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An elementary approach to
Carleman-type resolvent estimates

Nikolai Nikolski

Abstract. A new elementary approach to uniform resolvent estimates of the Carleman-type
is developed. Schatten-von Neumann’s &, perturbations of self-adjoint and unitary operators are
considered. Examples of typical growth are provided.

1. Introduction. Scope of applications

We are interested in Carleman-type resolvent estimations for a linear operator
on a Hilbert space H. Originally, T. Carleman [1] proved that for a Volterra operator
A (i.e. a compact operator with zero spectrum o(A)={0}) belonging to the Hilbert—
Schmidt class &5 the resolvent Ry (A)= (A —A)~! satisfies the following inequality

IRBA (A S et A"  exp(ealAl™2),  Xe C\{0}

where ¢;,cy are constants depending on the norm ||Aljz=||A|le, only. Consider-
ably later, L. Sakhnovich [12] obtained a similar estimation for operators with real
spectrum and a Hilbert-Schmidt imaginary part Im A=(A—A*)/2:

|RA(A)|| < e1]ImA| "L exp(cz2|Im A|7?), A€C\R

with ¢; depending on ||A| and c¢; depending on ||Im A||g,. These results were
then generalized to the case Im A€ &), 1<p<oo, (Schatten—von Neumann ideals of
compact operators) replacing |Im A|~2 by |Im A\|~P~1 (J. Schwartz, [13]) and finally
to the case when Im A belongs to the Matsaev ideal &, (V. Matsaev, [7]). For a
brief report on other generalizations until 1974 see [8, Sect. 1, 2.1.]

The main applications of resolvent estimates are, of course, within spectral the-
ory, both pure and applied. First, they are indispensable for proving completeness
theorems (it means completeness of eigenvectors and root vectors of an operator;
T. Carleman, M. Keldysh, V. Lidsky, V. Matsaev, and others) and for existence of
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invariant subspaces and their use to decompose an operator into an integral with re-
spect to a chain of its invariant subspaces (J. Wermer, L. Sakhnovich, Yu. Lyubich,
V. Matsaev, J. Schwartz, I. Gohberg, M. Krein, J. Ringrose and others). Finally,
resolvent estimates are important for semi-group theory (calculi, tauberian theo-
rems, ergodic theorems, and so on), for the harmonic analysis-synthesis problem
(recall the Carleman-Domar transform method), and for many other interesting
fields. For some of such applications see {2}, [4], [5], [6], [7], [8].

However, possible applications of resolvent estimates are not the subject of this
paper. We present here a simple method to get the estimates themselves.

The paper is organized as follows. Section 2 explains the main ideas of the
approach: the use of finite section approximation and a rank one majorant for
triangular matrices. Sections 3-5 deal with technical realizations of this scheme
and Section 6 contains the main results, Theorems 6.3 and 6.4. In Section 7 we
discuss the sharpness of the estimates obtained. It should be stressed that the
results of Theorems 6.3 and 6.4 are more or less well known; the novelty (and the
subject of this communication) is our method of proof.

The contents of the paper was reported to the conference “Journées de théorie
des opérateurs” (Luminy, France, 1993), [10].

The author is indebted to the referee for a careful reading and helpful comments
on the manuscript.

2. Steps towards an estimate
2.1. Finite section approximation
Take a sequence of orthogonal projections {P,}n>1 tending to the identity,

P,x—x,Vze H, and such that P, <P, and rank P,=n, n>1, and put

A,=P,AP,, n>1.

2.2. Preparing the resolvent

Given a finite rank operator A,, we fix a Schur basis (that is an orthonormal
basis of P, H making the matrix of A, lower triangular: An:{ag’)}, ag?):O for
j>t) and put

B,=A,—diag(iIm A,)=D,+E,
where diag(X) stands for the diagonal (operator) of X with respect to the chosen

basis and
D, =diag(Re Ay).



An elementary approach to Carleman-type resolvent estimates 181
Then Ry (B,)=(I-C.) 1 Rx(D,) where C,,=R(D,)E,. This implies that

IBABI < 5 IT-C) 7, AeC\R

2.3. Rank one majorant

For the lower triangular operator C2= {c(")} there exist two vectors p,qcC™
such that

lcgg)l <pigj, J<i

and [|p||=llgll=]Cxll-
Passing to a continuous parameter we put

p(t) / v)f(y)d

on the space L?(0,n) where p=35{p;}, ¢g=;j{¢:} and jz stands for the function
jx(t)=zp Hk-1<t<k, 1<k<n, zeC™.
We get

II-C2)~ 2l < UI-Q)~jll.

2.4. Using an Euler formula

The standard Euler formula for first order linear differential equations implies
€T
(=@ =1+ [ ha,s)f(s)ds
0

where k(z, s)=p(x)q(s) exp([;” p(t)q(t) dt).

2.5. Summing up

The previous steps lead directly to the desired estimate for | Bx(A)|| in the case
where Im Ae&,. The case Im A€ &, p#2, requires a bit more attention.
And now, let us realize the sketched steps.
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3. Finite rank approximation: spectral convergence
3.1. Remarks on spectral continuity

In order to apply the method sketched in Sect. 2 we need a kind of spectral
continuity: having lim,, A,,= A (in some sense) we want lim,, ¢(A,)=c(A4) (in some
sense) where, as above, 0(A) stands for the spectrum of an operator A.

As is well known the spectrum is not an upper semicontinuous function even
for norm convergence, that is, in general, the inclusion ¢(4)Clim, o(A,) fails to
be true even for lim, |4, — A||=0. Probably the simplest example is given by the
operators Anf=e’f(t)—(1—1/n)f(~1) on the space L2(—x,7); here o(4,)=T
(the unit circle, T={¢€C:|{|=1}) for all n=1,2,... but the limit lim, 4A,=4 is
the orthogonal sum of the unilateral shift and its adjoint, and hence o(A)=clos D,
where D stands for the open unit disc, D={¢eC:|¢|<1}.

On the other hand, the spectrum is lower semicontinuous with respect to norm
convergence (see [6]): if (on a Banach space) one has lim, || A, —A||=0 the inclu-
sion lim,, 0(A4,)Ca(A) follows (indeed, if A\¢o(A) all operators pul — A, =(ul — A) x
(I+R,(A)(A-A,)) are invertible for n large enough and y close enough to A be-
cause of ||Ry(A)(A—An)||<[|Ru(A)] | A~ An||<const | A— Ay | <1).

However, the same lower semicontinuity fails for weaker convergences, for in-
stance for the strong (pointwise) operator convergence. (Example: A,=A,(-,by)byn
where {b,} stands for an orthonormal sequence in a Hilbert space and A,€D
(an arbitrary sequence); then obviously, lim, ||4,z|/= 0 for every z, and o(A,)=
{0}U{A.}; hence, the set lim  o(Ay,), in general, is not contained in o(A)= {0}.)

We need a kind of lower semicontinuity property in the spirit of perturbation
theory: imposing additional requirements on the resolvents of the leading operators
T,, and supposing A,=T,, + K, to be “small” perturbations of T},, one can guarantee
the desired lower semicontinuity.

Now, we carry out a version of such a perturbed semicontinuity sufficient for
our purposes (see Sect. 4).

Notation. For a Banach space X, L(X) stands for the algebra of linear bounded
operators on X; for T€ L(X), T means the adjoint operator, T* € L(X*}, and G
stands for the ideal of all compact operators on X.

3.2. Lemma. Let X be a reflexive Banach space, K€By, TEL(X) and A=
T+K. Suppose also that T,€ L(X), K,,€6 and Apn=T,+K, (n=1,2,...) have
the following properties:

(1) lim | Kn—K]=0,

(2) im, T f= T*f, VfeX* (strong operator convergence),
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(3) there exists a closed set QCC such that o(A)CQ and sup,, | RA(Ty)] <oo
whenever A€ C\(2.
Then, the spectra o(Ay) converge uniformly to Q, i.e. Ye>0 one has 0(A,)CN+eD
for n>n(e).

Proof. Let £>0 and suppose there exist infinitely many n’s and A,’s such that
An€0(4n), ApgQ+eD.

Since o(T,,)C (see condition (3)) the Fredholm—Riesz theory implies that the
difference o(An)\Q consists of eigenvalues of A,. Let z,€X, ||z,||=1 such that

(Tp+ Kn—I)zy =O.

If necessary, by passing to a subsequence, one can assume that the sequence
{z,} converges weakly to a limit z€X and {\,} converges to a A€C. Hence, we
get consecutively

IiTILn | Kz, —Kz| =0, liTan |Krnzn—Kz||=0 and li7rln | Tnzn+ Kz —Azy| =0.
On the other hand, the sequence {T},z,} converges weakly to Tx:
|(Tnzn—Tz, )l <|(Ta—T)zn, HI+|(T(@n—2), N < NT3f =T fll+1(@n—2, T f)]
and the last two terms tend to zero. So,
Az—de=Tz+Kzx—-dz= liTILn(Tnxn—l-Kx—)\xn) =0 (weak limit).

Using (3) and the fact that A¢Q we get =0, and hence lim,, || Kz, ||=0 and
lim,, “ (Tn “’\I)wn “ =0.

Of course, this contradicts condition (3): 1=||z,||< |RA(T)|| ||(Tn—AD)zn || <
const ||(T, — Az, || —0.

This finishes the proof. [

3.3. Corollary. Let T, T,, be self-adjoint operators on a Hilbert space (T, =
T,) and K, K, €8y such that lim, | K,—K| =0, lim, T,z=Tz, Yz (strong oper-
ator convergence). If o(T+K)CR, the spectra o(T,,+K,) converge uniformly to
the real line R.

Indeed, we put Q=R in the lemma and use the obvious observation that
|RA(T)|<|Im A7t for AeC\R. O
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3.4. Corollary. LetT be a self-adjoint operator on a Hilbert space H, K€ &,
and P, be orthogonal projections such that P, <P,y1, rank P,=n and lim, P,z=
x, Yz (norm convergence). Putting T,=P,TP,, K,=P,KP,, A,=T,+K, and
A=T+K and supposing 0(A)CR we conclude that the spectra o(A,) converge uni-
formly to the real line R.

3.5. Remarks. The resolvent convergence lim,, Ry(A,)=Rx(A) (say, with re-
spect to pointwise (or even weak operator) convergence) is a separate problem. For
instance, under the hypotheses of Lemma 3.2, the formula

R)\(An) = (I—R)\(Tn)Kn)_lR)\(Tn)

reduces the question to a convergence of the resolvents Ry(T,), n=1,2,.... The
latter, in general, fails to be true: for example, if T}, are defined on the usual {2
space by the equations Tfx=T7(xo, Z1, %3, ...)=(Tn, Lo, L1, -+ ,Tn—1,Tn+t1,..-) (and

$0 are unitary operators) we have lim,, || T;¥z — Sx||=0 where S is the unilateral shift
(Sz=(0,z9,%1,...)); hence, T=5* and so the sequence {7;'} does not converge
because T is not invertible.

However, if we suppose not only strong operator convergence lim, T)= T*
but also lim, T,= T (and, as in the lemma, the boundedness sup, ||Rx(Th)| <
o0) we can claim that \[—T is invertible and lim, R\(T,)=Rx(T) (and hence
the same for Ry(A,), see the above formula for Rx(A,)). Indeed, the sequence
{RA(T)}CL({X), being bounded on a reflexive Banach space, has a weak limit
point, say L; and so the formula (Rx(T,)z, M —T,)*f)=(z, f) and the strong
convergence lim,, T*=T" show that (Lz, (A\I-T,)*f)=(=z, f) for all ze X, feX*,
that is L(AI—T)=I and A T is left invertible. In the same way we can see that
T is right invertible. Now, the convergence is obvious: lim, (Rx(T,)—Bx(T))z=
limy, Ry (Tp)(Ta—T)RA(T)z=O0.

In particular, the resolvent convergence lim,, Rx(A4,)=Rx(A) takes place under
the hypotheses of Corollaries 3.3 and 3.4.

4. Preparing the resolvent

4.1. Using a Schur basis

We are dealing with the situation described in Corollary 3.4. Let us consider the
restrictions T,,|m,,, Kn|n, (where H, =P, H stands for the range of the projection
P,) and keep the same notation T, K, for these operators (they differ from the
previous T, K, by zero operators on the orthogonal complement H). Let £=
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{er}}7_, be an orthonormal basis of H,, such that the matrix of A, =T+ K,, {a(")}

is lower triangular: a( ™) =0 for j>i.

Given an orthonormal basis £ and an operator, say W, consider the diagonal
part of W, i.e. an operator diagW with the matrix §;;(We;,e;), 6;; stands for
the Kronecker 6. The boundedness of diag W is obvious as well as the inequality
|| diag W||< |[W|l. Moreover, if £ is a Schur basis of W (on a finite dimensional
space) the diagonal of W consists of eigenvalues of W and so we get the following
equivalent form of Corollary 3.4.

4.2. Lemma. In the notation and under the hypotheses of Corollary 3.4 we
have

lim || Im(diag A,,)|| =0.
4.3. Corollary. Let B,=A,—ilm(diag A,,), n>1. Then
lim B,z = Az, x€H,
and B,=D,+E,, where D,=diag B, =Re(diag A,,) and E, has a strictly lower
triangular matriz (with respect to the same Schur basis). Moreover,
| Tm Bnle, = | Im Ep[le, =27 V2| Enlle.-
Indeed, Im B, =Im(D,,+ E,)=Im E,,=(E,,—E})/2i and since E, is strictly
lower triangular we get
I m B, |5, =272 Ba— By lIs, =27 |1 Enll&,-
The limit formula is an obvious consequence of Lemma 4.2. O
4.4. Corollary. For the above defined operators By, one has
Rx(Bn)= (I-Rx(D,)E,) 'R\(D,), A€C\R
and so
IRA(Ba)ll S 1(T—=Ra(Dn)En) | [ Im A ™}, A€ C\R.
This is a standard manipulation with the resolvent of a perturbation:
(AI=B,) ' =(M=Dp—E,) ' =((A\I-Dy)(I-Rx(D,)E,))!
= (I-Rx(Dy)E,) ' R\(Dy),

for \eC\R. 0O

Resolvent estimates for &,-perturbations require some more conditions on the
diagonal part of the operator under consideration. The following is a well-known
fact (for which we are at a loss to find an easy reference and shall provide it with
a short proof). For a definition and properties of symmetrically normed operator
ideals we refer to [4].
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4.5. Lemma. Let 6 be a symmetrically normed operator ideal and WeG.
Then, diagWe6 and
|diagWlle <[Wle-

Proof. Given an orthonormal basis B={b,,} define a family of unitary operators
as follows: Uib,=€""tb,,, 0<t<2m. Then the integral

1 27
J=— / UWU, dt
2 0

is weakly convergent (in L(H), in the Riemann sense) and its value is precisely
diag W since

1 2w
(kaabj): ({_ Ut*WUt dt}bk,bj)
2w Jo
1 % 1
=5 | Orwubbde= g [t b ae
=5kj(ka,bj):((diagW)bk,bj)

for all k, j. Moreover, it is clear that the Riemann sums of J are uniformly bounded
in G-norm with a bound ||W|g (because of |[UfWU;||g=||W| s for all t). The
lemma follows. [0

5. Rank one majorant
5.1. The operator C,,
Defining an operator C,, by the following formula
Cp,=Ryx(D,)E,
and using Corollary 4.4 we reduce the problem to an estimate of || (I —C,)~||. Asto
the latter, it can be majorized using a pointwise matrix majorant for the square C2.

5.2. Lemma. Let C, be a strictly lower triangular nxn matriz and {sg;} the
matriz of the square C2. There exist two vectors p,q€C™ such that

|skj] <prg; for j<k and |lpll=llg]=(Crlls,-

Proof. Let {c;;} be the matrix of C,, ¢;;=0 for j>i. One has

k-1
Skj = Z CriCij, 1<j<k—1
i=j41
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and hence

k—1 12, n 1/2
|skj| < (ZI%F) ( Z |Cij|2> =! Prq;
i=1

i=j+1
n n

lpl* =2 _pk=ICulle,: lall*=3_aj=IICulls,. O
k=1 j=1

In the next proposition we write |z|={|zx|}7_; for a vector x={zx}}_,€C"
and |z|<|y| if |zx|<|yg], 1<k<n, for z,yeC™.

5.3. Corollary. Let anz{zf;ll P45 },_,, TEC™. Then
|C%* 2| < QF|x| for allz€C™ and k>1,

> Ca|| <Y Qklal

k>0 k>0
Indeed, the first inequality follows from the lemma and a straightforward in-
duction, the second one is a consequence of the first. [

and hence
<

, zeC".

5.4. Passing to a continuous parameter

To estimate the resolvent (I—Q,) ™! it is useful to pass to a continuous param-
eter and then apply an elementary formula from differential equations. To this end
we use a step function isometric imbedding of C™ into L?(0,n) putting

jzt)=z; fori—-1<t<i(1<i<n), x={z;}€C".
5.5. Lemma. Let {p;} and {¢;} be the vectors of C" defined in Lemma 5.2
and let p=j{p:}, ¢=j{a;} and
¢
Qf)=p() [ alw)f@du, te(.n); feL*0.n)

Then
1(iQEz)(t)| < (QF|jz))(t), te(0,n); z€C™; k>0.

Proof. Clearly, it is enough to check the inequality for k=1 and then use an
induction on k. We have, for a vector x€C" and for i—1<t <4,

S paa|=[p0) [ o)) du
=1 0

<p(t) /0 o(w)|jz|(u) du= (Qljz])(®). O

7Qna(t)| =
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5.6. Corollary. For a strictly lower triangular nxn matriz C,, we have
IZ-CH < IT-Q)~ "l

where Q) stands for the operator defined in Lemma 5.5.

Indeed, by Corollary 5.3 and Lemma 5.5 we have
I(T=C2)~ 2l < |(T=Qn) 2l < I (T-Q) ™Yz

for every x€ C"; moreover, ||z||=|jz|. O

6. An Euler formula and completion of the estimates

6.1. Lemma. Let QQ be the operator defined in Lemma 5.5. Then, for every
geL?(0,n), we have

t

(T-Q) " ) () =g(t) + / k(tu)g(u) du, te (0,n)

where
t

k(t, u) = p(t)g(u) exp ( /

for O<u<t (and k(t,u)=0 for u>t).

a(s)p(s) ds

Proof. The equation (I-Q) lg=f is equivalent to p~'Qf=p~'(f—g) (one
can suppose without loss of generality that p(¢) is always greater than 0) and then
(using (p~1Qf)(0)=0 and (p~1Qf)' =qf, at least for smooth functions g, which is
enough) to a linear differential equation with respect to G=p~1(f—g), namely to

paG+qg=G', G(0)=0.

The well-known Euler formula for the solution,

G(t)= /Ot g(u)g(u) exp (/ut q(s)p(s) ds) du,

finishes the proof. O

Now, we are in a position to derive our main lemma.
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6.2. Lemma. Let C, be a strictly lower triangular nxn matriz and m an
integer, m>1. Then,

2m—1

I(r-Cay < (3 1K) G+ IRl ),

k=0

Proof. Starting from the formula

2m—1

-t =( > cx)u-camy

we will consecutively apply Lemma 5.2, Corollary 5.3 and Lemma 5.5 for the matrix
C™ instead of C,,. Then, we get an operator @ (constructed in Lemma 5.5, but for
C™ instead of Cy,), and Corollary 5.6 and Lemma 6.1 imply

II=CRm < IT-@) M <1+ (//S Ik (t, )2 dtdu)1/2

where S stands for the square S=(0,n)x (0,n). Since
ke, 0P < pOPlaPesp (2 [ plolate)ds)
<Pl P es( [ 07+ as)
(see Lemma 5.2)

< Ip(t)[2]q(u) eI 1z
we have , .
IT-Q)~ | <1+]lp|l llglle"=1z < 1+ ||jCpr|Fel 1.
The lemma follows. 0O

Deriving the main inequality we distinguish the case of an operator A with
Im A€ 8;,; the general case Im A€ &, will be derived from this one.

6.3. Theorem. Let A be o Hilbert space operator satisfying Im A€ S, and
o(A)CR. Then,

1 23/2|| Im A|| 8)| Im A2 2 2
RA(A)| < 1+ 2)(1+—2>e8”1m-““2/“m”.
1Bl |Im)\|( | Im A| |Im)\|2
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Proof. The matrices A,, B,, C,, D,, E, are the same as in Section 4.1,
Corollary 4.3 and Section 5.1. We have

|Crllz < HRA(DR)| | Enllz < | Tm A| 7Y En 2
and (see Corollary 4.3)
|E.I3=2||Im E,||2 =2|| Im 4, —Im(diag A,)||2 = 2|| Im A, —diag(Im 4, )||?
(see Lemma 4.5)

<8||Im A, |3 < 8| Im A|3.
Let us combine these estimates with Lemma 6.2 for m=1. Since
1+Cn el 15 < 14-8(Tm 3) 72| Tm Ay 350 m Al
we get using Corollaries 5.6 and 4.4 with Lemma 6.2 {for m=1)

|RA(Bo) <[ Im A ~H[(T=Co) ™|
<|Tm AT (LGl (L+( G131 1)
< Tm |7} (1 Tm A 7125/ T Al2) (14 Ca e 12)

<|Im A 71 (14| Im A 71232 Im Al|2) (1+8(Im A)~2|| Im A[)2)
x B8AmA) 72 Im 4|7

The desired inequality follows from passing to the limit and using Corollary 4.3

and Remark 3.5. O

Now, the general case Im A€ &, follows in a more or less standard way (for
instance, see [2], [4]).

6.4. Theorem. Let A be a Hilbert space operator satisfying Im A€ &, 0<p<
oo and 0(A)CR. Then,

IRACA] < [ Tm |7 (12| Im A~ || Tm Al )71 M (m 0727 AL
for AeC\R, where m is an integer such that 2m—2<p<2m and k, stands for
a constant satisfying kp=Fky/p—1) and k,<pe=?/3(log2)™! for p>2, M,=(2k,)*™.
For |Im A|~!||Im A||,>1 one has

| RA(A)|| < | Im A[ (14 2k, | Im A| 72| Tm A]|,)2PF3 . eMo! Im A7 7% Im Al
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Proof. We use the same notation as in the previous theorem.
Let m be an integer such that m—1< %pS m. Using a Hoélder-type inequality
for Gp-norms (see [4], [2]) we get ||C |2 <||C2 |l p/m <||CnllZ", and by Lemma 6.2

2m—1

I(T=Cu) < ( > Wn) (14 Cu2m-elon 3™,

Moreover, ||Cpll,<|Im A|~}||E,||, (here we use the famous Matsaev inequality for
quasi-nilpotent operators, with k,=Fk,/(,—1) and k,<pe=?/3(log2)~! for p>2; see

[4], 15])

<ky| Im A| 7| Im B, ||p = kp| Im A| 7| Im A,, —Im(diag A,,)||,
=ky|Im A7} Im A, —diag(Im A4,,)||,

(see Lemma 4.5)

< 2k, | Im A 7| Im Ay || < 2k, | Tm A 72| Im A .
Finally, we get

|RA(B)|| < T A 7HI(I-Cr) |
2m—1
§|Im)\|‘1( Z ncnn’“)(1+||cn||gm.encnui’")
k=0
< | Tm AT A+ Gl (L4 Cl2m) -l 1™
< l Im)\l—l(1+||cn||p)4m—1 .eMp(Im A) 72| ImA||?)m

< | Tm A| 7Y (14 2k, | Tm A1) Tm A}, ) 4™~ 1. gMp(m2) ™5 [ Im A

To finish the proof we refer again (as in the proof of Theorem 6.3) to Corol-
lary 4.3 and Remark 3.5. O

6.5. Remarks. The inequalities obtained (Theorems 6.3 and 6.4) depend con-
tinuously on Im A; in particular, if Im A=0 we get the standard estimate for the
resolvent of a self-adjoint operator ||[Ry(A)||<|Im A|~!. As is well known, the lat-
ter formally (i.e. without referring to the spectral theory) implies a stronger in-
equality | Rx(A)||<const(dist(),o(A)))~! with an absolute constant const (see, for
instance, [11]; in fact, for self-adjoint operators const=1); a similar transforma-
tion (i.e. deriving an estimate depending on dist(\, o(A)) only) is possible for the
estimates of Theorems 6.3 and 6.4.
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On the other hand, if we do not need an estimate depending on || Im A||, only,
we can simplify the expression inside brackets of the right hand side of Theorems 6.3
and 6.4 by replacing 2k, | Im A||, by 2||A|| (because of ||C,||< 2/ Tm ||| A]).

The last remark is about perturbations of unitary operators. The above ap-
proach does not work directly for operators B=U+C where U is unitary and C is
a “smooth” operator. However, in a partial case when T\o(B)#{ one can use the
Cayley transform. Namely, let, say, 1¢o(B); then the operator A=i(I+B)(I—B)™!
is well defined and bounded and we have

A-A*=i(I-B*)"((I-B")(I+B)+(I+B*)(I-B))(I-B)™
=2i(I-B*)"'(I-B*B)(I-B)~'.

Therefore, as is well known, the operator A is a perturbation of a self-adjoint
operator of the same class as B is of a unitary operator: In Ae& < (I-B*B)e&
where & stands for any symmetrically normed operator ideal; in particular, In A&
if C€&. Moreover, for z#1 we can write z=(A—i)(A+4)~1, A#—i and get

R.(B)=((A=i)(A+i) 1= B) L= ((A=i)(\+i) 1 —(A—iD)(A+i)~ )T
(A+iD)(A+i)(A=8) (A+4iI) — (A—iI)(A+i)) !

(A+iI)((A+1)/20) Rx(A).

And so, we have for |z—1|>6>0
[[B=(B)]| < const [[Rx(A)]|| < const (] Im A[)

where ¢ stands for the right hand side of the inequalities of Theorems 6.3 or 6.4,
and hence

|R.(B)|| < const -@(|1—|2|?| |1—2|~?) < const -p(const |1 —|z|]). O

7. Examples of resolvent growth
7.1. One point spectrum

Much more is known for the special case when o(A)={0}. Namely, if A is
a Volterra operator (i.e. A is compact and o(A)={0}) with the singular numbers
sn(A) satisfying s,(A4)=0(n"1/?), p>0, for n— oo the following Keldysh-Matsaev
estimate holds (see [4] for details)

|Ra(A)|| < const - exp(const /AP), e C\{0}.
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Of course, this is true for A€&,, o(A)={0}.

On the other hand, if one is interested in an estimate depending on a smooth-
ness condition for Im A (or Re A, or I—B*B) only, one has to restrict oneself to
the case p€(1, 00) because even the conditions rankIm A= 1,0(A)={0} does not
imply anything better than s,(4)=0(n"1) (and A€G,, p>1; see the operator J;
below); and therefore, in this case the Keldysh—-Matsaev estimate is available with
p=1 only (see again the operator J; below). This is a bit stronger than that which
we had with our approach. Moreover, the following example shows that this is the
best possible estimate.

Ezxample 1. Let J,, a>0 be the fractional integration operator on the space
L?(0,1) defined by the formula,

Juf(2) =T(a) ™" /Om(w—wa-lf(y)dy, 0<e<1

where I' stands for the Euler gamma-function.

It is well known that {J,, a>0} forms a semi-group, Jo+3=JnJ3, and o(Jy)=
{0}, a>0. Moreover, the singular numbers of J, satisfy power-like asymptotics
$n(Ja)~(mn) ™, n—oo (see, for example, [5, Appendix, Sect. 6]). As for the resol-
vent, we can compute it explicitly (for any A50):

Ra(Jo) =ATHI=ATNT) =D AT R =Y AT e = AT+ Vi

n>0 n>0

where Vi stands for a Volterra operator Vi f(z fo (z,y)f(y) dy with the ker-
nel K,
:Z)\_"—IF(na)_l(x—y)"a_l, O<y<u.

n>1

Hence, we have

IRA(a)| > [ Bx(Ja)tll2 2 |1 Ra(Ja) Ll = A7+ / / " K(o,y) dyde

1
=)\‘1+Z )\‘"_IF(na)_l/ (na) " lz™ dx
0

n>1

=271 +Z AT (na) 7 (ne) " H(na+1) !

n>1

= )\_1+Z AT I (na+2)"t = S(N).

n>1
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The latter expression is essentially the classical Mittag-Leffler functions
Eyp5(2)=3",50#"T'(na+B)~!, having well-known asymptotics at infinity (for in-
stance, see [3]). In particular,

|Rx(J)|| > const -A3/a+eed/)

for A—+0. In fact, to check the last inequality we do not need any theory: for
0<a<1 it is sufficient to choose an integer n>1 such that k—1< na+2< k (for ev-
ery k>3 there exists an n) and then use I'(k)>T'(na4-2) and A"~ > A\~ (k=38)/a=1
(0<A<1) which implies S(A)>const -A3/2e(/)"* with a suitable constant; for
a>1 one uses the fact that between na+2 and (n+1)a+2 there are no more
than [a]+1 integers and T'(na+2)<I'(k) for all of them; hence, one can majorize
S ks A¥/2T(k)"! by a product (a polynomial in A™! of degree <[a]+1)-S(\)
which implies the desired estimate.

7.2. Contractions or dissipative operators

This section is about contractions or dissipative operators (not necessarily with
one point spectrum) which are trace class perturbations of unitary, respectively self-
adjoint operators. Then much more is known (see [5], [14], [9]); for instance, if B is
a completely non-unitary contraction, I —B*Be€®&; and D\o(B)#0 one has

(1-1zDIIR-(B)|| < const|m(2)| ™}, z€D\o(B)

where m stands for a non-zero bounded analytic function in the disc D (i.e. for an
H®° function). In particular, ||R,(B)||<const-exp(1—|z|)~! and even ||R,(B)| <
const - exp(dist(z,0(B))) ! if 0(B)CT.

These bounds are attainable: for a given H* function m with |m(z)|<1 there
exists a contraction B with rank(I — B*B)=rank(I —BB*)=1 such that

(1=|zDIR=(B)[| < Im(2)| 7! < 1+2(1~[2])[|R:(B)ll, =2€D.
Ezample 2. Taking m(z)=exp(a(z+1)(2—1)71), a>0 we get an exponential
rate of growth (for 0<z<1, z—1) for a rank one perturbation of a unitary operator.

Similar facts hold for dissipative operators (i.e. Im A>0O) instead of contrac-
tions (with a substitution of Im A(1+[A|2)~! for 1—|z|, z€D).

7.3. Uniformly large resolvents

All previous examples are of “anisotropic” growth of the resolvent: that is when
approached from one side of the spectrum the resolvent is large, but if approached
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along other paths, the growth is moderate (for instance, ||Rx(A)||<|ImA|~! for
a dissipative operator A and Im A<0). Examples of a uniform growth near the
spectrum are not so sharp as anisotropic ones {or probably, uniform majorants
obtained in Sect. 6 are not so sharp). We start with smooth perturbations of
unitary operators.

Ezample 3. Let e, n€Z be the standard orthonormal basis of the space 1%(Z)
and B an operator on [2(Z) defined by the equations

Be, =pineny1, nEZL

where pt,=1+(n+1)"* for n>0, 0<a<1l, and p,=1/p_n_1 for n<0.

The operator B differs from the unitary shift S, Sep,=ep41, B=S{I+C) by
an operator SC satisfying s,(SC)=s,(C)~(n+1)"%, n—oo and hence SCeS,,
p>a~1. It is also clear that o(B)="T.

It is well known that B is unitarily equivalent to the same shift S=S, but
on the weighted space I?(Z, wp)={z={zs}:3,cz |Zn|?w2 <oco} where wo=1, wn=
HZ;& ux for n>0 and w,=w_,, for n<0 (the equivalence is realized by a diagonal
operator D: {z,}—{z,/w,}: DBD 1=8,). Therefore, for |z|<1,

- _;_ 2"8S;" Leg

IRL(B) = | Bo(S)l = I Ba(Sa)eoll = [

n>0
1/2
= ’ - Z Z"e_p_1l|= <Z |z|2"wi+1)
n>0 n>0
n
> sup 2w =sup 2 exp( (14+0(1) 3 (+1) )
n>0 n>0

k=0
=sup || exp((1—a) ™! (L+o(1))n' ).

And hence we get from an elementary extremum computation
IR-(B)l| =exp((1+0(1))a(1—a)~* (log(1/|2]))/**") > exp(c(a) (1—|2[)~/*+)
where c(a@)=1a(l—a)! and r(a)<|z|<1.

It is quite easy to see that the obtained growth rate is sharp:

IR (S)]| = H—Zz"s;"-l < Jelsa

n>0 n>0

=Y e wpgi= Y e "wnpat D 2 Mwna

n>0 n<2z(a) n>2z(a)
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(where z(a)=(1/log|z|~1)/* stands for the extremum point from the previous
estimate: ¢'(z(a))=0 where ¢(z)=(1—a) 12! —zlog|z|~1; below, we also use
that ¢'(z)<—k(a)log|z|~! for £>22(a) with a constant k(a)>0)

<2z(a) sup |2| " wp+1+ (Sup |z|"wn+1> Z e—mk(a) log|z| ™
n20 n20 m>0
< const -(1—|2]) /2 exp(3c(a)(1—|z|) "1/ +1).
The case when |z|>1 can be considered similarly (with the same result).

Exzample 4. In order to exhibit a smooth perturbation of a self-adjoint operator
with a uniformly large resolvent, we cannot use the standard Cayley transform of the
constructed operator B because in this case the transform produces an unbounded
operator. Instead, we use the Zhukovsky transform

A=}(B+B™")
of the operator B of Example 3. Since B=S(I+C) one has
A-A* =3 {SI+C—-(I+C*) ) +(I+0) ' —(I+C*))S™"}
(using (I+C)~t= I-C+C*(I+C)™)
=3{S(C+C* =C*(I+C*) ) +(-C-C*+C*(1+C)"H)S™'}.
Therefore, the operator Im A has the same smoothness class as C, and, for

instance, C€6, = Im A€,
Now, let A=1(z+27"); then,

M—-A=3(z2I-B+2z'I-B™")=1B"'(2I-B)(B-z"'I)
and hence
R)\(A) = _2Rz(B)R1/z(B)B :2(z_1_z)_l(Rl/z(B)_Rz(B))B'

Supposing |z|<1, replacing B by the unitarily equivalent operator S, (see
Example 3) and using that R.(Sa)=—2,502"Sa""", R1/2(8a)=2 502" 5%
we get

1 Rx(A)] = Hz(z-l—z)—l (Z SR+ z"S;"_l)Sa

n>0 n>0
=20z —2|™? Zz["ISZ >2)z7 -2} Zzl"lsgeo
nezZ ncZ 1*(Z,wn)
1/2
=2z 1 —z|7? (Z |z]2|n|w%) >2lz7 2|71 (sup |z||"lwn)
nez nez

> 2|zt~ 2|  exp(c(a) (1~ [2)) 7o)
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by the previous example.

On the other hand, the spectral mapping theorem shows that o(A4)=[-1,1],

and the formula Im A=Im $z(1—|2|~2) with the geometric meaning of the Zhukov-
sky function %(z—l—z‘l) (conformally mapping the disc D on C\[—1,1]) imply
that for |Re)|<1—6, 6>0 and |Im\|<const we have |ImA|>e(1—|z]) (and
|z=1—2|7!>c) with an ¢ depending on § and const. Hence, we obtain the following
lower estimate for ||Ry(A)|| (uniform in |Re A\|<1—-4):

10.

11.

12.

13.

l|RA(A)|| > exp(const -| Tm A|~/4+1),
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