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1 . I n t r o d u c t i o n  

Let f= f ( z l ,  ..., zl) be a homogeneous polynomial of degree n_>2 in l complex 
variables. The Milnor fibration [6] of f is usually defined in a neighborhood of the 
origin. Since f is homogeneous there is a global fibration 

f :  C l \ f - l ( 0 )  --* C \{0}  

and F - - f - l ( 1 )  is the Milnor fiber of the map f .  Let ~=exp(27~i/n). Let h*: H*(F) 
---~H*(F) be the monodromy induced by h(zl,...,zl)=(~zl,...,~zz). Consider all 
homology and cohomology with complex coefficients and let bk=dim Hk(F) be the 
k-th Betti  number of F.  Since F is a Stein space of dimension ( / - 1 )  we have 
H k ( F ) = 0  for k>_l. 

If f has an isolated singularity it is known from Milnor's work that  bk(F)=0  
for l < k < l - 2  and that  bz_t(F)=(n-1) l. The characteristic polynomial of the 
automorphism induced by the monodromy on Hz-I(F) was computed in [7]. In [9] 
we gave an explicit basis of differential forms for the nonvanishing group HI-I(F). 
The classes are all represented as restrictions to F of differential forms qw where q 
is a homogeneous polynomial and 

1 

k = l  

If the singularity of f is not isolated very little is known about the cohomology 
of F.  Special cases have been studied by Dimca [3], Esnault [4], Randell [10], 
Siersma [11], and others. In this note we consider the case where f is the product 
of distinct linear forms which define an arrangement. Let V be a vector space of 
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dimension 1 over C. An arrangement in V is a finite set J[ of hyperplanes. It  
is central if all hyperplanes contain the origin and affine otherwise. If HEft ,  is a 
hyperplane, let aH be a polynomial of degree 1 with kernel H.  Call 

Q=Q(A)= I-[ e~H 
HC.A. 

a defining polynomial of A. 

If A is central then Q(A) is homogeneous of degree n=lA I and for I_>3 the 
singularity is not isolated. The hyperplane complement M=M(.A)=V\Q-I(O) is 
the total  space of the Milnor fibration with fiber F--Q -1(1). From Brieskorn's work 

[2] we have a complete description of the cohomology of M in terms of differential 
forms. This allows us to detect some cohomology in F as follows. Recall the 
Hopf bundle p: C t \ { 0 } - - ~ C P  l-1 with fiber C*. Let B--p(M). It  is easy to see 

that  the restriction PM: M--+B is trivial. Moreover B is the complement of an 
affine arrangement in C 1-1 and therefore a Stein space of dimension ( l - 1 ) .  Thus 
H k ( B ) = 0  for k>_l. The Betti  numbers of B may be computed in terms of the 
intersection lattice of ,4, see [8]. In fact there is a complete description of H* (B) in 
terms of differential forms. The monodromy map h generates a cyclic group G of 
order n=l~4 I. The restriction of the Hopf  bundle PF: F--~B is the orbit map of the 
free action of G. These fibrations fit into a commutative diagram. 

C *  ----+ M 

c * / G  = c *  

F --* F/G 

--~ B 

Since we use cohomology with complex coefficients we get [H k (F)] a = H k ( B ) .  This 
describes the l-eigenspace of the monodromy. The eigenspaces of the other n-th 
roots of unity are harder to detect in general, but we get lower bounds: 

(1) bk(F) >_ bk(B). 

Definition 1.1. A central /-arrangement with n hyperplanes is called generic 
and denoted ~ ,  if n > 1 and the intersection of every subset of I distinct hyperplanes 

is the origin. 

In this note we compute the cohomology groups of the Milnor fiber and the 
characteristic polynomial of the monodromy for a generic arrangement.  We also find 
a basis of K/ihler differentials for Hk(F) provided O<k<l-2. We close with the 
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description of a space of Ks (1-1)-forms which we conjecture to be isomorphic 
to HI- I (F) .  

We would like to thank Norbert A'Campo and Louis Solomon for several helpful 
discussions. 

2. The  cohomology  of  F 

Definition 2.1. An affine/-arrangement with n hyperplanes is called a general 
position arrangement and denoted 13~, if n>l, the intersection of every subset of l 
distinct hyperplanes is a point, and the intersection of every subset of l+1 distinct 
hyperplanes is empty. 

P ropos i t i on  2.2. Let ~l n be a generic arrangement. Let M=M(~In) and let 
PM: M--*B be the restriction of the Hopf bundle. Then B is the complement of a 
general position arrangement, B=M(Btn--1). 

Proof. Fix H0 eG~ and choose coordinates so that H0=ker(zz). Let Q--Q(Gln). 
l--1 A defining polynomial for Bn_ 1 is obtained by setting zl--1 in Q. 

Hattori [5] obtained a complete description of the homotopy type of B. Let 
J={1 , . . . , n -1} .  If I c J  let III denote its cardinality. Define the subtorus TI of 
T n - 1  b y  

TI={Zl , . . . ,Zn_IET n-1 I z j = l  for j • I}. 

l--1 T h e o r e m  2.3. Let Bn_ 1 be a general position arrangement with I>_3 and let 
B=M(Bln-_11). Then B has the homotopy type of 

B0=  U TI. 
Iil=l-1 

l--1 Corol lary  2.4. Let I3n_ 1 be a general position arrangement with 1>_3 and let 
B= M ( B~-_~ ). Then 

(i) 7q(B) is free abelian of rank n - l ,  
(ii) 7~k(B)=O for 2 < k < l - 2 ,  
(iii) for 0 < k < l -  1 

b k ( B ) = ( n ; 1 ) ,  

(iv) the Euler characteristic of B is 
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Proof. We think of T n-1 as the (n-1)-dimensional  hypercube with opposite 
faces identified. Then B0 is obtained from T n-1 by removing cells in dimensions 
n - 1 ,  n - 2 ,  ..., l corresponding to the interior of the cube, and to pairs of faces of the 
cube. Thus B0 has the same ( l -  1)-skeleton as T ~-1. The boundaries of the removed 
/-cells give rise to nonvanishing homotopy classes but they are nullhomologous. This 
proves parts (i), (ii), and (iii). Part  (iv) follows from Lemma 2.5 below. 

L e m m a  2.5. For m > k we have 

( m ; 1 )  ( k )  ( - )  ( O ) "  = _ kml  + . . . + ( - 1 )  k 

Proof. We use induction on k. The formula holds for k = l ,  and if we assume 
it for k - 1  then it follows for k from the formula 

( k )  -- ( m ; 1 )  + ( k - - : )  �9 

T h e o r e m  2.6. Assume that I>3. Let G~ be a generic arrangement with to- 
tal space M=M(GZn). Let pM:M-~B be the restriction of the Hopf bundle. Let 
Q:M--~C* be the Milnor fibration and let F be the associated Milnor fiber. Let 
~--exp(21ri/n). Let h*: H* (F)--~H* (F) be the monodromy induced by h(zl,..., zl)= 

n--2  n--2  (~Zl, ...,~z~). Let u=( t_2  ) and let v = ( l _ l  ). Then 
(i) 7h(F) is a free abelian group of rank ( n - l ) ,  
(ii) bk(F)=bk(B) for O<k<l-2  and hence the monodromy is trivial in this 

range, 
(iii) bl-l(F)--u+nv, 
(iv) the characteristic polynomial of the monodromy on HI-I(F)  is 

/kl_l(t ) = (1--t)u(1--tn) v. 

Proof. If we think of the universal cover of T n - 1  a s  R n - 1  subdivided into 
hypercubes by the integer lattice, then the universal cover of B is a giant "Swiss 
cheese" since in each hypercube the same cells are removed as the cells removed 
to get B0. Since the restriction of the Hopf map PF: F--*B is an n-fold covering, 
F has the homotopy type of the union of n such hypercubes with the appropriate 
identifications. This proves (i) and (ii). Part  (iii) follows from (ii) together with the 
formula for the Euler characteristic of a covering x(F)=nx(B) ,  and the calculation 
of x ( B ) i n  2.4(iv). 
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To prove (iv) we use Milnor's work [6, pp. 76-77]. The Weil ~ function of the 
mapping h can be expressed as a product 

~(t)=H(1-- td)-ra 
din 

where the exponents --rd can be computed from the formula 

drd. Xj = 2-a 
dlJ 

Here Xj is the Lefschetz number of the mapping h j,  the j-fold iterate of h. Milnor 
showed that  Xj is the Euler characteristic of the fixed point manifold of h j. Since 
h j has no fixed points for l < j < n  and x(F)- -nx(B)  we conclude that 

(2) ~(t) = ( 1 - t n )  -x(B). 

The zeta function can be expressed as an alternating product of polynomials 

(3) ~(t)  = / k o ( t ) - l / k l ( t ) / k 2 ( t )  -1  ... A l - l ( t )  +1 

where Ak (t) is the characteristic polynomial of the monodromy on H k (F). Part  (iv) 
now follows from (2), (3), and the fact that  Ak(t)=(1--t) bk(g) for 0 < k < / - 2 ,  which 
is a consequence of (ii). 

Remark 2.7. I f / = 2  then 7rl(F) is free of rank ( n - l )  2. Conclusions (ii) (iv) of 
the theorem are valid. 

A central 2-arrangement is always generic. In this case Q has an isolated 
singularity at the origin. Thus bo(F)=l and bl (F)=(n-1)  2. In fact F has the 
homotopy type of a wedge of ( n - 1 )  2 circles. In this case B is the complex line 
with ( n - l )  points removed. Thus b0 (B)= l  and bl (B)=n-1 .  This agrees with 
assertions (ii) and (iii). The characteristic polynomial of the monodromy on H 1 (F) 
may be computed using the divisor formula in [7]: 

6(h) -- ( h E n - l )  2 = n ( n - 2 ) E ~ + l  = ( n - 2 ) A ~ + l .  

T h u s  /kl(t)=(1--t)(1--tn) n-2' which agrees with (iv). 

Remark 2.8. It is shown in [1] that  the complexification of the D3 arrangement 
has b l (F )=7 ,  while bl (B)--5.  Thus Theorem 2.6 does not hold in general. 

It follows from Milnor's fibration theorem that  F is the interior of a closed 
manifold with boundary. Let F c denote this closed manifold and let OF ~ be its 
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boundary, a smooth closed orientable (2/-3)-manifold.  Sard's theorem implies that  
there exists a closed ball B 2z centered at the origin whose boundary  S 2z-1 intersects 
F transversely. Then F C = F N B  21 and O F C = F N S  21-1. Since the singularity of 
Q - l ( 0 )  is not isolated, the compact set K = Q - I ( O ) N S  2z-1 is not a manifold. The 

degeneration map OF~--*K is a resolution of the singularities of K.  Since the 
monodromy h leaves S 2z-1 invariant, there is an induced monodromy h: OF c--~OF ~. 
Norbert  A'Campo has informed us that  he can prove the following. 

T h e o r e m  2.9. The induced monodromy h:OFC--~OF c acts trivially on 
H*(OFC). 

K~ihler  d i f f e r en t i a l s  

We define K~ihler differentials as in [9]. Let S - - K [ z l ,  ..., zz] be the polynomial 
ring over the field K with its usual grading, so deg z j - -1  for all j .  Let S~ be the 
homogeneous component of degree r. Write (fl, d)=(f~s ,  d) for the cochain complex 
of Ks differential forms on S. 

Definition 3.1. For O<p<l  and J = ( j l ,  . . . , jp) let a j = d z j l  ... dzjp and let 

P 

Wj---- E(-1)k-lzjkdzj, A...A~zjk A.. .Adzjp.  
k = l  

The symbol o2j is skew symmetric in its indices. Since ~P is a free S-module 
with basis consisting of the elements (Tj with IJI = p  and j l  <.. .  <jp,  and the symbol 
(rj is also skew symmetric in its indices, we may define an S-linear map 5:f~P---42 p-1 

for p > l  by 5(O'j)=O)j. For p = 0  let 5=0.  Computat ion shows tha t  52=0. In fact 
the complex (~, 5) is the Koszul complex based on zl, ..., zl. The next result is the 
Poincar~ lemma in our setting. For a proof see [9, Lemma 4.5]. 

L e m m a  3.2. Let aCSr  and let J = ( j l , - . . , j p ) -  Then 

(1) 
(2) 
(3) 

5d(aa g ) -- raa j -  d a A w j  

dS(aa j ) ---- paa j §  j 

( d6 + Sd)acr j = (p + r )aa  g. 

Now assume that  ~4 is any arrangement over K = C .  According to Brieskorn [2] 
the cohomology of M is represented by rational forms. 
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T h e o r e m  3.3. Let ..4 be an arrangement. For HE.A let ~H=dO~H/O~H . Then 
H*(M) is isomorphic to the C-algebra R(.A) generated by 1 and the 1-forms ~IH for 
HEA.  

If ,4 is a central arrangement then the aH are linear forms. Define an operator 
O: R-~R  by 01--0, O~H----1 and for p_>2 

P 

0~1 ... ~ - -  y ] ~ ( -  l y - l ~ l  ... ~ - i ~ + i  ... ~ .  
i=1 

It is clear that  0 0 = 0  and it is known that  (R, 0) is an acyclic complex, see [8]. Let 
Ro=ker0 .  Since 0 is a derivation, it follows that  Ro is a subalgebra. Given H o EA  
write No----NHo. We have R=Ro@NoRo. Denote by Ao the subalgebra generated by 
1 and No. Then R=Ro| We obtain from (2.2): 

P r o p o s i t i o n  3.4. Let A be a central arrangement and let PM: M--* B be the 
restriction of the Hopf bundle. Then P'M: H*(B) -*H*(M)  is injective and we may 
identify p*M(H*(B)) with Ro. 

P r o p o s i t i o n  3.5. Let ..4 be a central arrangement and let PF: F---~B be the re- 
striction of the gopf  bundle. We may identify R*F(H*(B) ) with QRo={Q~[ oE Ro}. 

If G~ is a generic arrangement then Proposition 3.5 and Theorem 2.6 provide 
Ks differential form representatives for all cohomology except HI-I (F) .  In the 
rest of this section we discuss the problem of finding K/ihler form representatives 
for H~-~(F). Let T = S / ( Q - 1 ) S  be the coordinate ring of F.  Let 7r~ S-+T be the 
natural projection, and let 7r: ~~S----+~T be the induced map. In the top dimension 
we use special notation. 

Definition 3.6. Let 

T ---- or1 ..... l ---- dzi A...Adzz, 

~-j---- ( - -1)J - la l  ..... ~,...,1 = (-1)J- ldzlA. . .AdzjA. . .Adzl ,  

l 

..... Z ( -1 )  k-lzkdzlAAd AAdz,, 
k = l  

and wj=6(r j ) .  Note that  dzjATj=~-. Also dw=lr and dwj=(l -1)Tj .  

Definition 3.7. If a , a ' E ~  write a - - a '  if ~ r a= ra ' .  If ~E~'~T is a cocycle, let 
[t3] denote its cohomology class in H* (f~T). If a, a ' e ~  are cocycles, write a ~ c d  if 

In the next result we establish certain inhomogeneous relations in ~T. 
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L e m m a  3.8. Let aCSr. Then 

OQ 
(4) nTk =-- OZ---~W , 

OQ Oa 
(5) nd(haTk)-- [ (n+r-1)a-z - - - -n~- - ]w,  

L azk azk j 
OQ Oa 

(6) (n+r-1)a~-~zkW - -  n OZk w. 

Proof. For J=(j l , . . . , jp) ,  define (j, J)=(j ,  j l , . . . , jp).  From (3.2.1) we get for 
an arbitrary index set J 

1 Oa 
raa j - d a A w j  = Z ~z~W(J,J)" 

j = l  2 

To prove (4) let a=Q so r=n, J- - (1 ,  ..., ]~, ..., l) and note that Q ~ I  and dQ-O. 
From (3.2) and the equation above we get for an arbitrary index set J with ]Jl=p 

1 

d~(a(rj) = ( p + r ) a a j - E  Oa j=l ~ 03(j, j ) .  

Now choose J as above, multiply the last equation by n and substitute (4) to obtain 
(5). The inhomogeneous relation (6) follows from (5). 

P r o p o s i t i o n  3.9. Every eohomology class of HZ-l(ftT) has the form [Tr(pw)] 
where pES.  

Proof. Since T1, ..., ~-Z generate ft t-1 as S-module, it follows that their images 
under ~r generate f~lT-1 as T-module. The assertion follows from (3.8). 

If f has an isolated singularity then the Jacobi ideal I generated by the partials 
of f has finite codimension in S. In [9] we showed that there is a homogeneous 
subspace H with S = H |  such that  every cohomology class of HZ-l(F) has the 
form [~(hw)] with he l l .  

If the singularity of f is not isolated then the Jacobi ideal has infinite codimen- 
sion. In the case of a generic arrangement we have an explicit conjecture for a finite 
dimensional subspace which carries the cohomology. First we need some notation. 
Let G~ be a generic arrangement. Let Ad CG~ be a subarrangement with [2t4[ = l - 1 .  

Write A4={H1, ..., H i - l} .  Then Q(J~4)=CeH1 ... O~Hz_ 1 �9 Define Q~--Q(GIn)/Q(A/t). 
Given s c S  let J ~  (s) be the determinant of the Jacobian matrix of (s, a l ,  ..., h i - l ) .  
The next result proves the existence of certain homogeneous relations in gtT. 
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L e m m a  3.10. For every aESr and AACGln with IJ~4]=l-1 we have 

raJ~ (q~)w ~ nQ ~ J~  (a)w. 

Proof. We may choose coordinates so that  Q(,~4)=z2...zl. 
Os/Ozi. In the notation of (3.6): 

d(aQ~wi ) = Q]~ daAw1 +adQ ~ Awi +aQ~ dwi. 

Direct calculation gives 

QA4 daAwl = QA4 [ra~'l- ~ W ]  

AWl ~--- a / ( n - l +  1 )Q~- I  - 
OQ ~ W1 adQ ~ 
Ozi ] &. 

aQ~ dwl = (1-1)aQ~TI. 

Recall from (3.8) that  nTi =-(OQ/Ozl)w. Since OQ/Ozl =Q(A/t)(OQ~/Ozi) we have 

n Q ~ n  - Q ~ Q ( M )  w =_ ---g~i W. 

It follows that  

. . . .  ~ OQ ~ ~ Oa 
d(naQ~Wl)=n[n~-r)a~r ~ - i - n a ~ w - n ~ r  -~zi w 

r OQ 2~ ~ Oa 
-- [ra--~-z - n  Q -~z~z~ ] w" 

Then J ~ ( s ) =  

L e m m a  3.11. Define r by dQAd~--r for QE~ I-2. Define 
E={eES]eQEim r For every aESr and A/ICg~ with ] ~ 4 [ - / - 1  we have 

raJ~(Q ~)  - n Q ~  J~(a) E E. 

Proof. As in (3.10) we may choose coordinates so that  Q(~4)=z2 ... z~. Since 
dQAw=nQ~" we get as in the proof of (3.10) 

dQAd(aQ~wi)=dQA [ (n+r)aQ~Tl -a~-z~W-Q~ ~ - l w  
L 1 Z1] 

OQ ~ ~ Oa 
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C o n j e c t u r e  3.12. Let Gin be a generic arrangement defined by Q. 
(i) There exists a finite dimensional homogeneous subspace U c S  such that 

S ~ E| | 

(ii) f~ZT-I=Tr(Uw)@dT~IT-2 , and the map U--*HI-I(F) defined by u--~[zc(uw)] 
is an isomorphism. 

(iii) Let U~=UNS~, let ur=d imUr ,  and let P(U,t)=~-~r u~t ~ be the Poincard 
polynomial of U. Then 

\ 1-1 J f o r O < r < n - l ,  

n - 2  for n - l + l  <r  < n - l ,  
u~ = l - 1  

( n - 2 ~ _ ( r - n + � 9 1  
\ l - l ]  \ l - 1  / f o r n < r < 2 n - l - 2 .  

Example 3.13. Consider G53 and use coordinates x, y, z. Let Q--xyz (x+y+z)x  
(x+2y+3z). The cohomology of its Milnor fiber is described as follows. 

Label the linear forms a l ,  ..., ah. For i< j  define 1-forms in f~l by 

(~ , j__o(d . i  da i )  
', OL i O~j / "  

It follows from (3.5) that  a C-basis for H i ( F )  consists of 7r1((i,5) for i=1,  2, 3, 4. 
In the description of H 2(F) note that  

w -- xdyAdz -ydxAdz+zdxAdy .  

Direct calculation shows that  in our case U~=S~ for r=0 ,  1,2. For r = 3 , 4  only 
homogeneous relations occur, but for r = 5  the inhomogeneous relation Qw~w is 
also required. We get 

P(U, t) -= l+3t+6t2+3t3+3t4+2t 5. 

This agrees with (3.12). The monodromy h has order n--5. Let ~--exp(27r/5). 
Recall that the action of h is contragradient in S. Thus hw=~-3w and U~ is an 
eigenspace with eigenvalue ~-~-3. It follows that  the eigenvalues computed from 
this Poincar~ polynomial agree with the characteristic polynomial of the monodromy 
from (2.6): 

A2(t) -- ( 1 -  t)3 (1- t5)  3. 

See also the preprint "On Milnor fibrations of arrangements" by D. C. Cohen 
and A. I. Suciu. 
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