
Ark. Mat., 33 (1995), 357-376 
�9 1995 by Institut Mittag-Leffier. All rights reserved 

Linear analysis of quadrature domains 

Mihai Putinar(1) 

1. I n t r o d u c t i o n  

A recent study of the L-problem of moments in two real variables [16] has 
revealed that its extremal solutions coincide with the characteristic functions of all 
bounded quadrature domains in the complex plane. The main technical tool in 
obtaining this result was the theory of linear bounded Hilbert space operators with 
rank-one self-commutator. The aim of the present paper is to isolate and present in 
more detail the relationship between quadrature domains and this class of operators 
naturally attached to them, without any explicit reference to the original moment 

problem. 
The identities which relate these two categories of objects are rather simple and 

constructive. They resemble very much some one variable formulae in the spectral 
theory of self-adjoint operators. Although this paper is not intended to be related 
to applied mathematics, we have the feeling, partially based on this comparison, 
that the basic formulae of this paper will be accessible in the future to a numerical 
approach, with benefits both for operators with rank-one self-commutator as well 

as for quadrature domains. 
First, without entering into technical details, a few defmitions and general 

remarks are in order. Let 12 be a bounded domain of the complex plane bounded 
by fmitely many piece-wise smooth boundaries. The domain ~ is said to be of 
quadrature for the class Ll(fl)  of all integrable analytic functions in i2, if there is a 

distribution u with finite support in fl which satisfies: 

(1) ~ f(z) dA(z)--u(f), f e Lla(~). 

Here and throughout this paper dA stands for the planar Lebesgue measure. 

(1) Paper supported by NSF Grant DMS-9201729 
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The simplest example of a quadrature domain is a disk D in C, in which case 
the distribution u is a multiple of the Dirac measure carried by the centre of D. 

A quadrature domain ~2 has in fact real algebraic boundary of a very special 
form, see [1], [10], [11]. A characteristic property of ~t and its boundary 0~ is the 
existence of a meromorphic function S in ~t, continuous up to ~ and satisfying: 

(2) S(z)=2, zCO~. 

This function is called the Schwarz function of the domain ~ and it encodes in a 
finite form the structure of ~2. As the name suggests, the meromorphic function 
which satisfies identity (2) is related to the Schwarz reflection in portions of the 
boundary of gt. The monograph [9] by Phillip Davis is devoted to various aspects 
of the theory of the Schwarz function. 

The last two decades have witnessed a renewed interest and constant progress 
in the theory of quadrature domains. Questions such as the constructions and 
parametrization of quadrature domains with prescribed distribution u, the alge- 
braic structure of the boundary or various functional analytic characterizations of 
quadrature domains have been succeshflly investigated by using essentially two cat- 
egories of methods: the theory of compact Riemann surfaces and variational meth- 
ods for partial differential equations. The recent monograph [19] by Harold Shapiro 
contains a general overview and ample bibliographical remarks of this interesting 
theory. 

We turn now to the second class of objects appearing in the present note. 
Approximately in the same period of time, the structure of Hilbert space operators 
with rank-one self-commutator was studied and understood. Let H be a separable, 
complex infinite dimensional Hilbert space and let T be a bounded linear operator 
acting on H. We will be interested in the commutation relation: 

(3) IT*, T] = ~ @~, 

where by definition the rank-one self-adjoint operator ~| acts on a vector ~EH 
as  f o l l o w s  

Assuming that the operator T is pure, that is it has no normal direct summand, 
the unitary equivalence class of T is parametrized by a "spectral parameter" which 
is a function g: C--+ [0, 1] with compact support, called the principal function of T. 
A possible way of relating the operator T to its principal function g is the following 
remarkable trace formula: 

(4) 1 /c(~pOq_Op~q)g dA, Try(T, T*), q(T, T*)] = 
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where p, q are polynomials in two variables, O=O/Oz and 0=0/0~.. We put by 
convention in a polynomial r(T, T*) all powers of T* to the right of the powers 
of T. In fact formula (4) is valid for an ordered functional calculus with smooth 
functions in T and T*. 

An equivalent form of the trace formula (4) is the following expression for the 
standard multiplicative commutator resolvent of T: 

-1  

Izl, Iwl > IITll. 

Note that the above determinant is not equal to one, as it may appear to be, 
because in the infinite dimensional setting the factors T-z ,  etc. do not belong to 
the determinant class, and hence de t (T-z)  does not exist. 

One of the most important features of this spectral parameter is its freeness. 
More precisely, there is a bijection between the unitary equivalence classes of oper- 
ators with rank-one self-commutator and all elements gELlcomp(C), 0_<g<l, a.e. 

The principal function has appeared for the first time in a landmark paper by 
Pincus [14]; the trace formula (4) was obtained thanks to the independent efforts 
of Helton-Howe [12] and Carey-Pincus [4]. Further details on the theory of the 
principal function can be found in the monographs [5], [13], [20]. 

Let g: C---~ [0, 1] be a measurable function with compact support and let T be 
a Hilbert space operator with rank-one self-commutator (3) and principal function 
equal almost everywhere to g. It was Kevin Clancey who, in a series of papers [6], 
[7], [8], has investigated the properties of the exponential kernel which appears in 
formula (5) and its relevance for the spectral theory of the operator T. To simplify 
notation we denote: 

If the integral is infinite for certain values z=w we take the exponential to be zero 
by definition. 

One remarks that, for a fixed zEC, the equation (T*-~)x=~ has a unique 
solution of minimal norm. We denote by x=(T*-2)-l~ this solution. An impor- 
tant result of [6] asserts that the function Eg is separately continuous and can be 
expressed everywhere by the formula: 

(7) Eg(z , w) ---- 1 -  ((T* _~)-1{,  (T* __ ~ ) - - 1 r  

The relation between quadrature domains and the above operators appears 
in [16] in the following form. The function Eg(z,w) is rational at infinity with 
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a denominator of the form P(z)P(w), where P is a polynomial, if and only if 
the function g coincides almost everywhere with the characteristic function of a 
quadrature domain. Moreover, this happens if and only if the linear span K of the 
vectors T*k~ (k �9  is finite dimensional. 

Thus we have three objects in bijective correspondence: the quadrature domain 
~, the operator T with the preceding finiteness condition, and the kernel Eg with 
the rationality condition described before. The investigation of some constructive 
relations among them forms the body of this paper. Next we enumerate a few of 
these relations. 

For instance, ~ is the spectrum of T and 0f~ is the essential spectrum of T 
(the Fredholm index inside fl being -1). The operator T* can be realized as the 
multiplication with the variable 2 on a Sobolev space of first order, with reproducing 
kernel Eg. On the other hand, the defining equation of ~ can be written as: 

f~ - {z �9 C ; II(T* I K-2)- I~II  > 1}. 

The spectrum of the finite dimensional operator (T*IK)* coincides up to mul- 
tiplicities with the support of the quadrature distribution u (appearing in (1)). The 
operator T and a fortiori the domain ft is determined up to unitary equivalence by 
the finite dimensional matrix (T* IK,~), while the distribution u is determined by 
the rational function ((T* I K-2) -1~ ,  ~). 

As a matter of fact, the matricial structure of T in terms of the finite di- 
mensional data (T* I K, ~) is described in Section 4 of this paper. As a corollary 
we obtain a characterization of all n x ( n + l )  complex matrices which appear as 
(T* I K, ~) above and hence we have, at least theoretically, a "moduli space" of all 
quadrature domains of order n=dim(K). 

Let us finally mention a formula which expresses the Schwarz function S of the 
domain f~ in terms of some generalized resolvents of the operator T*: 

S(z)=2+(~,(T*-2)-I~-(T *1K-2)-1~), z e f l .  

Although the preceding relations seem quite natural and not accidental, at this 
moment only a very little part of the known results about quadrature domains can 
be explained in this novel framework. We are convinced that some future work will 
diminish this gap. 

It is also interesting to remark a recent work of Bell [2] which computes ex- 
plicitly, in simple terms, the Bergman and Szeg6 kernels for a part of the above 
mentioned quadrature domains. From this perspective there is a strong similarity 
between the properties of the Bergman, Szeg6 and the exponential kernel considered 
below. 
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Due to the in_homogeneous background necessary in the present paper, the 
preliminary part (included in Section 2) is expository. Section 3 deals with the 
proofs of the relations between quadrature domains and their associated Hilbert 
space operators, while Section 4 is devoted to a canonical matricial decomposition 
of these operators. 

Acknowledgement. The author is indebted to the referee for his contagious 
enthusiasm and for numerous observations which have led to a considerable im- 
provement of the presentation of the paper. 

2. Prel iminaries  

The technical aspects discussed but not proved in this section can be found in 
the paper [10] of Gustafsson and in the monograph [13]. 

2.1. Operators  w i t h  rank-one  se l f - commutator  

Let H be a separable, complex, infinite dimensional Hilbert space and let TE 
L(H) be a linear bounded operator acting on H. The commutation relation (3) 
(or more generally [T*, T] >_0, in which case T is called hyponormal) has strong and 
rather unexpected consequences. 

Throughout this section we assume that the operator T is pure, that is H is 
generated by the vectors TkT*Z~, k,/EN. This is equivalent to saying that T has 
not non-trivial normal direct summands. If the commutation relation (3) is f~llfined, 
then some deep inequalitites originating in the works of T. Kato and C. R. Putnam 
show that the self-adjoint operators Re T and Im T (the real and respectively imagi- 
nary part of T) have spectral measures which are absolutely continuous with respect 
to the linear Lebesgue measure. Moreover, in our case the spectral multiplicities of 
both self-adjoint operators are equal to one. 

Thus either Re T or Im T can be diagonalized and represented as the multipli- 
cation with the variable x E R  on L2(q, dx), where a is a compact subset of the real 
axis. Suppose that we diagonalize Re T. A simple argument shows that in this rep- 
resentation the other self-adjoint operator, Im T, is a combination of multiplications 
with essentially bounded functions and the Hilbert transform. This (Cartesian) sin- 
gular integral model for T led Pincus to the discovery of the principal function, as 
a phase shift (in the sense of M. G. Krein) of the parameters in the integral repre- 
sentation of Im T. The fact that the principal function has several invariance and 
naturality properties and it satisfies the trace formula (4) is remarkable, non-trivial 
and was proved much later. One of the important trends of the principal function 
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lies in the fact that it is a free variable in the parametrization of all pure operators 
T which satisfy the commutation relation (3). See for references [4], [5], [12], [13], 
[14], [20]. 

Suppose, as before that the pure hyponormal operator T has rank one self- 
commutator IT*, T] = f |  and fix a point zEC. Then the inequality 

(8) (T*-2)(T-z) > [T*-2,T-z] =~| 

shows that the vector f belongs to the range of the operator T* -2 .  Let ( T * - 2 ) - 1 f  
denote the unique vector xEH which satisfies the conditions: 

(9) (T*-2)x  = f, x_L Ker(T*-2).  

The inequality (8) also shows that 

< 1, z e C .  

Moreover, it turns out that the function z~--r(T* _2)--1~ is weakly continuous on the 
whole complex plane, see [6] or [13, Chapter XI]. 

Simple Hilbert space arguments prove that the germ at infinity of the real 
analytic function z~-* II (T*-2)-1~]6 is a complete unitary invariant for the original 
operator T. This is equivalent to the fact that the infinite "covariance matrix" 

(10) NT(k, l) = <T*kf, T'if>, k, l E N, 

determines the unitary equivalence class of T. 
The obvious positivity condition, plus a system of non-linear recurrent algebraic 

relations, characterize the matrices NT, see [13, Proposition 4.1]. 
The relation between these two different unitary invariants of T, the principal 

function g and the covarianve matrix NT, is established by Clancey's remarkable 
formula: 

(ii) l_]](T._2)_l~ll2=exp(~l /c g(~)dA(~) ) zEC. 
( r  ' 

This is a non-trivial extension of identity (5) across the spectrum of T. For a proof, 
see [6], [8] or [13, Chapter XI]. 

We mention without giving precise details that the properties of the general- 
ized resolvent (T*-2)-1~ govern the spectral behaviour of T. See for details [13, 
Chapter XI]. 
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2.2. The  exponent ia l  kernel  

Let g: C--* [0, 1] be a measurable function with compact support. The kernel 
Eg(z , w) defined by relation (6) represents the polarized version of the kernel ap- 
pearing in (11). As proved in [13, Proposition XI.2.4], the following conditions 
characterize the kernel Eg (z, w): 

(a) Eg(z, w) is separately continuous in z, wEC; 

(b) limlzl+l~l_.oo lEg(z, w)[ =0; 
(c) 1-Eg(z,w) is non-negative definite on C2; 
(d) the equation 

(~ -  2)OzE 9 (z, w) = g(z ) (1-  Eg (z, w)) 

holds in the sense of distributions. 
According to (11), along the diagonal z=w the kernel Eg(z,z) satisfies the 

inequalities: 
O<Eg(z,z)<l, z~C. 

Moreover, for a point z in the spectrum of T but not in its essential spectrum, we 
have Eg(z, z)=O, while Eg(z, z)>0 for z in the resolvent set of T (which coincides 
with the closed support of g). 

Although we do not need the following two-variable singular integral model for 
T derived from the kernel Eg(z, w), we mention it for completeness. Let W be the 
Hilbert space Hausdorif completion of the space of smooth test functions :D(C) with 
respect to the hermitian seminorm: 

[[r = / c  2 Eg(z,w)Or162 dA(z) dA(w), r E T)(C). 

Then the following formulae realize the operator T on W: 

i fo cA(c) 

(T*r = 2r 

Above CED(C) and then the expressions are extended to W by continuity. 
Thus the cycle T~-.gHEgHT is complete. 

2.3. Quadrature domains 

Let f~ be a bounded quadrature domain which satisfies the quadrature identity 
(1) with a distribution u with finite support, say {al, . . .  , am} in ~. Thus we can 
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express u as follows: 

m h i - - 1  

(12) u ( f )  = ~ ~ cijf(J)(ai),  f E L~(f~). 
i = l  j=O 

Assuming that  the highest order coefficients c4,n~-1 are non-zero for i=1,  ... , m, we 
define the order n of the quadrature domain f~ by: 

n = n l -t- .. . -f nm . 

It is worth remarking that  in the above representation, u is regarded as an analytic 
functional with finite support rather than a distribution. With this caution it is 
obvious that  u is unique. 

As we have mentioned in the introduction, the boundary of the quadrature 
domain f/ is real algebraic. Next we recall from Gustafsson [10] a procedure of 
finding the defining equation of Of/. Let X be the Schottky double of f~ (that is 
f~ glued together with a reversed copy of it). By taking into account the global 
reflection formula (2), one extends meromorphically to X the identity function on 
f~ to a function f which has the poles in the reversed copy of f~ in X. The mirror 
reflection of f is another meromorphic function h which is algebraically dependent 
of f .  More precisely, there exists a polynomial P(z ,  w) of degree exactly equal to 
the order of the quadrature domain f~ which satisfies P ( f ,  h)=0.  Since for a point 
zEOf~ we have f ( z ) = z  and h ( z ) = ~ = S ( z ) ,  the polynomial P is self-conjugate (that 
is P(z ,  w )= P ( 5 ,  N)) and the identity 

P ( z , S ( z ) ) = O  

holds for z E ~. In addition one proves that  P is irreducible and 

Oa = {z e C ; P(z,  2) = 0}\V, 

where V is a finite set. See for details [10] and [11]. 

After a scalar normalization the defining polynomial P is unique. According 
to [10, Theorem 10], the coefficients of zkw ~, 0 < k < n ,  l = n - l , n ,  determine the 
analytic functional u. 

The polynomial P appears also in a classification due to Gustafsson of the 
possible singular points in the boundary of f~ , see [11]. 
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3. The  basic formulae 

This section contains the relations, expressed in simple formulae, among quad- 
rature domains and the corresponding hyponormal operators. 

Let f~ be a bounded quadrature domain with real algebraic boundary and with 
the analytic functional u defined by (12). Let n denote the order of f~ and let 
P(z, w) be the self-conjugate polynomial of degree n in each variable, which defines 
the boundary of 12. We normalize by convention P such that the coefficient of znw '~ 
is equal to one. Let S be the Schwarz function of f~ (characterized by relation (2)). 

Let T be the pure hyponormal operator with rank-one self-commutator, i.e. 
IT*, T]----~| and with principal function g equal to the characteristic function of 
the quadrature domain 12. With these assumptions we know from [16, Proposi- 
tions 2.1 and 4.2], that the space: 

oo  

K =  V T*'~ ~ 
m ~ 0  

is finite dimensional. Obviously K is invariant to T*. We denote: 

U = (T* I K)*, 

and we regard U as a linear endomorphism of K. 
Since the spectrum of T coincides with ~, Clancey's formula (11) can be read 

outside ~ as: 

(13) 1 - e x p (  - 1  f dA(~) ~=II(U*-2)-I{I[2, z E C \ ~ .  
\ Ir  

Let p denote the monic minimal polynomial of U. Relation (13) shows that the 
spectrum of U and hence the zeroes ofp lie in ~. Putting together these observations 
we obtain the following result. 

Propos i t ion  3.1. With the preceding notation we have: 
(a) p(z)=l-I,21 (z-a,)"'; 
(b) P(z, ~) =p(z)p(w) - (p(w) (U* - ~ ) -  1~, p(z) (U* - 2)-1~); 
(c) u(f)=r(f(U)~,~), fELla(~). 

Proof. First we notice that, because p is the minimal polynomial of U, the 
vector valued function 

p(z)(U- z)-l{  = (p(z)-p(U) )(U- z)-l{  
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is polynomial in z. Second, the functional calculus f(U) in formula (c) is by con- 
vention the natural one, for instance the extension of the polynomial functional 
calculus given by the Jordan form of U. 

We start with formula (c), which is a consequence of the trace identity (4). Let 
h be an analytic function defined in a neighbourhood of ~ and let h*(z)=h(~). By 
virtue of the trace formula (4) we obtain: 

u(h) = ./o h* (~) dA(z) = ~r Tr[T*, Th* (T*)] 

= n Tr([T*, T]h* (T*)) = r(h* (T*)~, ~) 

Since the space of analytic functions in neighbourhoods of ~ is dense in Lla (~t) 
because of the regularity of 0~, formula (c) is proved. 

In particular we infer from (c) that  the zeroes of the minimal polynomial p of 
U are contained, including their multiplicities, in the support of u. On the other 
hand, formula (13) shows that  the function 

[p(z)[2_Hp(z)(U. 2)_l~[[2=]p(z)[2 exp(_~l /~ [~-z[2/dA(~)~ 

is polynomial and it vanishes when z approaches 0fl from outside ft. By remarking 
that  p(z)(U*-2,)-l~ has degree at most n - 1  in 5, the uniqueness of the defining 
polynomial P implies identity (b). 

Finally, let us remark that  deg(p)=dim(K) because the vector ~ is U*-cyclic. 
On the other hand n=deg(P)=deg(p), thus the multiplicity of each zero z=ai of p 
is necessarily equal to ni, i =  1 ,... , m. 

This finishes the proof of Proposition 3.1. 

A direct consequence of Proposition 3.1 is the following description of the do- 
main ~ in terms of the matrix U and the distinguished vector ~. 

C o r o l l a r y  3.2. With the above notation we have: 

>1}, 
{z E 1}, 

where "~" means equal up to a finite set. 

So far we have established the relations between ~2, n, P and the linear data 
U, ~. Next we represent the Schwaxz function S in terms of T and U. 



Linear analysis of quadrature domains 367 

Proposition 3.3. Let 12 be a bounded quadrature domain and let T, U be its 
associated linear operators. Then: 

S ( z )=2-b (~ , ( (T* -2 ) - l~ - (V* -~ ) - l~ ) ) ,  z e ~ .  

Proof. By taking residues at infinity in the variable 2, Clancey's formula (11) 
yields: 

1 dA(r ((, (T*-  ~,)--1~) = ./Q ( - z '  z~C. 

Consequently the Cauchy-Pompeiu formula can be written as: 

1 fo ( d ( = {  2+(~ ' (T*-2)-1~) '  
2~ri n ( - z  (~,(T*-2)-1~), 

On the other hand, 

<~, (T*- 2)-1~> = <~, (U*-2)-1~), 

z E ~ ,  

zeC\f i .  

~ec \ f i ,  

and the right hand side member of this identity extends meromorphically inside fL 
Thus the function 

2+ (~, (T* - 2)-1~) - (~, (U* - 2)-1~) 

is meromorphic in f~, continuous on ~ and it coincides with 2 on 012. Therefore 
this is necessarily the Schwarz function of the quadrature domain fL 

The proof of Proposition 3.3 also identifies the polar parts of the Schwarz 
function S and the compressed resolvent - ( (U*-2) -1~ ,  ~). 

Indeed, let zEf~ and consider the operator T - z .  Since T is pure it follows that 
T - z  is one to one, with closed range of codimension one in H. Thus the self-adjoint 
operator (T* - 2) ( T -  z) is invertible and 

(14) (T*-2)-1~ = ( T - z ) [ ( T * -  5) ( T -  z)]-l~, 

because both sides of (14) satisfy the equation (T*-2)x=~ and they are both or- 
thogonal to the kernel of T*-2 .  Moreover, we know that [[ (T*-2)-1~[[ = 1, whence: 

1 = II(T-z)[(T*-2)(T-z)]-I~[[ 2 

= ( (T* -2 ) (T - z ) [ (T* -2 ) (T - z ) ] - I~ ,  [ (T*-2) (T-z) ] - I~)  

: <~, [ (T*-2) (T-z ) ] - I ( ) .  

These equalities imply the formula: 

5+(( ,  (T*-5)-1()  -- ((, [(T*- 5 ) (T-  z)]-l().  

The last term in the preceding equation is obviously real analytic in Re(z), Im(z). 
Thus we can state the following result. 
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C o r o l l a r y  3.4. The Schwarz function S of the quadrature domain fl satisfies 

(15) S(z)  = - ( ( V - z ) - l ~ ,  ~> + H ( z ) ,  

where H is an analytic function in ft. 

Proof. It remains to remark that,  in view of Proposition 3.3, 

H(z) = 2+<~, (T* -2 ) -1~  r 

is an analytic function in f~ \{a i ; i= l ,  ... , m}. The isolated singularities a~ are re- 
movable because the function H is real analytic everywhere in s 

Thus for functions fEA(f~) which are analytic in f~ and continuous on ~ we 
have a second proof of assertion (c) in Proposition 3.1: 

f~ 1 fa f(~)(d~ u(f) = f(~) dA(~) = ~ 

1 
= ~ fo f(~)S(~ ) d~= < 1  fo~ f (~ ) (~ -u ) - l ' d~ '~ )=  7r(f(U), , , ) .  

Summing up, we have also proved the following fact. 

C o r o l l a r y  3.5. Let ~ be a bounded quadrature domain with the associated 
linear data U and ~. Then there is a bijection between the analytic functional u and 
the rational function ((U-z)-I~, ~). 

More precisely we have the following relation: 

(16) u f  1 ( )=~fo f f (~ ) ( (U-z ) - l~ ,~ )d~ ,  yEA(f]). 

In addition we know from the proofs of Propositions 3.1 and 3.3 that  there is 
a unique irreducible representation 

q(z) 
- p(z)' 

where p is given by Proposition 3.1.(a) and q is a polynomial of degree n - 1  deter- 
mined by the identity (16). 

Finally, we point out two algebraic identities which can be derived from the 
previous considerations. 
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Propos i t ion  3.6. Let f~ be a bounded quadrature domain of order n with 
Schwarz function S(z) with denominator p(z), and defining polynomial P(z, w). 
Then there are analytic functions al(z), ... ,an-l(z)  defined in a neighbourhood of 

such that the identity 

P(z, w) = (w-S ( z )  )p(z)(w "~-1 +al (z)w'~-2 +... +a=_l (Z) ), 

holds for zE~  and wEC. 

Proof. According to Proposition 3.1.(b), the identity 

1_<(U._6)_1~ ' (U,_2)_1~) = P(z, 6) 
p(z)p(w) 

is valid everywhere, in the sense of meromorphic functions. In particular, for a point 
z in the boundary of 12, we have: 

P(z,6) i[(V. ~)_1~[[2 ((U. 6)_1L (U. ~)_1~), 
p(z)p(w) 

and by the resolvent equation we can write 

( V * - ~ ) - l ~ -  (V * --6)--1~ = ( ~ - 6 ) ( U * - ~ ) - I  (V*-~,)-l~. 

Therefore, by substituting 2=S(z) and multiplying both sides by p(z)p(w) we obtain 
an identity of the form: 

P(z, 6) = (S ( z ) -6 )m(z ,  6), 

where m(z, ff~) is a polynomial in ~ of degree at most n - 1  and with coefficients 
meromorphic functions in z, defined in a neighbourhood of ~, namely in the region 
where the Schwarz function is defined. By analytic continuation, the identity 

i 

P(z, 6) 
re(z, ~) - S ( z ) - 6  

holds for all z E~2 and wE C. 
The preceding resolvent equation shows that the only possible poles of the 

meromorphic function m in 12 are at the points AE~ with the property that S(A) 
is in the spectrum of U*. But it is clear from the definition of the function m 
that these singularities are removable. On the other hand, since S(z) has a pole at 
every zero of the polynomial p, with exactly the same multiplicity, the coefficients 
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of the polynomial in ~, m(z, ~) are each divisible by p. Finally, the coefficient of 
~ in P(z, 0) is exactly p(z), and, after changing ~ into w, this finishes the proof 
of Proposition 3.6. 

A similar, but less constructive conclusion can be derived from the compact 
R~emann surface approach to quadrature domains. The implications of an identity 
as above in the statement of Proposition 3.6 are amply discussed in [10] and [11]. 

Exactly as in the proof of Proposition 3.6, the analytic continuation of the 
identity [[ (V*-~)-1~[[ =1, zEO~, gives the following result. 

L e m m a  3.7. With the above notations, the identity 

( u *  _ = 1,  

holds for every point z E ~. 

In fact the identity in Lemma 3.7 extends in the exterior of the domain ~, as far 
as the Schwarz function extends. Let AEC\~ be such a point. According to Corol- 
lary 3.2 we have II(U*-~)-I~II<I and hence, by Lemma 3.7, II(U*-S(z))-I~II>I, 
that is S(z)'Efl, and so on. We shall resume this type of analysis elsewhere. 

4. Linear data  assoc iated  to  quadrature  domains  

Let TEL(H) be a pure hyponormal operator with rank-one self-commutator, 
[T*, T]=~| and satisfying the condition dim(K)<c~, where K=Vk~=0 T*k~. We 
know from [16] and the preceding sections that the set of unitary classes of these 
operators T is in bijective correspondence with the bounded planar quadrature 
domains. Moreover, we know that the finite matrix (U,~), where U=(T*IK)* , 
characterizes up to unitary equivalence the operator T. The purpose of this last 
section is to describe a block-matricial form for T which contains only U and simple 
operations on U, and secondly to characterize the matrices (U, ~) which can arise 
in this construction. 

We begin with a few elementary computations which will gradually lead to the 
matricial form of T. Let o) 
be the matrix of T with respect to the orthogonal sum decomposition H = K @ K  • 
Then 

w ' v - r e *  [w*,w]-vv* = o 
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Thus the following relations hold: 

(17) IV*, U] + YY*  = ~ | 

(18) W * V = V V * ,  

(19) [W*, W] = YY*.  

According to (18), the operator W* leaves invariant the range of V. Let us 
denote K I = V K c K  • It is clear that dim(K1)<dim(K). 

Now corresponding to the decomposition K• @ (K • G K1) the operator W 
has the form: 

gl W1 " 
Exactly as before, by taking the self-commutator of W we find: 

(20) [U; , U1] + V? V1 = VV*, 

(21) W~V1 = V1U~, 

(22) [wL wll  = yI y; .  

Notice also that T ( K )  C K@K1. 
Thus the whole process can be repeated and we end with a block-matrix 

(23) 

! 0 0 0 " /  
U1 0 0 
vl u2 0 
0 v2 u3 

: : : : 

which corresponds to a subspace L of H given by: 

L = K @ K I @ K 2 @  .... 

We remark the inequalities: 

dim(K) _> dim(K1) >_ dim(K2) _> .... 

The elements of the above infinite matrix satisfy the relations: 

* Y , *  * (24) [U~,Uk]=Vk-1 k_l--V~ Vk, k>_2, 

(25) V~Uk+I = Uk V~, k >_ 2. 

We also remark that 

(26) T k K  C K@KI~. . .@Kk,  k > 1. 
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L e m m a  4.1. With the above notation L=H (hence the matrix (23) represents 
the operator T) and dim(Kk)=dim(g) for all k>_l. 

Proof. Since the operator T is pure hyponormal, the space H is generated by 
the vectors TkT*l~, k, lEN. Thus inclusion (26) proves that L=H. 

Suppose that dim(Kk)<dim(K) for some integer k>0. Then the matrix 

uk o o ...) 
Vk Uk+~ 0 
0 Vk+l Uk+2 

represents an operator S which is a finite-rank perturbation of T. Moreover, re- 
lations (24) and (25) prove that the self-commntator of S is diagonal and has the 
form 

[S*, S] = diag(Vk_lV;_l; 0; 0; ...). 

Therefore the principal functions of T and S coincide (see [13, Chapter X]) and 
consequently the identity 

Tr[T* ,  T(T* _ ~ ) - 1 ]  = T[ [S* ,  S(S* _ ~,)-1] 

holds for large values of Izl. But, 

%[s*, s(s* = S](S*- 
= 

= T r ( Y • _ l ( S * I K k - - 2 ) - l y k _ l ) .  

Hence Tr[S*, S(S*-2)  -1] is a rational function with at most dim(Kk) poles, 
counting them together with their multiplicities. On the other hand Corollary 3.4 
shows that the function 

Tr[T*, T(T* -5 )  -1] : <(T* -2 ) -1 ( ,  () 

has exactly n=dim(K) poles. 
In conclusion dim(Kk)=dim(K) for every k>0. 

Starting with Lemma 4.1, the structure of the matrix (23) can be further 
simplified. To simplify notation we put Vo=V. Let us denote by Vk=YkAk the 
polar decomposition of the operator Vk: Kk ~ Kk+ 1, where Ak E L (Kk) is self-adjoint 
and Yk:Kk---+Kk+l is an isometry, k>0. Because dim(Kk+l)=dim(Kk) and the 
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operator Vk is onto by the definition of the space Kk+l, the operator Ak turns out 
to be invertible and Yk is unitary. 

We consider the following block-diagonal unitary matrix: 

Y = I @ Yo @ Y~ Yo @ Y2 Y~ Yo @ . . . 

which identifies the space 12(N,K)=K@K@K@...  with H=K@KI@K2~) .... A 
simple computation shows that the operator Y - 1 T Y  has a similar matrix decom- 
position to (23) and the sub-diagonal entries Vk are replaced by their self-adjoint 
moduli Ak, k>0. 

S,,mming up we have proved the following result. 

T h e o r e m  4.2. Let T be a pure hyponormal operator with rank-one self-com- 

K--Vk=oT ~. mutator [T*,T]=~| and satisfying dim(K)<c~ where _ oo .k 
Then T is unitariIy equivalent to the following block-matrix acting on 12(N, K): 

(27) liooo I Ao U1 0 0 
M =  AI U2 0 . 

0 A2 U3 

The entries of M satisfy Ak >O, k>O, and they are recurrently defined by: 

(28) 

(29) 

U0 = (T* IK)*, A02 = ~@~-[U~, U0], 

U* Uk+a=Ak-lUkAk, Ak+12=Ak2-[ k+l, Uk+l], k>0 .  

At this point it is evident that, starting with an n • (n+ l )  matrix (U0, ~), where 
UoEL(K) and ~EK, the formulae (28) and (29) generate a hyponormal operator 
as in Theorem 4.2 if and only if, at every step of the inductive construction the 
condition: 

(30) Ak_12-[U~,Uk]>O, A- I=~|  k>_O 

is satisfied and moreover, 

(31) sup(llUkll+llAkll ) < oo. 
kEN 

The latter condition is obviously equivalent to the boundedness of the matrix (27). 
Although these conditions seem to be far from being practical, they desribe at 

least theoretically the "moduli space" of all quadrature domains. 
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Corol lary  4.3. There exists a bijective correspondence between the bounded 
quadrature domains of order n and the unitary equivalence classes of pairs (Uo, ~), 
UoEL(Cn), ~EC ~, which satisfy conditions (30), (31) defined by the recurrent re- 
lations (28), (29). 

In the preceding statement, a unitary equivalent pair to (U0, 4) has by definition 
the form (YUoY -1, Y~), with Y a unitary transformation of C n. 

To count parameters in the orbit space of matrices described by Corollary 4.3 
is at this stage near to impossible. However we do not exclude some possible further 
simplifications and a better picture of this orbit space. Next we restrict ourselves 
to derive a few simple algebraic restrictions imposed by conditions (30) and (31) on 
the matrix (U0, ~). 

Corol la ry  4.4. Let (Uo,~) be an n x ( n + l )  matrix, n>2, as in Corollary 4.3. 
Then: 

(a) the vector ~ is U~-cyclic; 
(b) the self-adjoint matrix [U~, U0] is invertible and has signature + - -  ... - ;  
(c) Uo cannot be decomposed into a non-trivial orthogonal sum of linear trans- 

formations. 

Proof. Condition (a) follows from the identification U~)=T* IK and the defini- 
tion of the space K. 

Let [U~, U0]=~+-c~_ be an orthogonal decomposition corresponding to K =  
K+@K_, where a+[K+_>0 and a_ [K_>0. By assumption, ~| U0], whence 
~ |  Therefore, for a non-zero vector xEK+ we obtain 

(32) (c%x, x) < I<x, ~> 12. 

Thus rank(~+)<l.  If c~+--0, then [U~, U0]<0. By a well known result (see for 
instance [13, Corollary III.1.6]) it follows that the operator U0 is normal. But in 
that case the difference ~| U0] cannot be invertible. Therefore rank(a+)--1 
and dim(K+)=l ,  otherwise the inequality (32) would be violated by a non-zero 
vector xEK+ which is orthogonal to ~. 

Finally, in order to prove assertion (c), let us suppose that Uo=P+Q. Then 
according to (b), at least one of the self-adjoint commutators [P*, P], [Q*, Q] is 
negative definite. By the same argument ([13, Corollary III.1.6]) this commutator 
turns out to be identically equal to zero. But this contradicts the invertibility of 
[U~, U0] and the proof of Corollary 4.4 is complete. 
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