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Invariant subspaces in Bergman spaces and
Hedenmalm’s boundary value problem

D. Khavinson and H. S. Shapiro

Abstract. A function G in a Bergman space AP, 0<p<oco, in the unit disk D is called
AP-inner if |G|P —1 annihilates all bounded harmonic functions in D. Extending a recent result by
Hedenmalm for p=2, we show (Thm. 2) that the unique compactly-supported solution ® of the
problem

A®=x,(IGP-1),

where x,, denotes the characteristic function of D and G is an arbitrary AP-inner function, is
continuous in C, and, moreover, has a vanishing normal derivative in a weak sense on the unit
circle. This allows us to extend all of Hedenmalm’s results concerning the invariant subspaces in
the Bergman space A2 to a general AP-setting.

1. Introduction

For 0<p< oo, the Bergman space AP(D), D={z:|2| <1} consists of all functions
f analytic in D for which

IfIE = /D F(2)P dA < oo,

Here, dA is the area measure. As is well-known, || [|% makes A? into a Banach space
for 1<p<oo and a complete metric space for 0<p<1. A closed subspace IC AP
is called an invariant subspace if zf€I for all f€I. Let the function G€I be a
solution of the extremal problem

(1.1) sup{Re g™ (0):g €I, |gl, <1},

where m is the order of the common zero at the origin for functions in I. For
p>1, the existence of G is an easy corollary of Fatou’s lemma and a normal family
argument. For p=1 it follows from the well-known fact that A' can be identified
with a dual of the little Bloch space (cf. [Z]). For 0<p<1, we do not know whether
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the extremal function in (1.1) exists for the most general subspaces. However,
if we in addition assume that the invariant subspace is weakly closed, ie., fn€
I, || fnllp<const and f,— f uniformly on compact subsets of D imply that feI,
then, as before, the existence of G for p:0<p<1 follows from Fatou’s lemma and
Montel’s theorem. Note that all zero subspaces, i.e., I={f€AP: f({;)=0, j=1,..},
are weakly closed. (Here, {(;}$° is a zero set of an AP-function.) Uniqueness of G
is known to hold for 1<p< oo, while for an arbitrary I it remains an open problem
for 0<p<1 (cf. [DKSS1] , [DKSS2]). Let ® denote a (distributional) solution in R?
of the problem

(1.2) AP = x, (|G]P-1),

where x,, is the characteristic function of D. Problem (1.2) has been introduced
by H. Hedenmalm in [H1] for p=2. Since a simple variational argument (cf. [H1],
[DKSS1], [DKSS2]) shows that |G|P —1 annihilates all bounded harmonic functions
in D (:=L), ie, [5(|GP—1)udA=0 for all ueL;°, one solution @ of (1.2) has
the integral representation

(1.3) 2()= o /D (IGIP 1) log |=—¢| dA(C).

Henceforth, ® shall always denote that solution of (1.2) given by (1.3). Since g:=
|G|P—1 only belongs to L!(D), one cannot expect a priori anything more than
®cVMO(C)—cf. [IK]. However, in [H1], for p=2, using Hilbert space techniques
and explicit calculations with power series, Hedenmalm was able to show much
more.

Theorem 1 ([H1], for p=2).
(i) ® is continuous in C.
(ii) O®/On=0 weakly on T=0D, i.e.,

}1_)11} - %s(z) do =0,
for any C?-smooth test function s(z). (Here, 3/0n is the outer normal derivative
and do is the arclength.)

(iii) ®=0 in C\D and
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From Theorem 1, by simply applying Green’s formula, Hedenmalm obtained
the following identity

(1.4) /D (G2 —1)|fP dA=4 /D 8|/ dA

for any polynomial f. The Corollary, which immediately follows from (1.4), namely,
that

(1.5) IGFll2= | fllz for all feH™,

is crucial in Hedenmalm’s construction of contractive zero-divisors in As.
n [DKSS2] (also, cf. [DKSS1]), we have been able to circumvent the boundary
problem (1.2) by proving instead of (1.4) the following (0<p<oo):

(1.6) / (IGP—1)|f7 dA= // (IGP)A(FP)T (2, C) dA. dAe,

for all polynomials f, where I is the biharmonic Green kernel

2

¢
e

P(2,¢) = {|z ¢ log] -

+(1—|z12><1—|<|2>}.

Since I' is positive, by using (1.6) instead of (1.4) one can extend (1.5) to arbitrary
O<p<oo.

In this note we extend Hedenmalm’s original approach via a boundary-value
problem (1.2) and Theorem 1 to all p, 0<p<oco. A general proof of the AP-versjon of
Thm. 1 (Thm. 2) we offer here is still somewhat simpler than Hedenmalm’s original
proof for p=2 in {H1]. In the last section we give a number of corollaries, extending
the results in [H1] to a general AP-setting, and discuss some open problems.

2. Extension of Theorem 1 to AP-spaces for 0<p<oo

Let us restate Thm. 1 in a general AP-setting, adopting the concept of an
AP-inner function recently suggested by B. Korenblum (in view of (1.5)).

Definition. A function GE AP is called AP-inner (or simply, inner), if |G|P—1
is orthogonal to all bounded harmonic functions in D.

(Note that all extremal functions for problems (1.1) are inner.)
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Theorem 2. Let G be an AP-inner function, 0<p<oco, and let ® be a solution
of (1.2) defined by (1.3). Then

(i) ® is continuous in C.

(ii) 9®/In=0 weakly on T, i.e.,

P
lim a—s(z) do=0
=1 Jor ON

for any C?-smooth test function s.
(iii) ®=0 in C\D and

0<®<1i(1-]2*) nD.

Proof. The major difficulty (technical) lies in proving (i). So, let us assume (i)
for a moment, and derive (ii) and the second inequality in (iii).
(ii) Fix r<1 and let s.(z) denote the solution of the Dirichlet problem for the

Laplacian in rD with data s. Applying Green’s formula in vD we obtain (® is
obviously C* inside D—see (1.3)!)

(2.1) / ] g—isT(z) do = / ) @32_1(1»2) do+ / (s, () 4AG)

(recall, g:=|G|P—1). As r—1, the first term in the right-hand side of (2.1) tends
to 0, since ®=0 on T (as g=|G|P—1LL:®°, =0 in C\D), while 9s,/0n remains
bounded (in fact, it tends to ds1/In, where s; is a solution of the Dirichlet problem
in D with data s). The second term tends to

[ s@s@ a0,
D

since s is harmonic in D and gL L§°. From this (ii) follows.
(ili) Consider 1=12(1—|2/%)—®. By (i) v€C(D), and

A =—1—(|GIP-1) = |G <0

in D. So v is superharmonic in D, continuous in D, and |p=0. Hence, ©/>0 in
D and the second inequality in (iii) follows.

To prove (i), we need a lemma.
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Lemma. The measure |g|dA is a Carleson measure in D.

Proof. Since g=|G|P—1 annihilates L$°, |G|P dA is a representing measure for
bounded harmonic functions at the origin. In particular, for

V2.2
u:u)\zRe(H—)\Z):l |AI|2]

1-\z [1-Xz]? ’
AeD, we have
—A?lz”
p2IALIZE —
e A -1
Hence (see, e.g., [G; p. 239, Lemma 3.3]), |G|? dA is a Carleson measure, and the
lemma follows because |g|<|G|P+1.

Proof of (i). Since g is orthogonal to L§°, taking any a€D we can rewrite (1.3)
in the form

(22) ®(0) =5~ [ a(0)1og|

—¢|aaco),

where o/, |a’|>1, lies on the ray joining 0 to a, and |o’—a|=2(1—|a|). Set w=

(@'=¢)/(a—(). Let

Qaz{CGD:|w—1|<\/1—|a|}={CED:
={(eD:|a—(|>2y/1—]|a| }.

Then (cf. (2.2)),

(2.3) _9rd(a / /D .

Claim. Uﬂalgconst V' 1—|a|, and therefore, tends to 0 when |a]—1.

o —¢
ac —1' <4/1-|q| }

Indeed, |an!§||g||L1||log lwl || oo (2,)- Since

a —¢
1 -1
+(a ¢ ) H

/_
2_5—1[ <4/1—|a|—=0 when |a|—1,

|log |w| | = |log

and on Q,
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we have for (€,

Q

|log {w| | = |log

¢
”(a c‘l)H
¢

: |)<0<m>

~o(f5=

and the Claim follows. To estimate | fD\QQ| in (2.3), set

={¢:|¢—al < (1-la])*} C D\.

Then,

(2.4) ‘ /D .

Let E,=D\Q,\A,. |a—(|>(1~|a|)® on E,, hence for (€ E, we have

I D\Q \Aq

o' —¢| _ 2(1—a))*/2+2(1~]al) 1
a—C|~ (1-lal)? T (1-la)5?
So,
a' —¢ 1
1 <
% a—c‘—m"gl—lal’

where C' is a constant. Thus,

Sl oo = o]z onas)

Clearly, E, belongs to a Carleson square of size C'y/1—|a|, with some absolute
constant C. So, from (2.5) and the Lemma it follows that

< consty/1—|a| log 1—|—| —0

(2.5)

when |a|—1. Finally, it remains to estimate | | Aa‘ in (2.4). For this, we need the
assertion:

Assertion. |g(¢)[=|G(¢)[P—1|=0(1/(1-[¢])).

Assume the Assertion and estimate

!
¢ s

o —
/Aag(C)log =
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A,={¢:[¢—al<(1—]a])3}, so 1—[¢|> 1 (1—a), since we can always assume |a|>1 in
A,. From the above assertion it follows then that

(2.6) 9Ol < 7=
Also, |a'—¢{|>1—|a] for each (€A,. So,
(2.7) |log|a’—(| | =log ——

1
¢ =8 1]
Thus, from (2.6) and (2.7) we obtain

‘ / 9(¢<) log

’ ’ const

1=Jol Ja (I"g 8 ) 44
< fi—ﬁ((l—lal)ﬁlogl%w) ~0

as |a|—1. The last estimate follows from a direct calculation:
1 21 p(l1-la))® 1
/ 10g——dA=/ / log—gdgd0
A, la—(| 0o Jo

(- lal>3 (1~|al)®
0 0

< const [(1 —]a])®log

=7 [g log

1
ThllS, (1) 1S pI‘()ved m()dulo ASSeI'(l()n.

Proof of the Assertion. |g({)|<|G|P+1, which is subharmonic, and by the
Lemma (|G|P+1)dA is a Carleson measure. Let D¢ be a Carleson box of size
C(1—|¢]), such that D;2{z:|z—¢|<1—[¢|}, C is a constant. Then the subhar-
monicity of |G|P+1 and the Lemma imply

const const

19001 < TRl =12

_71'(1—1|(|)2 /D (GP+1)dA <

Thus, (i) is proved.

Remark. Note that (iii) implies a better estimate of ®(a) near T than the one
we obtained in the above proof of (i). However, (i) is needed to establish (iii).



316 D. Khavinson and H. S. Shapiro

Finally, let us establish the remaining inequality in (iil) by showing that ®>0
in D. For that we need the key integration formula (1.6) proved in [DKSS2]. Note
that in fact (1.6) holds for an arbitrary, say C?-smooth, function s, not merely |f|?
(cf. [DKSS2]). Let us rewrite (1.6) as follows (s€ C*(D)):

(2.8) /D (IGIP—1)s dA = /D (AD)s dA= /D As(g){ /D A28(2)T(2, ¢) dAz}dAC.

Now applying Green’s formula to rD, 0<r<1, using (i) and (ii) of Theorem 2 and
letting r—1, we obtain from (2.8):

/ (A®)sdA = lim
D =1/

zlim{/ <I>AsdA+/ [@ﬁ—sa—@] da}:/ PAsdA.
—1{/D rrl On On D

Hence from (2.8), (2.9), it follows that ®(¢)— fp A?®(2)['(2,¢)dA. annihilates
As((), for all s€C2(R?). But those functions (restricted to D) are obviously dense
in C(D). Thus,

(A®)sdA
(2.9) D

(2.10) ()= /D A2®(2)T(2,¢)dA, >0.

The proof of the Theorem is now complete.

3. Some corollaries and open questions

As above, let IC AP be an invariant subspace, and G (=Gy), & (=9;) be
2d by (1.1) and (1.2). We can now (cf. (2.10)) rewrite (1.6) in the form

(3.1) 1GfIE= Ilfll?Jr/D DA(|fP) dA,

where f is a polynomial. As in [H1] for p=2, define the space Agy (=A(I)’p ) as the
closure of the polynomials with respect to the norm

1/p
(3.2) 1lla = <Ilfllip+ /| <I>A(|f|”)dA) ,

for 1<p<oo. (That (3.2) is in fact a norm on Ay follows at once from (3.1).) For
p:0<p<1, we define Ay similarly as the closure of polynomials with respect to the
metric

(3.3) d(f,g)=|1f —gllae+ /D BA(|f—gl?) dA.
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Furthermore, define the space

A(=AlP) = {feAP : /D BA(|fIP) dA < oo}.

Then, (3.1) yields the following Corollary (for p=2, cf. [H1, Cor. 4.2]).
Corollary 1. Multiplication by G is an isometry of Ag into AP.
In view of Thm. 2(iii},

(34 [ eaqrpaasy [a-kRadsraa

for all polynomials f. As is well-known, the right-hand side of (3.4) is equivalent
to the HP-norm in H?/C. (To see this, it suffices to note that (1—|z|?)~log(1/|z|)
near T, replace $(1—|z|?) by const-log(1/|2|) in the right integral in (3.4), and
apply Green’s formula.) Thus, the right-hand side of (3.4) is finite for all feH?
(i.e., HPC Ap), and we have the following result.

Corollary 2. For any invariant subspace ICAP, Gy is a bounded multiplier
of H?(D) into AP. In particular, G=G| satisfies in D the estimate

(3.5) |G(2)| < const(1—|z|) /P,

i.e., G has more severe growth restrictions than an arbitrary AP-function f, which
is only known to satisfy |f(z)|<const(1—|z|)~%/?.

Remark. The estimate (3.5), of course, also follows directly from the Assertion
in the proof of Thm. 2.

Fix an AP-inner function G and let I(G) denote the AP-closure of the polyno-
mial multiples of G. Clearly, I(G)CI.

Corollary 3. I{(G)=G-Ay (i.e., I(G) is an (isometric) image of Ay in AP
under multiplication by G), and G=Gy), i.e., it is the unique extremal function
for I(G) with respect to (1.1).

Proof. Let geI(G), i.e., there is a sequence of polynomials {f,} such that
anﬁ'%g. Then {f,} is a Cauchy sequence in Ay (cf. (3.1) or (3.2)), and hence

fnﬂ f. But f, also converges to g/G pointwise in D. Hence, f=g/G and || f|| 4, =

IGfllar=llglla». So, I{(G)CG.Ag. Conversely, if {f,} are polynomials and fnﬂf,
then {Gf,} is a Cauchy sequence in AP and {Gf,} converges pointwise to Gf.
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Hence, G fnﬁG f, s0 G- AgCI(G). To show that G is extremal, simply note that
for any polynomial q we have, in view of (3.1), |Gq||,>|lq|/p. Hence,

(Gg)(0)] |4(0)]
IGally llallp

<1G(0)] <G(0)

(lg|P is a subharmonic function!). Moreover, since ||g]l,=||Gq/G|,<||G4llp, for all
polynomials ¢, G is a contractive divisor for I(G), and therefore is the unique
solution of the extremal problem (1.1). Indeed, suppose H is another solution.

Then,
HO)| _||H
=[ew <l s, <

p

Since |H/G|P is subharmonic in D it is a constant, and hence, H=G.

One of the most celebrated results in the Hardy space theory is Beurling’s
Theorem on invariant subspaces. In the present context it can be stated as fol-
lows: every invariant subspace ICHP has the form I=I(G), where G is a solution
of the exztremal problem (1.1) (posed, of course, with respect to the HP-metric).
Unfortunately, the direct analogue of Beurling’s Theorem cannot hold in AP for
the following reason. Every invariant subspace I of type I=I(G) has the so-
called codimension 1 property. dim(I/zI)=1 (cf. [R]). (Indeed, if I3 F=lim, Gf,,
where f,, are polynomials, then f,(0) converges to some complex number ¢ and
f=lim, Gfp=lim,_ o G[fr,— fn(0)]+cG, where G|[f,— fn(0)]€2I.) On the other
hand, in [BFP]| it was shown that for any integer n>0 there exists an invariant
subspace I C A2, such that dim(I/zI)=n. Recently, much simpler, constructive ex-
amples of such subspaces have been given by Hedenmalm [H2]. Nevertheless, for
zero-invariant subspaces there is a good chance that a Beurling-type theorem does
hold.

Corollary 4. Let I={fcAP: f((;)=0,j=1, ...}, where {(;} is a zero-set of an
AP -function and G=Gj be the corresponding extremal function. Then, I=G-A.

Proof. Let gel. It follows from results in [DKSS1], [DKSS2| that g=Gh, he
AP. As before, denote by G,, the extremal function (1.1) for the “cut-off” subspace
In.={feAP:f({;)=0,j=1,...,n}. Let f,=g/G,. We know that f,€ AP, GnﬂG,
and hence, f,—h pointwise in D. Moreover, since all G,,’s are analytic across
0D ([DKSS1], [DKSS2]), the corresponding functions ®,, defined by (1.3) are real
analytic across dD, and hence (3.1), with G,,, ®,, holds for all fe€ A?P! So,

(3.6) lgle = G fullae = IIfnllﬁer/ 0 A(] fnl?) dA.
D
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Now, since |G |[P—1—|G|P—1 in L}(D), ®,, (defined in accordance with (1.3)) tend
to ® in L}(D). (In fact, looking over the proof of Thm. 2 in Section 2, it is easy to
see that ®,, —® uniformly in D.) Therefore, we can assume that ®, —® pointwise
in D. Thus, since f,—h uniformly on compact subsets in D, applying Fatou’s
lemma to (3.6) we obtain

[ eaguaa<im [ @805 dA <ol
D D

ie., heA.
The following question then, is crucial.
Question. Is Ag=.A%
If so, the Corollaries 3 and 4 imply the following.

Conjecture. If IC AP is an invariant subspace defined by zeros, then I=I1(G),
where G=G/ is the solution of (1.1).

The technical problem of extending the p-analogue of (1.5) to all f € AP is of fun-
damental importance: for I being a zero subspace, this has been done in [DKSS1],
[DKSS2]. For arbitrary invariant subspaces, the question is still open. It is not
hard to see that (1.5) can easily be violated if we allow f to be any holomorphic
function in D. Indeed, let I be the closed subspace in, say, A2, generated by the
polynomial multiples of the inner function p=exp((z+1)/(z—1)). Then, it is easy
to show (cf. [Sh]) that I is a proper subspace, and, moreover, all f€l decay expo-
nentially along the radius. Thus, in particular, this holds for G=Gy, the extremal
function in (1.1). Hence, G~!¢ A? since it is well-known that the A®-functions
satisfy the (trivial) growth estimate |f(2)|<||f|l2(1—|2])~1. On the other hand,
IGG|2=|I1||z=7<||G~|]2=00. Nevertheless, the following Corollary shows that
a counterexample to (1.5), if it exists, may be quite difficult to construct. Let I C AP,
G=(], be as above.

Corollary 5. (1.5) holds for all fENT.

The Corollary follows at once from (3.1), the monotone convergence theorem,
and the following simple (but important) Proposition due to V. I. Smirnov [S]. (For
the definition and properties of the Smirnov class N7, see, e.g., [D].)

Proposition. For every f€NT, there exists a sequence of H®-functions {fn}
such that fn,— f pointwise in D, while | fn|T|f|. Conversely, if f is a pointwise limit
of bounded analytic functions with increasing moduli, then fEeNT.

For the reader’s convenience we include a proof.
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Proof of the Proposition. Since fENT, it can be written as
1 [ ez o
s@=n@en(ge [ 5 E 0wt 1) an),

where |h|<1 in D. Set

) =h@) e (5 [ S g i7" an),

ez
where -
g9, g=n
l9]" == {
n, g>n.

is the truncated function, and the assertion follows.

To prove the converse, first note that if f=lim f,,, f, € H*, where convergence
is pointwise and {|f.(z)|} increases with n for each z, then f=f,/(f./f) is a
quotient of two bounded functions, and hence belongs to the Nevanlinna class N.
Let f=S1F/S2 be a canonical factorization of f, where Sy, S, are inner functions
(in the HP-sense, of course) and F is an outer function. Since |f|=|F| almost
everywhere on T and |f(e®)|=lim,_ | f(re®)| for almost all § while |f(re?)|>
| fn(re®)| for all n, it follows that |f|>|f,| almost everywhere on T for all n. Let
F,, denote the outer part of f,. Then, |f|=|F|>|F,| almost everywhere on T for
all n. Now for a fixed z=re* in D we have (f,cH>®!):

log |f(re®®)| = lim log|fa(re')| < lim log|F,(re®)|

im = [ Lr? log |y (¢9)| d

= 1 -— O

n—oo 21 Jo  147r2—2rcos(—p) & 1fn v
1 [ 1—r?

log | F(e')| dp =log | F(re®)|.

“or o L1+72—2rcos(f—v)
Hence, | f|<|F|in D and so |S1/S2|<1. Thus, S1/S2€ H*®, and therefore S, =const.
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