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A smooth pseudoconvex domain in C 2 
for which L -estimates for c5 do not hold 

Bo Berndtsson(1) 

Let ~ be a smoothly bounded domain in C n. It is well known (see [HL] and [0]) 

that  if :D is strictly pseudoconvex then we can solve the c%equation with estimates 
in L p for any l < p < c ~ .  It  has also been known for some time that  this is no longer 

true if l )  is merely pseudoconvex. Namely, Sibony [$2] found an example of such 
a domain in C 3 where L~ do not hold. The reader should also consult 

the paper  [FS1] which contains a discussion of LP-estimates in general and many  
counterexamples to this type of questions. However, all counterexamples known 

seem to treat  the case n > 3  and LP-estimates for p > 2 .  
In this paper  we shall prove 

T h e o r e m  1. There is a smoothly bounded Hartogs domain in C 2, and a O- 
closed (0, 1)-form g in ~), which extends continuously to 9 ,  such that the equation 
Ou=g has no bounded solution. 

Recall that  a Hartogs domain is a domain of the form 

(1) :D---- {(z, w); Iwl < e-r(*>} 

where ~o is subharmonic. If e.g. ~o is smooth in the disk and 

1 1 
~o= ~ log  1_1zl2 

near the boundary  of the disk, then 0:D will be smooth. 
There is a special reason why we are interested in the case n=2. The form g 

in Theorem 1 extends continuously to 0l).  So, the same example shows that  we 
don' t  have L~176 for 0b either. But in C 2 there is a duality between 0b in 

L ~ and in L 1. Therefore we get 

(1) Supported by Naturvetenskapliga Forskningsrgdet 



210 Bo Berndtsson 

T h e o r e m  2. There is a sequence of functions gn on 01? such that 

(i) lignllL1 <1, 
(ii) there is Un in L 1 such that ObUn=gn, 
(iii) if  O v n = g ,  then Ilv, llnl --* c~. 

In other words, we do not have L 1 estimates for C~b either. Another way of ex- 
pressing the conclusion of Theorem 2 is that  the closed and densely defined operator 
0b: L 1--*L 1 does not have closed range. 

Whether  one can solve the cb-equation in /9  with Ll-estimates is another ques- 
tion, which I do not know the answer to. In a recent paper by Bonneau and 
Diederich ([BD]), Ll-estimates with a logarithmic loss are proved. One should also 
compare the results by Feffermann Kohn, Christ and Nagel-Rosay-Stein-Wainger 
(see [FK], [C], [NRSW]), which contain sup-norm estimates, and even H61der esti- 
mates for c~b in domains of finite type in C 2 (thus in particular for domains with 
real-analytic boundary).  Recently a more elementary proof of a slightly weaker 
result was obtained by Range ([R]). 

Our construction is quite different from the one in [$2] (it is actually more 
similar to the earlier one in IS1]). It is based on the relation between estimates for 
the cb-equation in domains of the form (1), and estimates for the one dimensional 
c~-equation in the disk with weight e -n~' where n C N .  

It is well known (see [FS1], [FS2] or [B]) that  if ~ is an arbitrary subharmonic 
function in the disk, then one can in general not solve the equation 

(2) Ou 
02 f 

in the disk with estimates 

(3) sup lul e-~" _<_ c sup I/le -~.  
A A 

The analogous question for smooth ~'s is whether one can solve (2) with the 
estimate 

(4) sup lul e-n~ < Csup [fie -n~.  
A A 

where C is a constant that  does not depend on n (nor f of course). It turns out 
(see Section 2) that if we have L~-est imates in a domain 7? of type (1), then one 
can solve the c~-equation in the disk with the estimate (4). Hence, all we need to do 
to prove Theorem 1, is to find a subharmonic function ~CC~176 for which this is 
impossible. This is the object of Section 1. In Section 2 we show how this implies 
Theorems 1 and 2. 

This paper was finished when I visited the CIMAT in Guanajuato. I would like 
to thank Xavier Gdmez-Mont for his invitation and all his help, and the CIMAT 
for its support. 
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Sect ion  1 

In this section we shall study estimates of the form 

(1.1) sup I. le -~' _< Csup I f i e - "  

for solutions to the equation 
Ov 
o2 f 

in the unit disk, A. We are interested in for which functions ~ such an estimate 
holds for all f in, say, C~(A) ,  and also for which functions r (1.1) holds with a 
fixed constant for ~ - -n r  n - l ,  2, 3 .... 

P r o p o s i t i o n  1.2. We can solve the O-equation in A with the estimate (1.1) 
if and only if the following inequality holds 

(1.3) fA 'c~'e~ <--C/A 0_~ e~ V ~EC~(A ) .  

The best constants in (1.1) and (1.3) are the same. 

Proof. The fact that  Ov/O2=f is equivalent to 

/o~ 
f c ~ = -  v~-~ Vc~ E C~(A).  

If v satisfies (1.1) we get 

Taking the supremum over all i with I / l < e "  we get (1.3). 
If, on the other hand (1.3) holds then 

I, :  ,<su.,,../I - (1.4) 

Let 

Define a linear functional 

r o a  ~ }_ F = ~ e  ;~C:  ~ CLI(9) 

T: F--~C 
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by 

(1.4) implies that  T is well defined and that  IITll < C s u p  I f ie  -~.  
We can extend T to a linear operator 

T: Ll(/k) ---+ C 

with the same norm. Hence there is a function u C L ~ ( A )  such that  

ff =f as U ~=z e 

and IluIl~= IITll. Letting v = - u e  ~ we have a solution to O v = f  which satisfies (1.1). 
The proof is complete. [] 

Note that  the question whether (1.3) holds depends only on A~. In other 
words, if h is harmonic and (1.3) holds for ~, then it holds with ~ replaced by ~ + h  

(just multiply a by e h+i[z where/z is the harmonic conjugate to h). 
We also remark that if (1.3) holds for all a e g ~ ( A ) ,  then it actually holds for 

all a in L 1 with compact support, which are such that  Oa/02 is a finite measure. 
We will use this remark at several points. 

P r o p o s i t i o n  1.5. Assume that (1.3) holds with a fixed constant for ~ = n r  
where n C N .  Then r is subharmonic. 

Proof. Let A ~ C C A  be a disk and let a = X A , .  Then (1.3) implies 

A' enr <- C fo~, e nr Idzl" 

Hence, if r  on 0A'  then r  in A'. Since we can change r to r  where h is 
any harmonic polynomial, we see that if r  on 0A',  then r  in A'. This means 
that  r is subharmonic. [] 

A similar argument shows that  if the analog of (1.3) in L2-norm 

(1.6) / 0 a  2e~ 1~12e ~ < C 

holds for ~ - - n r  then r is also subharmonic. In this case, the converse is also 
true. This follows from the inequality used in the proof of H6rmander's theorem 
(see [H]). We shall now see that  in Ll-norm the situation is quite different. 
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P r o p o s i t i o n  1.7.  Let qo be any subharmonic function in A with the property 
that ~o=-oo on some set with an interior accumulation point. Then (1.3) does not 

hold with any constant C. 

Proof. Assume t h a t  a E A  and tha t  qo(a)=-oo. T h e n  it follows f rom (1.3) t ha t  

e~ o 

,z_~ 

To see this consider (1.3) wi th  a replaced by a / ( z - a ) .  T h e n  

Oa O~ 
Oz ~(z-a) = ~ l ( z - - a ) + . ~ a ,  

but  the last t e r m  gives no contr ibut ion since e ~~ I t e ra t ing  this observat ion we 

see tha t  if ~(al)=qo(a2) . . . . .  qO(an)=-oo then  

f (1.8) 
J I77 Iz-ar 1-I1 I z -a j l  " 

In  par t icular  we can take  a = X A , ,  where  A '  c c A  is a disk containing an accumula-  
t ion point,  p, of the  set where ~o=-oo .  T h e n  (1.8) can clearly not  hold in the  limit 

as all aj t end  to p. Hence (1.3) cannot  hold. [] 

The  preceding p roof  shows a curious fact. If  q0 is given by  

3 

1 ~log Iz-asl ~<~=~ 
1 

t hen  (1.3) cannot  hold wi th  a fixed cons tant  as a=(al,a2,a3)-+O. On the  o ther  

hand,  in the  limit we get 
~o = log Izl, 

which does satisfy (1.3) (just mul t ip ly  a by z). 
We are now ready  to prove our ma in  technical  result .  

P r o p o s i t i o n  1.9.  There is a subharmonic function @ in C~176 such that if 

C~ denotes the best constant in 

fA io~ienr < Cn fA 00~ nr (1.10) _ ~ e Vc~ e C~, 

then lim Cn = oo. 

Proof. Let ~ be  a funct ion subharmonic  in a ne ighborhood  of A which is har-  
monic near  0 A  and which is such t ha t  (1.3) is violated.  T h e n  there  is a sequence 
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of smooth subharmonic functions ~k in ~ ,  which are harmonic near OA such that  
~kl!P. Let II~kllc~(~)=Ak. Take a sequence of integers nk such that  nk/Ak--*ce, 
and put Ck:~k /nk .  Then we have a sequence of smooth subharmonic functions 
such that  

(i) lim IlCkllCk =0 and 
(ii) if Bk is the best constant in 

f lalen~r < Bk / ~ e n~r wec~ 

then lim Bk =oo. 
Moreover, all Ck's are harmonic near hA, so ACkCC~(A).  Now, if 

A ' = A ( a , r )  CC A 

is a small disk in A, and if r is one of our Ck's we transport  ~ to A ~ by the following 
definition. 

where G is the Green-potential in A. 
Then v = r ( A ' , r  is smooth and Av=A(r  in A' and A v = 0  out- 

side A ~. Moreover 

(1.11) II/Wllck-= _< r-kllar ~ _< r-kllr 

Choose a disjoint sequence of disks Ak=A(a~, rk) in A which converges to an inte- 

rior point. By taking a sparse subsequence, renumbering and letting Ck =T(Ak, ~bk) 

we get that  

(iii) E~kllCkflc~ < ~  and 
(iv) lim rkBk =oc. 
Then (iii) together with (1.11) shows that  r  Ck e c ~ ( ~ ) .  
Assume, to get a contradiction, that  (1.10) holds with C~_< C. Take in partic- 

ular aEC~(Ak) .  Then 

- <_c f e ~ Yak I Oe 
I~lenr 

since the other @'s  are harmonic in Ak. The change of variables ~-=ak +rkr  trans- 
ports this estimate to A. We then get 

_ 0 0 z  n k 

since ACk=A(~k(a+r f f ) ) .  Taking in particular n=nk we obtain Bk <_C/rk, which 

contradicts lim rk Bk----o0. [] 
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S e c t i o n  2 

We shall  now see how we can use the  funct ion  r from P ropos i t i on  1.9 to  prove 

Theo rem 1. 

P r o p o s i t i o n  2 .1 .  Let :D be a domain of the form 

z) = { (z, w); Izl < 1, Iwl < e -~ (z )  } ,  

where ~ zs a smooth function. Assume that for any O-closed form f which extends 

continuously to ~ we can solve the equation Ou= f with u bounded. Then there is 

a constant C such that for any fEC~(A1/2) and any h e n  we can solve Ou /O~=f  

in A1/2 with 

(2.2) sup [uIe - ~  < C sup I f i e  - ' ~  
AZ/2 2'1/2 

Proof. Assume  the  conclusion is false. T h e n  the re  is a sequence nk-*  oc and  a 

sequence of fk C C ~ ( A 1 / 2 )  such t h a t  

sup Ifkle -nk~' --: ak ~ 0 

and  if uk are any  solut ions  for 

Then  

~ t k  
02 - f k .  

sup [uk le -nk~~ --* co. 

By choosing a sparse  subsequence  we can assume ~ ak < c~. Let  

OO 

f = y ~  f k ( z )w  nkd2. 
0 

The  sum is abso lu te ly  and  uni formly  convergent  in :D. So, f is cont inuous  on :D 

and  0 f = 0 .  By hypo thes i s  we can find a funct ion  uEL~ such t h a t  Ou=f .  Since 

f has no d ~  componen t ,  u is ho lomorphic  in w, a n d  we can e x p a n d  u in a power  

series 
O4) 

u(z,w) :Euo(z)wo 
0 

Ident i fy ing  coefficients of w n in O u = f  we get 

OUnk _ f k. 
02 
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But  

so if r < e  - ~  we get 

s u p  lttn(Z)l'F n ~_ IIltllL~. 
A1/2 

Lett ing n=nk and rTe -~ we see tha t  

sup lu~le - - ~ ~  _< C 
A1/2 

contradict ing the choice of fk. [] 

Theorem 1 is now a direct consequence. Star t ing with our funct ion r from 

Proposi t ion 1.9, we can scale it down to AU2. Then  we can extend r to a smooth  

subharmonic  funct ion ~ in A such tha t  ~ =  �89 l o g ( i / ( 1 - I z 1 2 ) )  near 0A.  By Proposi-  

t ion 1.2 the conclusion of Proposi t ion 2.1 fails for ~. Hence, if we use ~ to define 79 

we get a smooth ly  bounded  domain in C 2 which satisfies the claim in Theorem 1. 

Let us now briefly discuss CSb on 079. Let u(z, w) be a bounded  function on 079. 

We can then expand u(z, w) in a Fourier series 

U(Z, e -9~+i0) ~'~ ~ Un(Z)C--Inl~e inO . 

We can always extend u smoothly  to 79. Let on the  other  hand  f be a (0, 1) 

form in 79 which extends continuously to :D. Final ly let p be any smooth  defining 

function for 79. We say Obu=f if 

OuAOQ=fAcSQ on 079 

in the sense of distributions.  

Now, let in par t icular  f be the form in Theorem 1. By extending u to 79 by 

oc --1 

U(Z, W)= ~ ~n(Z)Wn-~ ~ ~n(Z)W -n 
0 --c~ 

we see tha t  if Obu=f then 

Oun~ _ f k .  
02 

Again, by es t imat ing Fourier coefficients we see tha t  Obu=f has no bounded  solu- 

tion. 
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We finally turn  to the proof of Theorem 2. This follows in principle from what 
we just said, but  it is probably more instructive to give a direct construction. 

We know from the construction of ~ tha t  there is a sequence of functions 

ak EC~(A1/2),  and a sequence nk such that  

(a) 

and 

(b) 

Put  for (z,w)C0l) 

Oak enk~=l 
O~ 

Oak w_nk d2 
gk -~ -~Z 

Since surface measure on 07) is equivalent to idzAd2AdO (a) means that  ]lgk IlL ~ (OD) 
< C .  Moreover gk=Obt~kW -n~. If now vk is any solution to Obvk=gk then 

Vk  - - a k  w - n k  ~- hk 

has a holomorphic extension to 7). Hence 

1 I S  wei~176 2---~ vk(z ,  dO = akw  -n~. 
7r 

Therefore 

IL k -n lLL1 < II'kllL1. 

But (b) says precisely that  the left hand side here tends to infinity. Hence IlVkI[LI 
cannot be bounded, so we have proved Theorem 2. 

Remark added March 31, 1993. The construction in this paper  is based on the 
existence of a subharmonic function, ~, in the disk such that  sup-norm estimates for 

with the weight factor e -~  fail. Shortly after the paper  was completed Fornaess 
and Sibony [FS2] noted that  their construction from [FS1] of a function with sim- 
ilar properties for LP-estimates, implies in the same way that  there is a smoothly 
bounded Hartogs domain in C 2 where LP-estimates fail for any p>2 .  Feeding the 

same function into our construction for 0b one gets a smoothly bounded domain in 
C 2 where C~b does not have closed range in any LP-space except for p=2 .  A more 

detailed explanation of this together with further examples of the same kind can be 
found in [B2]. 
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