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Fredholm property of partial differential 
operators of irregular singular type 

Masatake Miyake and Masafumi Yoshino(1) 

1. In t roduc t ion  

In 1974 Kashiwara-Kawai-Sj5strand showed the sufficient condition for the 
convergence of all formal power series solutions of the following linear partial dif- 
ferential equations of regular singular type 

(1.1) s D)u(x) - E a~eDe(xau(x)) = f(x) ,  
[a[=l/3[gm 

where m is a positive integer and a ~ ' s  are complex constants. Here we use the 
standard notations of multi-indices, D~=(O/Oxl) ~ ... (O/Oxn) ~ ,  ]al=al +...+an 
and x ~ =x~ ~ ... x~". They proved the following result. 

T h e o r e m  1.1. (cf. [4]) Suppose that the following condition 

(1.2) Z a~z~ ~t0, 
i~[=l~[=m 

is satisfied for any zEC'~\{0}, where za=z~ 1 ...z~" and 2~=5~ 1 ...2~-. Then, 
for any f (x)  analytic at the origin all formal power series solutions u(x) of the 
equation (1.1) converge in some neighborhood of the origin. 

They proved results for somewhat more general operators than (1.1) admitting 
perturbations. 

Inspired from this theorem we shall study in this paper the Fredholm property 
of regular and irregular singular type operators including (1.1) in (formal) Gevrey 
spaces in a neighborhood of the origin of C 2. We introduce a Toeplitz symbol in 

(1) Supported by Chuo University Special Research Program (1994) 



324 Masatake Miyake and Masafumi Yoshino 

a natural way in connection with a filtration with respect to the Gevrey order. 
Toeplitz symbols play an important role in describing interactions of multiplica- 
tions by (rational) polynomials and differentiations. We reduce our problem to the 
study of the Fredholm property of Toeplitz operators. Then we construct regular- 
izers for these Toeplitz operators by use of a Riemann-Hilbert factorization condi- 
tion for Toeplitz symbols associated with the differential operators (cf. (2.8), (2.9), 
Lemma 3.5 and Section 5). Moreover, we can show that under these conditions the 
index of these operators is equal to zero (cf. Theorem 4.1). 

This paper is organized as follows. In Section 2 we state our main result 
and its applications. In Section 3 we prepare lemmas which are necessary in the 
proof of our main theorem. In Section 4 we reduce our problem to the Fredholm 
property of Toeplitz operators on the two dimensional torus T 2. The construction 
of regularizers is done in Section 5. 

2. S t a t e m e n t  of  th e  resul ts  

Let N be the set of non-negative integers and let C be the set of complex 
numbers. Let C[[x]] be the set of all formal power series 

c[[x]]:= {~(x);~(x)= ~ u~, ~ec}. 
~EN 2 

Let wj>0 ( j= l , 2 )  and s>0. We set w=(wl,w2). If we denote by 

0({1~11 < wl} • {Ix~l <ws 

the set of holomorphic functions on a domain {Ix 11 < Wl } X {IX2[ <~ ?/32 } C C 2 we define 
the class G s by 
(2.1) 

{ x~ x~ } 
G~ : u(x ) = ~ un ~ .  e C[[x]] ; ~ un ~ e O({ Ix11 < ~1 } x { t~21 < w2 }) 

The space G~ can be regarded as a Frdchet space by the following isomorphism of 
Frdchet spaces 

(2.2) C[[x]] [) gs Boreltransf b 0({1~11 < Wl} X { tx2t< w2}), 

where the Borel transformation is defined by 

Xr/ Xr/ 
(2.3) g~ ~ u,7~ ~, u,71--~.~eO({Ixll<w,}x{Ix21<w2}). 

~?EN 2 ,TEN 2 
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We note that  the space Gs~ coincides with a formal Gevrey space, the class of locally 
analytic functions and a class of entire analytic functions with finite order if s >  1, 
s=l and s < l ,  respectively (cf. Lemma 3.1 which follows). 

We denote by D11 integration with respect to xl, D11u(x):=fo 1 u(yl, x2) dyl. 
r)f~-- nfh r)~2 The operator D 2  t is defined similarly. For/3--(f~l, f~2)EZ 2, we set ~ --'-'1 ~2 , 

where if ~ j < 0  we understand that  D ~  =(D71)  -~j . 
Let P-P(x,  D~) be an integro-differential operator of finite order with holo- 

morphic coefficients in a neighborhood of the origin of C 2, 

(2.4) P(x,D~) = E D~af~(x)' 
f lEZ 2 

where a~(x)'s are analytic functions of x in some neighborhood of the origin, and 
the summation with respect to fi~ is a finite sum. 

By the Taylor expansion of a/3(x), we have 

a~(x) = ~ a~x "r 
7 

with a ~  being complex constants. By substituting az(x) in (2.4) we have the 
expression 

(2.5) Fix'D)= E a~f~D~x'r" 
"TEN2,f~EZ 2 

For D~x ~. we define the s-Gevrey order ordsD~x "Y of Df~x ~. by 

(2.6) ord8 DZx'Y.:= I/~l + ( 1 -  s)(171 -1/31). 

Then the s-Gevrey order of P in (2.5) is defined by 

ord~ P := sup{[/~ I + (1-s)( l~l-I /~l)  ; a ~  # 0}. 

Here and in what follows we always assume that  the s-Gevrey order of P(x, D) is 
finite. This implies that  P has polynomial coefficients in case s < 1. In case s :  1 we 
further assume that for every j3 in (2.4) such that I/~l=ordl P ,  the function a~(x) 
is a polynomial in x. 

We shall define the Toeplitz symbol associated with P(x, D) by 

(2.7) n~,w(z; ~) := E a ~ z " - ~ w ~ - ~ '  ~ e R 2 "  
[fl[T(1--s)([a[-If~[)=ord~P 

We define the torus T u by T2={(z~,z2);zj=d ej, 0<0j_<2r,  j - -1 ,2} .  Then we 
have the following result. 
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T h e o r e m  2.1. The operator P: G~--+G~ is a Fredholm operator of index zero 
in the sense that the mapping has finite dimensional kernel and cokernel of the same 
dimension if the following conditions are satisfied: 

(2.8) Ls,~(z,~)~O V(z~,z2) e T  2, V~ER 2, [~l=l ,  ~>_0, 

(2.9) indl Ls,~ = ind2 L~,~ = 0. 

Here indl L~,~ (resp. ind2 L~,w) is defined by 

(2.10) indlLs,~ = 2~ri1 ~r dlogLs,w(r 

Remark. We note that the right-hand side of (2.10) is an integer-valued contin- 
uous function of z2 and ~. Because the sets {z2EC;Iz21=l} and {~ER2;I~I----1} are 
connected, the integral (2.10) is constant. Hence the right-hand side is independent 
of z2 and ~. We denote this quantity by indl Ls,,~. We similarly define ind2 Ls,~. 

As a corollary to this theorem, we can give another characterization theorem 
for convergence of formal power series solutions, different from Theorem 1.1. 

Corol lary  2.2. Suppose that n=2 and let f~(x, D) be the partial differential 
operator given in Theorem 1.1. Let the Toeplitz symbol Ll,w(z; ~) when s--1 satisfy 
the conditions (2.8) and (2.9). Then every formal power series solution u(x) of the 
equation (1.1) for any function f (x) analytic at the origin converges at the origin. 

Proof. From Theorem 2.1, the mapping L:: ~--+G~ is a Fredholm operator 
of index zero. Let Hn be the set of homogeneous polynomials of degree nEN.  
Then /:(x, D) maps H,~ into itself. Therefore, the finite dimensional kernel of 
the mapping s 1 is spanned by homogeneous polynomials. This shows 
that s is invertible on H~ for sufficiently large n. It follows that the mapping 
s C[[x]]-~C[[x]] is also Fredholm of index zero. Therefore we see that there exists 
N such that for every fEG~ (resp. fEC[[x]]) satisfying f=~-~n~176 fn, f~EHn, the 
equation f_.(x,D)u(x)=f(x) has a unique solution u=~-~,~=N un, uneHn, uEG~ 
(resp. uEC[[x]]). Therefore, the mapping L:: C[[x]]/G~--*C[[x]]/G~ is a bijection 
which implies the conclusion. [] 

We shall apply Theorem 2.1 to a Canchy-Goursat-Fuchs problem in G~, 

(2.11) P(x, D x ) u = f  E ~ ,  u=O(x~), 

where V= (V1, V2) E N2, 17I =m and the condition u=O(x 7) means that u(x)/x "y E ~ .  
Here the operator P(x, D,) is a differential operator given by (2.4) and m is an order 
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of P.  If we set u = D ~ v  then the problem (2.11) is equivalent to the following 
equation 

(2.12) P(x, D~)D;~v = f.  

Hence we obtain the equation (2.4) with ~ replaced by ~ - 7 -  We have the fol lowing 
corollary. 

Coro l la ry  2.3. Assume that s=l .  Suppose that there exists a ~ with ]~l=m 
in the expression (2.4) such that a~(0)r Define T~o(z):=~'~,l~l=~n a~(O)z~-~w~-~. 
Suppose that the convex hull of the image of the torus T 2 by the map z~-*T~(z) does 
not contain the origin for some w. Then the problem (2.11) has a unique solution 
in 1 ~,,~ for small x>0 ,  where x w = ( x w l ,  xw2). 

Remark. We want to show'the unique solvability of (2.11) under a so-called 
spectral condition. Indeed, if the spectral condition 

(2.13) la. (O)l > lae(O)lw -e 
IZl=m,/~-r 

is satisfied, then the convex hull of T~o(T 2) does not contain the origin. In order to 
see this, we take a real number ~ such that eiea~(0)=la~(0)l, we have, for z e T  2, 

(z) -= l (0) 1+ e 
,er 

Hence by (2.13) we have ReeieT~(z)>O. By Corollary 2.3 we have the assertion. 

Proof of Corollary 2.3. By making the change of variables xl ~-*wl xl , x2 ~-~w2x2 
if necessary one may assume that wl=w2=l  in (2.11) or (2.12). We shall show 
(2.8) and (2.9). The Toeplitz symbol Ll,x~ of the operator P(x, D)D~ ~ is given 
by Ll ,x~=Tw+O!x) .  Condition (2.8) is clear. To prove (2.9) let us fix z2, Iz2]=l. 
Because the convex hull of the curve Zl 9T~-*Ll,x~(z, ~) does not contain the origin 
it follows that indl LI,,,~=0. Similarly we can prove ind2 LI ,~=O.  Hence the 
operator PD~ ~ given by (2.12) is a Fredholm operator. 

In order to show that PD~ "~ is injective we may assume that there exists co >0 
such that ReT~(z)>co>0 for any zET 2. We write the operator PD~ ~ in the 
following form 

PD~ "Y =Qo+QI +...+Qj+...,  

where Qj maps homogeneous polynomials of degree u to the ones of degree v+j.  If 
we know that Q0:=~-~l~l=m a~(O)D~ -'Y is injective, the operator PD-~ ~ is injective. 
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8 Indeed, for u=)-'~j= 0 uj EG~ with uj homogeneous of degree j such that PD;~u=O 
we have that O=PD;Tu=Qouo+(Qoul+QlUo)+ .... It follows that Qouo=O, i.e. 
u0=0, and inductively we have ul=u2 . . . . .  O. 

Suppose that a homogeneous polynomial u=~-~ unxnlT! satisfies Qou=O. If we 
set "~=Eu,Te i'T~ we have Qou=E(En an(o)u,,+n-~,)x'lT! and 

0 = (Qou, u) = (T+,(e+~ ~) = i T"(e+~ dO, 

where (. ,. ) denotes the usual inner product in a finite dimensional space and ( .,. ) 
denotes the inner product in L2(T2). Because ReT~(z)_>Co>0 it follows that ~=0. 
Hence Qo is injective. [] 

3. P re l imina ry  l emmas  

We define the class G~(#) (#ER) by 

u = < , . . . , s ) , + j j  

where the factorial is understood as the gamma function, r! : - -F( r+l )  for r > 0  and 
where we set (JTi-#/s)!--1 if JTJ-#/s<0- The class G~(#) is a Hilbert space with 
the norm ]].JJ. 

L e m m a  3.1. Let the class G~ be defined by (2.1). Then we have 

(3.2) G~ = proj ~ G~(#) 

for every #. 

Proof. Suppose that u (x) e G~ (#) for any r--  (rl, r2) such that rj < wj (j = 1, 2). 
Then we have luv I<Mr-"  (iTI- (#Is)) !s for some M > 0  independent of 7. Therefore 
we have, for Ixjl<rj ( j=1,2) ,  

(171-v/s)! + x--',lU.ll_~.i~, Ixl' <M~r_ ,71x .  t 171 !~ 

Clearly, the right-hand side converges for Imsl<rs. Because r < ~  is arbitrary we 
have uEG~. 

Conversely, suppose that u=~-~ u~x~/7 ! EG~. Then we have 

x+/ 
V(x) := ~ u , l ~ .  ~ e O({Ixll  < e l }  • {Ix21 < a2}) 

77 
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for any O<w. By Cauchy's formula we have 

v, := ivl! s (2ri)2 ,l=e, zl=e2 r dr dr 

Hence we have the estimate [W[-<MQ -~ for some M>0.  Because Q<w is arbitrary 
we have vEGa(#) for any r<w. [] 

Let Xj (j--1,2) be a positive number and set X=(X1,X2) .  We denote by 
O([x[_<X) the set of holomorphic functions on {xEC2;[xj[ <Xj ,  j = l ,  2} and con- 
tinuous on its closure. For a(x)EO([x[ <_X), we put [[a[[x :=maxixjl<x ~ [a(x)[. 

L e m m a  3.2. Let s>_l. Assume that a(x)EO([x[<_Qw) (Q>I). Then for any 
U(x)EG{(#),  we have a(x)U(x)EGS~(#) and there exists a constant C depending 
only on It such that 

(3.3) 

Proof. We put a(x)=)-~a~x~/~/!EO(lx[<gw). Then by Cauchy's integral for- 
mula, we have [a~l<_l[allwe'y!/(Ow)~(.rEN2). We put a(x)U(x)=y~ Vzx/3/I3!. Then 
we have 

v~= ~ a~U~_~(~lkr~. 
o<-r_<~ 

Hence we have, for C1 >0 

,o -o<-),<,~ (o'~Y)' (/~-">')! ( I / ~ l - ~ / s ) ! " ]  

< c, Ilall~ IU~-->.l d") (l~l-./s-I')'11!" 
f~ o<~<~' 

2 1 (Iu~-d w~-~ 2 

a 1 

< Cl(~---f_~ 1)411a11~.~ IIUll'. " 
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Lernrna  3.3. Let ~=I~I+O-*)(I~I-IZl) be the s-Gevrey order o / xaD e. 
Ol ~ .  8 S Then the map x D .G~(#)--+G~(O) is continuous. Moreover,/or every e>O the 

map 
x"De:C2(,+~) ,0~(0) 

is a compact operator. 

�9 8 __.4 8 Proof. We first show that for every x < #  the injection ~.Gw(#) Gw(x)  is 
compact. Let B c G ~ ( # )  be a bounded set in G~(#).  If we write u = ~ v  uuxn/rl!E 
B, then for each fixed r 1 the set {un;uEB } is bounded. Hence, by the diagonal 

argument, we can choose a sequence {u(k)}cB,  u(k)(x)=~vu(k)xn/rfi such that 

for each r/, u(k)-+uv when k--+oo. Moreover we have that 

/ "k" w~/ -,~2 
ut  ) 

i,Tt_>N t l '7  I (InI--x/")!~,) 7 _< m a x  (InI-~18)!2~ )I 
t?I_>N ( Inl-xls)!  :s t~k ( Inl-~l*)!*  

Inl>N- 

(Inl-#/s)!2* +0 (N-->oo), 
< K  max _xls)V2s 
- I . 1  > N  (Inl �9 

where K > 0  is independent of k and N. This proves that  the sequence {u (k)} 
converges in G~ (x). 

In order to complete the proof we shall show that the map x~DS: G~(#)--+ 
G~ (0) is continuous�9 By simple calculations 

Xr/ xrl+a-/~ xrl 
(3.4/ x ~ 1 6 5  . (n_n)~ -~u~+~_~(~_~)~ 

Hence we have 
(3.5) 

,~ _ (Inl)!* ( n - c O ! )  
= ~-~ (lunlwn_~+ a 1 (r / - /3+~)!  ~ 2 

, , -  (1,71-I/~I+I<)! * ~ ) 

If r 1 is sufficiently large the term (rl-13+a)!/(rl-13)! can be estimated from above 
by a constant times ]r/]l~l. Therefore we have 

(1,71-~18)! s ( n - ~ + ~ ) !  ~ ci,71<eH<~n_.inlt<~t = C ln l<e> t< )+ l<_ ,~  
(3.6) (Inl-I/71+l,~l)! ~ (n-/~)! 

for some constant C independent of r 1. Because 8(1~1-1~1)+1~1-~=0 by assump- 
tion the right-hand side of (3.6) is bounded when irll tends to infinity. By (3.4), 
(3.5) and (3.6) we see that  the map made:  G~(#)--+G~,(O) is continuous. [] 
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Let p(y) be a function on N 2 such that 

(3.7) Ip(~)l-~Cl~?l m, v~?E N2 

for some C>0 and m ~ 0  independent of ~. Then we define the Euler type pseudo- 
differential operator p(O) on G~(#) by 

(3.s) p(a)u := = F_, 

where we set 0=(01,02), Oj=xj(O/Oxj), j = l , 2 .  We note that if p(y)=~l+~2, the 
operator p(O)=01 +02 is a so-called Euler type differential operator. 

L e m m a  3.4. Let p(g) be a function on N 2 such that suPl~l_> N ]p(~)]---+0 when 
8 __4  8 N--~co. Then the map p(0): G~(#) G~(#) is a compact operator for every #>0. 

The proof of this lemma follows exactly the same arguments as the former half 
of the proof of Lemma 3.3. Therefore we omit the proof. 

In the following we give basic properties of Fredholm operators. Let H be a 
Hilbert space with norm I1" II. We denote by s  the space of linear continuous 
operators on H. An operator LE/:(H) is said to be a Fredholm operator if the 
range LH of L is closed in H, the kernel and cokernel of L is of finite dimension, 
i.e., d imKerL<oc  and dimCokerL<cc, where CokerL=H/LH.  We denote the 
space of Fredholm operators by gJ(H). For LEkO(H) we define the index of L by 

ind L :-- dim Ker L -  dim Coker L. 

Let Coo (H) be the space of compact operators on H, and let I denote the identity 
operator on H. Then the following two lemmas axe well known (cf. [1]). 

L e m m a  3.5 .  An operator LEL(H) is a Fredholm operator if and only if there 
exist linear continuous operators R1Es R2 EL(H) and compact operator3 K1E 
Co~(g), K2ECoo(H) such that 

R1L=I+K1,  LR2 =I+K2.  

Here the operators R1 and R2 are called left and right regularizers, respectively. 

Lemrna  3.6. The set ~(H) is an open subset off .(H) and the index is constant 
on the connected components of ~(H). I f  LEkg(H) and gEcoo(g)  the operator 
Lq-K is a Fredholm operator and ind (L§ K)=indL.  
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4. P r o o f  o f  T h e o r e m  2.1 

Let m be an s-Gevrey order of P.  In view of Lemma 3.1 it is sufficient to prove 
that  for any r<w the map 

(4.1) P: G~(m) --* G~(O) 

is a Fredholm operator of index 0. Then Theorem 2.1 is a consequence of the 
following theorem. 

T h e o r e m  4.1. For any r<w the map (4.1) is a Fredholm operator of index 
zero if the conditions (2.8) and (2.9) are satisfied. 

In order to prove Theorem 4.1 we prove two propositions. 
We set (7):=(1+1~12) 1/2 and we denote by (0) the Euler type pseudodifferential 

operator with symbol (7). Let P be given by (2.5). Then we have the following 
result. 

P r o p o s i t i o n  4.2. Let the operators Po and Qo be defined by 

(4.2) Qo :-- Po(O) -m, Po(x, Dx) :=  E a~zD~x~" 
If~l+(1-8)(lal-I~l)=m 

Then Qo maps G~(O) into itself. Moreover Qo is a Fredholm operator of index zero 
if and only if P: G~(m) G~(O) is a Fredholm operator of index zero. 

Proof. We write P in (2.5) in the following form 

P(x,D~)= E a"~ D~xa§ E a~DZxa 
(4.3) I~l+(1-~)(I-I-I~l)=m If~l-{- (l-s) (i-i- ]f~]) <m 

=: Po(x,D)+ PI(x,D). 

Because the s-Gevrey order of terms in P1 is smaller than m, it follows from 
Lemma 3.3 that  the map PI: G~(m)---~G~(O) is compact. Therefore by Lemma 3.6 
one may assume that  P=Po. 

Wenote  that ,  for k~0 ,  n > 0  and m > 0  

0 k 
( -~1 tmtn = (n+m)(n+m-1) "" ( n + m - k  + l)tn+m-k 

(4.4) 
=t,~+m_ k F(n+m+l) 

F ( n + m - k + l ) '  

where F denotes the gamma function. Similarly, if k<0  we have 

( ~ ) k  t n+m-k __tn+m_ k F(n+m+l) 
troth= (n+m-k) r(n+m-k+l)" 
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Therefore if we define the Euler type operator p,~#(O) on G~(#) (#>0) by 

(4.5) 
2 r(nj+a~+l) 

P.z(,)= H r(,j+aj-fl~+l)' 
j=l  

we have, for aEZ~_ and f lEZ 2 

D#xau=xa-#pc,#(O)u for u�9 (#~0). 

Therefore we have tha t  

(4.6) P0(x, D) = E a'~#x'~-#P'~f~(O)" 
l#l+(1-s)(l~l-l#l)=~ 

By Lemma 3.3 the operator Q0 maps G~(0) into itself. Suppose that  Q0 is a 
Fredholm operator. By Lemma 3.5 there exist regularizers Rj and compact opera- 
tors K j  (j = 1, 2) such that  

(4.7) R1Qo =I+K1, QoR2--" I+K2. 

We have I+K2=QoR2=Po{O)-mR2. Hence (O>-mR2 is a right regularizer of P0- 
On the other hand we have 

I + K1 = R1Qo = R1Po (0> - m  = R1 (o>--mpo + R1 [P0, (0) --m]. 

If [P0, (0>-m] is a compact operator, it follows that  R1 (0) -m is a left regularizer 
of P0- Hence P0 is a Fredholm operator. We can similarly prove the converse. 
Moreover, since (0> - '~ is a bijection we have ind P0=ind Q0. 

It remains to prove that  [P0, (0) -m] is a compact operator. Because P0 is a 
sum of operators of the form xTp~#(O) ('7=a-fl) it is sufficient to consider the case 
Po=x'~p,~#(O). We note that  the operators p,~#(O) and (0) -m commute. Because 
[x ~, (0) -m] = x  ~ (0) -m _ (0) -rex'r, we have, for u=y~  n unxn/~! �9 G~. (#) 

(4.8) Ix,, <o>-m]~, = x;  F_, u , x ,  ( <,>-m _ <.y + ,>_m ) l ,!  . 

By Taylor's formula we have 

(4.9) ~o 1 (~>-m_(~+~/-m = m  ~ ' ( , + s ~ ) I ~ + S ~ / - ~ - 2  ds =: G(~)-  
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It follows that A~(7):= {7/mC~(7) satisfies 

(4.10) sup [hv(7) l~0 ,  g - - . c~ .  
I~I>N 

Therefore we have 

(4.11) [Po, (0) -m] = [x ~, (0)-mlPn (O) = 

where A~(0) is an Euler type operator with symbol given by A~(7). It follows from 
(4.10), (4.11) and Leminas 3.3 and 3.4 that [Po, (0} -m] is a compact operator. [] 

. 8 8 Next we shall show that the Fredholmness of the operator Qo-Gr (0)--+ G r (0) is 
equivalent to that of a certain Toeplitz operator. Let T 2 be a two dimensional torus 
and let us take the coordinate (e ie', e~e2)ET 2. Let u=y~unxn/7!EG~(O). We set 
vn:=unrn/171! 8. Then uEG~(O) if and only if the sequence {vv} is in l~:=12(Z~_), 
the set of square summable sequences on Z~_, where Z+ is the set of non-negative 
integers. Because the space l~ and the Hardy space H2(T 2) are isomorphic, it 
follows that uEG~(O) if and only if ~-~,v~e ~e~ is in H2(T2). Because H2(T 2) is 
a closed subspace of L2(T2), the space of square integrable functions, there is a 
projection r from L2(T 2) onto H2(T2). By the correspondence between the spaces 
G~(0) and H2(T 2) the Euler type operator p(O) in (3.8) on G~(0) also defines an 
Euler type pseudodifferential operator p(D) (D=i-lO/09) on H2(T2). We denote 
by An (D) the Euler type pseudodifferential operator with symbol An (7):=7 n 171-tnl 
(7r and )~n(0)=0. We define a Toeplitz operator on HR(T 2) by 

(4.12) T = r E an~ rn-~ei(n-~)~ H2 (T2) --+ H2 (T2)" 

I/~l+(1-s)(InH~l)=m 

The function (2.7) with w=r is called the symbol of the Toeplitz operator T. 

P ropos i t i on  4.3. The operator Qo is a Fredholm operator of index zero if and 
only if the Toeplitz operator T is a Fredholm operator of index zero. 

Proof. By the isomorphism between Gs~(0) and H2(T 2) the projection r in- 
duces a projection on the formal Laurent series 

(4.13) r u : =  - , x ' / 7 !  for , =  - ,x ' /7 ! ,  
~?EZ~_ r/EZ 2 

where we use the same notation lr as the projection on L 2 to H 2 for the sake of 
simplicity. By the definition of pnz(O) in (4.5) we see that in the expression of 
xn-~p~(O)(O)-mu, uEG~(O) there appear no negative powers. Hence we have 

Qo = r ~ an~xn--~Pn~(O)(O} -'~ 
(4.14) 

= ~ E anzxn-~(O)(s-D(Inl-I~l)(O)-t~lPa~(a), 
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on a;(0). 
We shall study the operators 7rx~{O)( s-1)l'fl (3 '=a -~ )  and (o)-i~ip~(O). Let 

u=~u.x"/7!eG~(O). We set v~:=u,r"/171! ~. Then we have 

X~+~ 

~+~>0,~>_0 
7! x n 

(7-3")! 7 !  

Therefore the map 7rx ~ {0} (s-1)l~l: l~ --*l~ is given by 

(4.15) rx~(O)(~-l)l~i{v,} -~ {Vrt--~r "r (]71--13'1)!s1771! s (7--3") (s-I)' ' / '  

for {vrl}El~. 
We define the pseudodifferential operator A.~(D) with symbol A~(7) by 

171!~(7) (~-~)M (7+3")! 
(4.16) A~(rj) := (171+13'1)!~ 71 

7 ! }  
(7-3")! e l l  

where r~(7) consists of terms such that  r~(7)~0  when 171--*c~- 
Indeed the quantity 171!s(7)~l'fl(171+13"l)! -~ tends to 1 when 171--~c~ and q' is 

fixed. On the other hand, we get, assuming 7j+q'j _>0, 

(7j+3'j)!, ,_,y~ ( 7 j + 1 ~  j 
(4.19) ~ if// = +qij(7), 

7j. ~ - - ~ /  

with kvj(7) satisfying Vj(7)--*0 when 171~c~. By these estimates we have (4.18). 

(4.17) 

We have, assuming 7+3'_>0, 

(4.18) 17]!s{7> (s-1)l'rl (7+3")! 
(171+13"1)! ~ 7! 

(71+1)~1(72+1)~2 
- - -  ~(7)+r~(7) ,  ~ ( 7 )  = (7)l~r ' 

Let S~ be a multiplication operator by a function e i'~~ S~ ~ u,TeiVe=~ u,e ~('+'r)e. 
Then it follows from (4.15) that the operator 7rx~(0)( 8-1)1~1 corresponds to 
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It follows from (4.17), (4.18) and the definition of 7r that 

(4.20) ~S~A~ ( O)r ~ = 7cS.rA. r ( O)r ~ + ~r P~ (0) 

where P~(O):=S~rx(O)r ~, with r~(O) being the Euler type psedodifferential oper- 
ator with the symbol r~(~). We note that by Lemma 3.4 rP~(0)  is a compact 
operator. 

Next we consider the operator (O)-I~lp~(O). Because we have 

the operator (O)-It~lpa~(O) defines the pseudodifferential operator on H 2 with the 
symbol (0)-IZlp~(~). If ~+7_>0 we have 

where ~a~(~) satisfies that supl,l_>,~ ]~(v])[-+0 when n tends to infinity. Therefore 

we can replace (O)-I~lp,~(O) in (4.14) with I ~ ( 0 ) + ~ ( 0 ) .  
By (4.20) with 7 = a - ~  we get from (4.14) that Q0 corresponds to the operator 

(4.21) 

= ~r E a~S~-~ i~r~-~  + ~ E K~f~, 

where 

(4.22) K~f~ = S~_~i~_~r~-~e,~ +R~_~i~  + R ~ _ ~ e ~ .  

For each a and ]9, Ka~ is a compact operator by the definition of symbols R~_~ and 
~ and Lemma 3.4. Because the sum ~ aa~Ka~ is a finite sum, the second term in 
the right-hand side of (4.21) is a compact operator. Because l~ -~a / [~ l  I~l defines 
a compact operator the right-hand side of (4.21) is equal to T modulo compact 
operators. Moreover we have indQo=indT. [] 

5. P r o o f  o f  T h e o r e m  4.1 

In order to prove Theorem 4.1 we recall the following lemma. 
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L e m m a  5.1. Let A(O, D) and B(O, D) be classical pseudodifferential operators 
of order zero on T 2 with smooth symbols. Then the commutator [A, B] := A B -  B A  
is a classical pseudodifferential operator of order -1 .  Especially, the commutator 
[A, B] is a compact operator on L2(T2). 

This lemma is elementary in the theory of pseudodifferential operators and the 
proof is a routine work. So we omit the proof. 

Proof of Theorem 4.1. The proof below is done by arranging the argument 
in [1, Sect. 8.23]. In view of Propositions 4.2 and 4.3 we shall show that the Toeplitz 
operator (4.12) is a Fredholm operator of index zero if the conditions (2.8) and (2.9) 
are satisfied. We define the closed subspaces HI, H2 of L2(T 2) by 

r __~0 ~2 __>0 

By definition we see that H2(T2)::H1AH2. We define the projections ~rl and 7r2 
by 

(5.2) 7rl: L2(T2)-* H1, ~r2:L2(T2)-~H2. 

We note that the projection r:  L2 (T2)~H2(T  2) is equal to ~rlr2, by definition. We 
define the Toeplitz operators T+. and T.+ by 

(5.3) T+. :=71" 1 E a,~r~-Be'(~-~)~ --*HI, 
1[3l+(1-s)(Icd-[~l)=m 

(5.4) T.+ := r2 E a~er~-5ei(e-~)~ --~ H2. 
[~l+(1-s)(Ia[-I~l)=m 

If we denote by gs,r the pseudodifferential operator with symbol Ls,r, our Toeplitz 
operator T is given by T=TrlTr2f~s,rTrlTr2. 

If we fix the branch of log Ls,r appropriately, the function b(z, ~):=log Ls,r(z, ~) 
is a smooth function of z=(eiOl,ei~ 2 and { e R  2, [{[=1, {>0. We expand 

b=b(O) into Fourier series, b=bl+b2+b3+b4, where bl,b2, b3 and b4 are functions 
such that the supports of their Fourier coefficients are contained in the regions I:= 
{~]1_~0, T]2_~0}, II:={~]1 <0, ~]2_>0}, III:={~71<_0, ~72_<0} and IY::{7]l_>0, ~]2_<0}, 
respectively. We have a Riemann-Hilbert factorization of Ls,r 

(5.5) Ls,r = e bl e b2 e b3 e b4 =: 51~2~3~4. 

Because these regions are convex, the supports of the Fourier coefficients of ~j 
( j = l ,  2, 3, 4) together with their inverses are contained in I, II, III and IV, in this 
order. 
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We want to show that T+. and T.+ are invertible modulo compact operators 
and the inverses (modulo compact operators) are given respectively by 

(5.6) 
(5.7) 

T~ 1 = ~1a~1a~1~1a~1a~1~1, 
T.~l=~2a~1a;lr2a~la;lr2, 

where we understand the equality sign modulo compact operators, and where aj and 
a ;  1 denote pseudodifferential operators on T 2 with symbols 5j(O, ~) and 5-~(0, ~) 
with ~ being covariable of ~. In the following we write A-- B if two operators A, B E s 
are equal modulo compact operators. 

By Lemma 5.1 the commutators of pseudodifferential operators aj and a-~ 1 are 
compact. We note that s since the principal symbols of both sides 
coincide. It follows that 

(5.8) 

T+.rla~1a~l~la21a~l~l ~1ala2a3aarla~1a~l~1a~la~lr1 
~la2a3alaaa~la~l~za~la~l~l 
+~1a2a3alaa(I--~1)a~la41~1a21a31~1 
~la2a3~la21a31~l,  

where we have used the relation (I-Trl)a-~la~l~rl =0. Therefore the right-hand side 
of (5.8) is equal to 

7~la2a3a21a317rl -t-Trla2a3(I-Trl)a2- la317rl ---- 7{'1- 

Here we have used the relation rla2a3(I-1h)=O. Similarly we can show that 
zcla~1a-41zcla21a31r1T+.-=~rl. Hence we have proved (5.6). By the same arguments 
we can show (5.7). 

We shall show that the left and right regularizers R of T:=~rs is given by 

(5.9) R =  . ( T : . I  + T:+I - 

where s 1 is a pseudodifferential operator with symbol Ls.~. First we recall that 
r=-lhr2. By (5.6) we have 
(5.10) 

rT~.lrs = 7rlTr2T~.l ~rlTr2s 

--~ 7rl 71-2T~.1 7rl ~s , r  7rl 7r2 -7~1 71-2T+.1 7rl ( 1 -  7r2)~s,rTrlTl" 2 

fl'171" 2 --Trl?r2alla417rla21a317rl ( 1 -  7r2)s 7r 2 

= 7rlr2 -~lr2a~-la~ -1 (Trir2 + r l  (I-r2))a21a31~l (I-r2)/:s,r~l~r2. 
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Similarly it follows from (5.7) tha t  
(5.11) 

rT.+l  7r~s,rTr ---- 7rlTr2T.+lTrlTr2/:s,rrlTr2 

_-- 7r17r2T.+lT[-2s 71-271-1 -TrlTr2T.+lT~2(1-Tr1)s 
- r : r 2 - r l r 2 a l l a 2 1 ~ r 2 a 4 1 a 3 1 ~ r 2 ( I - r 1 ) E s , r r l Z r 2  

- 1  On the  other hand,  by us ing / :8 : s  we have 

--.fff~l'fff~s,rTr = --Tl-17r2~,rlTrlTr2~s,rTl'lTr2 ~ --7i-17r 2 --T'17r2~s. 1 (71"17r 2 --/)~s,rTl-17r2. 

By using tha t  

we have 

(5.12) 

~rl ~r2 - I = ~rl (~r2 - 1) + (Th - I)~r2 - (Zrl - I )  (r2 - I )  

71" --1 -~'i ~.s (~'i- 1)r2~:s,::'2 
--1 

By adding (5.10), (5.11) and (5.12) we have 

R T  - ~rlr2 -~r:r2a~la41 ( r : r 2  +~rl (I-~r2))a 2 la317rl (I-zr2) s 7r:r2 

-- r l  Tr2a-ll a21(Trl Tr2 + Tr2( I - -  Trl ) )a41a317r2( I - -  Trl )Zs,rTrl Tr2 

-- 7r171-2~r171-1 (~2 -- 1 )~s , r  71-171" 2 --T'1~2C~1 (71"1-I)Tr2Zs,rTr17r 2 

We note  tha t  

Therefore we have 
(5.13) 
RT-zclTr2 ~ Trlzc2all aal( (Trl-I)(Tr2-X)+Tr2(I-Trl) )a21a317rl (I-Tr2)Es,rTrlr2 
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We shall show that  the operators 

(5.14) ~1~2~(~1-I)(~2-I) ,  ~ 2 ( I - ~ 1 ) ~ 1 ( 1 - ~ 2 ) ,  ~ i ( I - ~ 2 ) ~ 2 ( I - ~ i )  

are compact, where ~ is an appropriately chosen smooth function. To this end, 
let u = ~ - ~  u~ei~~ and ~ ( ~ ) = ~ #  ~ ( ~ ) e  i~~ be Fourier expansions of uEL 2 and 
~ E C  ~ .  Because ~(0, D) is a pseudodifferential operator of order zero with smooth 
coefficients it follows that  the Fourier coefficients ~ (~) are rapidly decreasing in 
when If~l~c~ uniformly in ~. We have 

(5.15) 7rl lr2~( ri  -- I ) ( r2 -- I)u = ~ (a+f~=~,ae l H ~ #(# )ua ) ei~~ 

In view of the definitions of I and I I I  we see that,  in (5.15), /3 satisfies that  
] f~i=l#-a]>l#l  because/~EI and - -aEI .  It follows that,  for n > l  

I,I n I  (,)llu.t < IZlnlv (,)tlu.I < 
e~+fl=#,c~Elll 

for any # because ]~f~(#)[]/3] n is bounded in # and ~. Hence the Fourier series 
(5.15) in # converges uniformly with respect to uEL 2. In view of the proof of 
Lemma 3.4 this shows that  r17~2~(rl-I)(~r2-I)  is compact. The compactness of 
other operators will be proved similarly. Therefore we see that  R is a left regularizer 
of T. We can similarly show that  R is a right regularizer of T. Hence we see that  
T is a Fredholm operator. 

It remains to prove that  ind T = 0  if (2.8) and (2.9) are fulfilled. By the fac- 
torization (5.5) we set Ct=etb'etb2etb3etb4 ( 0 < t < l ) .  Clearly Ct ( 0 < t < l )  is a one 
parameter family of symbols satisfying (2.8), (2.9), r  and r =Ls,r ,  which is con- 
tinuous in t in L~(T2) .  Because the operator norms of Toeplitz operators St with 
symbol Ct are continuous with respect to L ~ norm of Ct it follows from Lemma 3.6 
tha t  the index is constant. Hence it is equal to zero. In view of Proposition 4.2 
and 4.3 we have proved Theorem 4.1. [] 
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