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Abs t rac t .  We give the following representation theorem for a class containing quasianalytic 
ultradistributions and all the non-quasianalytic ultradistributions: Every ultradistribution in this 
class can be written as 

u=P(A)g(x)+h(x) 

where g(x) is a bounded continuous function, h(x) is a bounded real analytic function and P(d/dt) 
is an ultradifferential operator. Also, we show that the boundary value of every heat function with 
some exponential growth condition determines an ultradistribution in this class. These results 
generalize the theorem of Matsuzawa [M] for the above class of quasianalytic ultradistributions 
and partially solve a question of A. Kaneko [Ka]. Our interest lies in the quasianalytic case, 
although the theorems do not exclude non-quasianalytic classes. 

1. A c l a s s  o f  q u a s i a n a l y t i c  u l t r a d i s t r i b u t i o n s  

We use the  mul t i - index  no ta t ions  such as ]O!]=OLl-~-...~-O~n, 0a  = 0  lal 02c~2 ...0nOah, 

Oj-=O/OXj for a-= ( a  l ,  a2,  ..., a ~ ) E N ~  where  No is the  set of non-nega t ive  integers.  

Let  Mp, p = 0 ,  1, 2, ..., be  a sequence of posi t ive  numbers ,  and  let  ~ be  an  open  

subse t  of R ~. A n  inf ini te ly  dif ferent iable  funct ion  r on ~ is cal led an  ul t radi f feren-  

t i ab le  funct ion of  class (Mp) (of class {Mp} respec t ive ly)  if for any  compac t  set K 

of ~ and  for each h > 0  ( there  exist  cons tan t s  h > 0  such t h a t )  

(1.1) ]r = sup 10~r 
xEK,aEN~ hl'~] Ml,~t 

is finite. We impose  the  following condi t ions  on Mp: 
(M.0) For  any  A > 0  there  exists  a cons tan t  C > 0  such t h a t  

p!<CAPMp, p = 0 , 1 , 2 , . . . .  

(M.1) 2 Mp(_Mp_lMp+l, p=l,2,... .  
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(M.2) There are constants C and H such that  

ip+q<_CHP+qipMq, p , q = 0 ,  1 ,2 , . . . .  

We call the above sequence Mp the defining sequence and denote by g(M,)(f~) 
(g{M,}(ft) respectively) the space of all ultradifferentiable functions of class (MB) 
(of class {Mp} respectively) on f~. 

If Mp =p! then we obtain the class of analytic functions by Pringsheim's the- 
orem. The condition (M.1) can be naturally fulfilled by Gorny's theorem ([Ma], 
p. 226). Thus the condition (M.2) is the only significant condition. 

The topology of such spaces is defined as follows : A sequence qhj--+0 in g(Mp)(ft) 
(g{M,}(ft) respectively) if for any compact set K of ft and for any h>0  (for some 
h>  0 respectively) we have 

IO~r ~0, asj---~c~. sup 
x~K,~cN~ hl~lMl~ I 

As usual, we denote by 8(Mp)(f~) (${Mp} (a) respectively) the strong dual space 
of g(Mp)(f~) (of 8{Mp}(ft) respectively) and we call its elements ultradistributions 
of Beurling type (of Roumieu type respectively) with compact support in f~. Let 
KcRn be a compact set. We denote by g~Mp)(K ) (8~M~}(K) respectively) the set 
of ultradistributions of class (Mp) (of class {Mp} respectively) with support in K.  
In fact uEE~M~)(K) if and only if for any neighborhood f~ of K there exist constants 
h>0  and C > 0  such that  

(1.2) I~(r < C sup 10~r r e s 
-- xCa,~eN3 hl~t Ml~ I ' 

For each defining sequence MB we define for t > 0  

(1.3) 

tPM0 M(t) = sup log - - ,  
p Mp 

M* (t) = sup log P!tPM~ 
p Mp ' 

2~r(t) = sup log P!tPM2~ 

An operator of the form 

(1.4) 
O 0  

P(O)= E aaOa' ac, EC 
I~1=0 
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is called an ultradifferential operator of class (MB) (of class {Mp} respectively) if 
there are constants L and C (for every L>O there is a constant C>O respectively) 
such that  

(1.5) ia~l<_CLl~l/Mi~i, a e N ~ .  

(1.6) 

and 

(1.7) 

It is well known that  if P(O) is an ultradifferential operator of class �9 then 

P (0 ) :  E, (~) --~ E, (f~) 

P ( O )  . ' E , ( a )  
' 

are continuous where *=(Mp)  or {Mp}. The condition (1.5) is equivalent to the 
condition that  

(1.8) IP(~)[ < CexpM(Ll~l )  , ~ �9 C n, 

2. S t r u c t u r e  t h e o r e m s  

In this section it will be shown that  every uEE.(Mp)(K ) can be written as an 
infinite sum of derivatives of a continuous function modulo a bounded real analytic 
function and that  every uEC~Mp)(K ) can be represented by the boundary value of a 
heat function satisfying some exponential growth condition. The structure theorems 
for u e${Mp}(K) can be shown by similar arguments. 

We denote by E(x,  t) the n-dimensional heat kernel: 

J" (4~t) -n/2 exp(-Ix[2/4t),  t > O, 
E(x,  t) 

0, t_<0. 

L e m m a  2.1 ([M]).  E(. , t )  is an entire function of order 2 for every t>0 .  It 
has the following properties: 

(i) f R ~ E ( x , t ) d x = l ,  t>0 .  
(ii) There are positive constants C and a such that 

]O~E(x,t)] <_ Cl~'t-(n+i~l)/2a! 1/2 exp[-alx12/4t], t > O, 

where a can be chosen as close as desired to 1 and 0 < a < l .  

The following lemma can be shown by similar arguments as in Proposition 2.1 
of Matsuzawa [M], or as in Theorem 4 of Neymark [N]. 
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L e m m a  2.2. Let K be a compact subset of R n and f~ be a bounded open set 
containing K.  For every CEE(Mp) let 

Ct(x) ---- ./o E ( x - y ,  t)r dy. 

Then Ct converges to r in g(Mp)(f~) as t---*O+. 

For each defining sequence MB we impose the following condition: 
(C) There exists a positive integer k such that 

l imin f (mkP~ 2 >k, 
p---*oo \ m p  ] 

where rnp=Mp/Mp_l, p = l ,  2, . . . .  

Remark 2.3. (i) Let mp=p(logp) ~, a > 0 .  Then Mp=m2. . .mp satisfies (C). 
Thus the defining sequence for this standard quasianalytic class satisfies (C). 

(ii) The Gevrey sequence Mp--p! s, s > l ,  satisfies (C). 
(iii) Furthermore, if Mp satisfies the strong non-quasianalytic condition (M.3) 

in Komatsu [K1] then it satisfies (C). In fact, (M.3) is equivalent to the fact that 
for some integer k>0  

(M.3") lira inf mkp > k. 
p---* oo ?Tip 

Thus the condition (C) is equivalent to the fact that Np =M2p satisfies (M.3) (see [P], 
p. 300). 

The following lemma will be very useful later on. For the details of the proof 
we refer to Komatsu [K1], Lemma 11.4 and Matsuzawa [M], Lemma 4.1. 

L e i n m a  2.4. Let L be an arbitrary positive number and let 

L 
(2.1) P ( ( ) - - ( I + ( ) 2 1 - I ( I + L ( ~ '  ( c C n "  

p=l \ m p /  

(i) / f  Mp satisfies (M.1), (M.2) and (M.3) then P(O) is an ultradifferential 
operator of class (M,). 

(ii) If Mp satisfies (M.1) and ~p~=l Mp_l/Mp<co then for any e>0  there exist 
functions v, w E C ~  (R) such that 

(2.2) supp v C [0, e], supp w C [e/2, el, 

(2.3) Iv(t)l <_ Cexp[-M*(L/ t )] ,  t > O, 

(2.4) P(d/dt)v(t)  = 6(t) +w(t),  

where 6 is a Dirac measure. 

Now we are in a position to state and prove the main theorem of this paper. 
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T h e o r e m  2.5. Let Mp be a defining sequence satisfying (C) and uCC~Mp)(K ). 
Then there exists an ultradifferential operator P(d/dt) such that for some C > 0  and 
L > 0  

o~ 

(2.5) P(d/dt) = E ak(d/dt)k' iakl <- CLk/M~ 
k=0 

and there exist a bounded continuous function g(x) and a bounded real analytic 
function h(x) such that 

(2.6) u = P(A)g(x)+h(x) 

where g(x)eC~(Rn\K), P(A)g(x)+h(x)=O in Rn\K, and A is the Laplacian. 

Proof. Let U(x, t)=uy(E(x-y, t)). Since E(x, t) is an entire function of x for 
each t>0 ,  U(x,t) is well defined and entire analytic for each t>0 .  Furthermore 
U(x, t) satisfies 

(2.7) (Ot-A)U(x,t) = 0  in R~_ +1 

where a~l={(x,t)eRn+l:xca n, t:>0}. Let Ks={xERn:d(x,K)~_5}. Then 
uEC(Mp)(K ) means that for any 5>0 there exist h > 0  and C > 0  such that 

IU(x,t)l<_C sup IO~E(x-y't)[, t > 0 .  
y E K 6 , a E N ~  hl~lMi~ I 

By Lemma 2.1 (ii) we have for t > 0  

[~'t-i~iC2'~l /h2I~I ] 1/2 ~_y ] 
(2.8) IU(x,t)] ~ ClSUp ~ sup exp[ Ix [2 

<_ C, exp [ M ( a / t ) -  d(x, Ke )2/8t] 

for some e>0.  Let fl be a bounded open neighborhood of K and 

G(y,t)=/aE(x-y, t )r  r E g(Mp). 

Then by Lemma 2.2 we can easily see that 

(2.9) G(. , t ) - -*r  in g(Mp)(~t), as t --~0+ 
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and 

s u(z, t)r dx = uy (a(y, t)) (2.10) 

by taking the limit of the Riemann sum of the left hand side. Thus it follows from 
(2.9) and (2.10) that  

U(x, t) -~ u as t --~ O+ 

in the following sense: 

lira f Y(x, t)r162 (2.11) 
t -+0+ Ja  

Now let Np=M~. Then Np is also a defining sequence satisfying (M.3) and 
Ep=l Np_l/Np<oC by (C) and (M.0). Then applying Lemma 2.4 to the sequence 

Np=M2p we can choose an ultradifferential operator P(d/dt) such that for some 

C > 0 and for some L0 

k 2 (2.12) P(d/dt) = E ak(d/dt)k' lak[ < CL~ 

and choose v, w E C ~ ( R )  such that  

(2.13) suppv C [0, 2], suppw C [1, 2], 

(2.14) Iv(t)l <_ Cexp[-N*(L/t)], t > O, 
(2.15) P(d/dt)v(t) = 5(t) + w(t). 

. p!tPM 2 __ 
Here we note that  N ( t )=suplog  _ =M( t ) .  

Let 

(2.16) U(x, t) = U(x, t+s)v(s) ds. 

Then it follows from (2.8) that 

__ ~ exp /~  (2.17) IU(x,t)[<Cl fo [ ( t + s ) - M ( L ) l  ds. 

Choosing L>e, we can easily see that  U(x,t) is uniformly bounded on R~_+I= 
{(x, t )ER~ '+ I :xER '~, t_>0}. Thus U(x,t) is continuous on R~_ +1. It follows that 

g(x)=Sr(x, 0) is a bounded continuous function. Let 

/0 (2.18) H(x, t) = - U(x, t+s)w(s) ds. 
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Since supp w C [1, 2], H(x, t) can be analytically continued to 

{(x , t )  e R n + l : x e R  n, t >  - 1 } .  

Thus h(x)=H(x, 0) is a bounded real analytic function. On the other hand, (2.15) 
implies that  

(2.19) P ( - A ) U ( x ,  t) -- V(x, t ) - H ( x ,  t). 

Hence we can easily see that  in the sense of (2.11), 

u--  lira U(x, t) = P(-A)g(x)+h(x) .  
t---*O+ 

The condition (M.0) implies that for any L > 0  

M(t) < Lt+C. 

Therefore, it follows from (2.8) that  for x ~ K  

u = P ( - A ) g ( x ) + h ( x ) =  lim U(x,t)--O 
t-*O+ 

which completes the proof. 

Every distribution and hyperfunction with compact support can be represented 
as the boundary value of a holomorphic function. Here we will give a similar result 
for $~M~)(K). In fact, this follows from (2.11) in the proof of Theorem 2.5. Thus we 
will prove that  every heat function with growth condition (2.8) defines an element 
in $~M~)(K). 

T h e o r e m  2.6. Let Mp be a defining sequence satisfying (C) and V(x, t) be an 
infinitely differentiable function in R~_ +1 satisfying the following conditions: 

(i) (Ot-A)U(x,t)=O in R~_ +1, 
(ii) for any 5>0 there exist C > 0  and s>0  such that 

(2.20) IU(x,t)l < C e x p  [M(~/t)-d(x,  Kh)2/8t] in R~ +1. 

Then there exists a unique element uEC(Mv)(K ) such that 

(2.21) 

and 

(2.22) 

U(x,t)=uy(E(x-y,t)), t > 0  

lim U(x, t) = u 
t--*O+ 
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and 

and 

f 
B(x, t) = h(x)* E(x, t) -- ]R~ h(y)E(x- y, t) dy. 

Then it is easy to show that A(x,t) and B(x,t) converge locally uniformly to 

g(x) and h(x) respectively so that  they are continuous on R~_ +1 and A(x, 0)=g(x) ,  

B(x, 0)=h(x) .  Then U(x, 0)=A(x,  0) and H(x, 0 )=B(x ,  0). Since they are bounded 

on R~_ +1 we have by the uniqueness theorem of heat equations in Friedman [F] 

U(x,t) =g(x)*E(x,t) 

H(x,t) =h(x)*E(x,t). 

in the following sense: 

(2.23) u ( r  lim f U(x,t)r CeC(Mp)(R n) 
t-~0+ JR 

where ~ is an arbitrary bounded neighborhood of K. 

Proof. Consider the function, as in (2.16) 

g(z ,  t) = U(x, t+s)v(s)  ds. 

Then it follows from (2.17)-(2.19) that  

(2.24) U(x, t) = p ( - z ~ ) 5 ( x ,  t)+H(x, t). 

Furthermore, g(x)= 0(x ,  0) and h(x)=H(x, 0) are bounded continuous functions on 
R~. Define u as 

(2.25) u = P ( - a  )g(x) + h(x) .  

Since p ( - A )  is an ultradifferential operator of class (Mp) by (2.12) u belongs to 
C~Mp)(K ) and U(x, t)--~u as t -*0+ .  Thus the existence of u is proved. 

Now define heat functions for t > 0  as 

A(x, t) =g(x),E(x, t) = JR f ~  g(y)E(x-y, t) dy 
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Then it follows from these facts and (2.24) that  

u* E = [P(-A)g(x)+h(x)],  E 

= P ( - A ) U ( x ,  t )+H(x,  t) 

:U(x,t), 

which gives the relation (2.21). Also the uniqueness is easily obtained by (2.2i). 

For a compact set K of R ~ we denote by 2~4~ me the totali ty of C ~ solutions 
U(x,t) of the heat equation (Ot-A)U(x,t)=O in R~_ +1 which satisfy the following 
condition: 

For any 5 > 0 there exist C and ~ > 0 such that 

(2.26) Ii(x,t)l  < Cexp  [M(~/t)-d(x,K~)2/8t] in R~_ +1. 

Note that  .A/[~ me is a DF-space with the best constants C as semi-norms. Then 
we have the following theorem in view of Theorem 2.5 and 2.6: 

T h e o r e m  2.7. Let Mp be a defining sequence satisfying (C). Then there exists 
an isomorphism: 

j ~ m e  ~ ~ )(K) 
M p  * 

Matsuzawa [M] has proved similar theorems for the case of hyperfunctions 
and ultradistributions of Gevrey class. Thus the above theorem is an extension of 
Matsuzawa's result for a class of quasianalytic ultradistributions. 

Remark 2.8. We note that  in Theorems 2.5 and 2.6 the conditions (2.20) and 
(2.26) can be replaced by the following: 

Iu(x,t)l <CexpM( /t), t > 0  

and U(x, t) converges uniformly to zero in Rn \K~ as t -*0+ .  

Remark 2.9. In this section we have proved theorems only for uEE~Mp)(I~ ). 
For uCE~Mp}(/~ ) we can prove similar theorems under the same conditions. But,  

in fact (M.0) can be replaced by the less restrictive condition (M.0') as follows: 
(M.0') There exist constants A > 0  and C > 0  such that  

p! < CAPMp, p = 0, 1, 2 , . . . .  

Finally, we conjecture that  our assertions should also remain valid without 
the condition (C), i.e., for the general ultradistributions, both quasianalytic and 
non-quasianalytic. 
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