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On the uniform convexity of L” and I

By Oror HANNER

CrLarksoN defined in 1936 the uniformly convex spaces [2]. The uniform con-
vexity asserts that there is a function &(z) of £>0 such that ||z]=1, Jjy]|=1,
and ||z —y||=¢ imply ||L(z+y)||<1—06(c), where & and y are elements of the
space. CLARKSON proved that the well-known spaces L? and I are uniformly
convex if p>1. The purpose of this note is to give the best possible function
0 (¢) for these spaces, i.e. to find for each p>1 and £¢>0

. r+y
mf(l 2 “)

under the conditions ||z||=1, ||y||=1, ||[x—y]||=s. We need two inequalities,
which are given in Theorem 1, formula {(1). I have been informed that the
left-hand side inequality of this formula was proved by BEURLING at a seminar
in Uppsala in 1945, but it does not seem to be in print. The right-hand side
inequality is proved by CrLArRksoN ([2] p. 400) and Boas ([1] p. 305). We give
here a reconstruction of BEURLING’s proof and also for completeness a simple
proof of the other inequality.

Let the functions in L? be defined over 0=<t<1. The norm of z=xz(t) is
then given by

1

lz|f?= [l [ at.

0

In " the norm of x=(x,, x,, ...) is given by
p_ < P
lzlr= 3 [
Theorem 1. For p>2 the following inequalities hold

U=l b+l =Myl zllz+y P +la—y P z2/l= P +2lyl”. @)

For 1< p<2 these inequalities hold in the reverse sense.

The equality sign holds for LP [for IP] in the left-hand side of (1) if and only
if =0, or y=0, or there is a number a>0 such that (x(})—ay(t)) (x () +
+ay()=0 for almost every t [such that {z; —ay) (xi+ay;)=0 for every i), and
wn the right-hand side of (1) if and only if = (t) y (£)=0 for almost every ¢ [z; ;=0
for every ¢].
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It is easy to show that for given ||z|| and | y|| each of these conditions for
equality can be satisfied by suitable x and y. Hence the inequalities in Theo-
rem 1 give the maximum and the minimum of ||z +y|®+||z—y|]° for fixed

|zl and |||}

Remark. For p=2 the three terms in (1) are equal for any z and y. This
is the relationship

le+ylF+llz—ylP=2l=|F+2] ]

well known in the theory of Hilbert spaces.

Proof. A. The left-hand side of (1). Let 1<p<2 and consider L”. We have
to prove that

1
{lx(t)+y(t)l”+|w(t)—y(t)I"dtz(llxll+llyll>"+|llzll—llylll"- (2)

Let us first show that it is sufficient to prove (2) for non-negative functions.
Consider

d=|z+z[ +|4 -2l (3)
where 2z, and z, are complex numbers. Let |z, | and |z,| be fixed and let us

calculate the minimum of d. If z,=0 this minimum is 2 |2,[? and if z,=0 this
minimum is 2|z, [°. Take |z |=a>0 and z,=2,a7'be'?, b>0. Then

» (4

d(@)=|a+be?|P+|a—be'?|P=(a®+b+2ab cos p)2+ (a®+ b —2ab cos @)

The minimum of d(p) is (@+b)’+|a—b|? and is reached for ¢=0, #. Thus
|zl—l—z2[”—|—|zl—zzlpg(lzl|+|zzl)”+||z1|—]zzl|”, (4)

where equality holds if and only if z, and 2z, have a real quotient or one of
them is zero. Let z*(f)=|z(f)| and y* () =|y ()| Put z ==z () and z,=y(?)
in (4) and integrate.

1 1
[lz®+y® P +Hz®O—yOF dt= [[2*O+y" O P +]a* O -y* @) di.  (5)
0 0

Here equality holds if and only if for almost every ¢ such that z ()0 and
y (1) %0, the quotient of z(f) and y(t) is real. Because of (5), since ||z || =] =™ ||
and ||y]|=|/y*|, we only have to prove (2) for the non-negative functions z* (t)
and y* (t).

Now introduce

11 11
C(u, v)=(u? +v2)° +|u? —0? |, u=0, v20,
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and let f(t)=(z*(t))® and g (t)=(y* (¢))*. Then (2) may be written

1

1 1
[eit@©, gepat=¢([f@yat, [g@) di). (6)

0 0 0

We shall show below that { is convex. (6) is an immediate consequence of this
fact. For the three integrals in (6) are the w-, u-, and v-coordinates of the
center of gravity for the distribution of mass given by u=f(t), v=g (), 0st=1
on the surface w={(u, v). Hence we only have to prove the convexity of [.
We have

(a') C(u: U)ZC (’l), u):
(b) £(0,0)=0,
(e) C(tu,tv)=t{ (u, v) for £=0.

Thus w=7{ (u, v} is a cone with its center in the origin. The convexity of w=_{ (u, v)
will therefore follow from the convexity of w=={ (u, 1). But for

n(w)=C(u, 1)=1+uP)’ +|1—w? |’

the second derivative is

p—-l 1, 1 1
7’ (u)= » w?  (|1—w? [P 2= |1+ |P72),

which is strictly positive for every u>0. For u=1 we have '’ =00, but %’
is continuous. Thus # (%), and therefore also { (u, v), are convex. This proves (2).

In order to get equality in (2) we must have equality in both (5) and (6).
Since 7" is never 0, equality in (6) holds if and only if the point (f(t), g (2))
for almost every ¢ lies on one single line through the origin in the ww-plane,
ie. f(t)=0 for almost every £, g(¢)=0 for almost every t, or there is a positive
number, say o, such that for almost every ¢ we have f(t)=a” g (f), i.e. * (f)=
=ay" (t). Combined with the condition for equality in (5) this gives the condi-
tion in Theorem 1.

The case p>2 is proved similarly. For these p-values d (p) reaches its maxi-
mum for ¢=0, # and { is concave.

The proof for I is analogous.

B. The right-hand side of (1). Let p>2 and consider L. We have to prove
that

1

1
[lz®+y@OF +lz@ -y @ di= [2]=@) ] +2]|y @) " db. (7)
0

0

»
Introduce as before d by (3). Then the minimum of d(g) is 2(a®+6%)2 and is
b4

reached for p= + 7—; But, since £ is a convex function (¢>0, b>0),

»
(@* + B2 > a? + b7,
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Hence

|2+ 2 +z— % 22]4 " +2]2) (8)
where equality holds if and only if at least one of 2, and 2, is 0. Put in (8)
zy=z(t) and z,=y(t) and integrate. This proves (7). It also shows, that equality

in (7) holds if and only if f(f) g(t)=0 for almost every ¢£.
The remaining cases are proved similarly.

Theorem 2. Let x and y be two elements of L or of I’. Suppose that

lzl[=1, [lyll=1. [fz-yllze
where 0< eg<2. Then

”1“23” <1-6(), )
where § =3 (¢) is determined in the following way:

817 g”
when 1<p<2: (1—5+—) +11_5_§ =2,

2

& k4
when p=2: 6=1—(1—(§)) .

For each &, we can chose x and y such that equality holds in (9).

I

Proof. Put z*=1(x+y) and y*=1(xr—y). Thus

z=2"+y* and y=2"—y". (10)
A l<p<2. Let
£ (u, v) = (ut o)’ +|u—vf’

for u=0, v=0. Then ¢ is symmetric in the variables # and », and if one of
these remains fixed, £ is strictly increasing in the other one. The left-hand side
inequality of Theorem 1 may be written

llz+yl? +llz=ylPz& =]l [lyl])- (11)

Apply this formula on z* and y*. Then
€
2zl I ze (Il 5)- a2)

€

Since £(1,0)=2, we get 5(1, 5

uniquely determined solution ¢ of

) >2 and & (0, g) < 2. Thus there is a positive
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Hence, because of (12),
2*)|=1-8.

The last two formulas prove formula (9) for I1<p<2.
To get equality in (9) we may take in L”

2 H=1—-8 for 0=st<l,

y* (1) = for 0=t=l

Noim

f
!

DOl oy

for j<t=1.

Bd 3 nr 19

Then ||z*||=1-36, ||¥*]|= —; Let z and y be defined by (10). Hence ||z|=|[y]|.
By Theorem 1 (or by simple calculation) we have equality in (11) for these

z* and y*, and we get

lall =lylP = e sl Ny =3¢ (10, ) -1.

In I we may take

) .
*=27(1-68,1-6,0,0,0, ...),

£

e .
é) ——5,0,0,0, ...).

B. p=2. We have by Theorem 1 {(and the remark following the theorem)

|z* +y*|I” +||=* ~ y*|I” = 2| =" [P + 2] |-
Hence

b
2zznac*n"+2uy*u"zzllx*“"+2(5) ’

»
*P <7 — £y
P =1 (3)
Put

=i ()

l|=" ] =@ =9,

RS |

which implies (9).
To get equality in (9) we may take in L”

1
z*(H)=2°(1-0) for
=0 for

<
IN
IA

DOj=
A
IA

(13)
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¥y t)=0 for 0=t<1,

1
90

for J<it<1.

DO,

Then ||z*||=1-34, ||y*]|= g Let z and y be defined by (10). Hence ||z||=||y]|-

By Theorem 1 (or by simple calculation) we have equality in (13) for these
z* and y*. Thus

lall =lylP =3 (2007 +2(§)) -1

In I’ we may take
z*=(1-46,0,0, 0, ...),

*_ £ .
y —( 0, 2,0, 0, )

Remark. For fixed ¢ lim § (¢)=0 and lim 6 (¢)=0. For small £¢>0 we have

p>1 proo
5(8)7—?—;!(5)24-'” for 1<p<?2,
6(s)=2—10 —;)p+--.- for p=2.
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