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On the existence of a largest subharmonic minorant of a

given function

By YnevE Domar

1. Introduction

Suppose that F is an open connected set in a k-dimensional Euclidean space.
We say that a real-valued function % (x) in E is subharmonic if it satisfies the
following conditions (Radé [3], § 1.1, 2.3):

(1) wu(x) is bounded above on every compact subset of E.

(il) u(x) s upper semicontinuous on E, i.e. for every real number a the set
of points x, where
u () <a,
18 an open sel.

(iii) For every k-dimensional compact sphere Sy (&) < E, with centre & and radius
R, we have

1
w(&)<—- f u(z)dzx, (1)
Sk
Sp®
where Sp denotes the volume of the sphere, and where the integration is
carried out with respect to the (k-dimensional) Lebesque measure.
Let us now suppose that F(x) is a given non-negative, upper semicontinuous

function on E. We allow the function to assume the value + co. We shall
then consider the class {F} of all subharmonic functions u(z), such that

u () < F (x)
for every x € K.

It is easy to realize that if two functions u,(x) and u,(x) belong to {F},
then the same is true for the function

Max {u, (z), u, (x)}.

The corresponding property holds for any finite number of functions in {F}.
Our aim in this paper is to show that under certain conditions also the function

M (z) = sup u(z)

ue{F;

belongs to {F}, i.e. that F(x) has a largest subharmonic minorant.
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Y. DOMAR, Subharmonic minorant of a given function
Because of our assumption that F >0, we see that for any u€ {F}
Max {u(x), 0} € {F}.

Hence, if we denote by {F*} the class of all non-negative functions in {F}, we
obviously have
M (z)= sup u(x).

ue{Fty

The above-mentioned problem is trivial if £=1, for then the class of sub-
harmonic functions coincides with the class of convex functions. If k=2, how-
ever, the question has been discussed in several papers. A main result is the
following theorem by Sjéberg [4] and Brelot [1] (cf. also Green [2]).

Theorem 1. M (z) is subharmonic if and only if it is bounded on every compact
subset of E.

Hence we can confine ourselves to the problem of finding conditions on E
and on F(x), under which M (z) is bounded. This problem was discussed for
k=2 by Sjéberg [4]. Our results are, however, somewhat more general, and we
shall use elementary methods, which can be carried over to the corresponding
problem for more general classes of functions. Thus our results will remain true
for the class of functions which we obtain if the right-hand member of the
inequality (1) is exchanged for

B
5. fu(x)dz,
Sp®

where B is any fixed number > 1. Moreover, the property ‘‘upper semicontinuous”
in the stated definitions may be exchanged for ‘“‘measurable” without affecting
the results.

Theorem 1 is true even if we make these modifications. The necessity part
is obvious, and we shall briefly sketch a proof of the sufficiency. We form the
function

H (x)=Min {F (z), G(z)},
where for any £€E,

@)= inf {sup 5 f”(x)dx}'
R|Sp®CE ue(F+>SRs @
R

Obviously u(x)< H(x)<F ()

for any x€F and any u € {F*}. Furthermore it can be shown that H (z) ful-
fils the three in the above-mentioned way modified conditions in the definition
of subharmonicity. The only difficult part is the verification of (ii); however,
for any fixed R, the function

u(x)dz

Sp&
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is continuous, uniformly in u, at every point & with Sy (£) < E, and this has
the effect that the functions

B
sup — u{x)dx
ue{Ft} PR
Sp(&

are continuous functions of £ whenever they are defined, thus G (&) is upper
semicontinuous. Apparently the above-mentioned properties of H (z) imply that
it is the largest function in the class {F*}. Hence the existence of a ‘‘subharmonic”
M (x) is secured.

It may be observed that with this change in the definitions, Theorem 1
is no longer trivial in the case k=1.

2. A general sufficient condition

In the case k=2 the following theorem was known by Beurling (cf. [4] p.
319). However, no proof has been published.

Theorem 2. M (x) is bounded on every compact subset of E if for some £>0

f (log* F(x))* ***dz < co,
E

To prove the theorem we need the following lemma, where u (x) is an arbitrary
function in the class {F*}, and where I, is the measure of the set K, where

€ <u(x)<el
l, is finite for »>0, if the condition in the theorem is fulfilled.

Lemma 1. Let D be a positive constant and A a positive integer, both so large that

[ow]

et 51
DkS, 7
where 8, s the volume of the k-dimensional unit sphere. Then the following is true:

If for some integer v and some point x,€E

u(z,)>¢ (2)
aml SR (xy) < E:
1
where BR>D(l, a3+ 1l syt +1L)k,

then Sg(x,) contains a point x,,.,, where
u(2,,1) =€,
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Y. DOMAR, Subharmonic minoerant of a given function
Proof of Lemma 1. Suppose that u(zx)<e'*! in Sg(z,). We are going to show
that this implies a contradiction.
. 1
(2) and (1) give <y (x,)_S fu(x) (3)
R

Spz,)

Now let us denote by S’ the set of all points in Sy (z,) which do not belong
to the set

Apparently u(x)<e’ ™%, if x€8". Hence the right-hand member of (3) is

S-l— f u(z)dx+§1— fu(x)dx
-

Sk
vl—jAEn %
1 1 eR 1
< v+1 o v =4 )< »
_SRe -2+ +l,)+SEe Sp<e (D"SR e")—e’

which is impossible.
Proof of Theorem 2. Let D and A be chosen in the way described in Lemma 1
Suppose that for some point z, € E and for some € {F*}

u(zn) =€,
where n is an integer satisfying n >2. Then according to Lemma 1 every

sphere around z, with a radius

>D3 (st +1)

r="n

B

contains either a boundary point of E or a point z, € E where
u(2,) >e",

However, since u(z) is bounded on every compact subset of K, this implies
that the distance between z, and the boundary of ¥ is

1 oo

oo 1
<D (lyat-+LF<DS (4 +1F)
" © I o kolve 1
DG+1) 3 =D(A+1) 2, v EIE

— 2

n—

n

k-1+¢
P k

Using Holder’s inequality, we see that the right-hand member is
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1

k-1
<D(A+1 < 1 k - k-1+¢ g
- ( + ) z k-1+e Z 4 l,,

n—2 -1
» k-1

1 1

1 1
On [ % pE-1te lv] <6, { f [log* u(z)]"‘l”dx}k <6, { f[log+ F(x)]k"“"dx} ,
E E

IN

where 0, is independent of the choice of % (x) and tends to 0, when n—>oo,
Hence if we have. at some point in E,

M(x)>e",

we may conclude that the distance between this point and the boundary of ¥ is

|-

<6n [J[log+ F(x)]""”’dx] .

This shows that M (x) is bounded on any subset of E which is situated at a
positive distance from the boundary of E, and henee the theorem is proved.

Remark. The theorem is apparently still true under a weaker assumption,
namely if for every compact set 0 < E there exists a number £>0 such that

[log* F(2)]* " dx< oo.
C

3. A similar theorem under more restrictive assumptions

If k=2, the case when
F (@@, 2%)=F '),

where 2! and 2? are the Cartesian coordinates, and when E is a rectangle with
its sides parallel to the coordinate axes, is of particular interest. In that case
the exponent 1+¢ in Theorem 2 may be exchanged for 1. This is an easy
consequence of Theoréme III in Sjoberg [4]. We thall now study the corre-
sponding problem for an arbitrary k.

We assume that z', 2%, ..., " are Cartesian coordinates of the space. Let p
be a positive integer <k, and let O be an open set in the p-dimensional
Euclidean space which has the Cartesian coordinates 2!, 22, ..., 2°. a; and b,
where i=p+1, p+2, ..., k, are assumed to be finite real numbers.

We define B as the set of all points which satisfy

(@, 2%, ... 2")EO
and am<ai<b, i=p+1,p+2, ...k
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Y. DOMAR, Subharmonic minorant of a given function

Then we let F be any function, defined in E, which only depends of the first

p coordinates, i.e.
F(x)="F (2", 2% ..., z). (4)

Let mE denote the Lebesgue measure of E. There exists a function y(m),
defined and non-increasing in the interval O<m<mZE and such that, for
every ¥, the one-dimensional measure of the set where y(m)>y, is the same
as the k-dimensional measure of the subset of E, where F (r)>y,.

Theorem 3. M (z) is bounded on every compa;;t subset of E if

mE 1

f log* y(m)d (m?) < co.
0

For the proof we need the following lemma, where u(z) is an arbitrary func-
tion in the class {F*} and where m, is the measure of the set F,, where
F(x)=¢". Obviously m, is finite if »>0, and if the condition in the theorem
is fulfilled.

Lemma 2. Let D be a positive constant and A a positive integer, both so large that

k-
T L P
D* 8, TT (b — as)
p+1
Then the following is true:
If for some inieger v and some point z,€E
u(x,)>e )
and Sg(x,)< E,
1
where R>Dmp,,

then Sg(x,) contains a point z,., where
U (%,41) Z €

Proof of Lemma 2. The condition (4) and our special choice of the set K
imply that F,_, consists of the points, which satisfy

(2, 2%, ..., x")EF,_;
and a<x<b, i=p+1,p+2, ...k,
where F,_; is a certain p-dimensional set. Moreover, the set
S=8r(x)NF, s
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is included in the set, which is characterized by the conditions

(2, 22, ..., 2")EF,_;
and wi~R<a'<zl+ R, i=p+1,p+2, ..,k
if we let (z}, ..., z¥) denote the coordinates of x,. Hence the measure of the set S is
2 R)*-?
< CB .
IT (b — )
p+l

We suppose that u(z)<e’*! in Si(,), and are going to show that this im-
plies a contradiction. By (5) and (1) we have

e<u (x,,)_BI,R f u(z)dz. (6)

We denote by S’ the set of all points in Sy (x,) which do not belong to the
set S. Apparently u({z)<e* if x€S. Hence the right-hand member of 6 is

1 1
——S—};s u(x)dx—I—S—E Ju(x)dx
K

k-p k-p pk 1
Sls,le"“,szi—m,,- +§~e” *Sp<e [ e2k el +g;1]£e".
I (6 —a) ® D* Sp [1 (bi—ay)

+1 P+l

This gives a contradiction, and hence the lemma is true.

Proof of Theorem 3. Let D and A be chosen in the way described in Lemma 2.
Suppose that for some point z, € ¥ and for some %€ {F*}

u(zy) =",

where n is an integer satisfying »>A. Then, using Lemma 2, we may as in the
proof of Theorem 2 conclude that the distance from z, to the boundary of X is

w25od-23 [ oo

n-A
1 1

) o0 g 1 1
SDﬂ;1 vd(mP)< 2 f log* y(m)d (m?)=D f log* y (m) d (m®),
Myl my.1 0

and since this tends to 0, when n— oo, the theorem is proved.
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Y. DOMAR, Subharmonic minorant of a given function
Remark 1. If p=1, the condition in the theorem is equivalent to

flog*F(x)dx< oo,
E

If p>1, the condition is fulfilled if for some ¢>0

[ llog* F(@)P**da< oo.
E

Remark 2. As Theorem 2 this theorem is true even if the condition is only
fulfiled on every compact subset of E. The theorem may furthermore be ex-
tended to certain cases where z', ..., 2* do not mean Cartesian coordinates. One
example of this is the case when k=2 and p=1, and when z' and 2* denote
angle and radius, respectively, in polar coordinates. Sjoberg proved the theorem
this case.

4. On the necessity of the conditions in Theorem 2 and Theorem 3

We shall now show that the exponents k—1+¢ and 1/p in Theorem 2 and
Theorem 3, respectively, cannot be improved. _

To this end we shall introduce, for every 4 >0, a function u, (o, f) in the
set Q:

O<o<l, — o0 <f{< oo,
(Cartesian coordinates).
In the set Q,: O<o<l, }tlg;li—arc sin e=4°,
we define u,4(0,1) as
Re {efzeA(cHil)} =e’_;eAa cos At cos (72_5 e49 sin At) .

This function is harmonic, =0, and vanishes if

1 .4
t|=-— arc sin e”“°,
1] =% aro s
Then we define u4(o,t) as 0 if
1
0<o<1, |t|>- arcsin e *.

A

We shall state some simple lemmas concerning the functions wu, (o, 7).

Lemma 3. For any n>0

2

ff[log* walo, )]"dod (") <2 (fz)n-
Q
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7 Ao
Proof. In Q we have ug(o, t)y<ez (7)

and hence

ff[log‘“ wa{o, B)]"dad (™) < ff (%)ne"“‘”do'd(tn)
Q Q,

1
— EnnAu_l_n : —Aoyn n_zn,
= J(2)e (A) (arc sin e )das2(4A)
0

Lemma 4. There exists an even function G (t), non-increasing for ¢ >0, such that
log @ (£) ~ const.1 ,
log —
|t] log [¢]

when t—0, and such that, for every A>0,

Ua (0', t)SG(t),

if (o,t) €Q.
Proof. In Q4 we have e*’|sin 4¢|<1,
i 1
hence by (7) uy (o, £) Se?lsim At]
@4
And (7) gives moreover U4 (0, t)SeZe .

Since ¢* and 1/|sin At| (|4¢|<z/2) are increasing and decreasing, respectively,
considered as functions of 4, it is easy to see that we may choose for G (f)
the expression

Ed 1
2 |sin 4,(t)t
e2lsin 4 (0t

where 4,(t) is the smallest solution of the equation
1
4 _ ——— .
¢ |sin At]
Then a simple estimation shows that

log G(t)N_'_"”/L,

1
t| log —
when {—0.
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Y. DOMAR, Subharmonic minorant of a given function

Lemma 5. Let o, 2y, 25, ..., o1 be the Cartesian coordinates of the n-dimen-
sional Euclidean space. (n=>2). Put

t= (2 + -+ 22 )
Then the function v=uy(c, t)*" 3
s subharmonic, considered as a function on the subset 0 < g <1 of the n-dimensional
space.
Proof. It is well known that a continuous, non-negative function v is subhar-

monic if it satisfies
Av=0

whenever v>0. Here A denotes the Laplace operator. Hence in our case we

have to prove that

v 0w n—-2 dv
A‘U=E§+'6—t—z‘+—t——' 6720

if (0,t)€Q4. A direct computation gives

- on—5 | nedo [T 2 246 »2
Av=02n—-3)(2n—4)u,(o,t) e (—,‘2) e“4% 4°% —

sin (At —I—J—; e sin At)
2

Ag T T .
— T OSt 049 4 oog (5 e sin A t)
: 2t

Using the inequality

sin (At+izze""sin At)lSne“"Alt[

we see that Av>0. The above arguments fail if {=0, but since the second
derivatives of u,(o,t) are continuous, we must have A»=>0 also in that case.
Now we are in a position to discuss the exponents in Theorem 2 and Theorem 3.

Theorem 4. The exponent k—1-+¢e in Theorem 2, k=2, cannot be exchanged
for E—1.

Proof. Let us choose E as the set
O<oxl, —oo<g, <00, y=1,2 ... k-1,
where o, x,, ..., #x_; denote Cartesian coordinates. We put
t=(af+ag+ - +af,)t
and study the functions vy (0, t)=1ua(o, )3,
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which are subharmonie, according to Lemma 5. By Lemma 3, if A>1,

f [10g+ Va (65 t)]k—l dadxl s dxk_l < 93?481:-? (8)
E

where the constant is independent of 4.
Let us choose a sequence of positive numbers 4,, 4,, ..., 4, ..., such that

S 1/4,

y=1
converges. Then we define the function F in the theorem as

F (o, t)= sup vy, (o, t).

{8) gives J'[log+ F(o, )} 'dadx, ... dxy_y < 0,

E

and hence the condition in Theorem 2 is fulfilled with the exponent k—1.
But the subharmonic functions vga, (0, 1) satisfy

v4, (0, 8) = F (0, 1),

and nevertheless they are not uniformly bounded if £=0, 0<o<1. Hence
Theorem 2 is not true with this change in the exponent.

Theorem 5. The exponent 1/p in Theorem 3 cannot be exchanged for a larger
number.

Proof. In the definition of £ which precedes Theorem 3 we choose for O
the p-dimensional unit sphere, and put

t= (@) @)+ @
Let o denote one of the remaining k—p coordinates.

We choose as F the function G (£)**7', where G (t) is defined in Lemma 4.
It is easy to show that if we put

m=ct’
for a suitable choice of the constant ¢, then we obtain
y(H) =6 ()"

Hence, if the exponent in the theorem is larger than 1/p, the integral has the
value

1
const. f log* @ () d (t*),
0
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Y. DOMAR, Subkarmonic minorant of a given function

where «>1, and then Lemma 4 implies that the integral converges; thus the
modified condition of Theorem 3 is fulfilled.

On the other hand, the functions u, (o, t)?*~1 are subharmonic in £ according
to Lemma 5, and they satisfy

TR ) R 1 ()

by Lemma 4, but they are not uniformly bounded. Hence Theorem 3 eannot
be true with this change in the exponent.
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