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The area integral and its density
for BMO and VMO functions

Rodrigo Baiiuelos(!) and Jean Brossard

0. Introduction

Let f be an integrable function in R” and let u be its harmonic extension to
g
Rf’l:R” xR4. The {conic) area integral of f at the point #cRY is defined by

A2(6) = /F VT ) Py

where I',(6) is the cone with vertex at 6 and aperture a. That is,
La(6) = {(a, ) € RYH s [2-6] < ay}.

We also define the Littlewood-Paley square function of f, (the complete area inte-
gral of f), by

G2(6) = / y (e, ) [V, y)Pde dy
Rfrl

where py is the Poisson kernel of the half space. That is, if z=(z,y)€R%"" then

CLy
PG(Z) = (,Z_9,2+y2)(u+1)/2

where C,, is a constant depending on v.

For 1<p< oo, the Littlewood-Paley theory asserts (see Torchinsky [16]) that the
LP-norm of A, is equivalent to the LP-norm of f (under some normalization of f at
infinity) and the same is true for g, provided 2<p<oo. This result is no longer valid
for p=o00 as the example f(z)=x(0,1)(x) will show. However, a substitute for L> in
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the Littlewood—Paley theory is the space of functions of bounded mean oscillation,
BMO. It was proved in Meyer [12] that if f is in BMO then the Littlewood-Paley
g2 function is also in BMO unless it is identically equal to infinity. Kurtz [11] and
Qian Tau [14] have shown more recently the same result for A, and g. (not their
squares).

The aim of this paper is to extend these results in two directions. First we
prove that A2 and g2, as well as their versions formed with more general kernels
than the Poisson kernel, are in VMO if f is in VMO (see definitions below). Second,
we extend the BMO and VMO results to the so called “maximal density of the area
integral” first introduced by Gundy [9]. Finally we will also obtain some BMO
and VMO results for the functional D" (the density of the area integral) when f
satisfies some very general hypotheses which include positivity and BMO. All our
results concerning VMO are new, as are our results concerning the density of the
area integral for BMO functions. We also prove similar results for the g-function,
the radial area integral. Both the BMO and VMO results for g are new.

The space of functions of vanishing mean oscillation, VMO, and the density of
the area integral do not seem to be as well known as BMO and the area integral.
As a consequence we first say a few words about these two objects.

The space VMO is the closure in BMO of the space of all uniformly continuous
functions (other equivalent definitions will be detailed in Section 1 below). In an
appropriate sense VMO has the same relation to BMO that the space of uniformly
continuous functions has to L*°. For example, Sarason [15] proved in the case
of the disc that the harmonic conjugate of the Poisson extension of a continuous
function is the Poisson extension of a VMO function. It was also proved by Coifman
and Weiss [6] that the Hardy space H'! is the dual of a variant of VMO (Coifman
and Weiss defined VMO as the closure of the continuous functions with compact
support).

The density of the area integral D™ at a point r€R is the equivalent notion in
analysis of the Brownian local time and it can be defined as the area integral except
that the measure |Vu(z)|?(dz) (which is Au?(dz) due to the harmonicity of ) is
replaced by the positive measure Alu—r|(dz). More precisely, for r€R and feR"
we define ’

Dr(6) = / ¥ Bluri@s)

where z=(z,y) R}
We also define the maximal density by

D3(8) = sup Dg(6).
reR
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These operators were introduced by Gundy [9] (our definition of D7 () here is from
Gundy-Silverstein [10]), where it was also proved that

42(0) = /R Dr(8)dr,

hence the name “density of the area integral”. Since the measure Alu—r|(d2) is
supported on the set {u=r}, D’ () is a way to measure the oscillation of u around
r in the cone I',(#). If r=0, it measures, in some sense, the positivity default of u
in the cone since if u>0 in I';(6) then of course D(6)=0. It has been used in this
manner by Brossard and Chevalier in [4] and [5]. The maximal density was used by
Gundy [9] and by Gundy and Silverstein [10] to provide a different characterization
of the H? spaces. In Bafuelos and Moore [1] sharp good-\ inequalities are proved
for the maximal density leading to laws of the iterated logarithm of the Kesten type.

We can now explain more precisely our results and how the paper is organized.
In Section 1, we explain our notation and recall the main definitions of BMO and
VMO. We devote Section 2 to prove the BMO and VMO results for several ver-
sions of the area integral. As we explained earlier, the BMO result is not new;
it is a consequence of the H'-BMO duality theorem and the fact that H' can be
defined by convolution with other kernels besides the Poisson kernel (see Fefferman
and Stein [7]). We shall, however, give a new proof of these results which is very
elementary and does not use these two difficult theorems. Our proof, although el-
ementary, will work for any kind of area integral including the most general ones,
not defined with the gradient of the harmonic extension of the function f but with
the convolution of f with a Littlewood—Paley function. Our arguments will allow us
to obtain the same results for VMO, which as we said before, are all new. Another
advantage of our method is that it provides the BMO and VMO results also for the
“radial area function”, that is, the usual g-function for which even the BMO result
was not known and for which the duality argument does not work. To the best of
our knowledge the only known result is the weaker result of Wang [17] which says
that if f is in BMO, then g (and not its square) is in BMO. These new theorems
are also presented in Section 2. In Sections 3 and 4, we prove similar results for the
density of the area integral and the maximal density. We obtain two types of re-
sults: The first results in Section 3 say that if the Green potential ¢, of the measure
Alu—r|(dz) is bounded for some r (and hence for all ), then the several versions
of the density of the area integral D" are in BMO, and if the potential goes to
zero uniformly at the boundary then the different versions of D™ are in VMO. The
hypothesis that ¢, is bounded has already been used by Brossard and Chevalier [5]
in a different context and it is satisfied for example by a BMO or positive function.

The second results in Section 4 are about the maximal density or more precisely,
about the different versions of the maximal density. Theorem 6 says that if f is in
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BMO then so is D* and Theorem 7 says the same for VMO. As we said earlier,
our results for D™ and D* are new even for BMO. These results are in the same
line as the results of Gundy [9], Gundy and Silverstein [10], Bafiuelos and Moore [1]
and Moore [13]. In comparison with the results of Section 2, they provide one more
confirmation that the D*-functional is a good functional for theorems related to
the Littlewood—Paley theory. Finally we mention that, mutatis mutandis, all the
results we give in this paper are true for the ball of R” (rather than the half-space)
and many of the arguments are even simpler.

1. Notation and definitions

We shall denote by z=(z,y) the generic point of R4** and by B(z,r) the ball
of R” with center z and radius 7. If f is a real function in R we will write P,(f)
for the Poisson extension of f at the point 2. That is,

P0)= [ mo(rr(@)0

where pp(z) is as in the introduction. A function f is in BMO (bounded mean
oscillation) if there is a constant C such that for all cubes @ in R”,

(11) /Q (@)~ falm(dz) <C

where mg is the normalized Lebesgue measure on @) and

fo= /Q F(z)ma(de),

the mean of f on Q. The smallest constant C for which (1.1) holds is the BMO-
norm of f which we shall write as || f||¢,«. It is well known (and easy to prove)
that the measure mg can be replaced by the Poisson kernel and this provides an
equivalent norm on BMO. More precisely, if we define

(1.2) [fllpre = sup P.(lf—P(f)])

v+1
z€RY

then there are constants C; and C5 such that

(1.3) Cillfllex <HFllpre < Coll fllc
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Also it follows from the John-Nirenberg theorem, (see Torchinsky [16]), that we may
replace the L'-norm above by any LP-norm and obtain an equivalent BMO-norm.
In particular if we define

(1.4) a(2) =P, ((f~P.(N)).

Then ||fllp2= sup a(z)"/?
zERf’ﬁl

the Green formula (note that 1|Vu|?=A(u?)) we see that

provides an equivalent norm for BMO. If we apply

(1.5) a(z)=-21— /R G V()

where G(z, 2’) is the Green function for R%**. This last formulation is the main tool
in our study of the relation between BMO and the area integral. It also provides
the connection with Brownian motion. In a similar manner, if we define for reR

(1.6) ¢r(2) =P (I(f =)= |P(f=r)|]),
it can be shown that (see Brossard and Chevalier [5])
(1.7) [fllp1,« = sup ¢n(z)
zeRLT
reR

and as with «(z), Green’s theorem implies that
(1.8) 6:(2) :/ Gz, ") Alu—r|(d2').
R

Once again, (1.7) and (1.8) are the main tool in our study of BMO and the density
of the area integral.

We shall now define VMO. For §>0 we let || f||¢ s be the supremum of the left
hand side of (1.1) over all cubes @ which have edge length less than or equal to 6.
The space VMO (vanishing mean oscillation) is the subspace of BMO consisting of
those functions for which }% | fllc.«6=0. As before, we may define

(1.9) I fllpe s = sup  a(2)"/?
z€RY x(0,6)

and

(1.10) Iflpres=sup  ¢p(2).
z€RY x(0,6)

reR
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It is easy to show that VMO is also the subspace of BMO consisting of those
functions for which the quantities of (1.9) or (1.10) go to 0 as 6 goes to 0 (see
Garnett (8], Theorem 5.1).

We now define the more general variants of the area integral A, and the
Littlewood-Paley g.. Let p be a nonnegative integrable function in R” satisfy-
ing the following:

(H) There exist two constants C>0 and >0 such that for all z€R”,
o(x)<Cpo(z,1) and such that for all reR,

1
= lo(z—v)—o(z)|dx dv < Cre.
" JR¥ x B(0,r)

This is a weaker condition than the following one which is easier to understand:
(H') There exists a constant C >0 such that for all zo€R”, (o) <Cpo(zo,1)
and

[ letw=20)- o@)ldz < Cl.

For example, if g is a C* function such that both g and |Vg| are majorized by
Cpo(z,1) (in particular po(z, 1) itself or any C! function with compact support) then
it clearly satisfies (H') and hence (H). The function o(z)=Xp(0,q)(z) also satisfies
(H).

For 6 R and z:(x,y)eRi‘H, define

0s(2)=y "0 (x—_g)

y

and
A40)= [ veo(e)|Vu(z.p)Pdrdy,
+

Notice that if o(z)=Xp(0,a)(x) then A%2=A2 and if o(x)=po(z, 1) then A2=g2. Thus
the classical area functions are particular cases of Af,. We shall also need the
following bilinear form version of A, defined by

ALHO= [ veo:)Vule), Vu(a)dedy

where u and v are the Poisson extension of f and h respectively and (:,-) denotes
the usual inner product in R¥*1.
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We have defined above the density D’. The complete density (which plays the
role of g.) is defined by

D)= [, upele)Alu=ri(d:)

Ryt

and the analogue of A2 is defined by
D)= [ . veo(2)Alu—ri(d:)

Ryt

where g satisfies (H). The maximal density associated to D}(8) is D} (8)=supD}(6)
reR
with a similar definition for D*(@) (the case g(z)=po(z,1)).

2. The area integral for BMO and VMO functions

The most convenient BMO-norm for the study of the area function is ||- |2,
To simplify notation we shall write ||-||. instead of ||-||p2,« throughout this section.
The aim of this section is to prove the following theorem and corollaries:

Theorem 1. Let BMOq denote the space of BMO functions whose area func-
tion is not identically infinite. The mapping (f,h)— A,[f,h] is continuous from
BMOg x BMOyg inteo BMO. '

Corollary 1. If feBMOy, then A2, g2 and A2 are in BMO with a BMO-norm
majorized by a constant (independent of f) times the square of the BMO-norm of f.

Corollary 2. If fe VMO and its area integral is not identically infinite, then
A2, g2 and A2 are also in VMO.

As mentioned earlier, the g2-result in Corollary 1 was first proved by Meyer [12].
Of course, Corollary 1 implies that the square root of all the area integrals are also
in BMO, a result proved by Kurtz [11] and Qian Tao [14].

The proof in Meyer [12] is based on the H1-BMO duality. Indeed, if f is a BMO
function, then y|Vu(z,y)|?dz dy is a Carleson measure. The Littlewood—Paley g2
function is its balayage and by a duality argument it is easy to show that g2 is in
BMO; (see Torchinsky [16], p. 273). The same proof can be done with A2 and A2
using the fact that H! does not depend on the kernel used to define it and that
AZ and A2 are the balayage of y|Vu(x,y)|*dz dy with respect to other kernels. The
proof we shall give below is quite elementary and does not use these two difficult
theorems; the H'-BMO duality and the independence of H* upon the kernel.
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Before proving Theorem 1, let us explain how Corollary 2 follows from it. Let
fy(2)=P,(f) where z=(z, y)ER”"~1 By Theorem 5.1 in Garnett [8], f e VMO if and
only if f,— f in the BMO-norm as y—0. It is easy to see that the area integral of f,,

A,(fy) is uniformly continuous. Since A2(f)—A2(fy)=A,lf —fy, fI+Alf, f—fl,

Theorem 1 implies that if feVMO then A2(f) is the limit in the BMO-norm of

AZ(fy) as y—0. Thus A,(f)€ VMO whenever f€VMO which proves the corollary.
Theorem 1 follows immediately from the following proposition.

Proposition 2.1. Let f and he BMOyg. Let Qq be the unit cube in R™ centered
at 0. There exists a constant Cg, such that

|| 1401 1(6) =Gy lmay (@) < CIl I 1.

0

where C' is a constant independent of f and h.

The idea for the proof of Proposition 1 is to use a continuity argument to control
the oscillation of the “upper part” (Lemma 2.3 below) and only an L2-estimate for
the “bottom part”. We first start with a lemma (which is an amelioration of a
classical lemma; we do not pretend it is new) to control y|Vul.

Lemma 2.2. If 2=(z,y)eRT" and u(z)=P,(f) is the harmonic extension
of f, then
y|Vu(z)| <C|| ]«

where C is a constant independent of f and z.

Proof. If h is a harmonic function in the unit ball B of R¥*, then there exists
a constant C depending only on v such that

(2.1) IVA(0 |2<c/ 0)2do(6)

where do is the normalized surface measure on dB. Let h(z)=u(20+yoz) whose
z0=(%0, Yo) is a fixed point in R%*!. Applying (2.1) to this & we obtain, (with B’
the ball centered at zy and radius yg),

ys|Vu(zo) I2<C/ [u(8) ~u(20)*do(8) < Ca(z20) < Ol fllpz,. = CIIf I3,

by the subharmonicity of the function (u(z)—u(2))” and the definition of || f]|pz «-

We are now ready for the proof of the control of the upper part. Let us call
U(6) the part of the integral defining A,[f, h] which is above 1. That is,

vO)= [ v, Vodzdy
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Lemma 2.3. There ezxists a constant C such that if U(0)<oc then
| WO-U@ima, @<l
0
Proof.
UO-vOI=| [ vlenle)-en(e)) (Vule), Dol
R¥ x(1,00)
<[ vl - @) Vua)| [Ve(e)lds
RY x(1,00)
OISR [ Jeoe)=en(a)ly 'z
RY x(1,00)

where the last inequality follows from Lemma 1. Integration in € gives

/ \U(8)— U(0) lmay (d6)

0
<ottt [ ([ laate)-enlelydz Y at)
Qo RVX(I,OO)

and so we only need to estimate the last integral. For any >0, let rQ)g be the cube
concentric with ¢ and with side length r times the side length of (). By Fubini’s
theorem and a change of variables,

/ / loa(2)—0o(2)|y " dz df
o v R¥X{(1,00)

[l
1 v 0

o0
< C’/ y~ e dy < 00
1

df dz dy

o(57)-2(0)

where the last inequality follows from hypotheses (H) applied with r=1/y. This
completes the proof.

For the control of the bottom part we will use the following

Lemma 2.4. If ¢ satisfies hypothesis (H) and z=(z,y)€R” x(0,1), then

/Rv 06(2)pe(0,1)df < Cy™G (2,(0,1)).
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Proof. Fix zo=(zp, yo) ERY x(0,1). By (H) and the semigroup property of the
Poisson kernel,

[ eazo)pa0,000<C [ pa(aalpa(0, )48 = Cpn(ao, yo-+1).
R¥ R¥
Then we only need to prove that

(2.2) YoPo(Z0; Yo+1) = YoPz, (0, y0+1) < CG (20, (0,1))
for a suitable constant C independent of 2. To do this define the harmonic function
in R” X (yo, 00) by
H(2)=CG(20,2)—YoPzo (T, Yo+¥)-
We wish to prove that if C is a suitable constant, (independent of z,), H(0,1)>0.
Since limy,|_,o, H(2)=0, by the maximum principle, it suffices to prove that the
inequality holds when z€R” x {yo}, that is, when y=y,. However, since we have
explicit formulas for both G and py, it is easy and elementary to check that
i (g«xo,yo),(x,yo))): . (g((o,u,(z,l))) g
z€RY Y0Pz, (.17, 2y0) z€R¥ pO(xa 2)
and (2.1), and hence the lemma, follows.

We are now ready to estimate the bottom part. Define

B(9)= o) yoe(2){Vu(z), Vu(z))dz.

Lemma 2.5. There ezists a constant C which depends only on v and g, such
that

/Q IB(®)lmay (d6) < CIIf |l |11l

Proof. By Fubini’s theorem, Lemma 2.4, and the fact that the measure mg,
can be majorized by pg(0, 1), we have

/ IB(G)Ion(dﬁ)SC/ |B(6)|ps(0,1)d0
Qo R¥
<C R* x(0,1) (/R Qe(z)Po(O,l)cw) yl(Vu(z), Vo(z))|dz

<C (2, (0,1))[{Vu(z), Vo(2))|dz

R¥x(0,1)

<c ( /R o SEOD) |vu(z)|2dz)1/2

1/2
x ( / G (z,(0,1)) Wu(z)]?dz)
R¥x(0,1)
<Ol flllinll
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by (1.4) and (1.5).

We are now ready to finish the proof of Proposition 2.1. First, if for some
point € the area integral is finite, Lemmas 2.3 and 2.5 imply that it is finite a.e. in
the unit cube centered at 6 and hence almost everywhere in R”. Let Cg,=U(0).
Since A,|f, h|(8)=U(#)+ B(8) we have

[ 14001, 1(0)~Calma, (@) < | 10©)-U0)may(d®)+ [ B@)ima,(d8)
Qo Qo Qo
<l el

by Lemmas 2.3 and 2.5.

Proposition 1.1 and a scaling argument (apply the proposition to the function
foo where o is a homothety which sends Qg onto @) show that for any cube Q
there is a constant Cg such that

| 14el#,H(6)~Catma(@0) < 15111,
where C is the constant of Proposition 1.1. Since
/Q |4,[f, h](6) — (Aq[f, h])@lmq(df) < 2/Q | 4ol BI(0) — Cqlmq(do).

Theorem 1 follows.
Next, we derive the corresponding results for the Littlewood—Paley g-function.
This is the radial area function defined by

2(60)= / " yIVu(6,y)Pdy

whereas before u is the harmonic extension of f. As before we define

alf, h)(6) = / " y(Vu(6,3), Vo(6, 9))dy

where u and v are the harmonic extensions of f and h respectively. We have

Theorem 2. The mapping (f,h)—g[f,h] is continuous from BMOyx BMO,
into BMO.

Corollary 3. Suppose fEBMOq. Then g?>€BMO with BMO-norm majorized
by a constant (independent of f) times the square of the norm of f.
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Corollary 4. If feVMO and its g-function is not identically infinite, then
g*€VMO.

The proof of Theorem 2 is essentially contained in the proof of Theorem 1. As
before define the upper part and bottom part of g[f, k] by

Ue)= / " yu(6,y), Vo(6,v))dy
and

B(6) = /0 y(Vu(6,y), Vo(6,y))dy.

We have the following analogues of Lemmas 2.3 and 2.5 from which Theorem 2
follows.

Lemma 2.6. There exists a constant C such that if U(0)<oo, then

/QIU(O)—U(U)Ion(d@SCHflI*IIhH*-

Lemma 2.7. There is a constant C such that

/Q IB(®)lmay (d6) < CI| ] | 1]..

Proof of Lemma 2.6. First, we notice that if we denote by D"u any derivative
of u of total order n, then by the proof of Lemma 2.2,

(2:3) y"|D"u(z)| < C|flls,

where C' is a constant inﬁependen‘c of z and f; (simply notice that (2.1) holds if
we replace VA(0) by D™h(0)). Using (2.3) with n=2 and the elementary identity
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l{a, b) — (a0, bo)|=|(a—ao, b) + (a0, b—bo)|, we have for € Qo that
UO-UOIs [ slTu(0,), Vo(6.4)~(Tu(0,0), To(0,)}dy
< [ WTul0,4) ~u(0,), 96, )y
+ [ Vu0.0), 9o(6,) - Tv0, )y
< [ uveOlIVul6.0) - Va0, n)idy
+ [ V0.9, - To0,ldy
< Clall. [ 1Vu(6.4) - Vu(0,p)ldy
+CIfll [ 196(6.0)-Fu0,9)ldy
< Clflel [ % <cnpl.lal..
Integrating we find that
| WO-U©ma,@) <Clfl-1hi.

which is the assertion of Lemma, 2.6.
We now recall that since the partial derivatives of u are also harmonic, we have

)= [ moles) g )i

If we first apply Jensen’s inequality and then sum we find that

Vu(6, 29)” < /R po(, )|V, y) [2dz.

Multiplying both sides by y and integrating we get that

1/2 1/2
| uvue2fa< [ upErvat) s

which after changing variables gives

(24) Juvuerasz [ [ imevuere
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Lemma 2.7 now follows from (2.4) and Lemma 2.5. Thus we have proved Theorem 2.

We shall conclude this section with some remarks concerning other types of
area integrals usually used in Littlewood-Paley theory. Let ¢ be a Littlewood-
Paley function in R”. That is, an integrable function satisfying

dz =0,

@ [ v

(b) for all z € RY, [¥(z)| < C(1+|z|) ~*p.(0,1)
where a > 0 is fixed and

(c) / [Y(z+y)—¢(z)|de < Cly|”,y € R” where v >0 is also fixed.
R¥

(Hr-p)

The condition (b) is generally written as |¢(z)|<C(1+|z])~**+*). We prefer to
write it this way; it implies that ¢, (z—8)<C (1+(Jz—6|)/y)"* ps(z,y) which fa-
cilitates some of our arguments.

We define the more general area integral. For yeR ., let ¢, (z)=y “¢(y'z)
and replace yVu(z,y) by Fy(z,y)=vy*f(x). We define the general area integral
by

S200)= [ v eo@ )l Fola)Pdody

+

and its associated bilinear form by

Sslfibl0)= [ v (P H(a) e
+
where Hy(2)=1y*h(z).
Then Theorem 1 as well as its corollaries remain true for S’Z,d) and S, 4[f, h].
More precisely we have

Theorem 3. The map (f,h)—S,y(f,h] is continuous from BMOgx BMOg
into BMO.

Corollary 5. Suppose feBMOQOg. Then Sgﬂp €BMO with a BMO norm ma-
jorized by a constant (independent of f) times the square of that of f.

Corollary 6. If fe VMO and its area integral is not identically infinite, then
53,1/, €VMO.

The proofs are essentially the same as above except that Lemmas 2.2 and 2.5
have to be replaced by the following two lemmas whose proofs will be very briefly
indicated.



The area integral and its density for BMO and VMO functions 189

Lemma 2.8. Suppose ¢ satisfies (Hr—p). Then |Fy(z,y)|<C| [«

Lemma 2.9. Suppose that ¢ satisfies (H) and 1 satisfies (Hp_p). Define
BO=[ e
R x(0,1)
There exists a constant C (which depends only on v, o, and ¥) such that

/Q B(6)ma, (d8) < C| f2.

Proof of Lemma 2.8. By our assumption (Hz_p) and the remark following it
we have that for any constant Cj,

Rt =| [ 10)-Copv,a-0jad
20

<c/ 17(60) co|<1+ )1 " p(2)d0

where 1/p+1/g=1, p and ¢>1. The first term is majorized by the BMO-norm if
we take Co=P,(f), (by (1.4) and p replacing 2). The second term is bounded as
soon as (1—a)g<1. This completes the proof.

Proof of Lemma 2.9. As in the proof of Lemma 2.5,

(2.5) / B(0)ma, (d6) < C / / powy+1)|wy*f(x)|2d””dy

Next, we explain how to bound the last integral by the square of the BMO-norm
of f. First, by the Harnack inequality, po(z, y+1)<Cpo{z,1). If we let

C,
I(r)= )2

we find that
&0 rdr

—_ ’ —_— VS —
po(z,1)= /Iwi I'(r)dr=0C, (r24+1)v+3)/2

||
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and the expression in (2.5) is dominated by, (after applying Fubini’s theorem),

///B(Or)'“’y @ (-1 (r))ar

dx dy r
—_ 2
C/ / /BM"”” = e

is a Carleson measure with Carleson norm smaller than or

Since [y « f(2)]? 222

equal to C| f||2, (see Torchinsky [16], p. 373), we have that the right hand side is

dominated by
< (A+r)r , ,
(C”/o x| Il = Clsl

and the proposition is proved.

3. The density of the area integral for
BMO, VMO and functions bounded below

To deal with the density of the area integral, the BMO norm which is most
convenient is | ||p1,« which is defined in (1.7). To simplify notation, we shall again
write throughout this section ||-||, instead of ||-||p1,«.

We shall also deal in this section with versions of the density of the area integral
for which the truncation is not too rough, that is, we shall assume that p satisfies
the hypothesis

(H")  pis C! with g and [Vg| both majorized by Cpo(z,1).

In particular, po(z, 1) which gives D and any C! function of compact support
which gives the version first studied by Gundy and Silverstein [10] and Bafiuelos
and Moore [1], satisfy hypothesis (H").

Theorem 4. If f is such that ¢o, (the Green potential of Alu| as defined in
(1.8)), is bounded, (in particular, if f€BMO or if f is positive or bounded below),
then D7, D" belong to BMO.

Theorem 5. Let r be a fized real number. If f is such that ¢.(x,y) is bounded
and goes to 0 uniformly in x as y |0, (in particular if f €EVMO), then D}, D" belong
to VMO.

To prove these theorems we again use a continuity argument to control the
“upper part” of Dy and this time an L'-argument to control the “bottom part”.
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Define
U’"(G)z/ y 0e{2)Alu—r|(dz).
RY x(1,00)

Lemma 3.1. There exists a constant C such that if U"(0)<oo then for all
8e€Qo we have

U7(6)-UT(0) < C / T 26,(0,0) .

Proof.
U7 (6)-U"(0)]| = 1 [ vl Au-ri@2)
RY x(1,00)
< / y]eo(2)— 0o(2)| Alu—r|(dz).
RY x(1,00)
But if #€Qy,
g 1 g
loo(2) —00(2)| < o1 sup  — V@(E—A—)’
Y xefo,) Y Yy Yy
1 C
S — sup pO(x—)‘ga y) S — pO(xay)
Y xelo,1] Y

2 dt o dt
<0 [“miat) <0 [ man G
Y Yy

The first inequality above follows from the mean value theorem the second by hy-
pothesis (H”) and the third and fourth by the Harnack inequality. And so we
obtain,

r@)-v©i<c [ [ yplat)Afu-ri@)ds

1 RY x(1,t)

<c / 2 / y polz, ) Alu—r|(dz)dt
1 v % (0,t)

<c / 42 / G(z, (0, 1)) Alu—r|(dz)dt
1 R¥ x(0,t)

=C/ t72¢,(0,t)dt
1

where the last inequality follows from the fact that for y<t, ypo(z,t) <Cpo(z,y+1t)
(by the Harnack inequality) which in turn is less than or equal to CG(z, (0,t)) by
inequality (2.1) used with zp=2z/t and scaling.
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To control the bottom part of D} () define
BO= [ ve(2)Au-rl(da)
R¥ x(0,1)

We have

Lemma 38.2. There exists a constant C (which depends only on v and g) such
that

/ BT (0)ma, (d6) < C6,(0, 1).
Qo
Proof. Applying Fubini’s theorem and Lemma 2.4 we get
| oma@)<c [ B @p0.10
Qo R>

~of ([ Qo(z)Po(O»l)d0> yAlu—r|(dz)

<C G(z,(0,1))Alu—r|{dz)

R¥ x(0,1)
<C¢,(0,1).
The next proposition is an immediate consequence of Lemmas 3.1 and 3.2.

Proposition 3.3. Suppose f belongs to BMQg. Then we can find a constant
Cq, such that

/ |D£(0)_CQ0 | mQ, (de) < C¢r(0, 1)+0/°° t‘2¢r(0, t)dt
Qo 1

where C is a constant independent of f and g.
Proof. Take Cg,=U"(0). Then by the above lemmas,

[ 100)~Cay | may(a) < [ 107(0)-U"Olmay @)+ [ B (B)may (d6)
Qo Qo

Qo
<c / " 1726,(0, 0)dt+ C, (0, 1)
1

and the proposition is proved.

To prove Theorems 4 and 5 we remark that if ¢ is any cube centered at zg
and with length lg, then by scaling (as in the proof of Theorem 1),

(3.1) /QIDZ(é’)—CleQ(dﬂ)SC/l t2¢,(2q,lqt) dt+C¢r(zq,lg)-

Thus if ¢ is bounded we immediately get that D; € BMO which proves Theorem 4.
Theorem 5 also follows from (3.1) by the Lebesgue dominated convergence theorem
and our remark following (1.10).
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4. The maximal density of the area
integral for BMO and VMO functions

In this section we shall prove that the maximal density of the area integral is
a good functional for BMO and VMO and this completes the results of Gundy [9]
who showed that this functional is in L? if f is in HP. More precisely, we prove

Theorem 6. If f€BMO and D* is not identically infinite, then D7, D* belong
to BMO with the BMO-norm majorized by a constant (independent of f) times the
BMO-norm of f.

Theorem 7. If feVMO and D* is not identically infinite, then D7, D* belong
to VMO.

As before, we control the “bottom part” of D and its “top part”. We remind
the reader that ¢ satisfies hypothesis (H”) defined in §3. Let us set

B*(6) = sup / y 00(2)Alu—r|(dz).
reR JR¥ x(0,1)

Lemma 4.1. There exists a constant C (which depends only on v and ) such
that:
. B @ma @) <Clflai+C1 Sl
0

where || fllp1,«1 and || fllp2,«1 are as defined in (1.9) and (1.10). As before, Qq is the
unit cube in RY centered at the origin.

Proof. Let

B1(0)=sup

/ ypo(2) Alu—r|(dz)
r€R J(R¥\2Qo)x(0,1)

and

B;(G):sup/ ype(2)Alu—r|(dz).
reR ZQOX(Oyl)

By our assumption (H) we have B*(8)<B{(6)+B3(8). If 0€Qy, zeR*\2Q, and
y<1, then py(2) <Cpo(z) and ypo(2)<G(z,(0,1)). Thus

(4.1) Bi(0)<C SUP/
r€R J(R¥\2Qo) % (0,1)

< Csup ¢,(0,1) <C|| fllp1,51
reR

G(z,(0,1))Alu—r|(dz)
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and so we have the correct bound for Bj.

For B3(#) we use the Barlow—Yor [2] L*-estimate. Let B;, t<7 be Brownian
motion in R4 until its exit time 7. Then u(B;), t<T, is a local martingale. Let
{L};r€R,t<7} be its local time. Then, (by Brossard [3]),

1

po(20) Jr+t

(4.2) ES [L7]=

A G (20, 2)pe(2)Alu—r|(dz)
where Efo denotes the expectation of Brownian motion starting at 2y and condi-
tioned to exit at 8; (the Doob —h process associated with h(z)=pg(z)).

From (4.1) and the fact that for z=(z,y)€2Qo x (0,1) and z9=(0, 1), G(20, 2)>
Cy, we have for €@y,

B3(0) < C'sup EZ [L7] < CE} [L3).

reR
Integrating we obtain,
(4.3)
B3 O)mo, (@) <C | B3(OWpo(0,)0=C | B [L:Ipof0, 1)as
Qo RV Rv

= OB, (L] < C (B [L52) ' <O (B lu(B,) —u(z0)?)

=C(a(20))"/* <C||fllp2,e1.

In the first equality above we used the fact that pg(zo)df is the law of B, given that
Bo=2p. We also used the result of Barlow and Yor [2] to bound the L?-norm of L*
by the LZ-norm of u(B,)—u(zp). Lemma 4.1 now follows from (4.1) and (4.3).

Theorems 6 and 7 follow from the following proposition as before.

Proposition 4.2. Suppose feBMOy. There exists a constant Cq, such that

/Q!DZ(9)~CQ0|on(dH)SCllfllpl,*l+C||fl|p2,*1+0/1 72| Fllpa, wedt
o]

where C is a constant independent of f.

Proof. By Lemma 3.1 and (1.10) we have
UT(8)=U"(0)| <C / +2,(0,1) dt < C / £ Fllo1.ue dt
1 1

and taking supremum over r we obtain, with U*(6)=supU~(9),
reER

v@)-voi<c [ T e
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To prove the proposition, take Cq,=U*(0) and write
|D;(6)—Caq,| < D3 (8)=U™()|+|U™(8)— Cqo| < B*(0)+|U™(6) U™ (0)]

<B*(0)+C / £72 e .
1

Integrating over Qo and using Lemma 4.1 gives the proposition.
For a general cube @ centered at xg and length lg, scaling again as before
gives

/Q |D2(8) = Co| ma(d8) < O fllpt st +Cll 20 +C / £ 21 etgedt

and Theorems 6 and 7 follow from this.
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