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Invariant subspaces in Bergman spaces and 
Hedenmalm's boundary value problem 

D. Khav inson  and  H. S. Shapiro 

Abstract .  A function G in a Bergman space A p, 0<p<oc, in the unit disk D is called 
AP-inner if IGI p - 1  annihilates all bounded harmonic functions in D. Extending a recent result by 
Hedenmalm for p----2, we show (Thm. 2) that the unique compactly-supported solution (I) of the 
problem 

Ar 

where XD denotes the characteristic function of D and G is an arbitrary AP-inner function, is 
continuous in C, and, moreover, has a vanishing normal derivative in a weak sense on the unit 
circle. This allows us to extend all of Hedenmalm's results concerning the invariant subspaces in 
the Bergman space A 2 to a general AP-setting. 

1. I n t r o d u c t i o n  

For 0 < p < c c ,  the Bergman space AP(D),  D - - { z :  Izl < 1} consists of all funct ions  

f analyt ic  in D for which 

IIf[[PP : = / D  [f(z)lP dA < cx~. 

Here, dA is the area measure.  As is well-known, II II p makes A p into a Banach  space 

for l ~ p < o c  and  a complete metr ic  space for 0 < p < l .  A closed subspace I c A p  
is called an  invariant subspace if z f E I  for all f E I .  Let the  func t ion  G E I  be a 

solut ion of the extremal  problem 

(1.1) sup(Reg( '~) (0)  :gEX, llgll,, -< 1), 

where m is the order of the common  zero at the origin for funct ions  in I .  For 

p > l ,  the existence of G is an  easy corollary of Fa tou ' s  l emma and  a normal  family 

argument .  For p =  1 it follows from the well-known fact tha t  A 1 can be identified 

with a dual  of the little Bloch space (cf. [Z]). For 0 < p < l ,  we do not  know whether  
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the extremal function in (1.1) exists for the most general subspaces. However, 
if we in addition assume that  the invariant subspace is weakly closed, i.e., f~E 
I, ]If~iip~const and f~--*f uniformly on compact subsets of D imply that f E I ,  
then, as before, the existence of G for p : 0 < p < l  follows from Fatou's lemma and 
Montel's theorem. Note that  all zero subspaces, i.e., I={fEAP:f(dj )=O,  j = l ,  ...}, 
are weakly closed. (Here, {dj}~ is a zero set of an AP-function.) Uniqueness of G 
is known to hold for 1 ~p<oc ,  while for an arbitrary I it remains an open problem 
for 0 < p <  1 (cf. [DKSS1] , [DKSS2]). Let �9 denote a (distributional) solution in R 2 
of the problem 

(1.2) A~ =)CD(IClP-1), 

where XD is the characteristic function of D. Problem (1.2) has been introduced 
by H. Hedenmalm in [H1] for p=2.  Since a simple variational argument (cf. [H1], 
[DKSS1], [DKSS2]) shows that  I GI p -  1 annihilates all bounded harmonic functions 

i ~ fD(iGiP-1)udA=O for all u c i ~ ,  one solution �9 of (1.2) has i n D  (:= h) ,  i.e., 
the integral representation 

(1.3) O(z) = ~ (]GI p -  1)log ]z-~] dA(~). 

Henceforth, �9 shall always denote that  solution of (1.2) given by (1.3). Since g:= 
IGIP-1 only belongs to LI(D),  one cannot expect a priori anything more than 
�9 EVMO(C)--c f .  [IN]. However, in [H1], for p=2, using nilbert space techniques 
and explicit calculations with power series, Hedenmalm was able to show much 
more. 

T h e o r e m  1 ([nl], for p=2).  
(i) �9 is continuous in C. 
(ii) O~/0n=O weakly on T=OD, i.e., 

r l Jr T Onn s(z) da=O' 

for any C2-smooth test function s(z). (Here, O/On is the outer normal derivative 
and dcr is the arclength.) 

(iii) ~ = 0  in C \ D  and 

o<o<~(1-1zl 2) inD. 
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From Theorem 1, by simply applying Green's formula, Hedenmalm obtained 
the following identity 

(1.4) s dA=4 s +[f'[2 dA 

for any polynomial f .  The Corollary, which immediately follows from (1.4), namely, 
that 

(1.5) 

is crucial 

IIGf[12 ~ Ilfll2 for all f �9 H a ,  

in Hedenmalm's construction of contractive zero-divisors in A2. 
In [DKSS2] (also, cf. [DKSS1]), we have been able to circumvent the boundary 
problem (1.2) by proving instead of (1.4) the following (0<p<cc) :  

(1.6) fD(I G I P - - a ) l f l  p dA= ffD• Ar dAz dAr 

for all polynomials f ,  where F is the biharmonic Green kernel 

1 {]z_~[ 2 log z - (  2 k(l_[z]2)(1_[~[2)}.  r(z, r 

Since r is positive, by using (1.6) instead of (1.4) one can extend (1.5) to arbitrary 
0 < p < o c .  

In this note we extend Hedenmalm's original approach via a boundary-value 
problem (1.2) and Theorem i to all p, 0 < p < e c .  A general proof of the AP-version of 
Thm. 1 (Thm. 2) we offer here is still somewhat simpler than Hedenmalm's original 
proof for p = 2  in [H1]. In the last section we give a number of corollaries, extending 
the results in [H1] to a general AP-setting, and discuss some open problems. 

2. E x t e n s i o n  o f  T h e o r e m  1 t o  AP-spaces  for 0 < p < o r  

Let us restate Thm. 1 in a general AP-setting, adopting the concept of an 
AP-inner function recently suggested by B. Korenblum (in view of (1.5)). 

Definition. A function GEA p is called AP-inner (or simply, inner)r if IGIP-1 
is orthogonal to all bounded harmonic functions in D. 

(Note that  all extremal functions for problems (1.1) are inner.) 
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T h e o r e m  2. Let G be an AP-inner function, 0<p<oc ,  and let 9 be a solution 
of (1.2) defined by (1.3). Then 

(i) 9 is continuous in C. 
(ii) 09/On=O weakly on T,  i.e., 

09 
lira -:--s(z) da = 0 
r--+l T O n ' "  

for any C 2-smooth test function s. 
(iii) 9 = 0  in C \ D  and 

o<9<{(1-1zl 2) inK). 

Proof. The major difficulty (technical) lies in proving (i). So, let us assume (i) 
for a moment, and derive (ii) and the second inequality in (iii). 

(ii) Fix r < l  and let s~(z) denote the solution of the Dirichlet problem for the 
Laplacian in rD with data s. Applying Green's formula in rD  we obtain (9 is 
obviously C ~ inside D ~ e e  (1.3)!) 

(2.1) IT 09 90S,,(Z) da+ f D g(z)sr(z)dA(z) Ns~(z) d~= IT On 

(recall, g:=IGIP-1).  As r--*l, the first term in the right-hand side of (2.1) tends 
to 0, since 9 = 0  on T (as g=IalP-I• 9_=0 in C \D) ,  while Osr/On remains 
bounded (in fact, it tends to Osl/On, where Sl is a solution of the Dirichlet problem 
in D with data s). The second term tends to 

Dg(Z)Sl (Z) dA(z) = 0, 

since 81 is harmonic in D and g_l_L~. From this (ii) follows. 

(iii) Consider r188  By (i) r and 

A ~  = - -1 - -  ( ICl  p -  1) = - I C l "  < 0 

in D. So r is superharmonic in D, continuous in D, and ~)IT=0. Hence, ~_>0 in 
D and the second inequality in (iii) follows. 

To prove (i), we need a lemma. 
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L e m m a .  The measure Ig[ dA is a Carleson measure in D. 

Proof. Since g=lalp-1 annihilates L~,  lalp dA is a representing measure for 
bounded harmonic functions at the origin. In particular, for 

#/l+Az'~ 1-1,Xl21z? 
u=u~=~e[ , l_ - -~z  ) - ii_)~zt 2 ,  

AED, we have 

L lCl ~ 1 -I.X? Izl ~ 1. dA(z) 
I1-),zl 2 

Hence (see, e.g., [G; p. 239, Lemma 3.3]), lal p dA is a C a r l e s o n  measure, and the 
lemma follows because Igl <- IGI p + 1. 

Proof of (i). Since g is orthogonal to L~ ~ taking any aED we can rewrite (1.3) 
in the form 

(2.2) 
1 L a'--( 

( I ) ( a )= - -~  g(()log ~ dA(4), 

where a', la ' l>l,  lies on the ray joining 0 to a, and la'-al=2(1-lal).  
(a ' - ( ) / (a -~ ) .  Let 

( la'<' } ~a={4eD: iw- l l<vz f -L- - [a]}= 4 e D :  -~-_~ < ~  

= {~ e D:  la-~l  > 2x / l - l a l  }. 

Then (cf. (2.2)), 

(2.3) f + f . 

Jf~ J D \ ~  

Claim. [faai_<const l~/~-[a[, and therefore, tends to 0 when ]al--~l. 

Indeed, Ifao I -< IlgllL, II log Iwl IIL~(ao). Since 

Iloglwi[= log l + ( a ' - 4 - 1 h t ,  a - 4  ] 

l a ' -4  _ 1 <v/~--lal--+0 when la l -+l ,  

Set w-- 

and on fla 
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we have for r E ~a 

IlogLwl I = log 1+ (-~_~a'-r \_ 

= O (  a ' - r  ) <O(v/1-1a[)  
\ l a - r  I ] -  

and the Claim fonows. To estimate IJ'm.o I in (2.3), set 

/M = {r Ir  < ( 1 - I < )  3 } c Dka~.  

Then, 

(2.4) 

Let Ea=D\~a\Aa. l a - r  3 on Ea, hence for (eEa we have 

a'-r < 2(1-1al)l/2+2(1-lal) < 4 
a-C - (1-1a[) 3 - (1-1al)5/2" 

So, So, 
l l a ' - 4 1  1 
ogl ~ _ r  I < Clog 1-  la-----/' 

1 q 

where C is a constant. Thus, 

(2.5) leo = f~ 9(~)log ~ dA <_Clog ~ (/E~ Ig(~)ldA). 

Clearly, Ea belongs to a Carleson square of size C l x / ] ~ ,  with some absolute 
constant C. So, from (2.5) and the Lemma it follows that 

o <eonstv/~-]al log 1-lal --~0 

when la[--~l. Finally, it remains to estimate ]fzx~ I in (2.4). For this, we need the 
assertion: 

Assertion. Ig(r la(r162 

Assume the Assertion and estimate 

/zxo 9(~)log ~ dA. 
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Aa={~:l~-ai<(1-1al)3}, so 1-6~]_>�89 since we can always assume lai_>�89 in 
Aa. From the above assertion it follows then that 

coast 
(2.6) I g ( ~ ) l ~ - -  in Aa. 

1-1af 

Also, la'-~i>_l-lai for each ~EAa. So, 

1 1 
(2.7) Ilogla'-CI I = l o g - -  _ < l o g -  o n  A a .  

la'-r 1-1hi 

Thus, from (2.6) and (2.7) we obtain 

fA~ g(~)l~ a'-~ dA < C~ fzxo (l~ la--~f+l~ l l--~l) i 
coas t (  1 1 a } )  _ < ~  (1-1hi)6 log -+0 

as lal--+1. The last estimate follows from a direct calculation: 

1 /2~f (1-1al)3 
/Ao log dA log I de dO 

~ J O  JO ~) 

1 (1-1al)3+ f(1-lal)3Qd~] 
[ L Q2 log ~ 0 J 0 7C 

-< c~ [(1-  lal)6 l~ (l_~al)3 ] �9 

Thus, (i) is proved modulo Assertion. 

Proof of the Assertion. Ig(()I_<IGIP+I, which is subharmonic, and by the 
Lemma (IGIB+I)dA is a Carleson measure. Let De be a Carleson box of size 
C(1-1ffl) , such that DcD_{z:lz-~l<l-I~l} , C is a constant. Then the subhar- 
monicity of IGIR+I and the Lemma imply 

:r (IGIP+I) dd< const 1 cons_______~t (1-I~1) - �9 
Ig(ff)l _< r - (1-1~1) 2 1-1ffl 

Thus, (i) is proved. 

Remark. Note that (iii) implies a better estimate of O(a) near T than the one 
we obtained in the above proof of (i). However, (i) is needed to establish (iii). 
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Finally, let us establish the remaining inequality in (iii) by showing that ~ 0  
in D. For that we need the key integration formula (1.6) proved in [DKSS2]. Note 
that in fact (1.6) holds for an arbitrary, say C2-smooth, function s, not merely ]f]P 
(cf. [DKSS2]). Let us rewrite (1.6) as follows (seC2(D)): 

(2.s) fD(lG, -l)sdA= /D(AO)sdA= /D A2O(z)r(z,r dAo 
Now applying Green's formula to rD, 0 < r < l ,  using (i) and (ii) of Theorem 2 and 
letting r--~l, we obtain from (2.8): 

/D(A~)sdA= liInl /rD(A~) sdA 

(2.9) = l i m ~ f  ~AsdA+~w[ Os O(~]d~ } 
r"~lL'rD [(1) ~ -- 8-~n J =/D ~AsdA" 

Hence from (2.8), (2.9), it follows that ~)(;)--fD A'~(z)F(z,r annihilates 
As(~), for all sEC02(R2). But those functions (restricted to D) are obviously dense 
in C(D). Thus, 

(2.10) ~(~) = / D  A2~(z)F(z' ~) dA~ >_ O. 

The proof of the Theorem is now complete. 

3. S o m e  c o r o l l a r i e s  a n d  o p e n  q u e s t i o n s  

As above, let IcAp be an invariant subspace, and G (=Gx), (~ (=~x) be 
'~d by (1.1) and (1.2). We can now (cf. (2.10)) rewrite (1.6) in the form 

(3.1) IIG fll~ = HflIPp-t-/D (~A(Ifl p) dA, 

where f is a polynomial. As in [H1] for p=2, define the space .40 (=A~ 'p) as the 
closure of the polynomials with respect to the norm 

\l/p 
(3.2) Hf[[Ao: ( [ [ fH~,+/D ~A([f[P)dA) , 

for l<p<c~ .  (That (3.2) is in fact a norm on ,40 follows at once from (3.1).) For 
p: 0 < p <  1, we define Ao similarly as the closure of polynomials with respect to the 
metric 

(3.3) d(f, g) : III--glIAP + f ~A(If--glP) dd. 
JD 
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Furthermore, define the space 

A(= ALP) := { f c AP : /D(FA(IflP)dA < oc }. 

Then, (3.1) yields the following Corollary (for p=2,  cf. [H1, Cor. 4.2]). 

C o r o l l a r y  1. Multiplication by G is an isometry of .40 into A p. 

In view of Thm. 2(iii), 

(3.4) 1 
/D ~DA(IflP)dA ~- 4 /D (1-1z[2)A(Iflp)dA 

for all polynomials f .  As is well-known, the right-hand side of (3.4) is equivalent 
to the HP-norm in HP/C. (To see this, it suffices to note that  (1-1zl2)~log(1/Izl) 
near T, replace �88 2) by const-log(1/Izl) in the right integral in (3.4), and 
apply Green's formula.) Thus, the right-hand side of (3.4) is finite for all f c H  p 
(i.e., HPCAo), and we have the following result. 

C o r o l l a r y  2. For any invariant subspace I c A  p, G1 is a bounded multiplier 
of liP(D) into A p. In particular, G=GI satisfies in D the estimate 

(3.5) It(z) I const (1 -Izl)  -l/p, 

i.e., G has more severe growth restrictions than an arbitrary AP-function f ,  which 
is only known to satisfy If(z)l <cons t (1- Iz l )  -2/p. 

Remark. The estimate (3.5), of course, also follows directly from the Assertion 
in the proof of Thin. 2. 

Fix an AP-inner function G and let I(G) denote the AP-closure of the polyno- 
mial multiples of G. Clearly, I(G)cI .  

C o r o l l a r y  3. I(G)=G.Jto (i.e., I(G) is an (isometric) image of Ao in A p 
under multiplication by G), and G--Gx(G), i.e., it is the unique extremal function 
for I(G) with respect to (1.1). 

Proof. Let gEI(G), i.e., there is a sequence of polynomials {fn} such that 

Gfn Apg. Then {fn} is a Cauchy sequence in A0 (cf. (3.1) or (3.2)), and hence 

fn A%f. But fn also converges to g/G pointwise in D. Hence, f=g/G and ]If[[A0= 

][Gf[[np=[[g[[A,. So, I(G)cGAo. Conversely, if {f~} are polynomials and f~ ~t0)f, 
then {Gfn} is a Cauchy sequence in A p and {Gf~} converges pointwise to Gf. 
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A p 
Hence, Gf~ ~ G f ,  so G..A0 C I(G). To show that  G is extremal, simply note that  
for any polynomial q we have, in view of (3.1), IIGqllp> Ilqllp. Hence, 

I(Gq)(O)l < < G(0)  - -  IG(0 l I q ( 0 ) l  
NGqllp - 

(Iqlp is a subharmonic function!). Moreover, since Ilqllp=lIGq/GIIp<_ IIGqllp, for all 
polynomials q, G is a contractive divisor for I(G), and therefore is the unique 
solution of the extremal problem (1.1). Indeed, suppose H is another solution. 
Then, 

g(0)  _< U p 
1 = 7 (0 )  -G ~- HHIIP = 1. 

Since IH/GI p is subharmonic in D it is a constant, and hence, H=G. 

One of the most celebrated results in the Hardy space theory is Beurling's 
Theorem on invariant subspaces. In the present context it can be stated as fol- 
lows: every invariant subspace I c H  p has the form I=I(G),  where G is a solution 
of the extremal problem (1.1) (posed, of course, with respect to the HP-metric). 
Unfortunately, the direct analogue of Beurling's Theorem cannot hold in A p for 
the following reason. Every invariant subspace I of type I=I(G) has the so- 
called codimension 1 property: dim( I / z I )= l (cf. [R]). (Indeed, if I g F = l i m n  G f,~, 
where fn are polynomials, then fn(0) converges to some complex number c and 
f = l i m n G f , = l i m n _ ~  G[fn-fn(O)]+cG, where G[fn-fn(O)]EzI.) On the other 
hand, in [BFP] it was shown that  for any integer n > 0  there exists an invariant 
subspace I c A  2, such that  dim(I /z I )=n.  Recently, much simpler, constructive ex- 
amples of such subspaces have been given by Hedenmalm [H2]. Nevertheless, for 
zero-invariant subspaces there is a good chance that  a Beurling-type theorem does 
hold. 

Co ro l l a ry  4. Let I= { f E AB : f ( Q )=O, j =  I, ...}, where {~j} i8 a zero-set of an 
AP-function and G=GI be the corresponding extremal function. Then, I=G..A. 

Proof. Let gEI. It follows from results in [DKSS1], [DKSS2] that g=Gh, hc  
A p. As before, denote by Gn the extremal function (1.1) for the "cut-off" subspace 

I~:={ fcAP: f (~ j )=O, j=l ,  ...,n}. Let f~=g/Gn. We know that  f nEA p, G~ AP~G, 
and hence, f~--~h pointwise in D. Moreover, since all Gn's are analytic across 
0D ([DKSS1], [DKSS2]), the corresponding functions ~I) n defined by (1.3) are real 
analytic across 0D, and hence (3.1), with Gn, ~n, holds for all fEAP! So, 

(3.6) Ilgl[.~,, = IIGnfnll.~,, = IIf,~ll.~, + f  CnA(IfnF)dA.  
JD 
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Now, since IGnl p -  1--+ IGI p -  1 in LI(D),  ~,~ (defined in accordance with (1.3))tend 
to �9 in L 1 (D). (In fact, looking over the proof of Thm. 2 in Section 2, it is easy to 
see that  ~,~--*~ uniformly in D.) Therefore, we can assume that  ~I)n----~(]~ pointwise 
in D. Thus, since fn--~h uniformly on compact subsets in D, applying Fatou's 
lemma to (3.6) we obtain 

/D ~A('h'P) dA < Iim /D ~nA('fn'P) dA <- "g"~, 

i.e., hEA. 

The following question then, is crucial. 

Question. Is Ao=A? 

If so, the Corollaries 3 and 4 imply the following. 

C o n j e c t u r e .  If  I c A  p is an invariant subspaee defined by zeros, then I=I(G),  
where G=GI is the solution of (1.1). 

The technical problem of extending the p-analogue of (1.5) to all f e A p is of fun- 
damental importance: for I being a zero subspace, this has been done in [DKSS1], 
[DKSS2]. For arbitrary invariant subspaces, the question is still open. It is not 
hard to see that  (1.5) can easily be violated if we allow f to be any holomorphic 
function in D. Indeed, let I be the closed subspace in, say, A 2, generated by the 
polynomial multiples of the inner function ~ = e x p ( ( z +  1) / (z -1) ) .  Then, it is easy 
to show (cf. [Sh]) that  I is a proper subspace, and, moreover, all f c I  decay expo- 
nentially along the radius. Thus, in particular, this holds for G=GI, the extremal 
function in (1.1). Hence, G - I ~ A  2 since it is well-known that  the Ae-functions 
satisfy the (trivial) growth estimate ]f(z)]<HfH2(1-N) -1. On the other hand, 
II GG- 1112 = II 1112 = ~  < II G-  1112 = cx~. Nevertheless, the following Corollary shows that  
a counterexample to (1.5), if it exists, may be quite difficult to construct. Let I C A p, 
G=GI, be as above. 

C o r o l l a r y  5. (1.5) holds for all f E N  + . 

The Corollary follows at once from (3.1), the monotone convergence theorem, 
and the following simple (but important) Proposition due to V. I. Smirnov [S]. (For 
the definition and properties of the Smirnov class N +, see, e.g., [D].) 

P r o p o s i t i o n .  For every f c N +, there exists a sequence orris-functions {f~} 
such that fn--* f pointwise in D, while Ifnl T Ifl" Conversely, if f is a pointwise limit 
of bounded analytic functions with increasing moduli, then f C N + . 

For the reader's convenience we include a proof. 
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Proof of the Proposition. Since f cN  +, it can be written as 

(1 e O+z log + If(e%lde) f(z) = h ( z ) e x P \ 2 r  c Jo eie----~ 

where Ihl_<l in D. Set 

f n ( z ) = h ( z ) e x p ( l  ~2~ eiO+Z[log+ ,f(ei~ dO) 
e i0 - - z  

where 

[g in :={  g, g<n 
n, g>n. 

is the truncated function, and the assertion follows. 

To prove the converse, first note that  if f = l i m  fn, f~EH ~, where convergence 
is pointwise and {Ifn(z)l } increases with n for each z, then f=f~/ ( fn / f )  is a 
quotient of two bounded functions, and hence belongs to the Nevanlinna class N. 
Let f=S1F/S2 be a canonical factorization of f,  where $1, $2 are inner functions 
(in the HP-sense, of course) and F is an outer function. Since Ifl=lFI almost 
everywhere on W and If(eie)l=limr_.l If(re~e)l for almost all 0 while If(rei~ 
Ifn(reie)l for all n, it follows that  Ifl>lfnl almost everywhere on T for all n. Let 
Fn denote the outer part of f~. Then, IfI=IFI>_IFnl almost everywhere on T for 
all n. Now for a fixed z=re ie in D we have ( f ~ E H ~ ! ) :  

log I f(reie)l = l i m  log I f~ ( rei~ -< l i m  log I F~ (re ~e)l 

1 f2~  l _ r  2 
= lim ~ Jo l+r2_2rcos(O_~ ) log ]F,~(ei~)l dp 

1 fo 2~ 1-r  2 
= 2-7 l + r  e - 2 r  cos(0-W) log IF(e*~)l d~ = log ]F(re'~ 

Hence, If] < IFI in D and so IS1/$21G 1. Thus, $1/$2 E g ~, and therefore S2-const .  
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