ON THE REPRESENTATION OF NUMBERS IN THE FORM
az®+ by’ + ¢zt + dtd?
By

H. D. KLOOSTERMAN

of THE HAGUE.

1. Introduetion.

1. 1. The object of the present paper is to treat the problem of the re-
presentation of large positive integers in the form ax®+ by®+cz®+ dt® (where
a, b, ¢, d are given positive integers) by means of the method introduced into
the analytic theory of numbers by G. H. Harpy and J. E. LirrLewoon.®? In
my dissertation® I have proved an asymptotic formula for the number #(n) of
representations of a positive integer » in the form a2} +a,x)+ - - +asai, if
$=5. The proof of this formula is merely & direct application of the method
mentioned above without any new idea. The result is

1
Eﬂ
(1. 11)  rp)=-" L — S(n) + 0(_n;}s+a) n O(n;e—l—%{n)
I‘(l s) Vala2 R
e
for every positive ¢. Here S(n) is the singular series. Obviously this formula
is of no use for the form ax®+by®+c2®+ dt®, where s=4, so that in this case

the approximation of the error term must be improved, if possible. The principal

! An account of the principal results of this paper has been publighed in the ' Verslugen
van de Koninklijke Akademie van Wetenschappen', Amsterdam, 31 Oct. '25.

* For the litterature on this subject I refer to the article of BoER-CRAMER (Die neuere
Entwicklung der analytischen Zahlentheorie) in the 'Enzyklopaedie der Mathematischen Wissen-
schaften’.

? 'Over het splitsen van geheele positieve getallen in een som van kwadraten’, Groningen,

1924.
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result of this paper is, that this improvement is possible. The proof is difficult
and a very deep analysis is necessary.

1. 2. A great number of special cases of the form az®+by®+ c2®+ dt® have
been considered by Lecexpre, Jacopi, LiovviLre, EisexstEiN and others.’ In
some simple cases it has been possible to express the number of representations
in terms of the sum of the divisors of the number in consideration or in terms
of other simple arithmetical functions. A great number of results of this kind
has been obtained by LiouviLLe.? The principal object of these writers was
the solution of the following problem: to determine, whether a given positive
integer is representable in a given form or not. This can also be expressed in
such a way, that they distinguished between two classes of forms, namely

1° forms, that represent all positive integers;

2° forms, that do not represent all positive integers.

Another classification is the following:

A. forms, that represent all positive integers with a finite number of ex-
ceptions at most;

B. forms, for which there is an infinite number of positive numbers which
can not be represented.

The latter classification is arithmetically more essential than the first. Thus,
the form x®+y*+ 52+ 5¢® does not represent the number 3. But this is not a
consequence of any important arithmetical property of the form z*+y®+52*+ 5,
but merely a consequence of the facts, that 3 is <5 and is not a sum of two
squares. Now LiouviLLe has proved, that all other positive integers can be
represented in the form z®+y®+ 522+ 5¢%. Therefore, if we neglect the trivial
exception 3, we may say, that the form z*+y*+ 522+ 5¢* is capable of repres-
enting positive integers.

From the asymptotic formula for the number r(n) of representations of »
in the form ax®+by®+cz®+dt?, that will be obtained in this paper, a solution
can be derived of the following _

Problem P. To determine which forms ax®+by*+cz?+dt® belong to class
A and which forms belong to class B.

It has been proved by Ramaxusan® that there are only 55 forms, which

! L. E. Dicksox, 'History of the theory of numbers’, Vol. I1II (1923), Ch. X.

®In my paper 'On the representation of numbers in the form az*+by?*+cz*+d#”, Proc.
London Math. Soc., 25 (1926), 143—173, 1 have proved some of LTIOUVILLE's formulae and some new
formulae by means of methods due to HARDY and MORDELL.

8 Proc. Camb. Phil. Soc., 19 (1917), 11—21.
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belong to eclass 1°, that is to sa,y, represent all positive integers. In the same
paper he also determined all values ¢ and d for which a(x®+y®+ 2%+ d¢* belongs
to class A, that is to say, represents all positive integers with a finite number
of exceptions.

1. 3. The first object is the proof of the following

Main theorem. If r(n) 4s the number of representations of n in the form
ax®+by®+c2t+ di®, then

2

174,
(1. 31) r(n) = V;wdnS(n) + 0(7»18+ )

Jor every positive &, where

__2nnip

S(n):ZAlh Aq=q‘*2 Sap, q Svp, ¢ Sep,q Sap, g€ ¢, A=1,

7=1 ?

and where p runs through all positive integers, less than and prime to q.

The proof of this theorem is given in section 3. A large number of lem-
ma’s, leading up to what is called the 'fundamental lemma’ is necessary for the
proof. 1 have collected these lemma’s in section 2, which is the most difficult
part of the paper.
~ The ideas which lead to a proof of (1. 31) can be explained as follows.
A straightforward application of the Hardy-Littlewood method would give (1.31)
with the error term O(n'*¢) (see 1. 11), which is not sufficient. The approxi-
mation of this error term must therefore be improved. Now this error term
appears in the form of a series

(I' 32) 22 Up, g5
¢ »
where p runs through the positive integers, less than and prime to q. If we write
’ ’
IZZ up,qISZZ [, 4]
9 p 9 p

we obtain the error term O(n'*¢). It may therefore be expected, that, if we write

IZZ’MP,QISZJZ’“P;Q|
g p g p

52—2661. Acta mathematica. 48. Imprimé le 6 octobre 1926.
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something better can be obtained. For this it is necessary to find an approxima-
tion to the sum

(1. 33) 2 Up, q
P
which is better, than the approximation, given by

’ ’
IZ “p,qlgz [p,ql,
? »

or, as we shall say, it is necessary to find a non-trivial approximation for the

sum (1. 33). This non trivial approximation is given by the fundamental lemma,

proved in 2. 6. For the proof of this lemma the method of section 2. 43 is
very important. A similar method has already been used by Harpy and LitTrE-

wooDp who applied it to obtain non trivial results about the corresponding sums

which occur in the general Waring’s problem. They refer to these results in

their first memoir on Waring’s problem?, but, having been unable to apply them

in the manner which they desired, have never published their analysis. I am

much indebted to Messrs. Harpy and Lirrrewoop for the suggestion that a

similar method might prove valuable in the present problem.

1. 4. In order to draw any conclusions from (1. 31) it is necessary to in-
vestigate the singular series S(n) first. This investigation is given in section 4.
By combining the results of section 4 with elementary arguments, I study the
golution of problem P in section 5.

1. 5. Notation. The notation, introduced in this section, remains valid
throughout the paper. Other notations to be introduced afterwards are only
valid in the section, where they are introduced, if it is not explicitly stated
otherwise.

n i a positive integer.

a, b, ¢, d are the positive integral coefficients (=1) of the quadratic form
ax®+by?+c2?+dt® (x, y, 2, t integers, positive, negative or zero).

r(n) denotes the number of different sets of values of z, y, ¢, {, for which
n=ax’+by*+cz’+di*.?

The ordinary Hardy-Littlewood machinery of the Farey-dissection of order

1 A new solution of Waring's problem, Quarterly J. of pure and applied math., vol. 48
-(1919), p. 272—293.

* Two representations n=ax?+by?+cz2+dt] and n=axl+byi+czi+di] will be con-
sidered as the same if and only if x,=x,, ¥, =Y., 2,=%;, t;=1;.
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(1. 51) N=[V4

will be used. Let I denote the circle

1

lw|=e¢ »
in the complex w-plane. Then we divide I' into Farey-arcs &, , in the following

manner. If g is a term. of the Farey-series and é—),, % are the adjacent terms

to the right and left, then the intervals (¢>1)

p I r I
I. §2 - Y T + ’
- 52) ¢ qlg+d") ¢ alg+q)
. . . I I .
will be denoted by j, .. The intervals (o, Fﬁ) and (I ~Nio I) will be

denoted by jo,1 and ji,1. We now obtain the Farey-dissection of I" into the
. ! . 0
arcs &, if the intervals j,, are considered as intervals of variation of Py

where 0 = arg w, and if the two extreme intervals are joined into one.
On gp’q we Write

(1. 53) w=e 9 W=exp(2—p7ﬂ-—;&+z'0).

If w describes &, 4, then 6 varies between two numbers —6', , and 6. Then

27 27 27 27
. =T __<¢ 7, <¢ =,
- 54 2+ ) =0 g8 g+ ) =g
We have
14+ D r(n)wn = 9w Huw?) 9w Swd,
=1
where "
=+
19(w)=2w"”' (jwl<1).

& stands for an arbitrary positive number, not always the same.
K is a constant, depending on a, b, ¢, d, ¢ only, not always the same constant,
where it occurs.

O(f) denotes a number, whose absolute value is < Kf.
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B is a number depending on ¢, a, b, ¢, d only, which is bounded for all
values of q. It does not always represent the same funetion of 9, a,b0d.

If L and M are two integers, we denote by (L, M) the greatestv common
divisor of I and M.

Wherever the letter p occurs, it will always denote a positive integer, such
that (p, 9)=1. We denote by 3’ a summation, where p runs through all in-
tegers, for which

(1. 355) o<p=gq-—I, (p, @)=1,

if g>1. For g=1 the only value of p is 1. A summation, where p is subject
to other restrictions, except (1. 55) will be denoted by the same symbol X, but
the additional conditions will be written explicitly under the symbol 3.

For s=a, b, ¢, d only (not for other letters) I write

s=(s, @)5q, 4=(5, @, G=2%Qs (Qs odd).

If M is ap odd positive number and (L, M)=1, then (‘ZLINI) is the symbol

of LecENDRE-JACOBI ((171}) =1, if L is a quadratic residu of M; (ZTIZ) =-—1 if

L is not a quadratic residu of M; (%) = 1).

d|n means: J is a divisor of »#; ¢ + » means: ¢ is not a divisor of #.
@, also, when a suffix is attached to it, is a prime number.
The Ramanuvsan sum? is defined by

2npri _2npri
cgn)=3e 1 =3e ¢

If (g, ¢')=1, then

eq{n) g (n) = cqq(n).
Also

(1. 56) el =3 ou (%)

di(n, )

where u denotes the arithmetical function of Ménius.

! 'On certain trigonometrical sums and their applications in the theory of numbers’, Trans.
Camb. Phil. Soc. 22 (1918), 250—276. The formula (1. 56) has already been given by J. C. KLuy-
VER, 'Eenige formules aangaande de getallen kleiner dan n en ondeelbaar met n', Versl. Kon.
Akad. v. Wetensch., Amsterdam, 1906.
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Further, we write (if » is an integer)

Sp, q,v Ze (zpny + Z—V;ﬂ)

For »=0 (mod ¢), this is the Gaussian sum S, .
For abbreviation I write

{Sg} - Sa-p, aSbp,q Scp, q Sdp, q-

2. Preliminary lemmas.

2. 7. Lemma 1. If s ¢s a positive integer, then the sum Ssp, 4. vanishes
identically or a positive integer ¥ can be found, which is independent of p, such
that edther

(2. 11) Sunanr = exp2 2L 5,0 pp'+1=0(mod g)
or
(s, 2) 2mip’ v’ ’
. y= . = d 4q).
(2. 12) Ssp, 4, 2(s, 8) exp 44 Sip,4q, PP +1=0(mod 44)

For we have

g—1 . e .
Sopar— D exp (znzsp] + znzm) .
7=0 q q

Now write

J=5+pBg, 5,=0,1,2,...4s—1; t=0,1,2,...,(s,9)—

Then
g1 ) (s, 9)—1 )
b 27me 7T
(2. 13) Ssp, a0 = Ze ( sopy + i 7]1) Z exp ”)‘u
J1=0 9s q u=0 (8 q

This is o, if (¢,s) +». Therefore we may suppose further, that (¢, s) | ». Writing

v=/q,8)%
we find from (2. 13), that

(2. 14) Sep, q,v = (s, Qj Seyp, g5,
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For any integer p”’ we have

95—1 ’yoe 7z
2misgp(i+p") | 27y (j+p")) _
Seqp.0q.» Ze ( a0 o N
. g N 91 . .9
— exp (M_wv_pr_ NELLLS ) ) > exp (Z_@w 4 27i 0+ 25pp")
qs J=0 ds qs
We now consider a few cases separately.
I°. @5 is odd. Then let p” be such that
v + 25,pp” =0 (mod gs).
Then we have
w o v v+ Y T 4qs _
sgpp” + =o0(mod g5) or sgpp”’ + ——— =o0(mod g)
according as +' is even or odd. Hence
wip”y wip” (V' + qs)
Ssqp 95,7 P ) Saqp, g OT Saqp. 95, = EXPp p_q'_s ) Ssqp, 7
according as +' is even or odd and
"’ ”Z‘ l,v,
(2. 15) Ssqp,q,,v’:(_l)p * exp f;, “ Soyp.qq

in both cases.
Now let ¥ and p’ be such that

’”
’2 y

v E4(s_,qjsq (mod g,), 1+pp'=o0(modg).

Then

2sp” =v'p’ (mod ¢s)
and therefore

’r

, ¥V r ’ " oo 1 +
4p (é‘”—q‘) Sq=pvV P 2y qu E4qu 4 —‘ng (mOd q’)’
’ 'V” 1" r 1+ f]s
= mod g,
Plog=P" (mod )
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so that we find from (2. 14) and (2. 15), that

« 17
27wLp ¥

Sip,q,» = (5, q) exp Saq, 45 = €XP

2°. ¢, is even and »" is even. Then let p”’ be such, that

w ¥
sqpp” + . =0 (mod ¢,).
Then

ni*y’p"
~r s,

Ssqp, qg ? v = exp qﬂ: q’ M

Now let +"” and p’ be such that

ry 124

v v ’
—= T S)sq (mod ¢s), 1+pp'=o0(modg).
Then
P =s¢p” (mod qi)
and therefore
" ’g
y ¥ A4 ”
T iSq=p —=5p —(mod g,
Pl i =P =5 (mod g,)
’ v" 14 !
Pa=P — (mod g),
so that
2mip’y’

Ssp,q,y:e'xp ——’q__ N Sgp,q.

3. ¢ is even and ¢ is odd. Then let p” be such that

25gpp” +9 = s,p (mod 44,).
Then

- 773 N %1 . .9 "
+
Sayp,05,+ = €XP (zmsqpp L 2miv'p ) - exp 2misep(ji+7)
s ¢ j= qs
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But
gg—1 gg1
o p(i24 ] 'S sep(2j+1)°
Zexpzanzfl ) exp(_ z:fq‘qu) - exp 2%28_9{:;;7“ F_
j=0 J=0
. 29,—1 . .9 951 ! 2[
_ zmsqp) { 27184 D) 27esepy7
=exp [ — —9L). exp ——— — €xp -
P ( 44s Jé) P 44 j;zol qs
2718 I
= exp (—- - q—p) : (5 Saqp,u]s - Sﬁqp, qg) .

44.
This is o if ¢,2 (mod 4). But if g,=2 (mod 4), we have

2t (2p” —1)sgp+2mi.2p”y
44

I -
Seyp. 05, v = 'z‘exP( ) * Ssyp, 444

Now let »”” and p’ be such, that

17

Vis=s, (:q—) (mod 4¢.), 1+pp’'=o0(mod 49).

Then

(2p"—1)5g =+"p’ (mod 444
and therefore

144

vy

v (2p " —1)s,=9"*p" =p s, —— (mod 44¢.),
(2p"—1)sg=+"p'=p q(s,q)( 49
, , /y"
2p—1)y' = mod )
(ep—1)y'=p G q)( 44s)
80 that we find
1 2mipy’
S’qpr 95, — ;exp 44 * chp,(q‘
and
< ) .o n
1 2782p v (s,q) (5,2 27cip’y
Sip, gv = —€Xp == Sy aqr =" exp ————+ Sp 4q.
e 2P g P0540) 258" ag P

This completes the proof of the lemma.
2. 2. Let u be an integer such that

o=u=q—1
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and let », »,, v;, v, bé integers. Let p, be delermined by
(2. 21) p(p+N)+ 1=0(mod q), 0<p,<g.

Then there is one and only one p; to every p. We write

2n7wLp
(2. 22) 2 Sap, g, Svp, ¢, % Sep, ¢, Sap, . v €XP ( )

= q

Lemma 2. If 0,40, then it is always possible to find an integer v (de-
pending on vy, v, v3, ¥y, @, b, ¢, d, q, but not on p or P), such that either

Z{Sp} (27rmp + 27mvp)’ 14 pp’ =0 (mod g)
m=u 4
(where we have written u=—n), or

— K V{8F ) exp (2 moup + 2mvP) s 1+ PP =o0(mod 4¢),
Pi=p 4‘q 4q

(where we have written u—=—4n) and where in the second sum the summation over
P 15 defined by

(P, 4g9)=1, o=P=<yq—1, P,=yp,
and where P, is determined by

P(P,+N)+1=0(mod 4q), o< P, <4q.

Consider first the case, that none of the numbers ¢, s, g¢, ga is =2 (mod 4).
Then it follows from the preceding section, that either ¢,=o0, or there are in-
tegers vq, v, ¥, v4, such that

27wip v,

Ssp,q,v; = €Xp *Ssp,g  (8=a, b, ¢, d)

where j=1, 2, 3, 4 according as s=a, b, ¢, d. Then we have

2 {Sp}e (anp_i_ 2nzp (va-i-qvb—l—vc-i-vd)),v

PH=p

which is the statement of the lemma with v=9,+ v+ +74.
53—2661. Acta mathematica. 49. Imprimé le T octobre 1926,
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A similar result is true if one (or several) of the numbers qa, ¢s, ¢c, qq is
(are) =2 (mod 4), and (all) the corresponding »; = (;’—7@ is (are) even. If however

one (or more) of the numbers g, g5, g, ga is (are) =2 (mod 4) and (all) the cor-
responding +; is (are) odd, then we first make the following remark: In the sum

2 the variable of summation is p. However, we may also regard p, as the
=y
variable of summation. For this we let p, run through the numbers 1,2, ... p

and for those values of p,, for which this is possible, we determine p by
p(p,+N)+ 1=o0(mod g), o<p<yq,
and sum over the values of p, obtained in this way. We now determine, if
possible, to every p, <p the number P by the conditions
P(p,+N)+ 1=o0(mod 44), o< P<yyq.

Then we have
P=p (mod q)

and therefore (writing P, instead of p,)

2nme P
0y = ZSU/P;Q»“'LSb-P;Q,"'zSCP:‘],":;SdP:Q:’VAeXp(— )

Py=p q
But it follows from lemma 1, that one of the three following equations is al-
ways true (s=a, b, ¢, d):

221 Py, I 27e P v,
Ssp,q,7==0; Ssp,q,v = €Xp g Ssp,q= 5 XP N Sep, g,

[1+PP'=0(mod g));

— - 8sp,aq, [1+ PP =0(mod 49)].

Since P'=P"(mod q), we have always

27i Py,
Ssp,q,n =0 or Ssp,q,0;= Kexp "4_q' - 85,49,

from which the statement of the lemma follows.
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The lemma can also be expressed in the following form:
Lemma 2*. We have always

0, = Kaza
where oy is a sum of the type
’ 2miup | 2mwivp’
(2. 23) 0y = Z {87} exp (_p + __p) ;
=g q q

where

1+pp'=o0(modg), u=—n,

and where the g, occurring on the right hand side of (2. 23) is either the same as
that, occurring in o, or it is four témes the q occurring in o,.

Therefore, if we want to calculate o, for large values of ¢, we need only
consider ¢;.

2. 3. Let 5(p, q,s) be defined by

n(p,¢,8) =1 if ¢o=o0dd = @s;
=0 if gs = 2 (mod 4);
= exp ({sop Qs77) if g =2#s Qs and p, is odd >2;

=1+ exp(ls,pQsmi) if qs= 2% @, and y, is even =2,
and {(p, q) by
g(pv Q) = C(p’ q, a, b) ¢, d) = 77(17, q, 0)77(]7, q, b)ﬂ(]’, q, 0)7}(1’, q, d)

Lemma 3. We have
o . P 2
{80f - B (Qa Qb Qch) C(]% Q)q .

This follows from the well known values of the Gaussian sums (See: Bacn-
maNN, Die analytische Zahlentheorie 2 (1894), 146—187).

Now let ¢=2*¢Q (@ 0odd) and let G be the smallest multiple of (a, @), (b, @),
(¢, @), (d, Q). Then we define the number .4 as being 8 G; 4 G; 2 G; G, ac-
cording as 8|q; 4|¢, 8 +¢; 2|¢q, 4+¢; qodd. Then obviously we have

(2. 31) Alqg and A<K.

As an immediate consequence of lemma 3, we have
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Lemma 3*, We have

4 L,
IUZISKQSZ 2 exp (anup 4 gnzvp)l.
A=1 M=y q q
p=1(mod 4)

For we have

and therefore

Hence

(@:QZ) 0 Qa) - ((QI,) a)) (ﬁ)’b)) (@?c)) ((‘Q},)_d))

(Q%:; Qa) B (Qa @fj Q‘@) '

and therefore

Also we have

Cp+4,9)=C(p,q)

and therefore it follows from lemma 3, that

- Bq Z (Qa Qb QCQ )C(l) Q)szsl"'exp (2 ”;up ’ Zn;vp,) |

p==1(mod 4)

from which the statement follows.

2. 4. The sum S(u,v; i, 4; q).

We shall show afterwards, that the approximation for large values of ¢ of
the sum occurring on the right hand side of the formula of lemma 3*, can be
reduced to the calculation for large values of ¢ of the sum

S(u,v; 4, 4; g) = 2, exp (zmup + wa)'

9 =4 (mod A} q q

But before performing the reduction, we shall first consider this sum S. The
object of this section is the proof of lemma 4. The lemmas 4 b—4 e are special
cases of lemma 4, from which the general lemma 4 will be deduced.
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2. 41. Lemma 4a. If A|q,, A,|qs, (q;,q)=1, then
S, 035 Ay Ay; 43) S(w, 035 gy Ay 45) = S, 0105+ 02075 Ms T Aetly, A1 As; 4195)-
For we have

(2' 411) S(“) Uy; ll,AIvQI)S(ua 172;'12’*42)Q2):

= Z’ Z’ exp (zni“(plﬁ'*’pgql) + 2-”7;(01P1’Q2+”2p2,q1)) "
919 919

P =4 (mod 4;) py=125(mod 4s)
where the summation must be extended over those p, and p, for which
(P, @) =1,0=p;<q, py=2 (mod 4); (ps, ¢) =1, 0= p; < ¢, py=1, (mod ;).

(This has been denoted by dashes, just like the analogous summations over the
letter p. The same will be done for summations over P).
Now let

P =p,qy + p,q,.
Then P runs through all numbers for which (since .4,|q;, A4,/q, and (g,,¢:)=1)
(2. 412) 0=P<qqy (P,g19)=1, P=2g;s+ Aoq, (mod 4, A,).
Further, let P be determined mod g,q, by
1+ PP =0 (mod q,q,).
Then
—1=PP' =P (p,q, + ps¢y) (mod ¢, ¢,)

and therefore

pup'=—1=Pp,g, (mod q), pyp,’=—1="Pp,q (modg,);
or
p =P ¢y (modgq,), p'=P g, (mod gy).
Hence

Vi Py 9s + Ve py @y =P’ (v,4; + veq}) (mod ¢, ¢s).

This, together with (2. 411) and (2. 412) proves the lemma.

! Of course the p, occurring here and the p, of the lemma's 2, 2%, 3* have quite a dif-
ferent meaning.
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2. 42. Lemma 4b. Let
q=w10% ... wr,
so that @, ©@,, ... @, are the different primes, which divide q. Further let
W, =1, Wg=1, Ad=vhwy.. . @

(where the [; may also be o, but are < the corresponding &). Then there are in-
tegers vj, Aj, such that

(vj,’w‘fj)-——l Gj=1,2,...7)
and
(2. 421) Su, v; 4, A; q)=HlS(u, vps A, @ W)
=
For the proof write
q=wpA4,.

Let the numbers v, (mod @3) and V| (mod 4,) be determined by
v=u,47+ V,®@? (mod ¢)*
and let A, (mod @) and ¢, (mod 4,) be determined by

A=A + 0@ (mod g).

Further, write
A=,

Then we have from lemma 4a:
8w, v; &, A4; q) = S(u, vy; 4, @3 @) S(u, Vy; 01, A5 4y).
Since

(/UI,W’;I): I) (VlaAl): I;

the same argument can be repeated, which proves (2. 421).

! It can be proved as follows, that v,, V, exist. Consider the system of numbers v, 4+
+V, o? E‘, if v, runs through all numbers, less than and prime to w”:‘ and V, through all numbers,
less than and prime to 4,. Then these numbers are all incongruent mod ¢ and fthey are prime
to ¢. Further the system consists of (p(ﬂ’;:‘)(p(Al) = ¢(q) numbers. Therefore one of them must
be = v (mod q).
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2. 43. Lemma 4c¢. If q=w°, A= ((<E&), u,@)=1, (v,®)=1, then

3
1

| S{u, v; &, 4; q)| < Kg+.

Consider the expression
’ ’

o= 2 | S v; 4 4; 9,

i u

where 4 rons through all positive integers, less than and prime to 4 and u
runs through all positive integers, less than and prime to ¢. (This has again
been denoted by dashes, just like analogous summations over p. If Z=1,
then A=1 only).

0y 1s wndependent of v. To prove this, we write

up= P (modgq), 1+ PP =0 (mod q)
in the expression, which defines S(u,v; 4, 4; q). Then

Pu=yp (modq), P=ul(mod _1).

Hence

ZZ IZ (zquP 27m'uvP')|4___§'72’| r'

u P=uil (modA) q

Now we have (u,q)=1, so that also (u, 4)=1. Therefore, if 4 runs through
all positive integers, less than and prime to .4, then (x4)' does the same, so that

w=22 |2 ZZISI«W b A; gt =

% A P=1i(mod A) 2
= X 18,05 4 4; 9,
A 1]

since, if w runs through all positive integers, less than and prime to g, then'(uv)
does the same, v being prime to g¢.
Now we have also

Z Z Z (wau Pyt P71, — 78y) + 27m'1;(101'-I—pz,'——nl'—nz'))7
q q

% P, Ps 7L

! We denote by (M) the number which is = M (mod ¢) and for which o <(M) <gq.
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where p,%, ps, 7;, 7, Tun through all positive integers, less than and prime to ¢
which are = 4 (mod 4) and

1+ pipf =0 (modg), 1+mm’=o0(modg), (j=1,2).
Therefore, summing over % and writing

H=p,+p,—mn —m,, H ———p1'+p2'—-—n1'—71:2',

we have

i Pj, 7
SR N U ’ ZnivH znu,H
= -1 X 2 exp @23 e :
A pj,n{ q i i, A
H=0(mod &> 1), ==0(mod q) H=((mod g)

We now sum over all positive integers v, less than and prime to ¢. Since g,
is independent of v, we get

@(q) .0y = — w"‘z Z cq(H') + () Z, 2!, cq(H') =

Pj 7 4opy
H=O(modw’ l)l?lzo(modq) H=0(modg)

=@ 2N, — @ 'glg) Ny— o 9@ Ny + (plg)* N,
where
N, = Z' N@;, NW=gpumber of solutions of H=o0 (mod @ 1); H =o
(mod w31); H%o (mod q) H' =0 (mod q); py, ps, 71, w =2~ (mod A4).
Z N@; N{® = number of solutions of H=o0 (mod @*~1); H=£0 (mod g);
H' =0 (mod q) D1y Doy Ty, 0= A (mod 4).
N,= Z N@®: NW— number of solutions of H=0(mod q); H' =0 (mod @*~1);
2
H' =0 (mod q); p,, Py, 7, =24 (mod A4).
2 NW; N@ = pumber of solutions of H=o0 (mod q); H =o0 (mod g);

D1y Doy 7Ty, Ty = A (mOd A) .

! See footnote ' on p. 421.
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Therefore
(2. 431) p(g). 0y = @ 2N, + (p(g))* N,

We shall prove

where

N,/ =number of solutions of H=o0 (mod @* '), H =0 (mod @), H=o0
(mod ¢), H' =0 (mod g);
N,/ = number of solutions of H=o0 (mod ¢), H =0 (mod g).

Consider first N,’, that is to say, the number of solutions of
Pt pe=71,+ 71, (mod g), p,/+p,’ =+, (modg).
The second congruence relation gives

72, 70 Py + Po) =P, s (70, + 7,) (mod g)
and the first

70, 70y (P + Pg) = 7,715 (7, + 7,) (mod g).

Therefore

(P17, 785) (724 + 70,) =0 (mod q), (p,py—75,75,) (p, + py) =0 (mod Q).

Therefore we must have either

P +ps=0 (modg) and =, +m,=o0 (mod gq)
or

P1ps =7, 7, (mod g).

In the first case p, and =, are determined, if p, and =, are given, so that there
are at most O(¢® solutions. In the second case, we have

(p1—pe) = (m, —m,)* (mod q)
and

Pi—p:= 1 (m,—m,) (mod g).
54—2661. Acta mathematica. 49. Imprimé le 7 octobre 1926.
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Hence, if n,, w, are given, then only two sets of solutions p,, p, are possible,
which gives again O(¢®) solutions at most. Therefore N,=0(¢%.
In the same way, considering N,, we find, that there are at.most O(w?:?)
solutions mod w51, or O(®@?*5+?) golutions mod ¢ (=@°). Hence N,= O(w?5+?).
The inequality (2. 431) now becomes

plg) .o <Kw*? @+ K.¢*. ¢* < Kq¢*.
Since
plg) = Hw—1),

this gives o, < K¢® and a fortior::

| S(u,v; 4, 4; g)| < K¢t

2. 44. Lemma 4d. If Alq,(u,q)=1, (v,q)=1, then
S, v; 2, 15 q) = Ogh +9).
For it follows from lemma 4 b and lemma 4 ¢, that
| 8(u, v; 4, 4; )] < Krgt.
Now
Kr< 2R <{(1+&)(1+&) - (1+&N5
But
(1 FE)(1+E) - (1+&)

is the number of divisors of ¢ and is therefore O(¢®). Hence K" = O(g*) and
therefore

S, v; 4, 4; q) = 0(gt ).
2. 45. Lemma 4e. If A|q, (u,q)=1, then

S(u,v; 4, 4; g) = O(gt ™).
We write again

1= D0 T =0T 4, A= T T — W,
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Then

(’U, q) = (1), 13‘;;1) (U7 13’%2) e (’U, 'Efgr) = (U: 'w’il) (7)7 Al) .
It is possible to determine numbers v,, V; and 4,, ¢, by the congruences

v=v, 4] + V@15 (mod g), 15/11141 + ¢, @} (mod g).
Then
(Ul7 wi‘) = (v: @"i‘)a (V17 Al) = (U, Al)

and (lemma 4a)
S(u,v; &, 4; q) = S(u, vy; Ay, @7; 1) S(u, Vs 0, 4y; 4y).

Repeating the same argument, we find, that there are integers v;, 4; (j=1, 2, ...7)
such that

r

(2. 451) S(u, 05 4, 4; q) = 1 5w, vy; &, &5 ; =57

J=1

and

(v, 0) = IL (5, @).

j=1
We now write

(v, q) = Beais . @

(where the numbers & may also be o), so that

-4

(, oF) =07 (j=1,2,...7).

We first consider those factors of the product (2. 451) (if there are any),
for which &;=o0. Then (v, @)= 1, so that we have in consequence of lemma 4 ¢

(2. 452) |8 (w, v5; 4y, &5 ; @) | < Kok

In the second place, we consider those factors of the product (2. 451)
(if there are any), for which & =£;. Then

(s, @) =@, or B=o0 (mod TH).
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Therefore

. . GooE N 27LUp
8=8(u, vj; 1, ®7; 7)==, exp
p:lj (mod ﬂ;j) J

If {j=o, this is u(@y), so that we have again (2. 452). If {;4~0, we may write

p=Ili+v®Iiv—o0,1,z2,..., m’f"_cf—— 1)},
80 that
m{’ l
zu 2miuy.
S Z‘ exp 'E‘CJ—" SJ

This is o, unless & = {;, in which case

A
S=exp 2—7”“

’
]
@

so that still (2. 452) is true.
In the third place, we consider those factors of the product (2. 451) (if

there are any), for which o<{j<&. Write vj== @;/¢’;. Then

L4 ’
’ 2mwiup 2wV
SZZ exp ( s ":.‘_]3).—)‘
X »m'v @i T
P 1 (mod @) J

In this formula the number p’ must be determined from
1+pp —o (mod F),
but the value of S is not altered, if we determi_ne it from.
1+ pp =o0 (mod @y %)

We now consider three cases separately. Let first ;=& — &;. Then we may

write

p=4A+ v’wjj_‘:’j (v=o0,1, 2, ..., ’wf'j‘— 1),
so that, if
(2. 453) 1+42;=0 (mod @y~ %7),

! If 4j = o (mod @), then § would be o.
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we have
N
2702 UA; 2 7TL VA 27T Uy
S = exp e e B exp ————— =0
@ e ) 2

Secondly, let &—&;>{;. Then we may write

g &, Ea-1
p=ptvei i (y=o,1,2,..., @’ ),

where
;=4 (mod w¥).
Writing
4 E — §’.
1+ pp’y=o0 (mod @y *J),
we find
: L, g EiT! _
27U 27eV; 2wiuy
> Z exp ( 5 o ﬂ_-s—]—pil) Z exp -~ o — = 0.
oy wy ] A @

7‘1<w_;j N sj; PAElj (rmod ﬂ;j)

Thirdly let & — &;<{. Then we write
p=li+trvay (p=o0,1,2,..., @ 9).
Hence, if A’; is determined from (2. 453), we find

5oy

1-

@i Y

, 2xiudy  2mivA; / 2w IUY

S =exp + - D) ex = o.
=0

E. U E__‘g
oF w}; 5J @i Y

Therefore (2. 452) is true in any case, so that we get from (2. 451)

3 3
IS(u,v;l,A;q)I<K’q*:0(q‘+e)-
2. 46. Lemma 4. If A|q, then

3—+5

1
S(u,v; 4, 4; ¢)= O(Q* (u, q)‘)-

J+s

S, v; 4, A; @)= 0(qI (v, q)i)-

As in 2. 45 we find
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(2. 461) S, v; 1, 4; @) = [[ S, vi &, 7'; @),

Jj=1

where

r r

a=1lo¥, 4=1lof, 0,0~ o), @ 0= T o).

j=1 Jj=1 Jj=1

For those factors of the product (2. 461), for which both v and w are

prime to @j; we have from section 2. 43

1 3 1

5

Q.

- 3 -
|S|< Kot 7 = K(u, o) wit 7 < K (v, wp) ot 7.

The same result is true (section 2. 45) if only « is prime to ;.

to @j; but not %, we observe that

Slu, v; 4 4;9) =S, u; ¥, 4;q)
if
1+A4=0 (mod ).
Hence (section 2. 45)

1 3

3 :
_E. > - ..E.
U< K (u, o) ot

|S|< Kw

J

3 L
[Sl< Kot? < K (v, op)t o}

It remains to consider those factors of (2. 461) for which
('Uj, szj) +1, (u7 13’5]) + 1.
Consider first the case, that

(w, @) = (v, w7) .
Then, writing
(o3, @) = @5, (u, @) = @5 7,
we have

Further, let

If v; is prime
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Then, if &;==§;, we have
juil C’ :i &, 1 i . 1 3 ‘.'
|S|<Kw>J—Kw* "ot = K (v, w3 ot Y < K (u, v @b V-
Secondly, if &; <&, we consider three cases separately. In the first place, if
<& —E&;, we havé

G Zr exp (2mup+ 2mv;p

-7
e ’ 27LY 2 LV
D FJ -w;.J 2 exp :._:'].)+ ]p ’
W~ %] 1D'JT] )

w 7 'lD']TJ s 'ID'J] &
1" 74; (mod ur]‘-J) p=1; (modw‘J)

p<mj?j p<mm ’J

and therefore (since (v;, @ — i
7y

1):

3 - 1 3 3 1
A R ) L : ; cxg 1Y
|SI<Kafiwt™” =Kot ot =Ky, i) o’ < K(u, oj) ot 7.

In the second place, if {;=& — &} and

1 + 4;4;=0 (mod 'tD'-';’:.i),

we have
« 7 ’ - 7 . ! ’
2nm 27V 2miu ki 2miviA; . .
§=>> ,_,p+——~-~ P )= exp (FTAEH 4 2RI | -y
w5 w5 w5 wJ 7
fi fi J 3
=i modm}gj)
p <)
and therefore
L 3, 3.
- & - 257 _a5i ., 4% =z, ]
|S|<Kwji~% =Koji< Kot o}’ = Ky, wji)wt * < K(u, o) vt ”
In the third place, if {; > & —&’;, we have
N L 4 ’
2w Ay 2miv ;A ..
S=exp | _17 ) W T
(o3 5j (oA ?
1 3. 138,
|S|<=Koji < K(vj, wiiflwt " < K(u, wii ) wt -

At last, if (v, @) < (v, wji), we write

;u -u

v,—'u'an um’:

and proceed in the same way. Hence, we have in any case
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1

IS < K(u, w5 )

1

| S| < K (v, &% )*

from which the results of the lemma follow by multiplication.

2. 5. In this section, we return to the sum ¢, defined by 2. 22. The
object of this section is the proof of

Lemma 5. If A|q, n <q and

6= exp (M%p + 2@2&),

. P
where
1+ pp'=o0 (mod g), p’ =p, + N (mod g),
then

7 1

lo,| < qu‘+5(u’ Q)I-
In order to prove this, we shall consider the square
(2. 51) o<f(<1,0=9<1

of a &n-plane. On the &-axis we take the points

1 2 g—1
= —y =y ey y 1.,
s q q
In those points vq—'(v1 =1, 2,...,q for which (»,+ N, ¢)=1, we erect an ordinate
_(wr + v¥)
q

where
v =w», + N (mod ¢g), 1 + »»' =0 (mod g).

We thus get a number ¢(g) of points, whose coordinates are (p running through
all positive numbers, less than and prime to ¢)

_p o lwp+op)
§ g7 q
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All these points P are situated in the square (2. 51).
Let M, be the number of p’s, for which

m _ (up+vp) m+1
= = UGB\ SIS ) mx1
O<pl_.u|p l(mOdA),M p < M
where M is a positive integer and m=o0, 1, 2,..., M — 1. Then
, vm’ 2aim
Zr exp (2nmp+ ?7rzvp) ML
Pi=u; pe-d (mod 4); q q
m _ (uptvp) m+1
M q Mo
) ! N 2nlm
' 2mifup + vp) 2w o (M
+ 2 (exp q exp i Mme +0 )

pisp; p==2 (mod 4);
m i ruy) mid
M q M

so that

: M—1
04:2[ exp (275;“;0 27m1,p) ZM 2nzm + 0( )

m=w; p=12 (mod 4)

It remains to calculate M,. For this purpose we consider the function f(§, 7),
defined by

o L m m+ 1.
I°. f(g,’l]) ,1fO<§<an<17< M:

2°. fl§ n)= ;, if (§, n) lies on the boundary of the rectangle o < & < gv

m n< mt1.
M M

3°. f(&, n)=o0, in every other point of the square 0 <E<1,0=<g<1
(if m=M—1: in every other point of the square o <{ <1, o<y =<1)

4°. f(§ n) is periodic in £ and in 7 with periods one.

Then (since the number of the points P, which lie on the boundary of the

rectangle o<§<;i, »;}<17<niﬂ-;—l is at most 4)

’ + vp’
Mo f(&, ’if’———) + 0(1).
p,—.‘l%dxﬂ q q

Now we have for all reel values of & and 7:
556—2661. Acta mathematica. 49. Imprimé le 8 octobre 1926.
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+x +»
S )= 2 Z an, k 2 7IER 2rink

hA=—® k—=—x

where

11
ahrk:fff(g’ ,,]) e—?fu'_Ehe——2ni1;k d§d17
0 0

or explicitly

u I (_21”'});5 )
=——3 @y 0= — ~-— 7 — ;
Qo, 0 ¢ M a0 5 wihl € 1) (k= 0)

u ( _2mikim+1) ,.?ﬂ_f_ffﬂ)
_—_— M —_ M .
@o, k 2mikg e e (k =+ o);
I ( _Anihp ) ( _2mik(m 1) _?Z’_i_"_”‘)
o e g M — M .
an, k ARE 1] \e e (h o0, k=+0)
Hence
’ t& e 2nthp,  2nik(up+vp)
M=% 3 3 e em o, 2kl +0().

p:l(modA) h=—w k=-—
For this sum we write (H being a large positive integer)

+ H + H R
M, :Z 2 anx exp (_ zn;hN) 2

h=—H k=—H p=1 (mod 4)

, exp (2mlcu.p 4 27 (iqr, + lcz;)) +

t +H
+ Z' > o+ Z' DN D HO0()=3+2+3+0(1)
p=1(mod 4) h=—e |k|>H  p=2(modd) |k|>H k=—H

We shall consider these three sums separately.
2. 51. The term h=o0, k=0 of 3 is

0,0 > IZLM > 1=;’-3—[q>1(q)

p=1 (mod A)

say.

" expZZPR,

+H _2nihy 13
1 I_(e = —1) exp (__ 27 »N) . 2
q p=4 (mod A)
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the absolute value of which, as follows from lemma 4, is
o 1
I ‘i 4 [ i + & I
< = 4 Al 7} 4 WV
< MZ <Kgq dé Z J R,
A=1 dlg  (ho= d dlgq <l
hsH ]
3 +¢& ( 3 +¢ )
<Kq¢* logH D 1=0\¢" logH.
dlg
The terms % +=0, h =0 of =, together are
+ H 2nik (m+1) 2ntkm . - ’
I 2 I (e———ﬁl . _u_) Z; ox (zn-zkup gnzkvp)
—T T —_ P + ’
2me qk=—H k p=2 (mod 4) q
k+0
the absolute value of which (as follows from lemma 4), is
1 " 1
H gF % 3 L, 1 i 3., 1
%Z kg, g 30 06 ** u, g 1og H).
k= k=1

The terms k<40, h+o0 of 3| together are absolutely (as follows from

lemma 4)

1 ‘i 3 1 H H
I Tte_ gt I k, q*
h—(ku ¢t =Kg¢ “(w,t >3 kq =

=K

M=
uMm

Collecting the results, we find

1

3
_e (" (e, 0 1o B)
(2. 511) 2, qu(Q) + O\¢* (4, g) log® HJ.
2. 52. In order to make an estimation of 3, and 3, we observe, that
there corresponds a point P of the square 0 < §=<1, 0=9 <1 to every term of
3, or 5. We now take a small positive number . Then we define the region

R, (y) as follows:
Ry(y) consists of the following strips of the square o <{<1, 0<gy<1:

—~Y=E<= +; 3% I—Y=EST; 40 osqp=4;

1°. o=f=y; 2°

R
<R
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o, o —w<§< S+ y; 6° "—“t—l —y<E< l‘}-+w; 70, 1—yP<=gn=<1.

We shall denote by R, () that part of the square 0 <§ =< 1, 0=<7 <1, which
remains, if R, () is taken away from it, so that R,(i) consists of six rectangles.
Then, if (&, 7) belongs to R,(y), we have

N P : s e = s =
§>y; |§ q|>ll’, 1—§>9; 7>, |77 M|/w,|7) M|>1l’,1 n=>Yy.
Further it is easy to see, that the number of points P, which are lying in

R,(y) is O(yq).

Writing for abbreviation

(up +op)
§= El: 7] =
q q
we have .
IZ |< K 2 2 ( 2aih (5—‘(;—)_82"”5) Z ( 2mk( '";l)_
=12 (mod 4) |k|>H

h——oo
h+0

_eznik(q—;'l—')) K Z;

Z 716_(621:“: (n—’—n—;—l) _e2nik (n—%))| -

p=2(mod 4) | {k|>H
m+1 m
sinznk|np——,— ) —sin2xak|n— =5
(1="5¢") — st (o~ 57)

' "M
<K ,
2 |2 P
p=2A(mod A) |k >H
For those terms of this sum, for which the corresponding point P is in-
side R,(y), we have

sin2nwk (1) L 1) —sin2nwk (17— —~)
M M K
<l =

2 ; e

For the other points the same expression is < K. Therefore, if we take

0S|

y=H
3= 0(;#}) L0y =0 (3‘1)

In the same way, we find also Z 20(17(11:1) Hence
8
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(2. 521) 2 2= O(VQ—E)-

2. 53. It is now easy to complete the proof of lemma 3. For we have
from (2. 511) and (2. 521) that, if we take H =g:

M, =2 pailg) + O(Q%H(u, Q)"%)'

qM
Hence
P M—1 27;;m ( 3 i) g\
P i 4 2.
o, quz(q)mZ::Oe + 0\Mgq (w, 9)t) + O(M)
We take

Then it follows, that

7

0, = 0(@15“(%, q)i)+ O(qg)=0(q%+s(u,q)i—) qg. e. d.

2. 6. A combination of all resnlts obtained now gives
Lemma 6. (Fundamental lemma). We have (see 2. 2)

’ , T A 1]
2 Sap, ¢, v Sop, ¢, v Sep, 9, % Sap, ¢. v, €XP (— 2_%;72_})) = O(q2+ 5" (n, q)*) .

=g

For this sum has been denoted by ¢, formerly. Therefore the result fol-

lows from the lemmas 2*, 3* and 5 in connection wich (2. 31).

3. Proof of the main theorem.

3. 1. Lemma 7. On the arc &), we have (s=a, b, ¢, d)

9 () = @ + @,
where
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For, using the transformation-formula for the $-function, we find

kg g 2wipyis 1
— oy ___ b S Y A —
= E: W = E‘} exp( p v s(n 10)) =

q—1 .
= D) exp 2mipsy, Z exp {— (lg+9)? (—-—20)}
- q -
=0 l=—o
1 71 }' 2 mpsy
SV g
®© 2,2
I+ 22 co8 ~— i ]
y=1 qu L - 7,0) ]
n
Since
. Z ox 2mp37 2]m: L"Z (2 wipsy? + 2,7'7::'7) N
2= q
(2 wepsyt z,jniv)
2 = bsp 0,
<~ g
the result of the lemma follows.
3. 2. We have
# 3 rlo)un = 9) 3 (01 20) ()
go that
r(n) = 2—;—2 3w") 3 (20) 3 (200) 3 (w) " duw =

;m, > f 9 (0%) 9 (%) & (20) & (0) ="~ daw.

= 5p.q

-

Therefore, in consequence of lemma 7:

—2;;2 2 f¢a97b¢c(}?dw_"“ldw +

=P S

2 2 f(Ean%(Pc(Dd + 2¢agpo¢Dc¢Dd + Ewamb(Dc(Dd +

=1 p

27!?1
$p,q
+ a)a a)b a)c (D(z)’w'—"_l dw: Jl + Jz.
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Here we have written

D PaPr Qe Pa= o Po Pc Pa + Qoo PePu + P Do PePa + Do Po P Pu.

The other sums in the second integrand have similar meanings.
3. 21. Writing 4 = abed, we have

e e ) [ ) e

§p,q
Further, writing
— 27 -,—-.,,H — 0—_3!”__
q(g+N) Tqlg+A) T qlg+y¢)
£ S T NP T S .
PO r ) T e T eE s
we have
(3. 211) Ji=d, 1+ J,e + I

3. 217. In J, , we write

(_I. —_ 1:0)_2 = F(we~n’:lip) + 0(1),

n

where

(1—w)?

F(w)= ZNI =, 2.

v=1
Therefore, if 5 is the complementary arc on I" of

27 - f < 27

glg+N) = "~ qlg+N)

then
2n
”‘Wq’?\) .
o , nip
J1 o= —: —4 F\we 9 Juw " ldw +
VPV Zﬂzzzq
=1 p . 2n
T e(e+M

439
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N —:—‘4—1'8 2xinp
cxZae [ e o(3)
a=1 (I _ e—; +1ﬂ)
1
_ 2nxip
1z )
211-(11)

o)

-—-Sn)+0(~
V4" ;

ofs)

Hence, using the fundamental lemma with pu=¢ — 1, ¥, %, #;, »,=0 (mod ¢):

1 1
e o (n, gF n, Q* 1
J1,z=l7§nS(n)+O \n=2 _I_T) +O0|\ND —F—q] +0 ¥ =

1
e=N+1,' "3 g=1 q§
1
? ot 1
= =nSm) + 0 fn D - 2 ; +
Va \ ding e N1 g "

din ’11ng1
7!:2 i - ‘.3 Il
- 1+e 16 n 16 4 all
o H+OG n 83§ ( " a)+0u)
dln dn
or
Joam i)+ 0 (e *)
(3. 2111) 1,2—an (n) + n .
3. 2r2. If o< N, < N, we have
27
a2+
P —9 _2ninp .
—40 g - — ~ni —
J13—KZ Zq {b }j (1’1 10) e 7 ¢ do
¢=1 p 2n
q (q+N)

—KZ+KZ 2,2

=1 ¢=N;+1
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32m1’2|<KZZM _46 <KN2¢ — O(NN,).

9=1 p + 62 a=1

k4

qN

27
g (Nfw)

I —9 _ 2rinp
[ (~ ——iﬂ) enife 0 df =
n

3,-x3 Sr{st 3

e=Ni+1'p a=q'+tq—N 5,
G {¥+u+1}
27
q (N+u)
I —9 p _ 2minp
=K —t ——z0) e ™04 St e 9
S a 2 | 3 s
q=N+1 Py ¢ +9g—N=u
q(N+[L+l)

Now we have p'g —pg =1 or

(¢ +q)p+1=0 (mod g),
and
o<¢ +qg—N=y,

so that ¢ +¢— N is the number p,, defined in section 2. Therefore we can
apply the fundamental lemma and we find

o
¢(N+p) . .
do 24 4 =
|2|<K2q 2 e aL
g=N;+1 = — + 6
n
27
g(N+p+1)
27
~ L g (N+1)
ne - dé
=KX il o
=Nitlg " 8 st 0*
27
q{N+q)
1 1
® 4 Y
SK,nl-{»eZ MSK”H-EZ g 1 . I 5
g=Ni+1 ql+§ aln g § %3 q11+§
T 1 1
\Kn1+s25 8§ le s=0(n1+aNl 8).
LIE)

56--2661. Acta mathematica. 49. Imprimé le 8 octobre 1926.
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Combining this result with (3. 2121) we find

1
J,s=O(NN)+ 0 (721+‘N1 8).

Taking

N, = [”%]a
we find
(3. 2122) J1,3=0(n%+5).

In exactly the same way, we find also

17
(3. 2123) Ji,1 = 0("18+E)-
3. 273. From (3. 211), (3. 2111), (3. 2122), (3. 2123) it follows that

7tg u +e
(3. 2131) J,=—==—nS8(n) + 0 (n“’ )
abed

3. 22. The calculation of J, does not differ essentially from that of J,.
It consists of a number of terms, which are of the same form as J,, with the
only difference, that one or more of the functions @s, @s, @, @a are replaced
by the corresponding @g, @,, @, or @q. All these terms of J; can be treated
in exactly the same way. I give the complete proof for one of then only, viz.

N .
I = ;71;‘_12 Z ~f¢a¢b D, Dy w=r1dw.

g=1 p

p, q
Writing again
= 2 g 37 L, 3m
T qlgtN) T q{g+M T qlg+9)
[=/ -]
: 27 2n an
D0 g = =
e qlg+q") ¢ q(g+N) y g (g+N)
we have

(3. 221) I=1+71,+1,.
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3 221. We have, ! being a positive number, which can. be taken
arbitrary small:

2n
q (g+N)
N 1 —9 w© )
— —4 —— nio
L,=K>q f(n z0) € dOZZ
q=1 by A vg=1 ¥,=1
T g(gtN)
vy v}
, _aminp ® (?8 + 7‘)
(2 Sap, q Svp, g Sep g, v Sapgvi€ ¢ ) exp | — .
» 7 (— — i@)
L
N q(q+M -
ILI=E3 ¢ 33
9=1 — + 6% =1 0=1
0
, _2ninp n vy v}
D\ San, o Ssp,0 Scp. 0,0 Sapg,e ¢ | exp (_ ¢* (1 + n°6? (? + d)) -
P
o
1 an 27
nl g(g+N) g g+ )
—KZq f+KZq—4 f+K2q—4f=
1 1
ol -
0<g=n? 0<gsn? q_ln—;f“ n2 l<qu 0

=3I, + 2 + 3, say.
Applying the fundamental lemma with u=¢—1, %, »,=0 (mod ¢), we find

1

(n, 2l (y3 ) —
KZ q—QQ) q+N)Z Zexp — Kn®(v; + #}) =

vy=1 »,=1
0<q$n

5<K qe(n,g) f1+t’ i > exp (— K (3} +4Y)

lg_l q v yg=1 v,=1
0<g=n 9
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1

Lotite (n, q)* L ite Lot -
< Kn? 2 —’l—SKn2 26"682 q 8
1 8 din 1
i 1 2
O=g=n I<q= r
1 1 15 17
< Kn? +z+sn(»2 —1) iy (nﬁ+e) —0 (nﬁ +5)’
since ! can be taken arbitrary small.
2n
. g {(a+N)
¢ (n, 9)* < 5 'y e
%L<K > 1 " > D exp (— K(v; + 7))
o, g ® — + 0P v=1 v=1
n? <gs<N n
0
2an
q(g+N)
L 1
1+e (n, @* dt . L‘
=Kn 2 1+1 = Kot Z +1
L -1 q 8 1_ B
n2 <gq ES n?
0
15 17
_ o) o(nﬁ“).
Collecting the results of this section, we find
u + &
(3. 2211) ,=O(n"‘ )
3. 222. We have
9lg+¢')
N , _ 2minp I \-?
I3:KZQ_4 Z Sap.q pr,q e q f(; —’00) e"”odo
=1 4 2
qlg+N)

7]:2

I
~—10
n

2 Z SCP: v SdP- 9, v €Xp ) — —— ¢ (? +
vg==1 v,=1 qg( )

:K§+K§=Z,+Z, sa

q=1 g=N;+1
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o 2m
] . q (N+g)
N , _2minp p=q-1 ! .y
22: KZ q—‘z Sap,q pr,q € q Z (;; —Ze) et 46
n=N;+1 p b tg—N I
g (N+p+1)
ol 3 2 2 2
7T Vs v,
3 3 Sonu Stnamomp | =~ (547
rg—1 ¥;=1 q r 10
n

Therefore, changing the order of summation and applying the fundamen-
tal lemma as before:

2
L ¢ (N+p)
9 dé "+ +e

|Zg|£K§q“2 - — (n, q%zm Zexp + }))

=N+1  p=t | - +6* vl v=l
n
_em
g(N+pu+1)
_ 27
q (N+1)
1
q)*
1
e=Nt1 g 1ty 8 =+ 6
27
g (N+q)

1

© 1
SK”H;Z (n q)l O(MHSN 8_).
g=N;+1 q1+

It is easily seen, that

= O(NN,).
Therefore
1 n,
(3. 2221) I,=0(NN,) + O(n”le 8) == 0 (n"‘ )
In the same way we find:
17
(3. 2222) I,=0 (n“’+ )

3. 223. From (3. 221), (3. 2211), (3. 2221), (3. 2222), we find

I= O(n%+e).
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The same arguments are valid for the other terms of J;,. Therefore

(3. 2231) Jy = O(n%ﬂ).

3. 3. Main theorem. If r(n) is the number of representations of the positive
integer n in the form ax® + by* + c2® + dt?, then

r(n)= Val—cht"S(”) + O(ni_zh).

The proof follows from (3. 2131) and (3. 2231).

4. The singular series.

4. 7. In order to draw any conclusions from the main-theorem a detailed
discussion of the singular series is necessary. This discussion is very complic-
ated. A large number of cases must be considered separately. However, the
calculation: does not present any essential difficulty. Therefore I shall indicate
the general lines only, and the results to which they lead. I shall begin by
making some remarks, to which the calculations have lead me.

Let nj(j=1, 2, 3,...) be a sequence of increasing positive integers, tend-
ing to infinity, if j— . Then there are three possibilities:

1°. There is a number K > o, such that

(4. 11) S(n;) > K
if »; is sufficiently large, or at any rate
(4. 12) ntS(n) > K

(for every positive &) if n; is sufficiently large.
2°. We have
(4. 13) S(nj)=o

for an infinity of integers, belonging to the sequence z;.
3°. We have



On the representation of numbers in the form ax®+by®+c22+dtt 447

K
(4. 14) Sl e
7
for an infinity of integers belonging to the sequence 7;.!
In the case 1°. the main theorem gives
2

rin) e Tn;S(ny) (> o),

Va

where we have written
A4 = abed.

In particular, if the condition 1° is satisfied for all positive integers, we may
conclude, that there is only a finite number of integers, which cannot be re-
presented in the form ax®+by®+cz®+dt2. Such a conclusion is not possible in
the cases 2°. and 3°. It might be expected, that there is an infinite number of
exceptions, if 2° or 3° is true. Simple arguments, which are almost trivial, will
show, that this conjecture is true in the case 2°. In the cadse 3°. the conjecture
will appear to be generally true, but not always, and the proofs are not as
trivial as the analogous proofs in the case 2°. However, it may occur (as it
will appear in the following pages), that a sequence of integers n; can be found,
for which (4. 14) is true and yet there is only a finite number of integers (or
even: no integer) which cannot be represented in the form.

4. 2. The calculation of the sum of the singular series is effected by the
methods, given by Hagpy and Lirruewoon. It depends on the fact, that

Aq.Aq’ == Aqq'. if (q, q’) = 1.
From this property it results, that

(4. 21) 8(n) =] 2@

where
Ao =1+ Ag + Agn + Agn + -

and the product must be extended over all prime numbers.

! Of course it is also possible, that S(n’-) tends to zero, but not as quickly as _]—, if
n.
J
m;—> " But the discussion of the singular series shows, that in this case, we can always find

another sequence, for which the condition 3° holds.
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4. 3. First let @ be an odd prime, which does not divide any of the
numbers a, b, ¢, d. Then, writing

we find
s I R 4 E 4 Ry E s

We now write

where ! contains the factors 2 and those odd prime divisors of », which divide
one of the numbers a, b, ¢, d at least and m is odd and prime to . Then,
writing x for the product of y, and those factors ym of (4. 21) for which @
divides one of the numbers a, b, ¢, d at least and 3 for the product of those
factors yo of (4. 21), for which @ is odd and prime to ., we have

(4. 32) S(n) = 2

and, as follows from (4. 31)
e =255 - ()2

where @ runs through all odd prime numbers, which are prime to #, which
has been denoted by J[. The product [’ does not depend on n. Further, it

is easy to determine the behaviour of the sum
23 (3)
dlma ]

for large values of m. For we have

L ( 4) 1
1 (A4 w3t st
s (a) =11 T ’
dm wlm I— §— -
w]w

where £ is the exponent of the highest power of =, which divides m, so that
§=1. Hence
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2 ()0 -o)-m

d|m w|m

where @(m) is the number of positive integers, less than and prime to m. Now
it is well known, that

@ (m) K K
> > .
m log log m = log log=n
Therefore
(4. 33) |2 >

log logn’

4.4 It remains to consider y, and those factors ym, for which @ is not
prime to .
Let first @ be an odd prime, which divides /. Then I write

(4. 41) a=wea,, b=w"b,, ¢c=whe, d=wrd,
where a,, b,, ¢,, d, are prime to w. 1 suppose that
(4. 42) Mo = Wy = e = pa,

which is not an essential restriction.
Then there is plainly an infinite number of integers, which cannot be
represented in the form

(4. 43) n=ax®+ by® + c2® + d¢*
if uyo=1. For it follows from (4. 43) that
n=o0 (mod ).

There is also an infinite number of integers, which cannot be represented in the
form (4. 43) if

HPa=0, up =1.
For then it follows from (4. 43), that
n=qar® (mod @),

so that the integer na’, where
57—266]1. Acta mathematica. 49. Imprimé le 9 octobre 1926.
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ad =1 (mod w),

must be a quadratic residu of w.
Therefore we may suppose

Mo = o =0, fe = Uq.
We now substitute in the expression for

2nmip
wh

A= 3'8,  8

bp, @t
»

S, at S,

dp, art e

the explicit values of the Gaussian sums. Then, summing over i, the following
results can be obtained by straightforward caleulation:
1. If

w1
ab
,uc—>—I, [,LdZZ, (E):(_ I) 2 s

the factor y» vanishes for an infinity of values of %, in particular for

n=wn, (”1, ’w')—’_—I
if y.= 2 and for

e
n=mwn,, (n, ®) =1, (%):—1
if He — I.
20, If
ab cld,) chs
= p—1 I _— p=— et = { s
po=na— 1, (2) = (4) = (=]
we have
X‘WN;,

if % runs through all powers of .
3°. TFor sets of values of a, b, ¢, d, different from those, mentioned in
1°. and 2°., we have
1w > K
for all values of =.
I shall not give the proofs, but I shall work out a proof only in a very
special case. Let us suppose for example, that
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=1 — 2, (2 =(— I)F];L_1 =wny, (B, ©)=1 o)
HBe =1, g = 2, o - , = 19 19 — 1, o .
Then the wellknown formulae for the Gaussian sums give the following results

(p is prime to w).

—fap (@1 —(bp (@—1)
Sap, w — V’ID’ (a“) i 4 s pr’ w — Vw (E) Z i y

LCP.@:wy Sdﬂ,ﬁr:wa

and therefore

1 fab B I

(4' 44) AW:E(’TJ)(— I) 2 Cw(‘—'ﬂ):_“dCﬁ{("— ’ﬂ).
Again
Sap,ttr’ =, pr,w’za,
3 (@1
‘S(,')),Iii"":'lﬂ2 (%—) i, Sdp,w“:—'lﬁ'z.
Hence
_5fe,\ B

(4. 45) Am=w ? (5’) i 4 oamin),

if for positive integral values of «, we define

(4. 46) Oq(n) — Z'(g) éxp (—— 2—":;—@) q = w°.

In the same way we find for ¢ odd = 3

(r— ll’

—2a+ P fd\ .
(4. a7) A= — @ ’ +2(;;;)7' * Ohaln)

and for « even = 4
P (w—1)
(4. 48) A.=w ’ +2(%)i t oo a(n).

In (4. 46) we write

p:p’—{vi"lﬂ (p:l,2,...@'—1;11:0,172,_“13«2—1__])‘
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Then

anmip’ wh—l—y _ 2nmiv

rl) = S (L) = T e =

¥-20

This is 0, unless « = 2, in which case

Tl (p'\ —mni 3/ p\ fE
om(n) = @ Z (E)e vV =w@S8.,, o=@ (——w—')z s
p'=1

Therefore, if we combine this result with (4. 44), (4. 45), (4. 47) and (4. 48),
we have

I 1 {— e n 71 w—1 I
=1 ——=¢g{—n)+ - |—— : - -
to =1 — 5 0ol ) m( @ )

The other results can be obtained in very much the same sort of way.
4. 45. The caleulation of yx, is still more elaborate, than that of yw»
(w odd). I write

a=2taq, b=2"b, ¢=2%c,, d=2%d, (a, b, ¢, d; odd)

and I suppose

Mo = pp = pe = pa,

which is not an essential restriction. Then, if u, = 1 the form axz® + by® +
+ ¢2® + dt® represents even integers only. Further if

ﬂa=0, ‘ub ‘>—‘ 2)
we have

ax® + by + ¢2® + dt*=ax® (mod 4),

so that in this case the form ax®+by®+cz® + dt* does not represent integers
which are =a + 2 (mod. 4). Therefore we may suppose

fe =0, Mp = 1.

Then we have the following results.
1°. The factor y, vanishes for an infinity of values of =, if
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Has Mo, e, Ba=0, 1, I, = 3;
o, I, 2, =4;
o, I, =3, =3;
0, 0, =2, =2;

0, 0, 0, =3 and a=b=c¢ (mod 4).
2°. The factor y, behaves for

n=2%n, (n, odd)
as

in the following cases:

Ha, Mo, Me, ua =0, 1, I, 2 and a + d,=b, + ¢,=4 (mod 8) or
b+ ¢+ 2a=a+ d, + 2b,=4 (mod 8);

0, 1,2 3and b+ d;=a + ¢, =4 (mod 8) or
b+ d+2a=a+ ¢ + 2b;=4 (mod 8);
0,0, 1, 0dd and a + b=¢, + d,=4 (mod 8) or

a+b+tz2e,=c +d;+ 2a=4 (mod 8);
o, 0, O, o} and a=b=c¢=d; (mod 4) and

0,0 0 2 a+b+c+d =4 (mod 8).

3°. In all other cases we have

22> K>o0
for all values of #.

4. 6. If we now collect the results of the sections 4. 2, 4. 4, 4. 5 and
combine them with the main-theorem, we find the following result.

If the set of positive integers a, b, ¢, d, 4s such that

1°. It ¢s not of the type stated in 1°. or 2°. of section 4. 5;

2°. There is no prime for which 1°. or 2°. of section 4. 4 is satisfied;

3°. There is no odd prime which divides three or four of the numbers a, b, c, d;

4°. At least one of the numbers a, b, ¢, d is odd;

5°. At least two of the numbers a, b, ¢, d are not divisable by 4,

then
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S(n) >

—= >
log log » °
Jor sufficiently large values of n, so that we arrive at the conclusion that

752

r(n) ~ —=nS(n).
() VS (n)
In particular, there is only a finite number of integers, which cannot be represented
tn the form
az® + by® + ¢z + dtt.

5. Problem P.

5. 1. It is now natural to ask, what can be said of the representation of
integers by forms, which do not satisfy the conditions of the theorem just ob-
tained, in particular whether there is an infinite or only a finite number of in-
tegers which can not be represented. One might expect, that there is an in-
finite number of exceptions in these cases. But that this can not always be
true, is already shown by the simple remark, that the form x* + y® + 2% + 2,
which represents all positive integers, falls under 2°. in section 4. 5. Yet a
more detailed examination shows (as will appear later on) that generally there
is an infinite number of exceptions in the cases still to be considered and that
there is only a limited number of forms, which do not satisfy the conditions
of the theorem of section 4. 6 and yet represent all positive integers with a finite
number of exceptions at most.

Though the methods, by which these results can be obtained, are quite
different from the analytical methods of this paper, I shall give a short account
of them.

5. 2. If the coéffictents a, b, e, d are such, that they satisfy the conditions
1°. of section 4. 4 for some prime @ or if they satisfy one of the conditions 1°.
of section 4. 5, then there ts an infinite number of integers, which cannot be repre-
sented in the form ax® + by*+ cz® + di.

The proofs of these statements are quite simple. Let us suppose for in-
stance, that ¢ and d are divisable by @? that a and b are prime to @, and that
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Then the numbers

nlw1 (nh 'GT):I

cannot be represented in the form az®+ by*+cz2+d¢®. To prove this, I shall
show, that the supposition

(5. 21) nw=ax®+ by® + c2® + d¢t

leads to a contradiction.

In the first place it would follow from (5. 21), that y is prime to w. For
if y were not prime to w, it would follow, that ax® must be divisable by @
and therefore also by w? since (¢, @)= 1. Therefore ax®+by*+ cz*+ dt* would

be divisable by @?® which is not true. Therefore y (and also x) must be prime
to w.

I now consider three cases separately.

1°. @=1 (mod 4). Then exactly one of the numbers ¢ and b must be
a quadratic residu of w. We may suppose

(5. 22) L) = LA W I
w \w '
Then we can determine numbers m and v by

m*=a (mod @), vy=mx (mod ).
Then
o=az®+ by*=m?z® + by*=¢*(v* + b)(mod w)

and therefore, since (y, @w)=1
— b==v* (mod @).

Therefore — b would be a quadratic residu of @. But then + b would also be
a quadratic residu of @, since @=1 (mod 4), contrary to (5. 22).
2°. @w=3 (mod 4) and

Since @ and b are quadratic residus of w, they are also quadratic residus of @*®.
Therefore we can find integers m; and m, such that
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a=m} (mod w?), b _=m; (mod @?).
Then
(5. 23) ax?® + by?=(m,x)® + (myy)? (mod w?).

The left hand side is divisable by @ (as follows from (5. 21)).  Hence also the
right hand side is divisable by w. But a sum of two squares which is divisable
by @, is also divisable by w*® (since w=3 (mod 4)). Therefore it would follow
from (5. 23), that

az® + by*=o0 (mod w*)

and this is in contradiction with the supposition (r,, @)= 1.
3°. w@=3 (mod 4) and

Then (:;_)=(%b): .

Therefore we can apply the same argument as in the preceding case, if we de-

termine numbers m; and m, such that
— a=m} (mod w?), — b=m] (mod w*).

The other statements can be proved by similar methods. The precise re-
sults are as follows.
If (in the notation of section 4. 4)

ab w+l
e=wa, (0, @) =1, @4, (@, D=6, B =1, () =(—1)* |

then the numbers
ey

mw, (n, @) =1, (—w-)= —1,

cannot be represented.

For the cases, mentioned in 1°. of section 4. 5, we have (in the notation
of that section):

1. If ‘ua,'yb, le, g =0, I, 1 = 3, then the numbers

n=a + 4 (mod 8) or n=a + 2b; + 4 (mod 8)
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can not be represented, according as
b, + ¢,--0 (mod 4) or b, + ¢;=2 (mod 4).

2°0 If pe, ph, B, wa=o0, 1,2, =4, then the numbers 2#, can not be
represented, where

7y =b, + 4 (mod 8) or n,7—=b, + 2a + 4 (mod 8),
according as

a+ ¢,=0o(mod 4) or a+ ¢, 2 (mod 4).
3°. If pa, e, e, pa=o0, 1, =3, = 3, then the numbers
n=a + 2b; + 4 (mod )

can not be represented.

4°. If wa, ws, e, pa=o0,1, =2, = 2, then the numbers
2n,(n, odd) or n—a + 2(mod 4)
can not be represented, according as
a+ b=0(mod4) or a+ b=2(mod 4).
5°. If wa, ps, pe, e =0, 0, 0, = 3, and a==b =c (mod 4), then the numbers

n=a+ b+ ¢+ 4 (mod 8)
can not be represented.
5. 3. We now consider the case 2°. of section 4. 4. Then we can prove
the following result.
If a, b, ¢,, d, are prime to w,

w+1
¢ >1, dy>1, (a—b)‘—:(ﬂl):(—'l) 2,
w w

and & is an odd positive integer, then w* can not be represented in the form
ax® + by + wlc,2® + d, ).

For the proof we shall require the following lemma, the proof of which
can be left to the reader:
58—2661. Acta mathematica. 49. Imprimé le 9 octobre 1926.
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Lemma: Let w* be the highest power of w, which divides AX® + BY?,
where A, B, X, Y are integers, A and B are prime to @ and
w+1
(42) = o

w
Then A is even.
By means of this lemma we shall show, that the supposition

(5. 31) @ =ax® + by? + @(e2® + d, )

leads to a contradiction.
In the first place, if (5. 31) is true, it follows from the lemma, that

(5. 32) 2 + d* +o,

since £ is odd.
In the second place we shall prove

(5. 33) az® + by® + o.
For if
ax® + by’ =o,
we would have
o= 2* + d 5.

Now let @w* be the highest power of w, which divides z>. Then § —1>u
(since z 4 0, ¢+ 0 in consequence of ¢, > 1, d, > 1). Hence

w14 =¢z2' + d, ! =0 (mod @)
where
22 £

2 __ £ . 7
Z‘—ﬁ" and t,—w#

are prime to w. It is now easily proved, that the relation
¢, 2} + d;t} =o (mod w)

is in contradiction with the supposition

()=

@

Hence (5. 33) is proved.
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Now let &* be the highest power of w which divides az® + by? so that A
is even. Then (5. 32) and (5. 33) give

E>A.
Therefore we find from (5. 31)

sa_axt+by? ¢t +d,
o= T T

This equation would imply, that @*~! were the highest power of @ which di-
vides ¢,2® + d,#* and this is in contradiction with the lemma, since 4 — 1 is odd.
Hence the result, stated at the beginning of this section, is proved.

5. 4. There are similar results, if the conditions ¢; > 1, d, >'1 of the
statement of 5. 3 are replaced by the following conditions:

1°. ¢=1,d *+1, d, + 2.
2. ¢=1,d =2, w+s.

3. ¢g=1,d, =2, w=s5.
4°. ¢=1,d,=1, w+3.
5°. g=1,d=1,m=3,a>1, b>1.
6. ¢=1,d=1,@=3,a=1, b>1.

In these six cases the numbers
2.9%, 5.@%, 7.5, 3.@%, 31, 2.3

respectively (where & is an arbitrary positive odd integer) can not be represented
in the form (5. 31), which can be proved by arguments, similar to those of sec-
tion 5. 3.
If however
g=1,d,=1,w=3,a=1,b=1,
we have the form

x4+ y? + 32 + 3¢

and it has already been proved by LiouviLrE, that this form represents all
positive integers.

Hence:

If for some prime w the condition 2°. of section 4. 4 is satisfied, then
there is always an infinite system of integers, which can not be represented in
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the form ax®+ by® + c2? + dt®, unless this form is z® + y® + 32° + 3¢, in
which case every positive integer can be represented.

5. 5. 1 now proceed to the case 2°. of section 4. 5 and I shall first con-
sider the form (a, b, ¢,, d, odd)

(5. 51) ax® + by + 2(c;2* + d,t?), a + b=¢, + d;== 4 (mod 8).

Here we have:

If a is odd = 3, then 2% can not be represented in the form (5. 51) if ¢,>1,
d, > 1.

The proof depends on the following lemma:

If A and B are odd, A + B=4 (mod 8) and 2% s the highest power of 2,
which divides AX® + BY?, then u is even.

Further we have

If e,=1; d,+3, 11, 19; @ odd = 3, then 5.2% can not be represented in
the form (5. 51).

If a>1, b>1, a even =4, then 2° can not be represented in the form
(5. 51).

If a=1; b+3, 11, 19, a even =4, then 5.2% can not be represented in
the form (5. 51). _

The proofs of these results are consequences of the lemma, stated at the
beginning of this section.

We thus have eliminated all forms of type (5. 51) with the exception of
the following nine forms.

22+ 3y + 228+ 68%, P+ 11yt + 228 + 683, 2+ 19y + 227 + 68
2+ 3yt + 228 + 2283, 2 + 11y + 227 + 2212, 2® + 199® + 22° + 228%
x4+ 3y + 22% + 3888, 2 + 11y + 227 + 3882, x® + 19y® + 22° + 38¢%

Now it is well known, that z*+ 3y + 22 + 6¢* represents all positive
integers.

Further it can be proved, that there is only a finite number of non-repre-
sentable integers in the case of

2+ 3y® + 22 + 2288, 2% + 3y% + 22% + 388,
24 11y + 228 + 68, 2 + 19y + 22° + 64
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Let us take as a typical case the form
2'+ 228+ 687+ 1190

We shall first prove, that all odd numbers, except 5, can be represented in this
form. For every odd number, which is not of the form 8u + 5, can be repre-
sented in the form x® + 22% + 642! If N=28u + 5, and p + 0, we take y = I.
Then N— 11=8u—6, and this can again be represented in the form z® -+
+ 22% + 6¢*. Hence, every odd number N # 5 can be represented in the form
x® + 22° + 61 + 114 and therefore also all numbers of the form 2% . N (for 2. N
is of the form z® + 22® + 6¢® if a is odd). Since 20=13%+ 11.1? it now fol-
lows, that 5 is the only number which is not of the form z* + 22% + 6¢* + 11y%

By means of a result, obtained by G. HumserT? it can be proved, that
there is only a finite number of integers, which can not be represented in the
form 2 + 119® + 22 + 222

However, I have not been able to solve Problem P for the forms

(5. 52) x® + 1192 + 22% + 38¢% 2+ 19y® + 22 + 38¢% 2P+ 19y + 22% + 22¢8%
The solution of problem P in the cases

Uay Mo, He, pa=0, 1, 1, 2 and a + d;=b, + ¢,=4 (mod 8);
0,1, 2, 3and b, + d,;=a + ¢,=4 (mod 8);
0,0,1,0ddand @ + b=¢, + d,=4 (mod 8)

can be studied in the same way, but differs in no point from that of (5. 51).
5. 6. Next we consider the forms (a, b, ¢,, d, odd)

(5. 61) ax®+ by® + 2(c,2® + d;t?), a + b+ 2¢, ¢, + d, + 2a 4 (mod 8).
Then, if
250, = ax® + by® + 2(c,2% + d,t?), E= 4, n, odd,
then also 2°~%n, can be represented in the same form. From this property the
results of the following table can be deduced. In the second column I have

written non-representable numbers, if the conditions of the first column are
satisfied.

' 8. RAMANUJAN, On the expression of a number in the form ax® + by® + ¢2® + d £, Proc.
Camb. Phil. Soc. 19 (1917), footnote on p. 14.
* Comptes Rendus, Paris, 170 (1920), 354.
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a>1;,b>1;¢>1;d,>1, 25(¢ even);
a=1;¢=+1,3, 5 d+1, 3, 5, 3. 2% (£ even);
a=1;¢=25; b=+1, 3. 2° (£ even);
a=1; ¢=25; b=1; d, +3, 3. 25 (& odd);
a=1; ¢ =3, 25 (£ odd);
a=1;¢=1;d,+=1,9;b=*1, 09, 17, 5. 25(§ even);

a=1;¢=1;d,=1,9; b+1,09, 17, 25, 7. 2° (£ even);

a=1;¢=1; b=1,9,17; d F 1,9, 17, 25, 7. 2° (§ odd).

We thus have eliminated all forms of the type (5. 61) with the exception
of the following 15 forms:

{a, b, ¢, dy=1{1, 1, 10, 10}, {1, 2, 2, 9},
{1, 2, 2,17}, {1, 2, 2, 25}, {1, 1, 2, 18},
1, 2, 9, 18}, {1, 2, 17, 18}, {1, 2, 18, 25},
L1 2 345, {1, 1, 2, 505, {1,209 34},
1, 2, 9, 50}, {1, 2, 17, 50};

{1, 1, 2, 2};

{I) 2, 17, 34}

- -

It can be proved by the method used by Ramanusan in his paper already
referred to, that the first 13 of these forms represent all positive integers.
However, I have not been able to solve Problem P for the form

(5. 61) x? + 29% + 172% + 3488
The solution of Problem P for the cases

Ua, Ub, Hey Ha=0, 1, 1, 2 and b, + ¢, + 2a=a + d, + 2b, =4 (mod 8);
0,1,2 3and b, + d,+ 2a=a +¢, + 2b,=4 (mod 8);
0,0, 10dd and a+ b+ 2¢,=¢, + d, + 2a=4 (mod 8)

differs in no point from that of (5. 61).

5. 7. The remaining forms to be considered are (a, b, ¢, d odd)
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(5. 71) ax® + by + c2® + di?, a=b=c=d (mod 4), a+ b+ ¢ + d=4 (mod 8),
and (a, b, ¢, d, odd)
(5. 72) aaf’+by’+ce’+4d1t2, a=b=c=d, (mod 4), a + b+ ¢ + d,=4 (mod 8).
I shall first consider the form (5. 71). Then if
25n, = ax® + by® + c2? + dt*, £E= 3, n, odd,

then also 2 2n, is representable in the same form. From this property the
results of the following table can be deduced. In the second column I have
written, as before, non representable numbers, if the conditions of the first
column are satisfied.

a>1;b>1;¢>1;d>1; 25 (& odd);
a=1;b>1;¢>1;d>1; 25 (£ odd);
a=1;b=1;¢*1,5;d=+1, s; 3. 25(£ odd);
a=1;b=1;¢=1;d=+1,9 17,25 7. 2°(§ even);
a=1;b=1;¢=35; d=+35; 3. 25(§ even).

We thus have eliminated all forms of the type (5. 71) with the exception
of the following forms:

2+ i+ +de (d=1, 9, 17, 25), 2 + y* + 522 + 52

The form z*+ y® + 22 + * represents all integers and it can easily be proved
that the others have a finite number of exceptions onmly.
Similarly, considering the case (5. 72), the forms

x*+ yt+ 2%+ di® (d= 36, 68, 100)
B+ yt+ 42+ det (d=09, 17, 25)
2+t + 52 + 2082

have a finite number of exceptions and the form z® + »® + 422 + 4% represents
all integers. The remaining forms of the type (5. 72) have an infinite number
of exceptions.
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5. 8 Final remarks.

5. 81. The preceding pages contain the solution of Problem P for all
forms ax® + by® + c2® + dt® with the exception of (5. 52) an (5. 61) and some
other forms, related to these.

5. 8&2. Tt has been stated by Waring', that ax® + by® + c2® + d¢* repre-
sents every integer exceeding an assignable one, if a, b, ¢ and d are relatively
prime. The preceding pages show that this statement is incorrect.

! Meditationes algebraicae, Cambridge, ed. 3, 1782, 349.



