theorem is t rue  even if the condit ion is only 
fulfilled on every  compact  subset  of E.  The  theorem m a y  fur thermore  be ex- 
tended to  certain cases where x 1 . . . . .  x g do no t  mean  Cartesian coordinates.  One 
example of this is the case when k = 2 and  p = l ,  and when x ~ and  x ~ denote  
angle and  radius, respectively, in polar coordinates. SjSberg proved the  theorem 
this case. 

4. On the necessity o f  the  condit ions in Theorem 2 and Theorem 3 

We shall now show t h a t  the  exponents  k - 1  + ~ and l ip  in Theorem 2 and  
Theorem 3, respectively,  cannot  be improved.  

To tahis end we shall introduce,  for every  A > 0, a funct ion uA (a, t) in the  
set ~ : 

0 < a < l ,  - ~ o < t < ~ ,  

(Cartesian coordinates).  

I n  the  set ~ A :  O < a < l ,  

we define uA (a, t) as 

: t  ~- e A a  c o s  A t 
Re  {e~ eA(°+'°} = e~ 

1 
I t I < ~- arc sin e-  Az, 

This funct ion is harmonic,  _> 0, and  vanishes if 

1 
I t l = ~ arc sin e- A.. 

Then  we define uA(a,  t) as 0 if 

1 
0 < a < l ,  [ t l > ~ a r e s i n e  -A~. 

We shall s ta te  some simple lemmas concerning the  funct ions uA (a, t). 

Lemma 3. For any n > O 

( z t2~  n 
f f  [log + uA (a, t)]ndad(P)<_2 \~ -~]"  
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Proof. In  ~ we have uA (a, t )<e~  , (7) 

and hence 

f~ f~A 

1 

= 2 f  ( 2 ) e ~ A "  (~___)n (arc sin e-A~) "d~<_2 ~ - ~ ]  • 
0 

Lemma 4. There exists an even /unction G (t), non-increasing/or t > 0, such that 

const. 
log G (t) 

1 Itl l o g ~  

when t->0, and such that, for every A >0, 

if  (~, t) c ~ .  
uA (~, t) _ V (t), 

Proo]. In  ~ n  we have eA°lsin A t l < l  , 

7t 1 

hence by  (7) uA ((r, t) <_e ~ ,sin Atl. 

~ e A  
And (7) gives moreover uA (or, t) < e~ 

Since e A and 1/1 sin A t I ([ A t[ < ~/2)  are increasing and decreasing, respectively, 
considered as functions of A, it  is easy to see t h a t  we may  choose for G (t) 
the expression 

1 
g-2 I s i n  Ao(t)t [ 

where A o (t) is the smallest solution of the equation 

1 
e~ = I sin A t~" 

Then a simple est imation shows t h a t  

log a (t)~ .n/2 
1 ttllog[  

when t--->0. 
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L e m m a  5. Let  o, x 1, x 2 . . . . .  x , _ l  be the Cartesian coordinates o/ the n-dimen- 
sional Eucl idean space. (n >_ 2). P u t  

t = (~ +... + ~_~)~. 

Then the /unct ion v = uA (a, t) 2~-s 

is subharmonic, considered as a /unction on the subset 0 < a < 1 o/ the n-dimensional  
space. 

Proo[. I t  is well known t h a t  a continuous,  non-nega t ive  funct ion v is subhar-  
monie  if i t  satisfies 

Av_>0 

whenever  v >  O. Here  A denotes  the  Laplace  opera tor .  Hence  in our  case we 
have  to  p rove  t h a t  

5~v ~ v  n - 2  Ov 
Av=~-~a~+~-/~ t ~t ->° 

if (a, t) e flA. A direct  c o m p u t a t i o n  gives 

e - ~ e  , 

Using the  inequa l i ty  

I sin 

we see t h a t  A v_> 0. The  above  a rgumen t s  fail if t = 0 ,  bu t  since the  second 
der iva t ives  of uA (o, t) are  continuous,  we mus t  have  A v_>0 also in t h a t  case. 

N o w  we are in a posit ion to  discuss the  exponents  in Theorem 2 and  Theorem 3. 

Theorem 4. The exponent k -  1 + 8 in  Theorem 2, k >_ 2, cannot be exchanged 
/or k - 1 .  

Proof.  L e t  us choose E as the  set  

0 < a < l ,  - o o < x ~ < c ~ ,  v = l , 2 , . . . , / c - 1 ,  

where  a , x  1 . . . . .  Xk_ 1 denote  Cartes ian coordinates.  We  pu t  

t = (x~ + x~ +.- .  + ~ _ 1 )  ~ 

and  s t u d y  the  funct ions  vA (a, t) = UA (a, t) 2k-3, 

438 



ARKIV FOR MATEMATIKo B d  3 nr  39  

which are subharmonic, according to Lemma 5. By Lemma 3, if A >_ 1, 

f const. [log + vA (a, t)]/c-1 dtr d x  1 ... dXk_l < - - A - - '  

E 

(s) 

where the constant is independent of A. 
Let  us choose a sequence of positive numbers A1, A 2 . . . . .  An . . . . .  such tha t  

~ I/A~ 

converges. Then we define the function F in the theorem as 

F ( z ,  t) = sup vA, (a, t). 

(8) gives S [l°g + F(a ,  t)] k-i d a d x  1 ... d x k _ l <  oo, 
E 

and hence the condition in Theorem 2 is fulfilled with the exponent k - 1 .  
But  the subharmonic functions vA~ (a, t) satisfy 

vA, (,~, t) _< F (,~, t), 

and nevertheless they are not  uniformly bounded if t = 0 ,  0 < ( r < l .  Hence 
Theorem 2 is not t rue with this change in the exponent.  

Theorem 5. The exponent l i p  in Theorem 3 cannot be exchanged /or a larger 
number. 

Proo/. In the definition of E which precedes Theorem 3 we choose for 0 
the p-dimensional unit  sphere, and put  

t = ( ( x l )  2 -~ (X2) 2 - ~ " "  ~- (zp)2)~ .  

Let  a denote one of the remaining k - p  coordinates. 
We choose as E the function G(t) ~p-1, where G(t) is defined in Lemma 4. 

I t  is easy to show that  if we put  

m = c t  v 

for a suitable choice of the constant c, then we obtain 

y(t)  = O ( t f  ~-1. 

Hence, if the exponent in the theorem is larger than 1/p ,  the integral has the 
value 

1 

eonst, f log + G (t) d (t~), 
0 
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where ~ > 1, and then Lemma 4 imphes that. the integral converges; thus the 
modified condition of Theorem 3 is fulfilled. 

On the other hand, the functions uA (a, t) 2v-1 are subharmonic in E according 
to Lemma  5, and they  satisfy 

UA (0", t) 2p-1 ~< G (t) 2p-1 

by  Lemma  4, but  they are not  uniformly bounded. Hence Theorem 3 cannot 
be t rue with this change in the exponent. 
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