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An elementary approach to 
Carleman-type resolvent estimates 

Nikolai Nikolski 

A b s t r a c t .  A new elementary approach to uniform resolvent estimates of the Carleman-type 
is developed. Schatten-von Neumann's ~p perturbations of self-adjoint and unitary operators are 
considered. Examples of typical growth are provided. 

1. I n t r o d u c t i o n .  Scope of app l i ca t ions  

We are interested in Carleman-type resolvent estimations for a linear operator 
on a Hilbert space H. Originally, T. Carleman [1] proved that  for a Volterra operator 
A (i.e. a compact operator with zero spectrum a(A)---{O}) belonging to the Hilbert- 
Schmidt class 62 the resolvent R~(A)= (AI -A)  -1 satisfies the following inequality 

[]R~(A)[] < Cl[~[ -1  exp(c2[/~[-2),  ,~ E C \ { 0 }  

where El, r are constants depending on the norm [[A]I2=][A[[~ 2 only. Consider- 
ably later, L. Sakhnovich [12] obtained a similar estimation for operators with real 
spectrum and a Hilbert-Schmidt imaginary part Im A= (A-A*)/2i 

IIR~(A)II < Cll ImA[ -1 exp(c2I Im),l-2), ~X �9 C\,R 

with Cl depending on []A[[ and c2 depending on [[ImA[[~ 2. These results were 
then generalized to the case Im A E | l_<p< c~, (Schatten-von Neumann ideals of 
compact operators) replacing [Im A[ -2 by ]ImA[ -p - I  (J. Schwartz, [13]) and finally 
to the case when ImA belongs to the Matsaev ideal | (V. Matsaev, [7]). For a 
brief report on other generalizations until 1974 see [8, Sect. 1, 2.1.] 

The main applications of resolvent estimates are, of course, within spectral the- 
ory, both pure and applied. First, they are indispensable for proving completeness 
theorems (it means completeness of eigenvectors and root vectors of an operator; 
T. Carleman, M. Keldysh, V. Lidsky, V. Matsaev, and others) and for existence of 
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invariant subspaces and their use to decompose an operator into an integral with re- 
spect to a chain of its invariant subspaces (J. Wermer, L. Sakhnovich, Yu. Lyubich, 
V. Matsaev, J. Schwartz, I. Gohberg, M. Krein, J. Ringrose and others). Finally, 
resolvent estimates are important for semi-group theory (calculi, tauberian theo- 
rems, ergodic theorems, and so on), for the harmonic analysis-synthesis problem 
(recall the Carleman-Domar transform method), and for many other interesting 
fields. For some of such applications see [21, [4], [5], [6], [7], [8]. 

However, possible applications of resolvent estimates are not the subject of this 
paper. We present here a simple method to get the estimates themselves. 

The paper is organized as follows. Section 2 explains the main ideas of the 
approach: the use of finite section approximation and a rank one majorant for 
triangular matrices. Sections 3-5 deal with technical realizations of this scheme 
and Section 6 contains the main results, Theorems 6.3 and 6.4. In Section 7 we 
discuss the sharpness of the estimates obtained. It should be stressed that the 
results of Theorems 6.3 and 6.4 are more or less well known; the novelty (and the 
subject of this communication) is our method of proof. 

The contents of the paper was reported to the conference "Journ~es de th@orie 
des op@rateurs" (Luminy, France, 1993), [10]. 

The author is indebted to the referee for a careful reading and helpful comments 
on the manuscript. 

2. Steps towards an est imate 

2.1. F i n i t e  section approximation 

Take a sequence of orthogonal projections (Pn}n>l tending to the identity, 
P,~x---~x, VxEH, and such that  Pn<P~+I and rankPn=n, n > l ,  and put 

Am = P~AP~, n > 1. 

2.2. Preparing the reso lvent  

Given a finite rank operator Am we fix a Schur basis (that is an orthonormal 
basis of PnH making the matrix of An lower triangular: _ _(n) An-{~r }, a~.)=O for 
j>i) and put 

B~ = An - diag (i Im Am) --- Dn + En 

where diag(X) stands for the diagonal (operator) of X with respect to the chosen 
basis and 

Dn = diag(Re An). 
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Then R~(Bn)=(I-Cn)-IR~(D~) where C~=R~(D,~)En. This implies that  

1 
HR;~(B~)H <_ V~-~II(I-Cn)-~II, ) ,eC\R. 

2.3. R a n k  one  m a j o r a n t  

For the lower triangular operator v n - L ~ i j  f there exist two vectors p, q EC n 
such that  

Ic~.)l<_piqj, j<_i 

and IIpll=llql[=llc,~ll. 
Passing to a continuous parameter  we put  

~0 ~ 
Qf(t) =p( t )  q(y)f(y) dy 

on the space L2(0, n) where P=j(Pi}, q=j(qi} and jx stands for the function 

We get 

jx(t)= xk i f k - l < t < k ,  l < k < n ,  x E C  ~. 

I](I-C2)-lxl] ~ I I ( Z - Q ) - l j x l l  . 

2.4. Us ing  a n  E u l e r  f o r m u l a  

The standard Euler formula for first order linear differential equations implies 

(ir_Q)-lf=f+ 

where k(x, s) ~-p(x)q(s) exp(f~ p(t)q( t) dr). 

2.5. S u m m i n g  up 

The previous steps lead directly to the desired estimate for lIRA(A)[[ in the case 
where Im A E @2. The case Im A C | p~2 ,  requires a bit more attention. 

And now~ let us realize the sketched steps. 
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3. F in i t e  r a n k  a p p r o x i m a t i o n :  spec t r a l  conve rgence  

3.1. R e m a r k s  on  spec t r a l  c o n t i n u i t y  

In order to apply the method sketched in Sect. 2 we need a kind of spectral 
continuity: having limn An = A (in some sense) we want limn a(An)=or(A) (in some 
sense) where, as above, a(A) stands for the spectrum of an operator A. 

As is well known the spectrum is not an upper semicontinuous function even 
for norm convergence, that  is, in general, the inclusion a(A)Climn a(An) fails to 
be true even for limn [JAn-All =0. Probably the simplest example is given by the 
operators Anf=eUf(t)-(1-1/n)f(-1)  on the space L2(-Ir,~r); here a(An)=W 
(the unit circle, T={~EC: I~ ]=I} )  for all n = l , 2 , . . ,  but the limit limnAn=A is 
the orthogonal sum of the unilateral shift and its adjoint, and hence a(A)=clos D, 
where D stands for the open unit disc, D={r 

On the other hand, the spectrum is lower semicontinuous with respect to norm 
convergence (see [6]): if (on a Banach space) one has limn IIAn-AII=O the inclu- 
sion limn a(dn)Ca(A) follows (indeed, if A~a(A) all operators pI-An=(pI-A)•  
(I+R,(A)(A-An)) are invertible for n large enough and it close enough to A be- 
cause of HR~(A)(A-An)[[ _< [[R~(A)H HA-An II _<const IIA-An II < 1). 

However, the same lower semieontinuity fails for weaker convergences, for in- 
stance for the strong (pointwise) operator convergence. (Example: An =An ( ' ,  bn)bn 
where {bn} stands for an orthonormal sequence in a Hilbert space and AnED 
(an arbitrary sequence); then obviously, limn I[Anxll= 0 for every x, and a (An)= 
{0}U{An}; hence, the set lim n a(An), in general, is not contained in a (A)=  {0}.) 

We need a kind of lower semicontinuity property in the spirit of perturbation 
theory: imposing additional requirements on the resolvents of the leading operators 
Tn and supposing An =Tn + Kn to be "small" perturbations of Tn, one can guarantee 
the desired lower semicontinuity. 

Now, we carry out a version of such a perturbed semicontinuity sufficient for 
our purposes (see Sect. 4). 

Notation. For a Banach space X, L(X) stands for the algebra of linear bounded 
operators on X; for TeL(X), T* means the adjoint operator, T* cL(X*), and |  
stands for the ideal of all compact operators on X. 

3.2. L e m m a .  Let X be a reflexive Banach space, KE| TcL(X) and A= 
T+K. Suppose also that TncL(X), KnE| and An=Tn+Kn (n= l ,2 , . . . )  have 
the following properties: 

(1) limn I I K n - g l l = 0 ,  
(2) limn T ' f=  T ' f ,  VfcX* (strong operator convergence), 



An elementary approach to Carleman-type resolvent estimates 183 

(3) there exists a closed set ~ c C  such that a ( A ) c ~  and sup~ IIRx(Tn)II<~ 
whenever AEC\~.  
Then, the spectra a(An) converge uniformly to ~, i.e. Vr one has a(An)Cf l+sD 
for n>n(~). 

Proof. Let ~>0 and suppose there exist infinitely many n's and An's such that  

An Ea(An), An g~ t+cD.  

Since a(Tn)Ca (see condition (3)) the Fredholm-Riesz theory implies that  the 
difference a(A,~)\~t consists of eigenvalues of An. Let x ~ e X ,  IlXnl[=l such that  

(T~+Kn-AnI)z~ = O. 

If necessary, by passing to a subsequence, one can assume that  the sequence 
{x~} converges weakly to a limit x E X  and {An} converges to a AGC. Hence, we 
get consecutively 

limllKx~-KxH=O, limlIKnx~--Kxll=O and limllT~x~+gx-Ax~ll=O. 
n n n 

On the other hand, the sequence {Tnxn) converges weakly to Tx: 

[(T~x~-Tx, f)] ~ I((T~-T)xn, f)l+](T(xn-X), f)[ _< [[T~f-T*fH+t(x~-x, T'f)[ 

and the last two terms tend to zero. So, 

A x - A x  = T x + K x - A x  = lim(Tnxn +Kx-AXn)  = O (weak limit). 
n 

Using (3) and the fact that  A ~  we get x=O, and hence lim~ HKxnH=O and 
lima II(Tn-AI)x~II =0. 

Of course, this contradicts condition (3): 1 = IIx,~ II <- IIR~ (T~)II II (T~ - AI)x~ II <- 
const II(Tn- AI)x~N )0. 

This finishes the proof. [] 

3.3. Coro l l a ry .  Let T, Tn be self-adjoint operators on a Hilbert space (T* = 
Tn) and K, KnE| such that lima IIKn-KII=O, l imnT~x=Tx, Vx (strong oper- 
ator convergence), g a(T+K)cR, the spectra a(T~ + K~) converge uniformly to 
the real line R.  

Indeed, we put ~ t=R in the lemma and use the obvious observation that  
HR~(Tn)II<IImA1-1 for A e C \ R .  [] 
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3.4. C o r o l l a r y .  Let T be a self-adjoint operator on a Hilbert space H, KC|  
and Pn be orthogonal projections such that Pn< Pn+l, rankPn=n and lima Pax= 
x, Vx (norm convergence). Putting Tn=PnTPn, Kn=PnKPn, An=TnTKn and 
A=T + K and supposing a ( A ) c R  we conclude that the spectra a(A~) converge uni- 
formly to the real line R. 

3.5. Remarks. The resolvent convergence limn R~(A~)=R~(A) (say, with re- 
spect to pointwise (or even weak operator) convergence) is a separate problem. For 
instance, under the hypotheses of Lemma 3.2, the formula 

R~(An) = (I-R~(T~)K~)-IR~(T~) 

reduces the question to a convergence of the resolvents R~(Tn), n = l ,  2, .... The 
latter, in general, fails to be true: for example, if Tn are defined on the usual 12 

space by the equations T*x=T*(xo, xl, x2, ...)=(Xn, x0, Xl, ... , x,~-l, xn+l, ...) (and 
so are unitary operators) we have lima NT~x-Sxll =0 where S is the unilateral shift 
(Sx=(O, xo,xl,...)); hence, T=S* and so the sequence {T~ -1} does not converge 
because T is not invertible. 

However, if we suppose not only strong operator convergence lima T * =  T* 
but also l im~Tn= T (and, as in the lemma, the boundedness supn IIR~(T~)II< 
c~) we can claim that A I - T  is invertible and limnR~(Tn):R)~(T) (and hence 
the same for R~(A~), see the above formula for R~(An)). Indeed, the sequence 
{R~(T~)}cL(X), being bounded on a reflexive Banach space, has a weak limit 
point, say L; and so the formula (R~(T~)x,(AI-Tn)*f)=(x,I)  and the strong 
convergence limn T * = T *  show that  (Lx, (AI -Tn)* f )=(x , f )  for all x e X ,  f a X * ,  
that  is L ( A I - T ) = I  and A I - T  is left invertible. In the same way we can see that  
T is right invertible. Now, the convergence is obvious: lim~(R~(Tn)-R~(T))x= 
lima R~(Tn)(Tn-T)R~(T)x=O. 

In particular, the resolvent convergence lima R~ (An)= R~ (A) takes place under 
the hypotheses of Corollaries 3.3 and 3.4. 

4. P r e p a r i n g  t h e  r e s o l v e n t  

4.1.  U s i n g  a Schur basis  

We are dealing with the situation described in Corollary 3.4. Let us consider the 
restrictions TnlH~, KnlH n (where Hn =PnH stands for the range of the projection 
Pn) and keep the same notation Tn, K~ for these operators (they differ from the 
previous Tn, Kn by zero operators on the orthogonal complement H~) .  Let $ =  
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e n { k}k=l be an orthonormal basis of H~ such that  the matrix of A~=T,~+K~, laij f (n) } 

is lower triangular: a ~ ) = 0  for j>i .  
Given an orthonormal basis s and an operator, say W, consider the diagonal 

part of W, i.e. an operator d iagW with the matrix 5ij(Wej,ei), 5ij stands for 
the Kronecker 5. The boundedness of diag W is obvious as well as the inequality 
II diagWIl-< ]lWll �9 Moreover, if s is a Schur basis of W (on a finite dimensional 
space) the diagonal of W consists of eigenvalues of W and so we get the following 
equivalent form of Corollary 3.4. 

4.2. L e m m a .  In the notation and under the hypotheses of Corollary 3.4 we 
have 

lira II Im(diag An)II -- 0. 

4.3. C o r o l l a r y .  Let Bn=An- i Im(diagA~) ,  n>_l. Then 

l i m B n x = A x ,  x E H, 
n 

and B~=D~+E~, where D~=diagB~=Re(diagA~) and E~ has a strictly lower 
triangular matrix (with respect to the same Schur basis). Moreover, 

II Im B~ II v2 = ]11m En ]] ~2 = 2-1/2 I] E~ II ~2" 

Indeed, ImB~=Im(D~+En)=ImE~=(E,~-E~) /2 i  and since E~ is strictly 
lower triangular we get 

IlImEnl]~ = 2  -2 E E* 2 =2-11lEslie= n-- n | 

The limit formula is an obvious consequence of Lemma 4.2. [] 

4.4. C o r o l l a r y .  For the above defined operators Bn, one has 

R ~ ( B n ) =  ( I -R~(D~)E~)-IR~(D~),  } ~ e C \ R  

and so 
IIR~(Bn)[[ <_ I[(I-R~(Dn)En)-lll limA[ -1, ) , e C \ R .  

This is a standard manipulation with the resolvent of a perturbation: 

(AI -Bn)  -1 = ( ) ~ I - D n - E n )  - 1  = ( ( A I - D n ) ( I -  Rx(Dn)En)) -1 

= ( I -Rx(D,)En)-IRx(D,~) ,  

for A c C \ R .  [] 
Resolvent estimates for |  require some more conditions on the 

diagonal part  of the operator under consideration. The following is a well-known 
fact (for which we are at a loss to find an easy reference and shall provide it with 
a short proof). For a definition and properties of symmetrically normed operator 
ideals we refer to [4]. 
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4.5. L e m m a .  Let | be a symmetrically normed operator ideal and WE| 
Then, d i a g W C ~  and 

H diag Wll~ < ]IWII~. 

Proof. Given an orthonormal basis 13={b~} define a family of unitary operators 
as follows: Utbn=ei~tbn, 0<t<2~r. Then the integral 

1 f0 2~ J= ~ U;WUt dt 

is weakly convergent (in L(H),  in the Riemann sense) and its value is precisely 
diag W since 

(Jbk,bj)= ( {  ~--~ ~2~U~WUtdt}bk, bj) 

1 2w 
dt = 1 bj) = (v;wv bk, fo dt 

2rr 

bj) = ((diag W)b , k,) 

for all k, j .  Moreover, it is clear that  the Riemann sums of J are uniformly bounded 
in ~-norm with a bound IIWII8 (because of IIU~WUtlIs=IIWIIG for all t). The 
lemma follows. [] 

5. R a n k  one  m a j o r a n t  

5.1. The  operator  Cn 

Defining an operator Cn by the following formula 

Cn = R~ (Dn)E~ 

and using Corollary 4.4 we reduce the problem to an estimate of II (I-C~) -1H. As to 
the latter, it can be majorized using a pointwise matrix majorant for the square C 2. 

5.2. L e m m a .  Let Cn be a strictly lower triangular n x n matrix and {Sky } the 
matrix of the square C2n. There exist two vectors p, qEC n such that 

Iskj] <_pkqj for j <k and [[p[[=llqll=lIcnll~2. 

Proof. Let {cij} be the matrix of Cn, cij=O for j>i. One has 

k--1 

ski= E ckieij, l _ < j < k - 1  
i = j + l  
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and hence 

n n 

k = l  j = l  

In the next proposition we write Ixl~-(Ixkl)~=l for a vector x={xk)~=leC n 
and Ixl<ly[ if IXk[<_lyk], l<k<n,  for x, y e C  ~. 

n 
5.3. C o r o l l a r y .  Let Q n x = { ~ - :  pkqyxj}k= 1, x e C  n. Then 

IC~kxl<Qklxl for a l l x e C  n andk> l, 

and hence 

ZC nkX < ZQ Ixl, x C~ 
"k>O H k>O 

Indeed, the first inequality follows from the lemma and a straightforward in- 

duction, the second one is a consequence of the first. [] 

5.4.  P a s s i n g  t o  a c o n t i n u o u s  p a r a m e t e r  

To estimate the resolvent ( I -Qn)  -1 it is useful to pass to a continuous param- 
eter and then apply an elementary formula from differential equations. To this end 
we use a step function isometric imbedding of C n into L2(0, n) putt ing 

j x ( t )=x i  f o r i - l < t < i  ( l < i < n ) ,  x = { x i )  CC '~. 

5.5. L e m m a .  Let (p~) and {qi) be the vectors of C n defined in Lemma 5.2 

and let P=j(Pi}, q=j{qi) and 

L Qf(t)=p(t)  q(u)f(u)du, t ~ (O ,n ) ;  feL~(O,n). 
Then 

I(jQ~x)(t)l <_ (QkLjxl)(t), t ~ (0, n); x ~ c n ;  k_> O. 

Proof. Clearly, it is enough to check the inequality for k=l  and then use an 
induction on k. We have, for a vector x E C  ~ and for i-l<_t<i,  

i-1 f~ui_l du 
IjQnx(t)l = ~-~piqtxz = p(t) In q(u)(jx)(u) 

1~1 

<_p(t) q(u)ljxl(u)du= (Qljxl)(t). [] 
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5.6. C o r o l l a r y .  For a strictly lower triangular n • n matrix Cn we have 

II(i-c )-lLL <_ LL(I-Q)-lll 

where Q stands for the operator defined in Lemma 5.5. 

Indeed, by Corollary 5.3 and Lemma 5.5 we have 

H(I-C~)-~xH <_ I[(I-Qn)-lxll <_ H(I-Q)-~[jx][[ 

for every xEcn; moreover, Ilxll=lljxll. [] 

6. A n  Euler  f o r m u l a  a n d  c o m p l e t i o n  o f  t h e  e s t i m a t e s  

6.1. L e m m a .  Let Q be the operator defined in Lemma 5.5. Then, for every 
gEL2(O,n), we have 

((I-Q)-lg)( t)=g(t)+ k(t,u)g(u)du, t~(O,n) 

where 

(f ) k(t, u) =p(t)q(u) exp q(s)p(s) ds 

for O<u<t (and k(t,u)=O for u>t). 

Proof. The equation ( I - Q ) - l g = f  is equivalent to p - l Q f = p - l ( f _ g )  (one 
can suppose without loss of generality that  p(t) is always greater than 0) and then 
(using (p-lQf)(O)=O and (p-lQf),=qf,  at least for smooth functions g, which is 
enough) to a linear differential equation with respect to G=p -1( f -g) ,  namely to 

pqG+qg= G', G(O) =0. 

The well-known Euler formula for the solution, 

G(t) = /ot g(u)q(u) exp ( L t  q( s)p( s) ds) du, 

finishes the proof. [] 

Now, we are in a position to derive our main lemma. 
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6.2. L e m m a .  Let Cn be a strictly lower triangular n x n matrix and m an 
integer, m > 1. Then, 

_ (2m-1 
[[(I-Cn)-lll < \  ~ I]ckll) (l+[ICn~[]~'ellC~llg) 

Proof. Starting from the formula 

/2m -- 1 \ 
(I-Cn) -1= ( ~ Ckn)(Z-C2nm)-i 

\ k=o 

we will consecutively apply Lemma 5.2, Corollary 5.3 and Lemma 5.5 for the matrix 
C m instead of Cn. Then, we get an operator Q (constructed in Lemma 5.5, but for 
C~ instead of Cn), and Corollary 5.6 and Lemma 6.1 imply 

'l(I-C2nm)-l[l <- [l(I-Q)-l [[ <- l + ( f fs  'k(t' u)'2 dt du) 1/2 

where S stands for the square S =  (0, n) x (0, n). Since 

Ik(t, u)[ 2 < Ip(t)lZlq(u)l 2 exp(2 fonp(s)q(s)ds) 

< [P( t)12[q(u)[2 exp ( fo~(P2 +q2) ds) 

(see Lemma 5.2) 

<_ Ip(t)12[q(u)12 e 2],C~,]~ 

we have 
II(I-Q)-lll-< l+llpll Ilqlle'lCrl'~ <_ l+lLC~ll~el'C~llg. 

The lemma follows. [] 

Deriving the main inequality we distinguish the case of an operator A with 
ImAE| the general case ImAE| will be derived from this one. 

6.3. T h e o r e m .  Let A be a Hilbert space operator satisfying ImAE~2  and 
a ( A ) c R .  Then, 

< 1 (1-t 23/:1-11mAll2~ (1-+ 8![ ImAl[2~eS[lImAl[~/llmN2 
lIRa(A) I[ - ] - i - ~  l i m a  I ] limA[ 2 ] 
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Proof. The matrices An, Bn, Cn, Dn, En are the same as in Section 4.1, 
Corollary 4.3 and Section 5.1. We have 

]lCni]2 ~ IIR~(Dn)i] ][En[]2 _< ] I m A i - l l i E n l i 2  

and (see Corollary 4.3) 

liEn ll~ = 2 II Im En ]i~ = 2]i Im A n -  Im(diag An)]1~ = 2 ]l Im A n -  diag(Im An)l]2 2 

(see Lemma 4.5) 

8[] Im AnD] 2 _~ 8]] ImAm] 2. 

Let us combine these estimates with Lemma 6.2 for m = l .  Since 

l +[[Cn[[2e IIc"ll~ <_ l+8(ImA)-2[] ImAn[[2e8(Im~)-2[[ ImAil 2 

we get using Corollaries 5.6 and 4.4 with Lemma 6.2 (for r e = l )  

IIR~ (Bn)In -< I Im AI-1 II (I-Cn)-i il 
< ] Im~l - l ( l  +llCnll)(l +l lCni i~Y n,J~) 

_< Jim A[ -1(1 + [ I m  A[-123/2 [[ Im Am[2)(1+ [[Cn ][2ellC"llg) 

_< [Im A]-I (1 +J im  Am-123/2 [[ Im All 2)(1 +8(Ira A)-2 [] Im All 2) 

X e 8(Ira A)-2 [[ Im A[[~ 

The desired inequality follows from passing to the limit and using Corollary 4.3 
and Remark 3.5. [] 

Now, the general case ImAE| follows in a more or less standard way (for 
instance, see [2], [4]). 

6.4. T h e o r e m .  Let A be a Hilbert space operator satisfying ImAE| 0 < p <  
c~ and a ( A ) c R .  Then, 

lIRA (A)II < Rim Am-1 ( l+2kp [Im A1-1 II I m  AIIp) 4m-1. e Mp(Im A)-2m II Im AII~ m 

for AEC\R ,  where m is an integer such that 2m-2<p<_2m and kp stands for 
a constant satisfying kp=kp/(p_l) and kp<_pe-2/3(log2) -1 forp>_2, Mp=(2kp)2"L 
For [ImAl-l[] ImA[[p>l  one has 

[[ R~ (A)[[ _< [Im A I-1 (l+2kpl Im Am-1 [[ I m  A[]p) 2p+3. e Mv Jim A]--9--2 [[ Im A[]p p+2 " 
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Proof. We use the same notation as in the previous theorem. 
Let m be an integer such that m - 1  < lp-<m. Using a H51der-type inequality 

for | (see [4], [2]) we get [[cm]]2<]iC~i[p/,~<_ilC~]ip, and by Lemma 6.2 

_ ( 2m-1 
H(I-Cn)-I[[ <\ ~ [iC~Ji) (l+'iCnH2p~'eilc~'I~)" 

Moreover, i[C~ I[p-<t Im At - ]  HEn H p (here we use the famous Mat saev inequality for 
quasi-nilpotent operators, with kp=kp/(p_l) and kp-<pe-2/3(log2) -1 for p>2; see 
[41, [5]) 

-< kp[ Im )q-1 In Im En HIp = kp] Im A t-1 if Im An - Im(diag An)I]p 

= kp Jim A t-111 Im An -diag(Im A,)lip 

(see Lemma 4.5) 

< 2kp] Im A]-11] Im An [ip -< 2kp IIm A t -111 Im AtI p. 

Finally, we get 

]iR~(Bn) [[ <- t Im A[ -1 ]0 ( I -Cn)  -1 [[ 
/2m-- i 
Z Ii§176 

< I Im ~i- l ( l + liC~ll )~- ~ ( l + iiC~ii~).~Hc~li~ ~ 

~ [ Im A]-l (1-}-llCnllp) 4m-1 .eMp(Im)Q-2m[[ ImA[I 2"~ 

_< I Im A[-l(l+2kp[ Im At-ill ImAl[p)4m-l.eMp(Im~)-~mliImAIlg~. 

To finish the proof we refer again (as in the proof of Theorem 6.3) to Corol- 
lary 4.3 and Remark 3.5. [] 

6.5. Remarks. The inequalities obtained (Theorems 6.3 and 6.4) depend con- 
tinuously on ImA; in particular, if I m A = O  we get the standard estimate for the 
resolvent of a self-adjoint operator I IR~ (A) II < I Im A I-1. As is well known, the lat- 
ter formally (i.e. without referring to the spectral theory) implies a stronger in- 
equality [IR~(ADI[ <const(dist(A, a(A))) -1 with an absolute constant const (see, for 
instance, [11]; in fact, for self-adjoint operators cons t=l ) ;  a similar transforma- 
tion (i.e. deriving an estimate depending on dist(A, a(A)) only) is possible for the 
estimates of Theorems 6.3 and 6.4. 
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On the other hand, if we do not need an estimate depending on [[ Im A][p only, 
we can simplify the expression inside brackets of the right hand side of Theorems 6.3 
and 6.4 by replacing 2kp[[ ImA[]p by 2[[A[[ (because of [[C~[I< 211mA[-l[[A[[). 

The last remark is about perturbations of unitary operators. The above ap- 
proach does not work directly for operators B = U + C  where U is unitary and C is 
a "smooth" operator. However, in a partial case when T \ a ( B ) ~ O  one can use the 
Cayley transform. Namely, let, say, 1 ~ cr(B); then the operator A=i (I+B) ( I -  B) -  1 
is well defined and bounded and we have 

A - A *  = i ( I - B * ) - I ( ( I - B * ) ( I + B ) + ( I + B * ) ( I - B ) ) ( I - B )  -1 

= 2 i ( I - B * ) - I ( I - B * B ) ( I - B )  -1. 

Therefore, as is well known, the operator A is a perturbation of a self-adjoint 
operator of the same class as B is of a unitary operator: I m A � 9 1 7 4  r ( I - B ' B ) � 9 1 7 4  
where | stands for any symmetrically normed operator ideal; in particular, Im A �9 | 
if C � 9 1 7 4  Moreover, for z r  we can write z=(A-i) (A+i)  -1, A r  and get 

Rz(B) = ((A-i)(A+i)  - 1 -  B) -1 = ( (A-i) (A+i)  - 1 -  ( A - i I ) ( A + i I ) - l )  -1 

= (A+i I ) (A+i ) ( (A- i ) (A+i I ) - (A- i I ) (A+i ) )  -1 

= (A+iI)((A+i)/2i)R~(A). 

And so, we have for ]z-l[_>5>O 

IIRz (B)II ~ const lIRA (A)II -< const "~(I Im AI) 

where ~ stands for the right hand side of the inequalities of Theorems 6.3 or 6.4, 
and hence 

IIRz(B)I I < const .~([1-Izl211i-z1-2) < const .~(const II-lz]l).  [] 

7. E x a m p l e s  of  resolvent growth 

7.1. One  po in t  s p e c t r u m  

Much more is known for the special case when a(A)={0}. Namely, if A is 
a Volterra operator (i.e. A is compact and ~r(A)={0}) with the singular numbers 
sn(A) satisfying sn(A)=O(n-1/P), p>0,  for n---~cx~ the following Keldysh-Matsaev 
estimate holds (see [4] for details) 

IIR~(A)I] _< const, exp(const lAP), A �9 C\{0}. 
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Of course, this is true for Ae| a(A)={0}.  
On the other hand, if one is interested in an estimate depending on a smooth- 

ness condition for ImA (or ReA, or I -B 'B)  only, one has to restrict oneself to 
the case p e (1, c~) because even the conditions rank Im A =  1, a(A)={0} does not 
imply anything better than sn(A)=O(n -1) (and AE~B, p > l ;  see the operator J1 
below); and therefore, in this case the Keldysh-Matsaev estimate is available with 
p =  1 only (see again the operator J1 below). This is a bit stronger than that  which 
we had with our approach. Moreover, the following example shows that  this is the 
best possible estimate. 

Example 1. Let J~, c~>0 be the fractional integration operator on the space 
L2(0, 1) defined by the formula 

~0 x J . f ( x ) = F ( a )  -1 (x-y)~-lf(y)dy, 0 < x < l  

where F stands for the Euler gamma-function. 
It is well known that  {J~, a > 0 }  forms a semi-group, J~+z=J~Jz, and a ( J ~ ) =  

{0}, a>0 .  Moreover, the singular numbers of J~ satisfy power-like asymptotics 
sn(J~),.~(Trn) -~, n---+oc (see, for example, [5, Appendix, Sect. 6]). As for the resol- 
vent, we can compute it explicitly (for any A#0): 

.R)~( Ja )  = A - l ( I - , ~ - l  J ,~)- l  -~ ~-~ ~ - n - l . l n  - ~"~ A - n - l  j , -- ,~-1I-}- VK 
- -  v O L  - -  ~ n o L  - -  

n>_O n>_O 

where VK stands for a Volterra operator VKf(x)=fo K(x, y)f(y)dy with the ker- 
nel K,  

K(x,y)= ~--~ A-n-IF(nv~)-I(x-y) n~-l, 0 < y < x .  
n_>l 

Hence, we have 

/ol/o x IIR~(J~)II > IIR~(J~)IlI2 > I]R~(J~)IlI1 - - A - l +  K(x,y) dydx 

dx 
n_>l 

n_>l 

n_>l 
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The latter expression is essentially the classical Mittag-Leffier functions 
E , , # ( z ) = ~ n > 0  znF(na+/3)  -x,  having well-known asymptotics at infinity (for in- 
stance, see [3~. In particular, 

IIR (J.)II -> const .A3/~+~e 0/~)1/~ 

for A-~+0. In fact, to check the last inequality we do not need any theory: for 
0<c~_<1 it is sufficient to choose an integer n ~ l  such that  k - l <  nc~+2< k (for ev- 
ery k>_3 there exists an n) and then use F(k)>_F(na§ and A - ~ - I >  A - (k-3) /" -1  

( 0 < A < I )  which implies S(A)>_const.A3/~e (1/~)~/" with a suitable constant; for 
a > l  one uses the fact that  between h a + 2  and ( n + l ) a + 2  there are no more 
than [a ]+ l  integers and F(n(~§ for all of them; hence, one can majorize 
~k>_oA-k/~F(k) -1 by a product (a polynomial in ~-1 of degree _<[a]+I).S(A) 
which implies the desired estimate. 

7.2. C o n t r a c t i o n s  o r  d i s s ipa t i ve  operators 

This section is about contractions or dissipative operators (not necessarily with 
one point spectrum) which are trace class perturbations of unitary, respectively self- 
adjoint operators. Then much more is known (see [5], [14], [9]); for instance, if B is 
a completely non-unitary contraction, I -  B* B E ~ 1 and D \ a  (B) ~ 0 one has 

(1-1z{){IRz(B)l I <const  {m(z)1-1, z E D \ a ( B )  

where m stands for a non-zero bounded analytic function in the disc D (i.e. for an 
H ~176 function). In particular, IIR~ (B)II-<c~ e x p ( 1 - N )  -1 and even IIRz(B)II <- 
const,  exp(dist(z, a(B))) -1 if a(B)cT.  

These bounds are attainable: for a given H ~ function m with Im(z)l<_ 1 there 
exists a contraction B with rank(I-B*B)=rank(I-BB*)=l  such that  

(1-1zl)llRz(B)l I < Im(z)l-l < I+2(1-N)IIR~(B)II, z E D. 

Example 2. Taking m(z)=exp(a(z+l)(z-1)-z),  a > 0  we get an exponential 
rate of growth (for 0< z < 1, z--~ 1) for a rank one perturbation of a unitary operator. 

Similar facts hold for dissipative operators (i.e. I m A > O )  instead of contrac- 
tions (with a substitution of ImA(I+{A{2) -1 for 1-1zl,  z e D ) .  

7.3. Uniformly large resolvents 

All previous examples are of "anisotropic" growth of the resolvent: that is when 
approached from one side of the spectrum the resolvent is large, but if approached 
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along other paths, the growth is moderate (for instance, IIR~(A)II<IImA1-1 for 
a dissipative operator A and Im A<0). Examples of a uniform growth near the 
spectrum are not so sharp as anisotropic ones (or probably, uniform majorants 
obtained in Sect. 6 are not so sharp). We start with smooth perturbations of 
unitary operators. 

Example 3. Let en, n E Z  be the standard orthonormal basis of the space 12(Z) 
and B an operator on/2(Z) defined by the equations 

Ben ~lAnen+l, n E Z  

where # n = l + ( n + l )  -~ for n>0 ,  0 < a < l ,  and #n=1/#_,~_1 for n<0.  
The operator B differs from the unitary shift S, Se,~=en+l, B = S ( I + C )  by 

an operator SC satisfying s~ (SV)=s , (C)~(n+l )  -~, n--~c~ and hence SCE~p,  
p>a -1. It is also clear that  a ( B ) = T .  

It is well known that  B is unitarily equivalent to the same shift S=S~ but 
on the weighted s p a c e  12(Z, wn)={X={Xn}:~-~neZ IXnl2W2<O0} where w0=l ,  w n =  

n--1 1-ik=o ILk for n > 0  and w,~=w_,~ for n < 0  (the equivalence is realized by a diagonal 
operator D: {xn}--~ {x,~/wn}: D B D  -1 =S~,). Therefore, for Iz[ < 1, 

HRz(B)II IIRz(S~)II > ][Rz(S~)eo[I = - E '~ -~-1 _ Z S~ e 0 
n>_O 

n>_O 

) >suplzlnw,~+l=supN'~exp 1+o(1)) k + l )  -~  
n>_O n>_O k=O 

= sup [zl n exp((1 --Ol) -1  (1+o(1))n1-a).  
n>__O 

And hence we get from an elementary extremum computation 

[IRz(B) II = e x p ( ( l + o ( 1 ) ) a ( 1 - a )  -1 (log(1/[z[)) -1/a+l) > exp(c(a)(1-]z[) -1/a+l) 

where c(a)---�89 -1 and r(a)<lzl<l.  
It is quite easy to see that  the obtained growth rate is sharp: 

[]Rz(Sa)l]-~- - E zns:n-1  ~ E ]z[n]]s:n-l[[ 
,, n>O n>_O 

: E  [z[nwn-kl: E [z[nwn+l'-~ E [Z[nWn+I 
nk0  n_<2x(o 0 n>2x(a)  
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(where x ( a ) = ( 1 / l o g  Izl-1) 1/~ stands for the extremum point from the previous 
estimate: ~ ' ( x ( a ) ) = 0  where ~(x)=(1-a)- lx l -~-xlog Izl-1; below, we also use 
that ~ ' (x )<-k(c~) log  Iz1-1 for x > 2 x ( a )  with a constant k (a )>0)  

<-2x(~ E c--mk(~176 
n>0 \n>0 / 

- -  - -  m _ > 0  

< const .(1 -Izl)  1/~+1 exp(3c(a) ( 1 - N ) - 1 / ~ + 1 ) .  

The case when Izl >1 can be considered similarly (with the same result). 

Example 4. In order to exhibit a smooth perturbation of a self-adjoint operator 
with a uniformly large resolvent, we cannot use the standard Cayley transform of the 
constructed operator B because in this case the transform produces an unbounded 
operator. Instead, we use the Zhukovsky transform 

A = � 8 9  -1) 

of the operator B of Example 3. Since B=S(I+C) one has 

A-A* = �89 -1 -(I+C*))S -1} 

(using (I+C)-1= / -C-[-C2(I--~-O) -1)  

= 

Therefore, the operator ImA has the same smoothness class as C, and, for 

instance, C 6 ~p =:~ Im A E ~p. 

Now, let A=�89 then, 

AI-A- -  � 8 9  -1) = { B - I ( z I - B ) ( B - z - I I )  

and hence 

R;~ (A) = -2R,  (B)R1/~ (B)B -- 2(z -1 - z ) - I  (R1/z (B) - R, (B) )B. 

Supposing Iz]<l,  replacing B by the unitarily equivalent operator S~ (see 
Example 3) and using that R~(S~)=- ~n>_o znS2 n-l, R1/z(S~)=~n>o zn+Is2 
we get 

[[R~(A)[[ = 2 ( z - l - z )  -1 (~-~  z n + l s n +  E znS;n-1)S~ 
n_>0 

----2[z-l--zl -I ~ Z [nlS~ >_21z-l-z] -1 ~ zlnlSneon 
n6Z neZ /2(Z,wn) 

\n6Z -- \nEZ 

> 2lz -1 -z1-1 exp(c(a) (1 - [z l )  - 1/'~+1) 
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by the previous example. 

On the other hand, the spectral mapping theorem shows that  a ( A ) = [ - 1 ,  1], 
and the formula Im A=Im �89 with the geometric meaning of the Zhukov- 
sky function l ( z + z - 1 )  (eonformally mapping the disc D on C \ [ - 1 ,  1]) imply 
that  for I R e A I < I - 5  , 5>0 and IImAl<const we have IImAl>e(1-1zl)  (and 
Iz -1 -z1-1 >c) with an e depending on 6 and const. Hence, we obtain the following 
lower estimate for I IR~ (A) I I (uniform in I Re A I< 1 -  6): 

IIR~ (A)II -> exp(const .lIm AI-1/~+I). 
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