The Milnor fiber of a generic arrangement

Peter Orlik and Richard Randell

In memoriam Deane Montgomery

1.Introduction

Let $f = f(z_1, ..., z_l)$ be a homogeneous polynomial of degree $n \ge 2$ in l complex variables. The Milnor fibration [6] of f is usually defined in a neighborhood of the origin. Since f is homogeneous there is a global fibration

$$f: \mathbf{C}^l \setminus f^{-1}(0) \to \mathbf{C} \setminus \{0\}$$

and $F=f^{-1}(1)$ is the Milnor fiber of the map f. Let $\xi=\exp(2\pi i/n)$. Let $h^*:H^*(F)\to H^*(F)$ be the monodromy induced by $h(z_1,...,z_l)=(\xi z_1,...,\xi z_l)$. Consider all homology and cohomology with complex coefficients and let $b_k=\dim H^k(F)$ be the k-th Betti number of F. Since F is a Stein space of dimension (l-1) we have $H^k(F)=0$ for $k\geq l$.

If f has an isolated singularity it is known from Milnor's work that $b_k(F)=0$ for $1 \le k \le l-2$ and that $b_{l-1}(F)=(n-1)^l$. The characteristic polynomial of the automorphism induced by the monodromy on $H^{l-1}(F)$ was computed in [7]. In [9] we gave an explicit basis of differential forms for the nonvanishing group $H^{l-1}(F)$. The classes are all represented as restrictions to F of differential forms $q\omega$ where q is a homogeneous polynomial and

$$\omega = \sum_{k=1}^{l} (-1)^{k-1} z_k dz_1 \wedge \dots \wedge \widehat{dz_k} \wedge \dots \wedge dz_l.$$

If the singularity of f is not isolated very little is known about the cohomology of F. Special cases have been studied by Dimca [3], Esnault [4], Randell [10], Siersma [11], and others. In this note we consider the case where f is the product of distinct linear forms which define an arrangement. Let V be a vector space of

dimension l over \mathbb{C} . An arrangement in V is a finite set \mathcal{A} of hyperplanes. It is central if all hyperplanes contain the origin and affine otherwise. If $H \in \mathcal{A}$ is a hyperplane, let α_H be a polynomial of degree 1 with kernel H. Call

$$Q = Q(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H$$

a defining polynomial of A.

If \mathcal{A} is central then $Q(\mathcal{A})$ is homogeneous of degree $n=|\mathcal{A}|$ and for $l\geq 3$ the singularity is not isolated. The hyperplane complement $M=M(\mathcal{A})=V\setminus Q^{-1}(0)$ is the total space of the Milnor fibration with fiber $F=Q^{-1}(1)$. From Brieskorn's work [2] we have a complete description of the cohomology of M in terms of differential forms. This allows us to detect some cohomology in F as follows. Recall the Hopf bundle $p: \mathbb{C}^l \setminus \{0\} \to \mathbb{C}P^{l-1}$ with fiber \mathbb{C}^* . Let B=p(M). It is easy to see that the restriction $p_M: M \to B$ is trivial. Moreover B is the complement of an affine arrangement in \mathbb{C}^{l-1} and therefore a Stein space of dimension (l-1). Thus $H^k(B)=0$ for $k\geq l$. The Betti numbers of B may be computed in terms of the intersection lattice of A, see [8]. In fact there is a complete description of $H^*(B)$ in terms of differential forms. The monodromy map h generates a cyclic group G of order $n=|\mathcal{A}|$. The restriction of the Hopf bundle $p_F: F \to B$ is the orbit map of the free action of G. These fibrations fit into a commutative diagram.

Since we use cohomology with complex coefficients we get $[H^k(F)]^G = H^k(B)$. This describes the 1-eigenspace of the monodromy. The eigenspaces of the other n-th roots of unity are harder to detect in general, but we get lower bounds:

$$(1) b_k(F) \ge b_k(B).$$

Definition 1.1. A central l-arrangement with n hyperplanes is called generic and denoted \mathcal{G}_n^l , if n > l and the intersection of every subset of l distinct hyperplanes is the origin.

In this note we compute the cohomology groups of the Milnor fiber and the characteristic polynomial of the monodromy for a generic arrangement. We also find a basis of Kähler differentials for $H^k(F)$ provided $0 \le k \le l-2$. We close with the

description of a space of Kähler (l-1)-forms which we conjecture to be isomorphic to $H^{l-1}(F)$.

We would like to thank Norbert A'Campo and Louis Solomon for several helpful discussions.

2. The cohomology of F

Definition 2.1. An affine l-arrangement with n hyperplanes is called a general position arrangement and denoted \mathcal{B}_n^l , if n > l, the intersection of every subset of l distinct hyperplanes is a point, and the intersection of every subset of l+1 distinct hyperplanes is empty.

Proposition 2.2. Let \mathcal{G}_n^l be a generic arrangement. Let $M = M(\mathcal{G}_n^l)$ and let $p_M: M \to B$ be the restriction of the Hopf bundle. Then B is the complement of a general position arrangement, $B = M(\mathcal{B}_{n-1}^{l-1})$.

Proof. Fix $H_0 \in \mathcal{G}_n^l$ and choose coordinates so that $H_0 = \ker(z_l)$. Let $Q = Q(\mathcal{G}_n^l)$. A defining polynomial for \mathcal{B}_{n-1}^{l-1} is obtained by setting $z_l = 1$ in Q.

Hattori [5] obtained a complete description of the homotopy type of B. Let $J = \{1, ..., n-1\}$. If $I \subset J$ let |I| denote its cardinality. Define the subtorus T_I of T^{n-1} by

$$T_I = \{z_1, ..., z_{n-1} \in T^{n-1} \mid z_j = 1 \text{ for } j \notin I\}.$$

Theorem 2.3. Let \mathcal{B}_{n-1}^{l-1} be a general position arrangement with $l \ge 3$ and let $B = M(\mathcal{B}_{n-1}^{l-1})$. Then B has the homotopy type of

$$B_0 = \bigcup_{|I|=l-1} T_I.$$

Corollary 2.4. Let \mathcal{B}_{n-1}^{l-1} be a general position arrangement with $l \ge 3$ and let $B = M(\mathcal{B}_{n-1}^{l-1})$. Then

- (i) $\pi_1(B)$ is free abelian of rank n-1,
- (ii) $\pi_k(B) = 0 \text{ for } 2 \le k \le l 2,$
- (iii) for $0 \le k \le l-1$

$$b_k(B) = \binom{n-1}{k},$$

(iv) the Euler characteristic of B is

$$\chi(B) = (-1)^{l-1} \binom{n-2}{l-1}.$$

Proof. We think of T^{n-1} as the (n-1)-dimensional hypercube with opposite faces identified. Then B_0 is obtained from T^{n-1} by removing cells in dimensions n-1, n-2, ..., l corresponding to the interior of the cube, and to pairs of faces of the cube. Thus B_0 has the same (l-1)-skeleton as T^{n-1} . The boundaries of the removed l-cells give rise to nonvanishing homotopy classes but they are nullhomologous. This proves parts (i), (ii), and (iii). Part (iv) follows from Lemma 2.5 below.

Lemma 2.5. For m > k we have

$$\binom{m-1}{k} = \binom{m}{k} - \binom{m}{k-1} + \dots + (-1)^k \binom{m}{0}.$$

Proof. We use induction on k. The formula holds for k=1, and if we assume it for k-1 then it follows for k from the formula

$$\binom{m}{k} = \binom{m-1}{k} + \binom{m-1}{k-1}.$$

Theorem 2.6. Assume that $l \ge 3$. Let \mathcal{G}_n^l be a generic arrangement with total space $M = M(\mathcal{G}_n^l)$. Let $p_M : M \to B$ be the restriction of the Hopf bundle. Let $Q: M \to \mathbb{C}^*$ be the Milnor fibration and let F be the associated Milnor fiber. Let $\xi = \exp(2\pi i/n)$. Let $h^*: H^*(F) \to H^*(F)$ be the monodromy induced by $h(z_1, ..., z_l) = (\xi z_1, ..., \xi z_l)$. Let $u = \binom{n-2}{l-2}$ and let $v = \binom{n-2}{l-1}$. Then

- (i) $\pi_1(F)$ is a free abelian group of rank (n-1),
- (ii) $b_k(F)=b_k(B)$ for $0 \le k \le l-2$ and hence the monodromy is trivial in this range,
 - (iii) $b_{l-1}(F) = u + nv$,
 - (iv) the characteristic polynomial of the monodromy on $H^{l-1}(F)$ is

$$\Delta_{l-1}(t) = (1-t)^u (1-t^n)^v$$
.

Proof. If we think of the universal cover of T^{n-1} as \mathbf{R}^{n-1} subdivided into hypercubes by the integer lattice, then the universal cover of B is a giant "Swiss cheese" since in each hypercube the same cells are removed as the cells removed to get B_0 . Since the restriction of the Hopf map $p_F \colon F \to B$ is an n-fold covering, F has the homotopy type of the union of n such hypercubes with the appropriate identifications. This proves (i) and (ii). Part (iii) follows from (ii) together with the formula for the Euler characteristic of a covering $\chi(F) = n\chi(B)$, and the calculation of $\chi(B)$ in 2.4(iv).

To prove (iv) we use Milnor's work [6, pp. 76–77]. The Weil ζ function of the mapping h can be expressed as a product

$$\zeta(t) = \prod_{d|n} (1 - t^d)^{-r_d}$$

where the exponents $-r_d$ can be computed from the formula

$$\chi_j = \sum_{d|j} dr_d.$$

Here χ_j is the Lefschetz number of the mapping h^j , the j-fold iterate of h. Milnor showed that χ_j is the Euler characteristic of the fixed point manifold of h^j . Since h^j has no fixed points for $1 \le j < n$ and $\chi(F) = n\chi(B)$ we conclude that

(2)
$$\zeta(t) = (1-t^n)^{-\chi(B)}$$
.

The zeta function can be expressed as an alternating product of polynomials

(3)
$$\zeta(t) = \Delta_0(t)^{-1} \Delta_1(t) \Delta_2(t)^{-1} \dots \Delta_{l-1}(t)^{\pm 1}$$

where $\Delta_k(t)$ is the characteristic polynomial of the monodromy on $H^k(F)$. Part (iv) now follows from (2), (3), and the fact that $\Delta_k(t) = (1-t)^{b_k(F)}$ for $0 \le k \le l-2$, which is a consequence of (ii).

Remark 2.7. If l=2 then $\pi_1(F)$ is free of rank $(n-1)^2$. Conclusions (ii)–(iv) of the theorem are valid.

A central 2-arrangement is always generic. In this case Q has an isolated singularity at the origin. Thus $b_0(F)=1$ and $b_1(F)=(n-1)^2$. In fact F has the homotopy type of a wedge of $(n-1)^2$ circles. In this case B is the complex line with (n-1) points removed. Thus $b_0(B)=1$ and $b_1(B)=n-1$. This agrees with assertions (ii) and (iii). The characteristic polynomial of the monodromy on $H^1(F)$ may be computed using the divisor formula in [7]:

$$\delta(h) = (nE_n - 1)^2 = n(n-2)E_n + 1 = (n-2)\Lambda_n + 1.$$

Thus $\Delta_1(t) = (1-t)(1-t^n)^{n-2}$, which agrees with (iv).

Remark 2.8. It is shown in [1] that the complexification of the D_3 arrangement has $b_1(F)=7$, while $b_1(B)=5$. Thus Theorem 2.6 does not hold in general.

It follows from Milnor's fibration theorem that F is the interior of a closed manifold with boundary. Let F^c denote this closed manifold and let ∂F^c be its

boundary, a smooth closed orientable (2l-3)-manifold. Sard's theorem implies that there exists a closed ball B^{2l} centered at the origin whose boundary S^{2l-1} intersects F transversely. Then $F^c = F \cap B^{2l}$ and $\partial F^c = F \cap S^{2l-1}$. Since the singularity of $Q^{-1}(0)$ is not isolated, the compact set $K = Q^{-1}(0) \cap S^{2l-1}$ is not a manifold. The degeneration map $\partial F^c \to K$ is a resolution of the singularities of K. Since the monodromy h leaves S^{2l-1} invariant, there is an induced monodromy $h: \partial F^c \to \partial F^c$. Norbert A'Campo has informed us that he can prove the following.

Theorem 2.9. The induced monodromy $h: \partial F^c \to \partial F^c$ acts trivially on $H^*(\partial F^c)$.

Kähler differentials

We define Kähler differentials as in [9]. Let $S=K[z_1,...,z_l]$ be the polynomial ring over the field K with its usual grading, so $\deg z_j=1$ for all j. Let S_r be the homogeneous component of degree r. Write $(\Omega,d)=(\Omega_S,d)$ for the cochain complex of Kähler differential forms on S.

Definition 3.1. For $0 \le p \le l$ and $J = (j_1, ..., j_p)$ let $\sigma_J = dz_{j_1} ... dz_{j_p}$ and let

$$\omega_J = \sum_{k=1}^p (-1)^{k-1} z_{j_k} dz_{j_1} \wedge \dots \wedge \widehat{dz_{j_k}} \wedge \dots \wedge dz_{j_p}.$$

The symbol ω_J is skew symmetric in its indices. Since Ω^p is a free S-module with basis consisting of the elements σ_J with |J|=p and $j_1<...< j_p$, and the symbol σ_J is also skew symmetric in its indices, we may define an S-linear map $\delta:\Omega^p\to\Omega^{p-1}$ for $p\geq 1$ by $\delta(\sigma_J)=\omega_J$. For p=0 let $\delta=0$. Computation shows that $\delta^2=0$. In fact the complex (Ω,δ) is the Koszul complex based on $z_1,...,z_l$. The next result is the Poincaré lemma in our setting. For a proof see [9, Lemma 4.5].

Lemma 3.2. Let $a \in S_r$ and let $J = (j_1, ..., j_p)$. Then

(1)
$$\delta d(a\sigma_J) = ra\sigma_J - da \wedge \omega_J$$

(2)
$$d\delta(a\sigma_J) = pa\sigma_J + da \wedge \omega_J$$

(3)
$$(d\delta + \delta d)a\sigma_J = (p+r)a\sigma_J.$$

Now assume that \mathcal{A} is any arrangement over $K=\mathbb{C}$. According to Brieskorn [2] the cohomology of M is represented by rational forms.

Theorem 3.3. Let A be an arrangement. For $H \in A$ let $\eta_H = d\alpha_H/\alpha_H$. Then $H^*(M)$ is isomorphic to the \mathbb{C} -algebra R(A) generated by 1 and the 1-forms η_H for $H \in A$.

If \mathcal{A} is a central arrangement then the α_H are linear forms. Define an operator $\partial: R \to R$ by $\partial 1 = 0$, $\partial \eta_H = 1$ and for $p \ge 2$

$$\partial \eta_1 \dots \eta_p = \sum_{i=1}^p (-1)^{i-1} \eta_1 \dots \eta_{i-1} \widehat{\eta_i} \eta_{i+1} \dots \eta_p.$$

It is clear that $\partial \partial = 0$ and it is known that (R, ∂) is an acyclic complex, see [8]. Let $R_0 = \ker \partial$. Since ∂ is a derivation, it follows that R_0 is a subalgebra. Given $H_0 \in \mathcal{A}$ write $\eta_0 = \eta_{H_0}$. We have $R = R_0 \oplus \eta_0 R_0$. Denote by A_0 the subalgebra generated by 1 and η_0 . Then $R = R_0 \otimes A_0$. We obtain from (2.2):

Proposition 3.4. Let A be a central arrangement and let $p_M: M \to B$ be the restriction of the Hopf bundle. Then $p_M^*: H^*(B) \to H^*(M)$ is injective and we may identify $p_M^*(H^*(B))$ with R_0 .

Proposition 3.5. Let A be a central arrangement and let $p_F: F \to B$ be the restriction of the Hopf bundle. We may identify $p_F^*(H^*(B))$ with $QR_0 = \{Q\varrho | \varrho \in R_0\}$.

If \mathcal{G}_n^l is a generic arrangement then Proposition 3.5 and Theorem 2.6 provide Kähler differential form representatives for all cohomology except $H^{l-1}(F)$. In the rest of this section we discuss the problem of finding Kähler form representatives for $H^{l-1}(F)$. Let T=S/(Q-1)S be the coordinate ring of F. Let $\pi^0\colon S\to T$ be the natural projection, and let $\pi\colon\Omega_S\to\Omega_T$ be the induced map. In the top dimension we use special notation.

Definition 3.6. Let

$$\begin{split} \tau &= \sigma_{1,...,l} = dz_1 \wedge ... \wedge dz_l, \\ \tau_j &= (-1)^{j-1} \sigma_{1,...,\hat{j},...,l} = (-1)^{j-1} dz_1 \wedge ... \wedge \widehat{dz_j} \wedge ... \wedge dz_l, \\ \omega &= \delta(\tau) = \omega_{1,...,l} = \sum_{k=1}^l (-1)^{k-1} z_k dz_1 \wedge ... \wedge \widehat{dz_k} \wedge ... \wedge dz_l, \end{split}$$

and $\omega_j = \delta(\tau_j)$. Note that $dz_j \wedge \tau_j = \tau$. Also $d\omega = l\tau$ and $d\omega_j = (l-1)\tau_j$.

Definition 3.7. If $\alpha, \alpha' \in \Omega$ write $\alpha \equiv \alpha'$ if $\pi \alpha = \pi \alpha'$. If $\beta \in \Omega_T$ is a cocycle, let $[\beta]$ denote its cohomology class in $H^*(\Omega_T)$. If $\alpha, \alpha' \in \Omega$ are cocycles, write $\alpha \sim \alpha'$ if $[\pi(\alpha)] = [\pi(\alpha')]$.

In the next result we establish certain inhomogeneous relations in Ω_T .

Lemma 3.8. Let $a \in S_r$. Then

$$n\tau_k \equiv \frac{\partial Q}{\partial z_k}\omega,$$

(5)
$$nd(\delta a \tau_k) \equiv \left[(n+r-1)a \frac{\partial Q}{\partial z_k} - n \frac{\partial a}{\partial z_k} \right] \omega,$$

(6)
$$(n+r-1)a\frac{\partial Q}{\partial z_k}\omega \sim n\frac{\partial a}{\partial z_k}\omega.$$

Proof. For $J=(j_1,...,j_p)$, define $(j,J)=(j,j_1,...,j_p)$. From (3.2.1) we get for an arbitrary index set J

$$ra\sigma_J - da \wedge \omega_J = \sum_{j=1}^l \frac{\partial a}{\partial z_j} \omega_{(j,J)}.$$

To prove (4) let a=Q so r=n, $J=(1,...,\hat{k},...,l)$ and note that $Q\equiv 1$ and $dQ\equiv 0$. From (3.2) and the equation above we get for an arbitrary index set J with |J|=p

$$d\delta(a\sigma_J) = (p+r)a\sigma_J - \sum_{j=1}^l \frac{\partial a}{\partial z_j} \,\omega_{(j,J)}.$$

Now choose J as above, multiply the last equation by n and substitute (4) to obtain (5). The inhomogeneous relation (6) follows from (5).

Proposition 3.9. Every cohomology class of $H^{l-1}(\Omega_T)$ has the form $[\pi(p\omega)]$ where $p \in S$.

Proof. Since $\tau_1, ..., \tau_l$ generate Ω^{l-1} as S-module, it follows that their images under π generate Ω^{l-1}_{l} as T-module. The assertion follows from (3.8).

If f has an isolated singularity then the Jacobi ideal I generated by the partials of f has finite codimension in S. In [9] we showed that there is a homogeneous subspace H with $S=H\oplus I$ such that every cohomology class of $H^{l-1}(F)$ has the form $[\pi(h\omega)]$ with $h\in H$.

If the singularity of f is not isolated then the Jacobi ideal has infinite codimension. In the case of a generic arrangement we have an explicit conjecture for a finite dimensional subspace which carries the cohomology. First we need some notation. Let \mathcal{G}_n^l be a generic arrangement. Let $\mathcal{M} \subset \mathcal{G}_n^l$ be a subarrangement with $|\mathcal{M}| = l - 1$. Write $\mathcal{M} = \{H_1, ..., H_{l-1}\}$. Then $Q(\mathcal{M}) = \alpha_{H_1} ... \alpha_{H_{l-1}}$. Define $Q^{\mathcal{M}} = Q(\mathcal{G}_n^l)/Q(\mathcal{M})$. Given $s \in S$ let $J_{\mathcal{M}}(s)$ be the determinant of the Jacobian matrix of $(s, \alpha_1, ..., \alpha_{l-1})$. The next result proves the existence of certain homogeneous relations in Ω_T .

Lemma 3.10. For every $a \in S_r$ and $\mathcal{M} \subset \mathcal{G}_n^l$ with $|\mathcal{M}| = l-1$ we have

$$raJ_{\mathcal{M}}(Q^{\mathcal{M}})\omega \sim nQ^{\mathcal{M}}J_{\mathcal{M}}(a)\omega.$$

Proof. We may choose coordinates so that $Q(\mathcal{M})=z_2...z_l$. Then $J_{\mathcal{M}}(s)=\partial s/\partial z_1$. In the notation of (3.6):

$$d(aQ^{\mathcal{M}}\omega_1) = Q^{\mathcal{M}}da \wedge \omega_1 + adQ^{\mathcal{M}} \wedge \omega_1 + aQ^{\mathcal{M}}d\omega_1.$$

Direct calculation gives

$$Q^{\mathcal{M}} da \wedge \omega_{1} = Q^{\mathcal{M}} \left[ra\tau_{1} - \frac{\partial a}{\partial z_{1}} \omega \right]$$
$$adQ^{\mathcal{M}} \wedge \omega_{1} = a \left[(n - l + 1)Q^{\mathcal{M}} \tau_{1} - \frac{\partial Q^{\mathcal{M}}}{\partial z_{1}} \omega \right]$$
$$aQ^{\mathcal{M}} d\omega_{1} = (l - 1)aQ^{\mathcal{M}} \tau_{1}.$$

Recall from (3.8) that $n\tau_1 \equiv (\partial Q/\partial z_1)\omega$. Since $\partial Q/\partial z_1 = Q(\mathcal{M})(\partial Q^{\mathcal{M}}/\partial z_1)$ we have

$$nQ^{\mathcal{M}}\tau_1 \equiv Q^{\mathcal{M}}Q(\mathcal{M})\frac{\partial Q^{\mathcal{M}}}{\partial z_1}\omega \equiv \frac{\partial Q^{\mathcal{M}}}{\partial z_1}\omega.$$

It follows that

$$d(naQ^{\mathcal{M}}\omega_{1}) = n(n+r)aQ^{\mathcal{M}}\tau_{1} - na\frac{\partial Q^{\mathcal{M}}}{\partial z_{1}}\omega - nQ^{\mathcal{M}}\frac{\partial a}{\partial z_{1}}\omega$$
$$\equiv \left[ra\frac{\partial Q^{\mathcal{M}}}{\partial z_{1}} - nQ^{\mathcal{M}}\frac{\partial a}{\partial z_{1}}\right]\omega.$$

Lemma 3.11. Define $\phi: \Omega^{l-2} \to S$ by $dQ \wedge d\varrho = \phi(\varrho)\tau$ for $\varrho \in \Omega^{l-2}$. Define $E = \{e \in S | eQ \in \text{im } \phi\}$. For every $a \in S_r$ and $\mathcal{M} \subset \mathcal{G}_n^l$ with $|\mathcal{M}| = l-1$ we have

$$raJ_{\mathcal{M}}(Q^{\mathcal{M}}) - nQ^{\mathcal{M}}J_{\mathcal{M}}(a) \in E.$$

Proof. As in (3.10) we may choose coordinates so that $Q(\mathcal{M})=z_2...z_l$. Since $dQ \wedge \omega = nQ\tau$ we get as in the proof of (3.10)

$$\begin{split} dQ \wedge d(aQ^{\mathcal{M}}\omega_{1}) &= dQ \wedge \left[(n+r)aQ^{\mathcal{M}}\tau_{1} - a\frac{\partial Q^{\mathcal{M}}}{\partial z_{1}}\omega - Q^{\mathcal{M}}\frac{\partial a}{\partial z_{1}} \right]\omega \\ &= \left[ra\frac{\partial Q^{\mathcal{M}}}{\partial z_{1}} - nQ^{\mathcal{M}}\frac{\partial a}{\partial z_{1}} \right]Q\tau. \end{split}$$

Conjecture 3.12. Let \mathcal{G}_n^l be a generic arrangement defined by Q.

(i) There exists a finite dimensional homogeneous subspace $U \subset S$ such that

$$S \approx E \oplus \mathbb{C}[Q] \otimes U$$
.

- (ii) $\Omega_T^{l-1} = \pi(U\omega) \oplus d_T \Omega_T^{l-2}$, and the map $U \to H^{l-1}(F)$ defined by $u \to [\pi(u\omega)]$ is an isomorphism.
- (iii) Let $U_r = U \cap S_r$, let $u_r = \dim U_r$, and let $P(U,t) = \sum_r u_r t^r$ be the Poincaré polynomial of U. Then

$$u_r = \begin{cases} \binom{r+l-1}{l-1} & \text{for } 0 \le r \le n-l, \\ \binom{n-2}{l-1} & \text{for } n-l+1 \le r \le n-1, \\ \binom{n-2}{l-1} - \binom{r-n+l-1}{l-1} & \text{for } n \le r \le 2n-l-2. \end{cases}$$

Example 3.13. Consider \mathcal{G}_5^3 and use coordinates x, y, z. Let $Q = xyz(x+y+z) \times (x+2y+3z)$. The cohomology of its Milnor fiber is described as follows.

Label the linear forms $\alpha_1, ..., \alpha_5$. For i < j define 1-forms in Ω^1 by

$$\zeta_{i,j} = Q\left(\frac{d\alpha_i}{\alpha_i} - \frac{d\alpha_j}{\alpha_j}\right).$$

It follows from (3.5) that a C-basis for $H^1(F)$ consists of $\pi^1(\zeta_{i,5})$ for i=1,2,3,4. In the description of $H^2(F)$ note that

$$\omega = xdy \wedge dz - ydx \wedge dz + zdx \wedge dy.$$

Direct calculation shows that in our case $U_r = S_r$ for r = 0, 1, 2. For r = 3, 4 only homogeneous relations occur, but for r = 5 the inhomogeneous relation $Q\omega \sim \omega$ is also required. We get

$$P(U,t) = 1 + 3t + 6t^2 + 3t^3 + 3t^4 + 2t^5$$

This agrees with (3.12). The monodromy h has order n=5. Let $\xi = \exp(2\pi/5)$. Recall that the action of h is contragradient in S. Thus $h\omega = \xi^{-3}\omega$ and U_r is an eigenspace with eigenvalue ξ^{-r-3} . It follows that the eigenvalues computed from this Poincaré polynomial agree with the characteristic polynomial of the monodromy from (2.6):

$$\Delta_2(t) = (1-t)^3 (1-t^5)^3$$
.

See also the preprint "On Milnor fibrations of arrangements" by D. C. Cohen and A. I. Suciu.

References

- ARTAL-BARTOLO, E., Sur le premier nombre de Betti de la fibre de Milnor du cône sur une courbe projective plane et son rapport avec la position des points singuliers, Preprint.
- BRIESKORN, E., Sur les groupes de tresses, in Séminaire Bourbaki 1971/72, Lecture Notes in Math. 317, pp. 21–44, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- 3. DIMCA, A., On the Milnor fibrations of weighted homogeneous polynomials, Preprint.
- ESNAULT, H., Fibre de Milnor d'un cône sur une courbe plane singulière, Invent. Math. 68 (1982), 477-496.
- HATTORI, A., Topology of Cⁿ minus a finite number of affine hyperplanes in general position, J. Fac. Sci. Tokyo 22 (1975), 205-219.
- 6. MILNOR, J., Singular Points of Complex Hypersurfaces, Princeton Univ. Press, Princeton, N.J., 1968.
- MILNOR, J. and ORLIK, P., Isolated singularities defined by weighted homogeneous polynomials, *Topology* 9 (1970), 385–393.
- 8. ORLIK, P., Introduction to Arrangements, CBMS Lecture Notes 72, Amer. Math. Soc., Providence, R.I., 1989.
- ORLIK, P. and SOLOMON, L., Singularities I: Hypersurfaces with an isolated singularity, Adv. in Math. 27 (1978), 256-272.
- RANDELL, R., On the topology of non-isolated singularities, in *Proceedings of the Georgia Topology Conference 1977*, pp. 445–473, Academic Press, New York, 1979.
- 11. SIERSMA, D., Singularities with critical locus a 1-dimensional complete intersection and transversal type A_1 , Topology Appl. 27 (1987), 51–73.

Received October 23, 1991

Peter Orlik Department of Mathematics University of Wisconsin Madison, WI 53706 U.S.A.

email: orlik@math.wisc.edu

Richard Randell
Department of Mathematics
University of Iowa
Iowa City, IA 52242
U.S.A.
email: randell@math.uiowa.edu