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A smooth pseudoconvex domain in C?
for which L*-estimates for 0 do not hold

Bo Berndtsson(!)

Let D be a smoothly bounded domain in C™. It is well known (see [HL] and [?])
that if D is strictly pseudoconvex then we can solve the d-equation with estimates
in LP for any 1<p<oco. It has also been known for some time that this is no longer
true if D is merely pseudoconvex. Namely, Sibony [S2] found an example of such
a domain in C® where L>-estimates do not hold. The reader should also consult
the paper [FS1] which contains a discussion of LP-estimates in general and many
counterexamples to this type of questions. However, all counterexamples known
seem to treat the case n>3 and LP-estimates for p>2.

In this paper we shall prove

Theorem 1. There is a smoothly bounded Hartogs domain in C?, and a 0-
closed (0,1)-form g in D, which extends continuously to D, such that the equation
Ou=g has no bounded solution.

Recall that a Hartogs domain is a domain of the form
1) D={(z,w); |w| <e )}

where ¢ is subharmonic. If e.g. ¢ is smooth in the disk and
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near the boundary of the disk, then 8D will be smooth.

There is a special reason why we are interested in the case n=2. The form g
in Theorem 1 extends continuously to dD. So, the same example shows that we
don’t have L™®-estimates for 8, either. But in C? there is a duality between b in
L* and in L!. Therefore we get

(1) Supported by Naturvetenskapliga Forskningsradet
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Theorem 2. There is a sequence of functions g, on 0D such that
(i) llgnllzr <1, )

(ii) there is un in L' such that Opyun=gn,

(itl) if Oun=gy then ||Up|jLr — oo.

In other words, we do not have L! estimates for 0, either. Another way of ex-
pressing the conclusion of Theorem 2 is that the closed and densely defined operator
Op: L' — L* does not have closed range.

Whether one can solve the d-equation in D with L!-estimates is another ques-
tion, which I do not know the answer to. In a recent paper by Bonneau and
Diederich ([BD]), L-estimates with a logarithmic loss are proved. One should also
compare the results by Feffermann—Kohn, Christ and Nagel-Rosay—Stein—Wainger
(see [FK], [C], [NRSW]), which contain sup-norm estimates, and even Hélder esti-
mates for 9, in domains of finite type in C? (thus in particular for domains with
real-analytic boundary). Recently a more elementary proof of a slightly weaker
result was obtained by Range ([R]).

Our construction is quite different from the one in [S2] (it is actually more
similar to the earlier one in [S1]). It is based on the relation between estimates for
the -equation in domains of the form (1), and estimates for the one dimensional
O-equation in the disk with weight e™™ where neN.

It is well known (see [FS1], [FS2] or [B]) that if ¢ is an arbitrary subharmonic
function in the disk, then one can in general not solve the equation

ou
2 ==
) Ly
in the disk with estimates
(3) sup jule™ < Csup|fle™®.
A A

The analogous question for smooth ¢’s is whether one can solve (2) with the
estimate

(4) sup lule™™® < Csup|fle ™%.
A A

where C is a constant that does not depend on n (nor f of course). It turns out
(see Section 2) that if we have L>-estimates in a domain D of type (1), then one
can solve the d-equation in the disk with the estimate (4). Hence, all we need to do
to prove Theorem 1, is to find a subharmonic function ¢ €C*(A) for which this is
impossible. This is the object of Section 1. In Section 2 we show how this implies
Theorems 1 and 2.

This paper was finished when I visited the CIMAT in Guanajuato. I would like
to thank Xavier Gomez-Mont for his invitation and all his help, and the CIMAT
for its support.
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Section 1

In this section we shall study estimates of the form
(1.1) sup [vle ¥ < Csup|fle”™®

for solutions to the equation

ov
g—f

in the unit disk, A. We are interested in for which functions ¢ such an estimate
holds for all f in, say, C°(A), and also for which functions ¢ (1.1) holds with a
fixed constant for ¢=ny, n=1,2,3....

Proposition 1.2. We can solve the 0-equation in A with the estimate (1.1)
if and only if the following inequality holds

(1.3) /Alozle‘PgC/A

The best constants in (1.1) and (1.3) are the same.

Ja
bl X" O (AY.
35 | € Va e C(A)

Proof. The fact that Jv/8z=f is equivalent to

/Afaz—/v%:_i YaeCr{A).

If v satisfies (1.1) we get

[

Taking the supremum over all f with |f|<e® we get (1.3).
If, on the other hand (1.3) holds then

(1.4) ‘/fa

Let

Oa

0z

e?.

<Csup(lfle®) [

da

0z

e’.

<Csup(ifle™) [

da
=< —e?: ool gl .
F {626 ; a€C] }_L(D)

Define a linear functional
T:-F—C
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(1.4) implies that T is well defined and that | T'||<C'sup|fle™?.
We can extend T to a linear operator

by

T:1'(A)—C

with the same norm. Hence there is a function u€ L°°(A) such that

[ e

and ||u|lco=||T||. Letting v=—ue¥ we have a solution to du=f which satisfies (1.1).
The proof is complete. []

Note that the question whether (1.3) holds depends only on Ay. In other
words, if & is harmonic and (1.3) holds for ¢, then it holds with ¢ replaced by p+h
(just multiply o by eh+ik where F is the harmonic conjugate to h).

We also remark that if (1.3) holds for all ®€C2°(A), then it actually holds for
all o in L! with compact support, which are such that da/8Z is a finite measure.

We will use this remark at several points.

Proposition 1.5. Assume that (1.3) holds with a fired constant for p=ny
where n€N. Then 1 is subharmonic.

Proof. Let A’CCA be a disk and let a=Xas. Then (1.3) implies

/ e <C e™ |dz|.
A an’

Hence, if 1/ <0 on A’ then ¥ <0 in A’. Since we can change ¥ to ¥y —h where h is
any harmonic polynomial, we see that if ) <h on A’, then ¥y <h in A’. This means
that ¢ is subharmonic. [

A similar argument shows that if the analog of (1.3) in L2-norm

da |?

(1.6) /la[2e“’50/ e

holds for w=mn then 1 is also subharmonic. In this case, the converse is also
true. This follows from the inequality used in the proof of Hérmander’s theorem
(see [H]). We shall now see that in L'-norm the situation is quite different.
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Proposition 1.7. Let ¢ be any subharmonic function in A with the property
that p=—00 on some set with an interior accumulation point. Then (1.3) does not
hold with any constant C.

Proof. Assume that a€A and that ¢(a)=—o00. Then it follows from (1.3) that

[eiZg<e [ |5

To see this consider (1.3) with « replaced by a/(z—a). Then

e‘P

0z

[z—a|’

Oa Oa
5/(z—a)—£/(z—-a)+7ra6m

but the last term gives no contribution since e?(@) =(. Iterating this observation we
see that if p(a1)=p(az)=...=¢(a,)=—00 then
eLp

e¥
(1.8) /|a|———§C/ e
[T} |=—ajl I} [2—a;]
In particular we can take a=xa’, where A’CCA is a disk containing an accumula-

tion point, p, of the set where ¢p=—0c0. Then (1.8) can clearly not hold in the limit
as all a; tend to p. Hence (1.3) cannot hold. [J

Oa
0z

The preceding proof shows a curious fact. If ¢ is given by

3
1
pa=3 D loglz—ajl
1

then (1.3) cannot hold with a fixed constant as a=(ai, az,a3)—0. On the other
hand, in the limit we get
p=log|z|,

which does satisfy (1.3) (just multiply o by 2).
We are now ready to prove our main technical result.

Proposition 1.9. There is a subharmonic function v in C*°(A) such that if
C,, denotes the best constant in

oo
(1.10) /A|a[e —C"/A’_az

then lim C,, =0o0.

e VaeC®,

Proof. Let ¢ be a function subharmonic in a neighborhood of A which is har-
monic near A and which is such that (1.3) is violated. Then there is a sequence
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of smooth subharmonic functions ¢, in A, which are harmonic near dA such that
orlp. Let |lorllce(ay=Ax. Take a sequence of integers ny such that ng/Ax— oo,
and put ¢, =k /ng. Then we have a sequence of smooth subharmonic functions
such that

(i) Hm |[¢g]lcx» =0 and

(i) if By is the best constant in

Oa
¥ < B / i
/|a|e =k laz
then lim By =o00.

Moreover, all 1;’s are harmonic near A, so Ay, €CP(A). Now, if

A'=A(a,r)CCA

e™ Ve VYo eCP

is a small disk in A, and if 1/ is one of our v,’s we transport ¢ to A’ by the following
definition.

T(A’,w:r’?G[(Aw)(z_“)]

r
where G is the Green-potential in A.

Then v=7(A’,4) is smooth and Av=A(¢((z—a)/r)) in A’ and Av=0 out-
side A’. Moreover

(1.11) [Av]lgr-2 <rF|AYfler2 ST TF[llex.

Choose a disjoint sequence of disks Ay =A(ag, ) in A, which converges to an inte-
rior point. By taking a sparse subsequence, renumbering and letting Uk =7(Ak, V1)
we get that

(i) 3 r* [elles <oo and

(iv) limrgBr=o00.

Then (iii) together with (1.11) shows that =3 ¢z €C®(A).

Assume, to get a contradiction, that (1.10) holds with C,, <C. Take in partic-
ular € €C(Ag). Then

Oa

aen{l;ksc/ va
/Aku 13

z

emh

since the other {Zj’s are harmonic in Ag. The change of variables T=ay +rg( trans-
ports this estimate to A. We then get

/ Ialem/)k < g
A

Tk JA

Oa

hubl LA
0z

since Ad)k:A(Jk((H-rC)). Taking in particular n=n;, we obtain By <C/ry, which
contradicts lim ri By=00. [0
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Section 2

We shall now see how we can use the function ¢ from Proposition 1.9 to prove
Theorem 1.

Proposition 2.1. Let D be a domain of the form
D={(z,w); |z] <1,|lw|<e ?@},

where ¢ is a smooth function. Assume that for any O-closed form f which eztends
continuously to D we can solve the equation Ou=f with u bounded. Then there is
a constant C such that for any f€CZ(A1/2) and any n€N we can solve Ou/0Z=f
mn Al/g with

(2.2) sup [ule™"¥ <C sup |fle”"*
Ay Az

Proof. Assume the conclusion is false. Then there is a sequence ny— oo and a
sequence of fy €C°(Ay/2) such that

sup | frle ¥ =:1ap, — 0

and if uy are any solutions for

Then
sup |ug|e™ ™ ¥ — oo.

By choosing a sparse subsequence we can assume ) a;<oo. Let

oo}

F=Y" fr(zyw™dz.

4]

The sum is absolutely and uniformly convergent in D. So, f is continuous on D
and 8f=0. By hypothesis we can find a function u€ L*(D) such that Ju=f. Since
f has no div component, v is holomorphic in w, and we can expand v in a power

series
o

u(z,w)= Zun(z)w"

0
Identifying coefficients of w™ in Ju=f we get

Oun,

5z v
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But

T

n o__ 1 8\ _—inb
un(2)r =5 u(z,re* e do

—T
so if r<e™¥ we get
sup [tn ()™ < [lu o=

1/2

Letting n=ny and rTe~¥ we see that

sup |uple”™** <C
Az

contradicting the choice of fi. O

Theorem 1 is now a direct consequence. Starting with our function 3 from
Proposition 1.9, we can scale it down to A;/;. Then we can extend ¥ to a smooth
subharmonic function ¢ in A such that ¢=1 log(1/(1—|z|?)) near 0A. By Proposi-
tion 1.2 the conclusion of Proposition 2.1 fails for ¢. Hence, if we use ¢ to define D
we get a smoothly bounded domain in C? which satisfies the claim in Theorem 1.

Let us now briefly discuss 9, on 8D. Let u(z,w) be a bounded function on D.
We can then expand u(z,w) in a Fourier series

o0
e ) S () o,
— o0

We can always extend u smoothly to D. Let on the other hand f be a (0,1)
form in D which extends continuously to D. Finally let o be any smooth defining
function for D. We say Opu=f if

duNdp=fABp on OD

in the sense of distributions.
Now, let in particular f be the form in Theorem 1. By extending u to D by

u(z,w) = Zun(z)wui un(2)T ™™

we see that if Gyu=f then
O,

0z
Again, by estimating Fourier coefficients we see that Jyu= f has no bounded solu-
tion.

= fi-
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We finally turn to the proof of Theorem 2. This follows in principle from what
we just said, but it is probably more instructive to give a direct construction.

We know from the construction of ¢ that there is a sequence of functions
ay€CF(Ay/2), and a sequence ny such that

(a) /

and

O
0z

et =1

(b) | JI

Put for (z,w)€dD
Oay,

=——w "*dZ.
9= "5z
Since surface measure on 9D is equivalent to idzAdZAdf (a) means that ||gx ||z (ap)
<C. Moreover gi=0,cxw ™. If now v is any solution to Gyvx =g then

v —apw” " = hy

has a holomorphic extension to D. Hence

1 Ky

— Nk
2 J_ .

v (2, we?)e™  df = opw™

Therefore
loxw™"* |2 < ||kl Lr-

But (b) says precisely that the left hand side here tends to infinity. Hence ||ugll:
cannot be bounded, so we have proved Theorem 2.

Remark added March 31, 1993. The construction in this paper is based on the
existence of a subharmonic function, ¢, in the disk such that sup-norm estimates for
0 with the weight factor e~ ¥ fail. Shortly after the paper was completed Fornaess
and Sibony [FS2] noted that their construction from [FS1] of a function with sim-
ilar properties for LP-estimates, implies in the same way that there is a smoothly
bounded Hartogs domain in C? where LP-estimates fail for any p>2. Feeding the
same function into our construction for 8, one gets a smoothly bounded domain in
C? where 0, does not have closed range in any LP-space except for p=2. A more
detailed explanation of this together with further examples of the same kind can be
found in [B2].
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