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Introduction.

In a previous paper' one of us has presented the theory of finite systems
of simultaneous linear differential equations in such a form that it is formally
independent of the dimension, i. e. the number of equations in the system.
Formally the theory may, therefore, be immediately generalized to the case in
which the dimension is enumerable infinite®. Such infinite systems of differential

' Arley (1943) §8 2.2—2.6 and chap. 7.
* The theory may even be generalized to the case in which the dimension ix non-enumerable.
We intend to give.such a generalization in a later paper.



262 Niels Arley and Vibeke Borchsenius.

equations play an important role in many applications, e. g. in the theory of
discontinuous stochastic processes (discussed in part II) and in quantum mechanical
perturbation theory (discussed in part IV).

In order to make the theory work it is, however, necessary to impose certain
convergence conditions!, which are at any rate automatically fulfilled for every
finite dimension. We shall in the present paper investigate these conditions more
closely. It is, namely, obvious at beforehand that as soon as we have limit pro-
cesses at our disposal, any ‘pathological’ case desired may be constructed by
properly utilizing limit processes. Such ‘pathologies’ are not only of great
interest in themselves, but are even met with in the practical applications of the
theory mentioned above. We shall, therefore, not only discuss the theory itself
(parts I and 1II), but also the two applications mentioned (parts II and IV).

PART 1

General Theory.
§ 1.

We shall first give a survey of the usual theory of finite systems in the form
given in the paper quoted.

The most general form of a finite system of simultaneous linear differential
equations can he written

Fo(D,a) Yo(e) + - + Fo,m—1(D,x) Yn-1(x)= By(z)
Fm—],ﬂ(]), x) Yo(x) + -+ I'm—l,m_l(D, CL‘) Ym—l (:1:) '—_-.Bn,_1 (.’L)
The letters have here the following meaning:

x: The independent variable, which may be real or complex®.

d
D= dx
Yi(x), i=o0, 1, 2,..., m—1: the unknown functions, which may also be real
or complex.

' Arley (1943) §8 2.2—2.6 and chap. 7.

? We shall in the following tacitly assume x to be real, but the proofs are also valid in case
& varies on a regular curve L without double points in the complex plane, if, only, we interpret
| x—x,| as the length of the curve L from x, to .
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Bi(x), i=o0,1,2,...,m—1: given functions, assumed to be continuous in a
certain region (apart from possible isolated
singularities).

Fij(D,x), 7,j=0,1,2,...,m—1: given polynomials in D with coefficients

which are functions of z, assumed to be
continuous in a certain region (apart from
possible isolated singularities):
Fij(D,x)=Fyn(z) D¥ + Fy_1(x) DX+ --- + Fy (x) D + Fo (x), (1.2)
¥ ij i 1)
1,)=0,1,2,...,m—1I.

L 3
m: the dimension of the system.
N: » order > > »

Using the matrix symbolism our equations can obviously be written in the com-

. pact form
F(D,z)- Y (z) = B () (r.3)
with
F(D,x)= Fy(z) D"+ --- + F,(x)D + F,(x). (1.4)

If the matrix Fx(x) has a reciprocal, F3!(z), for all x in the region of defini-
tion of the system of equations (1. 3), this system may, as is well-known, in several
ways be transformed into an equivalent system of the first order and dimension
n=m+N.! Let one such system be denoted by

DY (a)=XY'(x)=A(z) Y(x) + B(x) (dimension: #). (1.8)

It F;'(x) does not exist for some values of z, (1.5) is only defined for all other
values of z. If F;'(x) does not exist for any value of x, this fact means that our
equations are restricted by a certain number of linear relations, and we may, there-
fore, in such case write down a system of differential ecluations containing a smaller
number of functions and then transform this system to the form (1. 5)%.

As the result we thus see that we need ouly consider systems of the form
(1.5), socalled simple systems. On the other- hand we note that a system of the
form (1.5) may also in several ways be transformed into a system of the form
(1.3), which fact may sometimes be successfully utilized for the actual solution
of the equations.

! Bee e.g. Frazer, Duncan and Collar (1938).
* Frazer, loc. cit. p. 163.
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$ 2.

Let our system be of the form (1. 3), i.e.

Y'(x)==A(x)-Y(x) + B(x) {dimension: »). {2.1)
Here

Y, dpl@) Aol
G (x)‘ }.’A(w):[_ @ - Aoule) |

(Bale) )
lAn—l,o(x)' o f-in—l, n--1 (-'r)l

- and Bx)=!" .
an—l(-'E)l

(2.2)

The two given matrices 4 and B are, as already mentioned, assumed to be con-
tinuous in a certain region. We first observe that I, being differentiable, is also
continuous, and 4 being continuous, ¥’ is, consequently, also continuous, due to
the dimension of the system being finite. ¥’ may, therefore, be integrated.
First we prove that if (2.1) has any solution, it can only have one, cor-

responding to a given initial condition
Y (2)=C (2.3)

in which C is an arbitrary constant.
Let Y,(x) and T,(x) be two solutions satisfying the same initial condition.

(2.3). Then
Y(x)=Y,(x)— Y;() (2.4)

will be a solution of the corresponding homogeneous equation

Y =4V (2.5)
satisfying the initial condition

Y (z,) = 0. (2. 6)
Thus we shall prove that Y (x)=0. As both 4(x) and Y (x) are continuous, the
following two matrices exist!

K = max | A(t)] (2.7)
rnsEtsy
7 = max | ¥ ()]. (2.8)
roStsax
From (2.5) we now have that
| Y|= K |Y|=K-G. (2.9)

' By |A|={}4:x]} we understand the matrix whose elements are the numerical values of
the corresponding elements of .4. By max 4 we understand the matrix whose elements are the
maximum values of the corresponding elements of 4 etc. We note, furthermore, that by x,<f{<xr
we shall nlways denote the interval, also in the case x <x,.
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|Y’| being also continuous, (2.9) may be integrated; introducing the result into
(2.9) and integrating again it follows by repeating this process that

|Y|§K’|i_v—?—d:~G for al »=1,2,3,.... (2.10)

We shall now show that the matrix function exp [K (x— z,)] = ZK"E%%I—
=0 ’
exists, which fact we simply express by saying that A is absolutely exponentiable
in the interval (x,, ) and writing
o |1 = < ,lx_xor
exp [K|z—xll= D K e <. (2.11)

=0

K given in (2.7) being of finite dimension, there is, namely, among its n* elements
a. greatest one, £&. We thus have

K=ktE with E;j=1 forall ¢#j57=0,1,2,...,n—1, (2.12)
i e.
for all n=1,2,3,...
L Ak ) y b) )
K*<nky E > » $=0,1,2,.... (2.13)
Consequently
_Ny et ml s Adz—z| _
exp [K|x—x0|]—ZOK T—;EZO(M() =
= FE exp [nk|x— xy|]< . (2.14)

Due to the finzte dimension we next have for an arbitrary non-negative column
matrix G that, due to (2.11),

(exp K |2 —z,l]- 6 = 3 (k12220 6) <o (2.13)
»=0 )

¢

for all z=o0,1,2,....,n—1.
(2.15) shows that the right hand side of (2.10) tends to zero

'x—:,ﬂ G- 0. (2.16)

T 0

K"

(2. 10) can, consequently, only be satisfied for all values of » if

Y(z)=0, (2.17)
q. e. d.
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§ 3.

Next we prove that the system (z.1) actually has a solution satisfying the
arbitrary initial condition (2.3). We first consider the homogeneous equation (2. 5).
The dimension being finife, ¥’ is continuous and (2.5) is thus, due to (2. 3), equi-
valent with the equation

Y(x)=C+fA(t)-Y(t)(H. (3.1)
We now use the method of iteration and put
Y (@)= 3 V.l (3.2)
+ -0
in which
Y,(x)=C, fA Hdt, y=1,2,3,.... (3.3)

The series (3.2) is called the Peano series.
It is then easily seen
(a) that (3.2) is absolutely and uniformly convergent, and
(b) that (3.2) is a solution of (3.1).
In fact we have, due to (2.7), (2. 11) and the fact that |C| satisfies (2. 15),

RAGIED AR AGTIE 2K~'ﬁj!—x°'-|0|=exp [K|z—2|]-]C] < (3.4)

»=0 =0

which proves (a). Inserting (3.3) into (3.2) we next find

('+ZfA . (lt—C+f(ZAI ')dt=

—1 (ce) 8)

(3-5)

C+fA (2Y)dt—0+ fA Y dt,
The operation (a) is legitimate due to the series (3. 2) being uniformly convergent;
(8) due to the double-sum ZA ¥, being absolutely convergent, because using
(2.7) and (3.4) i

A0 - Y (D<K -exp[K|2—x]] <oo. (3.6)

The exponential is, namely, a power series in |x — x,| and its »'th differential
coefficient is, therefore, obtained by term-by-term differentiation for all values of
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x within the convergence region of the exponential. Due to (3.5) ¥ () is the
integral of a continuous function and, therefore, differentiable with the continuous
derivative ¥’ = A-Y, which proves (b).

Putting C=1 in (3.1)—(3.5) we obtain a quadratic matrix each of whose
columns is a solution of (3.1), i. e. (2.5). This matrix we denote by

F(x,xo)=(§)(l + A(t)dt)=2Fv(x,xo), (3.7)
1 =0
F,=1, (@, To) = fA Fo_i(ta)dt =
\=f~--fAl(t.)---A(t,)df., dt1=fl‘,_1(x,t)-A(t)dt
13'-»'“""‘;*;'1,2,3,.” . )

F is called the product-integral (or the matrizant). The first name and the symbol
P(1 + Adt) refers to the fact that F may also be defined as

m—1

F(z,z) = lim [[ (1 + A 4) (3.8)
ﬂl—-ooi 0

in which xy <2, < - -<um=wx, 4i=2;41—x:, is an arbitrary division of the
interval (z,, ).}
F satisfies?

o h hi
S Flea) = Alz) Flaz) (3.9)
0 hj h
d— I (xy xo) = 11 (xvxo) ' A (mo) (3' 10)
Lo
and
lim Fz,z,) = lim F(x,z)) = F(x,,x,) = 1. (3.11)

Furthermore, F is a fundamental solution, i.e. F has the property that any solution
Y (z) is the product of F' and a constant C= Y (x,). This fact follows from the
theorem of uniqueness (§ 2), because (a): F-C will for arbitrary C be a solution
of (3.1), i.e. (2.5), and (b): ¥ (z) and F(x, z,)- ¥ (x,) are both solutions which
are equal to C for x =z, They must, therefore, coincide for all valués of x, i.e.

Y (x) = F(x, ) ¥ (). (3.12)

' Cf. Arley (1943) § 2.5. We note that if Zn 4 exists and satisties exp [{n 4] = A, then
the product-integral is obviously related to the notion ‘productal’ introduced by Reichenbach (1935)
£ m—1
as follows: PA+InAHdD= P4yt =1im ] (4 (.r,-))"".
-ty m-+® ;¢
® We note that (3.10), which is said to be adjointed to (3.9), follows from (3.7) in exactly
the same way as (3.9) was proved in (3.5).
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For arbitrary x,,x and z, in the region of definition we now have
Y ()= Flc,2) Yir)=F(x,x) Flr, ) Y(x)=Flx,z) ¥Y(x,) (3.13)

This equation being valid for all values of ¥ (x,), it follows from the theorem

of uniqueness that
1’1('%3 xo) = l"(.’l,‘, xl) ) F(wlvxo)' (3 14)

We note that this relation also follows from (3.8). Especially we obtain for
x=u2x, and z, =z, due to (3.11),

F(x,, ) F(x,20)=1 (3.15)
which means that &= ¥F(x,x,) has an inverse
x -1 Fg
() = rtwe = Pl = 316
We can_now solve the inhomogeneous equation (2. 1), i.e.
Y =A4-Y + B. (3.17)
As B(x) is assumed to be continuous, the matrix
M = max | B(#)]| (3.18)
TeslZw

exists (cf. (2. 8)) and satisfies, due to the finite dimension, (2. 15).
Multiplying (3.17) to the left with P! we obtain

PUB=P" ¥V — <7"1-A-Y=-d—d;(<7)"'Y)- (3.19)
We have here used that
0=1=(P-PNV=P(PV+P- P, ie. (PYVW==P"-P P (3. 20)
and next that, due to (3.9),
PAY=P AP PN =P PP Y=—(PV Y. (321

From (3.19) we obtain at once by integration a particular integral of the in-
homogeneous equation and adding the total integral &-C of the homogeneous
equation we finally have that the total integral of the inhomogeneous equation
(3.17) is given by, using (3.14) and (3. 16),

f

Yz)= (7’)()+(°])j((7))‘ -B(t)dtzc(:/f)-0+}c'“7r)-B(t)dt. (3.22)

&£y sy Ty
We observe that this formula is a direct generalization of the well-known formula

in case the system reduces to one equation with one unknown function (cf. (@) p. 269).
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§ 4.
Apart from the properties given in (3.9)—(3. 11) it is directly seen from (3. 7)
that the product-integral has, furthermore, the properties

z+dx

c?(1+Adt)=F(:z:-i-4:c,ac)=l-.LA(:zlc)d:z:+o(4x) (4. 1)
and i

I@(l+Adt)|§exp[K|x—x0|]. (4.2)

If 4(x) and F,(z,x,) =fA(t)dt commute, i.e.

A-F,=F, A, (4. 3)
we have
J I 2
Bwa)= [ (57 Bt ) Filoedde= 1 (B o0 (4.4)
and thus generally
1
F, (x, ) = 21 (F (e, xy). (4.5)

Under the condition (4.3) it then follows that

c"])(l+Adt)=exp[fA(t)dt]. (4.6)

We note that (4.3) is satisfied in three important cases:
(a) A(x) is constant, i.e. independent of x,
(b) A(x) is the product of a constant matrix and a scalar function of z,
(¢) A(x) is a diagonal matrix,
(@) 4

If A(2) is analytic in some domain £ in the complex z-plane, i.e. that this
is the case for each element of A(z), then it follows that also

(x) is a one-dimensional matrix, i.e. a scalar function of «.

Flz,2) = P+ Ade) (4.7)

is analytic in every imner point of Q, F being, furthermore, independent of the
integration curve L between z, and 2.

This is easily seen to be true. "First we have from (3.7) that all the matrices
F,(z,x,) are independent of I and analytic in 2. Due to the fact that F= P
is given by a uniformly convergent series, the result next follows immediately from

a well-known theorem from the theory of analytic functions. Using this theorem
8-832047 Acta mathematica. 76:3 -4
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once more we thus see that due to |C|=]Y (z,)| satisfying (2. 15), each solution
of our homogeneous equation ¥'=A-¥ is analytic. Next, assuming also B in
Y'=A-Y+ B to be analytic it is finally seen from (3.14), (3.22) and the fact
that M given in (3.18) satisfies (2.15), that also each solution of the inhomo-
geneous equation is analytiec.

If 4 and B in Y' =A-Y + B are analytic in 8, we thus sec that the solu-
tions may for an arbitrary inner point of 2 be expanded in power series which are
convergent in every circle mot containing any singular point of any of the elements
of A(2) or B(2). For finite systems every regular point of both A and B 1is, con-
sequently, also a regular point of the equatim'z Y'=A-Y + B. Furthermore, these
power series may be obtarned by the wsual method of introducing the poiwer series into

the equation and equating corresponding coefficients on both sides.

Finally we shall note the following important transformation property of the
productintegral. Let us transform the unknown functions Y (x) to new functions
Z(x) by means of

Y (x) = T(z)- Z(z) (4-8)
in which 7(x) is an arbitrary, non-singular matrix-function, i.e. which has a

reciprocal 71'"! satisfying'

T (x) T(c)=1. (4.9)
From Y =A-¥ + B we then obtain
Z'=(T'A-T—T*7T)7Z+T"'"B=A4*-7Z+ B* (4. 10)

in which 4* and B¥* denote the matrices

A*=71"'4-T—1" T
(4.11)
B*=T"'-B.

From (4.8) and (4.10) we thus have in the case of homogeneous equations, i.e.
B=B"=0,

Y ()= P+ Adt)- Y(r)= T(a) P+ A*dt) Z(x,) =

Sy o

N (4.12)
T () PO+ A*¥dt)- T r) ¥ (ag).

! We note that for finite dimensions we then also have 7T '=1 and that T is uniquely
determined by 7. For infinite dimensions 1‘ri—g;lt need not exist even if TlZé exists. It will be

secn, that we use only the left-hand reciprocal of 7'
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Consequently we have from the theorem of uniqueness

z

P +A4dt)y=T(x) 3) + A*dY)- T (x,). (4.13)

To
We note that this transformation formula may e.g. be applied for the investiga-
tion of the behaviour of the solutions in possible poles of 4 and B'.

If especially
A(x) = A,(x) + A,(z) (4.14)
and we put

T @

T(x)= P+ 4,dt) = P(4,), (4.15)

ELY ay

(4. 13) reduces, due to (4. 11}, (3.11) and (3.9), to

CC]J A+ A) 3)(/4 (4.16)

o -"n

A8=9_1(A|)'(Al + A,)-@(A,)—@"(A,)-Al-@(/ll):

~(Pu) 2. P

Ly o

in which

(4.17)

The formulae (4.16) and (4. 17), which may be said to correspond to the formula
for integrating by parts of ordinary integrals, become much simplified in case
A, commutes with A;, because in such case we obtain A;=4,. "

§ s.

We shall now give the generalization of our theory to the case of the dimen-
sion being enumerable infinite. It will be seen that all the contents of §§ 1—4
remains valid for infinite systems if we only demand the conditions (2. 11). (2.15)
and the corresponding condition for B still to be fulfilled?® i.e

(a): The operator matrix 4 of our equation ¥'=A4-Y + B we assume

to be absolutely exponentiable in the interval (z,, x) (cf. p. 265)

—x, |-'

= < oo, (5. 1)

(@) eXp[K|x_;,,0|]=iK..|x

+=0

K = max | A(#)].

rest=x

' CI. e. g. Rasch (1930) p. 59 ff. or Rasch (1934) p. 110 ff.

* We note, however, that in the case of infinite systems the matrix T'(x) occurring in
(4. 8>—4.16) may not be quite arbitrary. We leave the discnssion of the necessary conditions to
the reader. We note, furthermore, that due to the remarks in § 1 we obtain by our generalization
also a theory for ordinary linear differential equations of an infinife order. Such equations seem,
however, not yet to have heen met with in practice.
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(b): We consider only such solutions of ¥'=A4- Y + B for which
(8) exp[K |z —x|]- G < ?, (5.2)

G = max | Y ()].

nSt=Ee

Especially it then follows that (5.2) shall be satisfied for the initial point

exp [K |z — xo]]- | €] < oo, (5.3)
C =Y (x,).

(¢): Finally B is also assumed to satisfy (5.2), i.e.

(v) exp [K|z—x|]* M < o, (5.4)
M = max | B(t)|.
Xomi=x

The essential difference between the infinite and the finite case is, however, that
in the latter case (a)—(y) are always automatically fulfilled (cf. § 2), whereas this
need not be the case in the former case. In part III we shall give examples
showing that the conditions (x)—(y) are only sufficient, but not necessary con-
ditions for the theorems of uniqueness and existence to be true and, furthermore,
that these two theorems themselves are not generally true. On the other hand
we observe, however, that for a general theory the main condition (z) cannot be
replaced by any weaker condition ensuring the necessary convergences. As we
have seen we have, namely, that the majorizing expression (3.4) for the solution
becomes identical with the solution proper, in case 4 and C are both constant
and non-negative matrices. |

We shall shortly discuss criteria which are sufficient to ensure the main con-
dition (a) to be fulfiled. We have previously given the following four criteria®,
which will presumably cover most cases met with in the applications, at any

rate in the theory of stochastic processes:

' We note that due to (4.2) the product-integral itself satisfies the condition (), hut, if A is
only absolutely exponentiable in a finite interval, possibly only in half this interval. In general
this fact is, however, irrelevant due to an exponentiable continuation being as & rule possible (cf
p- 284). Furthermore, it is seen that if €' satisfies (5.3}, then ¥ (r}= F(r,a, - €' will satisfy {5.2)

* Ctf. Arley (1943), chap. 7.
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Type I: If A(x) is a bounded matrix, which means that the column (row)
sums of K are uniformly bounded, i.e. there exists a number M, so that

D Kig<M forall ¢=o,1,2,...

=0

(ZKM<M > > p=o,l,2,...),

Jj=0

(5.5)

then A (z) is absolutely exponentiable in each  interval (x), x) for which K
satisfies (5.5). Furthermore, the exponential is again bounded.

Type II: If A(x) is a row (column) half-finite matrix of order N, which
means that all the rows (columns) contain only zeros after the N'th column
(row) index, then A(x) is absolutely exponentiable in each interval (x,,z). Further-
more, the exponential (— 1) is again row (column) half-finite.

Type III: If A(x) is a row (column) half matrix, which means that all the
elements above (below) the main diagonal vanish, then A(x) is absolutely ex-
ponentiable in each interval (x,, ). Furthermore, the exponential is again a-row
(column) half matrix.

Type IV: If A(x) is a column (row) semi-diagonal matrix, which means
that all the elements below (above) the diagonal lying parallel with and in
the distance ! below (above) the main diagonal vanish, and the numerical column
(row) sums all exist and are bounded by the relation

oo

Al di(@)| = flx)-¢ forall ¢>o0

=0

(5.6)
( SIS s » - p>o),
j=0
then A4(x) is absolutely exponentiable in each interval (x,, x) satisfying
1 .
|z —2z) < —+ C= max f(t). (5.7)
lC Tostsx

Furthermore, we have shown' that if the numerical column (row) sums
increase stronger than the first power of the column (row) number, it be ever
so little, then A(x) need not be absolutely exponentiable in any interval. E.g.
we showed that the constant semi-diagonal matrix (I = 1)

! Arley (1943) ex. I, p. 203.
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o f(1) o o
flo) o fl2) o
A=10 f(1) o f3) - ¢ JS@=g* (r>o0), (5.8)

o o fl2) o
is not absolutely exponentiable in any interval as already the diagonal elements

(Au),,q'i(;“)”—;" (I[f(q+ﬂ) (wa )—%»w (5.9)

P —00

(for all ¢ = o, 1,2,...)_
> 2 >0

The criteria I—IV can be shown to be special cases of the following more general
criterion — or its analogue operating with row sums — which is due to Cramér’:

A sufficient condition for A (z) to be absolutely exponentiable in (x,, x) is
the existence of a non-negative matrix

M={M,=0 (s5.10)
satisfying

My, =1 for all ¢=o0,1,2,... (5.11)
ZMs'(cKaqé Ms'{l,:/ » » ¥,=0,1,2, ... (5.12)
a={
< x —z,|"
ZM.-,,—l——T"l—<oo » » g=o0,1,2,.... (5.13)
»=0 :

It is easily seen that due to (5.11) and (5.12) we have for »=0 and v=1
2( Hl— =M,,. (5. I4)
i=0

Let (5. 14) be true for some value », we then have from (5.12) and (5. 14)

S (K, =3 S (K Yo Ky = 3 (S0 he) Ky = 3 Mo K SMarv 5.15)

=0 =0 a=0 a=0 ‘=0 a=0

! Private communication. We wish to express our most sincere thanks to Prof. Cramér for
kindly commaunicating this theorem to us.
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(5.14) is, thus, generally true. From (5.13) and (5. 14) it then finally follows that

StesplKle—nllia = 3 (S a0 JlE580s S tTml <o
=0 v=0 ‘=0 v=0
The exponential thus exists, having, furthermore, convergent column sums.

Of course we have also a corresponding criterion operating with the row
sums instead of the column sums (which is e. g. necessary if A is a row half
matrix). By considering the transposed matrix A instead of A we see, however,
that we need only a criterion working with the column sums. (In the application
to the theory of stochastic processes (cf. p. 286) it is, namely, the column sums
which enter.)

Finally, it may be of interest to note that, as also pointed out by Cramér,
the conditions of type IV may be weakened so that 4 need not be semi-diagonal,
if only the elements in each column of A4 decrease sufficiently rapidly:

Type V: Let m,, m,, m,, ... be a non-decreasing sequence of positive numbers
and g(x) =0 so that
Z exp [me— mg] | Aig(@)] < glx)m, for all g=o0,1,2,... (5.17)
i=0
in which
for ¢==o0, 1, 2,
s=s(i,q) = [q 4 (5.18)
li 5 i>q

We then have for all ¢,4,v=0

m; + v\’ m; — Mmq\”
(m:,+v) = (1 + n:q—i-vq) = exp[ —— (m‘——mq] < exp [ms—my]. (5.19)

Consequently it follows from (5.17) that

Alg@) i+ o) | Aiglz)| = (g@)** (mg+ v+ 1)+ for all »,9=0,1,2,... . (5.20)
1=0
Putting now
M,,=c (m, + ), ¢ = max g(¢), (5.21)
Tostsr -

we thus see that the exponentiability conditions (5.10)—(5.13) are satisfied for
all values of |2 — x| for which

v+1 P —
limc(mq+v+1) & — x|

= —z,| < .22
o0 (mq+ vy vt celz—mz| <, (5.22)

|x—x0|<& (5.23)
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It will be seen that the condition (5.17) is a generalization of the conditions

in type IV. Putting, namely,

my=kq (5.24)
and

9(z) = 2 f(2) (5. 25)

we obtain from (5.6) and the fact that 4 is semi-diagonal

q+l )

2|Ai0(z)| = 2 exp [m, — mqlAiq(x) =
i=0 =0 0+
= exp g —my] )| dig(2)] = e fla) g = g(x)m,, (5. 26)
i=0

e. (5.17). Next we obtain from (5.21), (5.25) and (5.7),
o=z eiC. (5. 27)

For k= 7' ¢ is seen to become as small as possible, i.e. (5.23) cannot generally

give any grea,ter interval of exponentiability than

|z — x| < 573 (5.28)

OZe

This interval is, however, ¢® times smaller than the interval obtained from (5. 7).
The reason for this difference is, of course, that different majorizations are applied,
a factor of the type »! entering in the proof of (5.7), but of the type »* in the
proof of (5.23). '

Finally it may, however, be seen that if the column sums of | 4 (z)| increase
more rapidly with ¢ than in (5.6), i.e. linearly with ¢, (5.17) cannot be fulfilled
except in very special cases. From (5.17) it follows, namely, that

exp [mg+1—my] Z | Aso(x)| = Z exp [ms — mo] | Aiq(2)| = glx)mg. (5. 29)

i=q+1 i=0
If, now, the column sums of | A(x)| increase more rapidly than linearly with g,
we see from (5.17) that also the numbers m, increase more rapidly than linearly

oo

with ¢. In this case we see, however, from (5.29) that unless > | 4iq ()|
f=q+1

decreases sufficiently with increasing values of ¢, we obtain a contradiction because

the left hand side will increase more rapidly with ¢ than the right hand side.
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PART II.

Application to the Theory of Stochastic Processes.
§ 6.

A discontinuous, stochastically definite process’ in which the stochastic variable
can assume only an enumerable manifold of values is characterized analytically
by a relative probability function of the type P(n,t; n’,s), n,n'=o0,1,2, ..., t=s,
denoting the conditioned probability of a stochastic variable assuming the value
n at the time f, relative to the hypothesis, that it assumes the value »’ at the
time s. We note the essential fact that {=s, as in all probability questions
the time can move only in the forward direction (cf. p. 280). By the expression
stochastically definite® we mean that the function P(n,#;n’,s) is independent of
any knowledge of the antecedent of the process, i.e. of the development of the
process before the time s. The exact statement of this fact is the following:
Let a <s<s <~ < gp=s=t=1<ty<---<t;<b Next, let us consider the
simultaneous conditioned probability distribution of the values of the stochastic
variable .at the times ¢, t,, %, ..., {, relative to the hypothesis that it assumes
a certain value n(s) at the time s. If now, this simultaneous probability distri-
bution is ¢ndependent of the further hypothesis (the antecedent of the process)
that the variable has assumed certain values n(s,), n(sy), .- ., 7(sp—1) at the times
$1y 83, . . ., Sp~1 and this holds true for arbitrary values of p,q,s,,..., 8, t,.. ., &
and n(s),..., n(sp), then the process is called stochastically definite in the inter-
val (a, b).

We mnote that even in simple practical applications® we may meet with
stochastic processes, which are not stochastically definite, the antecedent entering
in a decisive way. In the examples just mentioned the relevant probability

! Arley (1943), part I. In part II of this paper we have discussed various special stochastic
processes of hoth one and two dimensions and their application to the theory of cosmic ray cascade
showers. For the mathematical theory see also Kolmogoroff (1931), Feller (1937), Lundberg (1940)
and Fréchet (1938). In the paper of Lundberg special attention is paid to the application of the
theory to sickness and accident statisties. )

* Khintchine (1934) has suggested the expression »Markoff process« instead of »stochastically
definite process«. We think, however, that the latter expression is already so widely adopted, that
an alteration in the terminology would rather be confusing. Furthermore, the former expression is
generally used to express the fact that the stochastic variable can assume only an enumerable
manifold of values.

¥ Cf. e.g. Arley (1943) §§ 4.5 and 4.9.
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distributions were, however, simply the marginal distributions of a multi-dimen-
sional stochastic process, i.e. a process in which several mutuvally dependent
stochastic variables enter. Another way in which a non-definite process may be
reduced to a definite one is to take the knowledge of the antecedent into account
by introducing some further quantities, parameters, as e. g. the velocities in
classical physics.!

The specification of the process is now given through the introduction of
two functions, the intensity function p(n,t) and the relative transition probability
Sunction II(n;n’,?), both assumed to be continuous®. Here p(n,t)dt is an asymp-
totic expression for the probability of a stochastic change of the variable taking
place in the interval between ¢ and ¢t + ¢ when the variable assumes the value
n at the time ¢ Next II(u;»’,t) is the conditioned probability of the variable
assuming the value 7» at the time ¢+ d¢ relative to the hypothesis that a sto-
chastic change of the variable from the state »' has taken place during the
interval between ¢ and ¢+ df. From the definition of the p and IT functions it
follows that

pl,t)=o (6.1)

o= Hn; ' t) <1 e ;0 t)=o (6.2)

R Hm;n' =1 (6.3)
n=0

Next it follows from the definitions that the P functions must satisfy the following
five fundamental conditions:

lim P(n t; %', s) = lim P(n,t;n,s) = Opn (6. 4)

{2 &8t

P(nt+dt;0,0)=(1—p@, 040) uw + Mlu;w', ) p(', ) At +0(48)  (6.5)
(0(At)=fn,t, 4t n").

P, t; o, s)= Z P, t;n" 0 P(n", ;0 ,s) for all 7 in s<z< ¢ (6.6)
n''=0

o Pl t;n, )< 6.7)

D Pt =1 . (6.8)

n=0

The relation (6.6) is called the Chapman-Kolmogorofi' equation.

! Kolmogoroff (1931).
* We note that it is possible to give up this assumption of continuity and thus obtain a
more general theory of stochastic processes. We intend to deal with this problem in a later paper.
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§ 7.
Introducing the distribution matriz
P(t,s)={P(n,t;n,s)}, (7.1)
the diagonal ¢ntensity matrix
P ()= {pn, )dnu} (7.2)
and the relative transition matrix
II(8) = {I(n; ', )}, (7.3)

we see that the fundamental conditions (6.4)—(6.8) may be written in the
compact form

lim P(#,s)= limt Pt s)=1 (7.4)
Pt+4t,t)=1+ A A4t + o(AY) (7.5)
P(t,s)= P(t 1) Plz,s) (7.6)
0=P(ts) = {1} (7.7)
=-P(t,o)= 3 Pln,ti,5)= 1] (7.9

in which "
A(t)=—p()+ ) p)=UT—1)-p. (7.9)

Due to (6.3) A satisfies

X A= EA,.,.v =0, (7.10)

Introducing (7.3) for the first, respectively the second, factor in (7.6), we obtain

2 P(t,s)=P(t+4ts)— Plt,s)=A(t)- P(t,s) 4t + o(4t)- P(t,s) (7.11)
and

4. P(t,s) = P(t,s + 45)— P(t,s) = — P(t,s)- A(s)ds— P(t,s)-0(ds). (7.12)

Making now the natural assumptions that (a) 4-P and P- A4 are both convergent
and (b) o(4t)- P=0(4t) and P-0(45)= 0(Js), we see that P has partial differ-
ential coefficients both with respect to £ and s, which satisfy the fundamental equations

! We have not been able to decide whether or not these two assumptions follow from the
previous omes. As will be seen they are in any case necessary for the theory in the present form
(cf., however, the remarks at the end of p. 283).
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2 P(t,5) = A () P(t,) 7-13)
2 Plts)=—Pit,s) A, (7.14)

It is now the ohject of our theory to show that if A is given by (7.9) and p and
IT satisfy (6.1)—(6.3) and are assumed to be continuous for all t=s, then (7.13)
and (7.14) has each one and only one solution which is the same for both systems
and which satisfies the fundamental conditions (7.4)—(7.8).

Assuming now the mstrix A4 (f) to be absolutely exponentiable in some interval
s=t=t it follows from part I that (7.13) has one and only one solution, satis-
fying (5.2), given by the product-integral

4

Plts)=FP+ Awdq) (7.15)

f
which will, due to (3. 10), also be the — unique — solution of the adjointed equation
(7. 14). Furthermore, due to (3.11), (4.1) and (3.14) this unique solution will
automatically satisfy the three first fundamental conditions (7.4)—(7.6). We thus
see, that the product-integral is the ideal mathematical tool for the theory of
stochastic, discontinuous processes.

The left hand side of the fourth fundamental condition (7.7) follows im-
mediately from the definition of the product-integral, mentioned in (3. 8), and the
essential fact that t=s.! Due to (6.1) and (6.2) we have, namely, that all the
non-diagonal elements of A4 are non-negative, because all #; > o, and the diagonal
elements of the form A.n=1—p(n,t)¢ Thus in the limit also the diagonal
elements become non-negative. We note the important fact that this statement
need not be true if t<s (ef. p. 277). (7.7) may, however, also be seen by
means of the transformation formula (4.16). Putting in this formula 4;=—1p
and A4,=1IT-p we obtain, due to the fact that p is a diagonal matrix and its
product-integral thus given by the diagonal matrix (4. 6),

1 t
P(t.s)=exp[—[p@ds]- PO + 4,0 dq) (7.16)
in which, from (4. 17), ) '

A, (t) = exp [fp('t)d'z] I (t) - p(t) - exp [—fp(r)dz] =o. (7.17)

‘! We have not been able to decide whether there may exist a stochastic process admitting of
other non-negative solutions than (7.15), i.e. which do not satisfy (5.2) (cf. p. 299.
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All the matrix elements occurring in (7.16) and (7.17) now being non-negative,
the left hand side of (7.7) follows at once. We note that from the Peano series
(3.7) for the productintegral of a non-negative matrix it follows that all the
diagonal elements of the product-integral are positive. From (7.16) it is next seen
that also the diagonal elements of P(¢,s) have the same property

Po(t,s)>0 for all t=s. (7.18)

From the Chapman-Kolmogoroff equation (7.6) we next have, due to the left hand
side of (7.7), for the non-diagonal elements

Py (t, S) = -pnn(t, T) Ppy (’II, S) = 0. (7 I9)

(7.19) combined with (7.18) shows that if P, ==o0 for some value #, > s, then
this is the case for all times in s = ¢ <1, i.e. we have generally

either =o for all { in ¢St

Py (t,s) (7. 20)
l or >0 » » (>s.

The right hand side of {7.7) now follows immediately from the fundamental
equation (7.13), (7.4) and the relation (7. 10), because

ZP,.,. (¢,8) —hmZP,m (¢, 8)=1 + lim [5 (iA,,,."(r)) P,.",.'(r,s)]dz. (7.21)

N- —
n—0 oo N—oowo, neo

For each fixed value of N we have, namely, a finite number of convergent series
and we may, therefore, first interchange 2 and f dz, and next 2 and Z

'’

Firstly, the left hand side is, due to (7. 20), non-decreasing w1th increasing
N and the right hand side, therefore, either tends to a finite limit or to <.

Secondly, from (6. 2), (6. 3), (7.9) and (7. 20) it follows that for each fixed value
of ' and =

N ~
(2 Anar (T)) Yt a (’F, 6‘) =o0 for all N=n (7 22)
» > TZS.

Consequently we bave from (7.21) that
21,.,. =1 (7.23)

from which the right hand side of (7.7) follows immediately. We note that
(7.23) is just what may be expected to hold true gemerally. It is, namely, a
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priori possible that the stochastic variable can increase so strongly with the time,
that it may reach the value ‘infinity’ with a positive probability for a finite value
of £, i.e.

P(oo, t; 0", s)= I——ZP(n,{; n',$) > o. (7. 24)

n=0

§ 8.

Before discussing the main problem of the theory, namely whether (7.8)
holds true or not, we shall consider the problem of the absolute probalulity
distribution. If P(s) is an arbitrary matrix function consisting of only one column
which satisfies

0= Ps)= I} (8. 1)
and
,‘_‘-l’=21‘n(s)=1, (8.2)

2.(s) can be interpreted as the absolute probability of the stochastic variable
assuming the value n at the time s. From the definition of P’(f,s) and P{(s) it
follows that the absolute probability distribution at the time f is given by

P(t)= P(t,s)- P(s) (8.3)

in which £?(¢) is also a solution of the fundamental equation (7.13) and satisfies

(8.1) and
lim P{t)= P(s). (8.4)

f>u

Firstly, it follows immediately from (7.7) and (8. 2) that I(f) given in (8. 3) exists
and is non-negative, the convergence being, furthermore, uniform in ¢. Secondly, the

convergence being, of course, absolute it next follows from (7.23) that we have

2 Zl (2‘ Py t “) "()§21),,'(.\')’:1, (85)
n-0 n' =0 \n=0

the sign of equality holding true if and only if the same is the case in (7.23).
Consequently the right hand side of (8.1) is fulfilled. '
Finally, we shall prove that I’(t) given in (8. 3) satisfies

{

{
P +f Pa) Pl dr=Pls +fA }- P(r)dz, (8.6)
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1n which the associative rule holds true because P(z,s) and I’(s) are non-negative
and A(z) has in each fixed row at most one negative element. (8.6) is proved in

t
the following way. As P(¢, <) satisfies P(t, s)=1 +fA(1)-1’(z, s)dz, we have for
all values of N=#n ‘

D Pty 8) Pw (s) = Pals) + D ([ 4 Pda),,. Puls) =

n'=0 n=0 #

t N
Puls) + | ( S (A@- P, P (s)) ds =

n'=0
o0

— Pals) + f ( S A (3) ( é Pun (2, 5) Py (s))) dv =

n''=0 n'=0

t N
-Pu (S) + @ ’ "{nn { 2 P""' (’[7 8) l)"' (3)) dt +

$ \n'=0

' N
+ <z)j 2 A,,,.n(z)(zl’n”n’ (z,5) I)",(s)) dz. (8.7)

Yo

Firstly we have that, due to (7.9) and P(r,s) and P(s) being non-negative, the
integrands in both terms (1) and (2) are monotonously decreasing, respectively
increasing, functions with increasing values of N. Going to the limit, N - oo, we
secondly obtain from (8.3) that both terms (1) and (2) are convergent. Con-
sequently it follows from a well-known theorem® that we may in (8.7) go to
the limit before we integrate, which fact proves (8.6).

P(t) thus being an integral it follows® that P’(f) exists almost everywhere
and satisfies

P(t)=A()- P(ty= (At - P, ) Pls)= P'(t,s)- P(s). (8.8)

If especially P(s) besides (8.1) and (8.2) satisfies the condition (5.3) and, con-
sequently, P(f) the condition (8), (5.2), (cf. ! p. 272), then it follows from part I
that (8.8) holds true everywhere. We note, however, that in general this is not
the case (cf. ex. (9.1II) and ex. (13.1)). In this connection it may be worth while
to observe that the examples mentioned show that the assumptions underlying the de-
duction of the fundamental equations (7.13) and (7.14), namely the convergence of

! Cf. e. g. Titchmarsh (1932) § 10. 82.
* Cf. e.g. Titchmarsh (1932) § 11.5.
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A-P and P-A (cf. 'p. 279), are too narrow for a general theory of stochastic
processes as we may very well in practice meet with processes of just the type
mentioned, ©. e. tn which the rate of change of the probability of certain values becomes
infinite at certain times (and in which even the condition (7.5) is possibly no
more fulfilled).!

It now follows that I’(t,s) given in (7.15) exists and is the unique solution
in the whole region of definition independent of whether 4 is exponentiable in
s<g<w or only in a finite interval s<z =<+t In the last case there exists a
finite ‘radius of exponentiability’, i.e. a radius of convergence of the series (3. 7).
Let ¢, be a point within this radius. We then simply start once more from this
point and repeat the iteration process, calculating the product-integral P(t,t,) in
a new interval #, <¢t<¢, Each colamn of P{(¢,s) satisfying (8.1) and (8.2)
it follows at once from the above discussion of the absoluteAprobability distri-
bution that

P(t,s)= P(t,1)- P(t,s) (8.9)

exists and is — at any rate almost everywhere — the solution in the whole
interval s=t=t,. This procedure, which we call exponentiable continuation,
we may now repeat ad infinitum, obtaining a series of continuation points
by=s<t; <ty <---<T. Pt s) given in (7.15) thus exists and is the unique
solution in the whole interval s <¢=T. It is, of course, possible that the
exponentiable continuation stops within the region of definition of . 4. In such
case our theory would turn out to be too narrow. It is, however, easily seen
that the continuation may le carried through to arbitrarily high values for
matrices of the types 1—V. In the case of the types I—III there is no problem
as A is absolutely exponentiable for all intervals. In the case of the types IV
and V the distance between two consecutive continuation-points is limited by a
relation of the form

o<f<1, C,= max f(7). (8.10)

fn - tn—l = =
const. C, ty_ 1STSl,

If, now, the continuation process should stop, i.e. t, > 7 < o, we obtain a

n— 0

contradiction, as the left hand side of (8.10) then tends to o, and the right
hand side does not, 6 being a constant and f(¢) being finite for all values of .

! We intend in a later paper to put the theory in a more general form comprising snch
processes.
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Example (8.1).
In the general case we may, on the other hand, very well meet with matrices
for which the continuation process does stop. Let us, namely, consider the matrix

given by!
x\?P .
Apglx) = K, = (Z) 29, p,¢g=0,1;2,..., ZT=O. (8..11)
By induction we can prove that
P
o= 2 2 (2—:1: , v, x<a2. 12

(8. 12) is obviously satisfied for » = 1. Let 'it be true for », we then have

Ty +1 — S i T 'Z i 2 TS a(:_v)a L
(Bt = S o= () (;25) 2 (3)>

a=0

eyt (8.13)
P r+1) — :
l(?) 2‘1( 2 ) for z<2
AV 2—x
l ) > T =2
Consequently A(x) is absolutely exponentiable in the interval (z,, z)*,
o=z =<z, (8.14)
because
p T
(exp [K(z — wlpq =10py + (f) 2971 (2 — z) exp [ﬂj—:ﬁ] . (8.13)

(8.15) shows in fact that we cannot continue exponentiably beyond the critical
point x=2.

Finally we shall discuss the last fundamental condition (7.8). As already
mentioned (cf. the end of p. 281) this condition is, in contrast to the preceding four
conditions, not generally fulfilled. In fact it is easy to indicate processes for
which (7.24) holds true (cf. p. 288).

! We note that this .4 does not belong to a stochastic process. It could, however, easily be
moditied so that this were the case.

2 v
* We observe that putting Mg =(o;) 27 it may be seen that .4 (x) is covered by Cram¢r's
criterion (ef. p. 274). T

9032047 Acta mathematica. 76:3-4
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Let us first assume that the matrix of our process is covered by Cramér's
criterion (ef. p. 274)'. We then have, due to (5.1), (4.2}, (5.14) and (5.13),

Z 0 Py Z IAnn ln n’ ’55 §Z_, 2 KWT nn 1

n=0 n=0 n'’'=0

— 8

I

(8.16)
(t—s)

)
¥y fZan

<<oo forall zin s =1

o0
2 Mv+l, n'

=0
(8. 16) shows:
(a) that the product 4-P is uniformly convergent and thus, 4 and P being

continuous, that also (%P is continuous,

o
(b) that 2 (% P, is a uniformly convergent series of continuous functions,

n=0

from which fact it follows that

0 < - 0
—t 201)"", == ZJ a_Pnn ) (8- 17)
(c) that 3 3 is an absolutely convergent double-sum, i.e. the order of

n n'

summation may be inverted. Consequently we have, due to (7. 10),

t 2, P,y Z P,y 2 Z'Ann Py = Z (Z Anﬂ") Pyw=o, (8 18)

n=0 n=0n""=y n''=0 \n=0
i.e., due to (7.4),
Z Py (t, s) = const. = Z P (s,8) =1, (8. 19)

n=0 n=0

g. e. d.

As a consequence the last fundamental condition (7. 8) is fulfilled for processes
of the type I, IV, V (ef. p. 273 ff.), as Cramér’s criterion may be directly ap-
plied in these cases. As regards type II there is two possibilities: either the
matrix is row or column half-finite. In the latter case it is, however, seen from
(7.9) that the matrix is then also row half-finite (i. e. finite). In the former case
the matrix is bounded, i.e. of type I. As regards type III there is also two
possibilities: either the matrix is row or column half. In the latter case

! We obhserve that at this place it is essential that the criterion operates with columns and
not with rows (ef. p. 275). Cobsequently the following proof does not apply if A is e. g. a row
half matrix (¢f. p. 273).
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Cramér's criterion may be directly applied. In the former case it fails, however,
notwithstanding the fact that it may still be applied for the proof of the ex-
ponentiability of the matrix (if we, namely, only consider the transposed matrix).
Even though A is known always to have convergent numerical column sums
because, due to (6. 3),

oo

ZIAnn | = Z (H+ 1) ]))nn = 2])(71 t) (8 20)

n=0 n=0

already A® need not have convergent column sums in the case of a row half

matrix, as shown by the following example.

Example (8. II).
Let A4 be the following row half matrix

Apo=p =g A(p=q), p,g=1,2,3,..., 0<e<1,
(8.21)
1 for p=
4(pz=q) -—J p=1
lO » p<q.
We then have
ZAHI Zz“ tt=l(1+e)-gPt < (8.22)
and
P
(A%py = Zp ettt g A (pza) dazq)=pTiTe@> DleT T A (pzg)=
- , o (8.23)
PP p—a+ ) d(pzgp7t
Consequently
2 = 2¢ S _I — 2y —- w‘L____._
Z(A =g QL a—1) Qs =, (8.24)
=1 i=q i=q
q. e d.

In the general case we can obtain a swfficient condition for the fundamental
condition (7.8) in the following way. Integrating the fundamental equation (7. 13),
summing over » and rearranging somewhat we obtain for an arbitiary process
which is assumed to have a solution satisfying (3.1), (7.4)—(7.7), due to {7.23),

N % N N o
Oél—zl)nn' (t, '5)2( Z 1—2 Zl
n==N+1 B '=N

N
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This equation is simply a continuity equation for the ‘probability mass’ of the
values » =0, 1, 2, ..., N, the first and second term on the right hand side being
the ‘probability mass’ which. in the time from s to ¢ has flowed ‘upwards’,
respectively ‘downwards’. (8.25) shows immediately that we have the following
sufficient condition for (7.8) to hold true '

lim Z 2(11 Plan =0,

N—oo “N+1n'—o

(8.26)

II= max M(z), p= max p(q)
asrst earsl
This condition is, however, not very useful as it will in practice seldom be
fulfilled. In the case of A being an arbitrary semi-diagonal matrix (cf. p. 273)
we have previously proved the following sufficient condition, called the Feller-
Lundberg condition'

ll

3

pn)= max {p(»’,7)} for =n—Il+1,n—104+2,..,n

tsT=t

%w

(8.27)

Furthermore, we have in the case of 4 being an arbitrary row half matrix proved
the following necessary condition *

p{n) = min p(n,1).

- s=r5t

Iv|l|

(8. 28)

If e.g. we put p(n,{)=n® (and e.g. Hun =0sn+1) we see that (8.28) is not
fulflled, i. e. that

P, t;n',s)=1— ZP(n, t;n',s) > o. (8.29)

n=0

! Arley (1943), p. 63. This condition and the following one are generalizations of results
obtained by Feller and Lundberg, see ]undberg (1940;.
1 Arle} (1943), p. 67. .
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PART III

‘Pathologies’ in the Theory of Infinite Systems of Differential Equations.
§ o.

We shall now return to the general theory of part I, investigating in more
detail the conditions («) and (B} (cf. p. 271——272) by discussing the ‘pathological’
cases arising when we go from finite to infinite dimensions. Our principle by the
construction of these examples will be simply to split the system (2.3), i.e.

- Y'=4%, (9.1)

into two parts, one containing Y,, Y,, ¥,, ... and which may be solved succes-
sively, the other containing only Y, expressed as a series in Y;, ¥,, ¥,, ....
It will be seen that for this purpose we need only take the first column of 4
equal to 0 throughout. Furthermore, we shall as far as possible choose our
examples in such a way that (9.1) represents a stochastic process, i.e. that 4
is of the type given in (7.9). k‘

Firstly, we observe that in the equation (9.1) the dot now represents an in-
finite sum. We cannot, consequently, from the fact that 4 and ¥ are continuous
functions now conclude that ¥ is continuous, as the sum defining ¥ need not
be uniformly convergent. In fact ¥’ can even be so discontinuous that it is
not absolutely integrable {even in the sense of Lebesgue). Before we give an
example of this fact we shall show that we cannot even from (9. 1) conclude to
(2.9), i.e. in the equation ,
I Y|=K-G (9.2)
the product K -G need not necessarily exist.

Example (9.1). (@):+. @):—. un: +. ex: +).

o 1—2 3- o

1

0o—1 o o- =

'3 I‘
Y'=lo o—2 o Y=A-Y, Y)=y: (9.3)

1

0o 0o 0—3 =

a0 W
e

! The symbols (x): +, (§): —, un: 4+, ex: + and so on denote, respectively: the condition («)
is fulfilled, (B) is not, the theorem of uniqueness is fulfilled, that of existence is also, and so on.
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It is easily seen that for this equation' the condition (z) is fulfilled, 4 being a
half matrix (cf. p. 273). Next the equation is readily seen to have the unique

solution
Y,.(x)=$e‘"(9’—’"’ for n=1 (9.4)
and
Y'( . g:‘ ('_ I)n+1 —n (=) — — (2 —2) R — >
ox)—‘_’ ey o=1In (1+e J)  (Re(x — xzy = 0), (9. 5)
n=1
i. e.
z , had [— e~ (@~
Yo(x)=f Yi(@)de=J(—1p+-———— (Re@—=z9=0). (0.6)
e n=1
As
752 2
o 1 2 3 72—
O 1 0 o %_,
K= O O 2 o - and (xoégloo)z % (97)
0 0o o0 3 12-
3

we see in fact that K-G is divergent, q. e. d. Consequently the condition (B) is
not fulfilled. We observe, however, that a pathological case of this type cannot occur
under our assumption (B), because it then follows that K- G is convergent.

Example (9.1I). ((@):+. @):—. un:+. ex:(+)).

It may be of interest to observe that by omitting the negative signs in

the first row of A4 in the preceding example and multiplying ¥ (x,) by 7%

(in order to make 2 Yalxy) = I) we obtain a stochastic process of just the type

n=0

! We note that due to the alternating signs in the first row of 4 (9.3) does not represent a
stochastic process (cf., however, the following example).
? As Y;zo0, Y,(x) is monotonously increasing, i. e.

(-] (-] (-2
(=t N N nt 1a' at
Y. ()= Y = — r_lr_=
max o(a') Yo(o'-"/ gl nt %0(2”4")' "_1(2/’”2 F 2 3 12

which result follows from the theory of the Riemann {-function.
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announced above {(cf. the end of p. 283) in which Y’ does not exist everywhere,
but only almost everywhere. In fact we now find

— 9 L ) =>
Yalx)= e for n=1 (9.8)
and instead of (9. 5)
, 6 w1 [— —6—ln(l——e‘(”‘""‘) Re(r—ax) >0
Vi)=& 3 Lenira | a8 (59
7T n
n=1 [ o] Re (x - xo) = 0.
Nevertheless the function (9.9) is integrable, and integrating we obtain
. 6 o —p P (r—x5)
Y, (@)= fyo(»c do =, 2_; Relw—az)=o0.  (0.10)

Lo

It is easily seen (a) that the functions given in (9.8) and (9. 10) constitute a
probability distribution as they are non-negative and have the sum 1, and (b)
that they satisfy the equation ¥ = A-Y except in the initial point x = x,,
because here the rate of change of Y, is + oo,

Finally we observe that due to the fact that the solution given in (9. 8)
and (9. 10) is only a solution almost everywhere, it is nof a solution in every limit-
point of points in which it is a solaution. We shall later (cf. § 13) return
to this interesting point.

We shall next give an example showing that ¥’ need not be absolutely
integrable, the integration being taken even in the sense of Lebesgue. (We note
that (2.9) then shows that K -G cannot be convergent). In such case we could
not, consequently, generally perform our proof of the theorem of uniqueness by
the method of iteration applied in § 2.

Example (9.III). ((@):+. B):—. un:+. ex: +).

Firstly, we consider the well-known function

y=u' s,inwl2 (z=o0) (9.11)

! It may be interesting to remark that in a stochastic process the rate of change of the
probabilities can never assume the value —o, so long as the intensity function P (1) is finite.
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for which

| 2 I
2z 8In — — — CO8 —; x>0
y’_—_{ 2 x® (9.12)

(o] X =0.

Due to the term 2 the function g, being discontinuous in =0, is just seen

to be non-integrable in the sense of Lebesgue. In fig. 1 we have indicated the
graph of 4" in the interval o <x < co. The function % (x) has an infinity of
zeros, given by the equation

1
I 1 . bed H
tg—;=a-v—2, i.e. x,,~(;+pn) , p=1,2,3.... (9.13)
)
Y
4
2
X
0 —— —_———>
Xl*% 1 2
-2
-4 U
Fig. 1.

In the neighbourhood of each of these zeros we replace the curve of y'(x) by
two suitable, monotonous, smooth curves y=1,(z) (left hand curves) and y=r1p(x)

(right hand curves), as indicated in fig. 2:

y=1{x) ]

L for mp=ax=z). (9.14)
y=ny(x)]
Here
0< L ap<iup< Tp< < <, <ay
b () = rplap) =0 (9.15)

(@) + 1p(z) = ¥' ().
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This replacement has to be done in such a way that the following functions
are differentiable with continuous derivatives in the whole interval o=z <o

0 for oszx=ux
z,(2) = hi@) » H=r=ay
. 1 2 1 2
2xs8in 5 —-cos—5 » TI=SCx
@ r
, (9.16)
o) ; O=uw=2y
lp(x) » rp=x =z,
. 1 2 I ’” »
zp(r) =) 2z sin 5 — -~ c08 3 > BmSXE=LH P=2,34, -
rp{x) » Lp =T =Ty
o sy 1= .
Finally we put
1
y,.(x)=z,.(x)+(—1)”+‘;7 =1,2,3... (9.17)
and define a matrix 4(z) with the following elements:
1 dyn o
Ann(z) g for n=1,2,3,...
Adonlz) =1 » n=1,2,3,... (9.18)
Apmlxr)=0 » all other values of n, m=o0, 1, 2,... .
We now consider the equation
Y (x) = A(x)- ¥ (x), (9. 19)

where A (x) is given in (9.18). A(x) is thus continuous in o <z <% and is,
being a half matrix, furthermore exponentiable in this interval (cf. p. 273). The
condition («) is thus satisfied. Corresponding to the initial value

(9.20)

C 0 = NI= O
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(9. 19) has thus the unique solution

Ya(x)=ya(x) given in (9.17)
and, due to (9. 15),

oo

) (- ,)n+1$=-; for z=o0
Yo(x)= D) Yulx) =1 1 (9.21)
n=1 zxsing—gcos$+§ > x>0,
i. e., due to (9.20),
11
Y, (x) = 2* sin At gav (9. 22)

(9. 21), consequently, shows that we have in fact obtained an equation (9. 19) for
which ¥’ is not absolutely integrable, q. e. 4.

Finally we observe that our example could, obviously, just as well have
been constructed in such a way that the matrix 4 becomes not only continuous
— as in our example — but furthermore differentiable an arbitrary, but finite,
number of times.

We stress, however, that a pathological case of this type is excluded in case our
second condition (B) is fulfilled. From () it follows, namely, that K-G is con-
vergent, i.e. that all the series defining 4-Y are uniformly — and absolutely
— convergent. 4 and ¥ being continuous, ¥’ is, therefore, also continuous i. e.

absolutely integrable and satisfies, furthermore, f Ydx= Y () — X (x,), which

relation was the starting point for the proof of the theorem of existence (cf. § 3).

& 10.

In this paragraph we shall show that our conditions («) and (B) are no
necessary conditions for the theorem of umiqueness to hold true.

Example (10.1I). ((@):—. un: +. ex: +).
o —4 24 34 -

o —14 o o

Y =10 L2 —21 0 - (¥=4-¥Y, 1>o0. (10.1)
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It will be seen that A satisfies (7.9) and (7.10) and that (10.1), therefore,
represents a stochastic process.
Since . ® g
(Az)m:le('“;‘l‘z _) =0, (10. 2)

n
n=3

already 4° does not exist, i.e. our first condition (a) is not fulfilled. Nevertheless,

it is easily seen that (10.1) admits of at most one solution (in § 11 we shall
show that it has in fact a solution) because (10.1) simply means

Yi=—41Y, :
' A o 10.3)
Y.= 121Y,,+n———(n+I)Y1, n=2,3,4, ...
and
) 3
0—1.2Y1+2,n2=|‘)nY,,.

We next show that nor our second condition (B) is necessary for the theorem

of uniqueness to hold true. For this purpose we shall utilize the theory of
Fourier series.

Example (10.II).

—_—

@:+. @:—. wn:+. ex: *)

Y, o a @ a, a; a, ‘-
Y, o o 0 o o o
Y, o 0o ¢ 0o o0 o
Y={Y,i=1o o 0 —i o o L. ¥=4F¥.  (10.4)
7. 0 0 O 27
Y. 0 0 0 0 0 —2i

In this case (a) is fulfilled, because A is simply a half matrix (cf. p. 273). In
fact we find

exp [K |z — z,|]= (10. 5)
1 Lol lzzul, (e, fa | (edr=sd—), 1] @temsty), Pal ey
0 I 0 o o o
o o vl o o o

=10 o ) A=l o o)
o 0 o o e lz—al o)
o ) o o o e?lz-=l
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Our second condition (8) need, however, not be fulfilled. If we e.g. as initial
condition choose

o
o}
1
Y(x)=C=11 (10.6)
I
1
and e. g. put
a,=o0, a,=|v—1|,v v=+1, t2,..., (10.7)
we see that
* 1
(exp [K |2 — x|} C)y=2 D) s(erl==l —1)= o0, (10.8)
r=1

Nevertheless, it is again easily seen that (10.4) has at most one solution® since
(10.4) simply means

4 .
Y2ﬂ+1=—nlY2ﬂ+11 n =0, 1,2," )
> .
Yeu= ntYyn, n=1,2,3,... (10.9)
Yo= a Y, +aY,+a, Y+ .

In § 11 we shall consider this example in more detail.

Iinally we show that in the case of our equation ¥' = A-Y being of infinite
dimension, the theorem of uniqueness itself need mot be true wn contrast to the case of
JSinite dimensions.

Example (10.1II). (@):+. (§):—. un:—. ex: 1)

01 0 O
0 01 0

Y={0 0 o 1---;-¥Y=A4"'Y. (10. 10)
0 0 0 o0

! We see, however, that (10.4) need not have any solutions at all. By choosing a,, a,, G_,, . . .
in a suitable way, Y, given in (10.9) need, namely, not exist. Even if it exists, it may not be
integrable. E.g. we may choose a,, a;,a_,,... so that Yo=1 for x>z, Y,;=—1 for x <x, and
Y;=o0 for x=o0. In this case Y cannot be the derivative of any fanction.
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This equation means, simply,

Y, =Y
Y.=Y =Y

(10.11)
Yn= Y;l-l = Y.ﬁ")

We thus see that Y,(z) is uniquely determined by Y,(x) and that Y,(x) may be
an arbitrary function having, only, derivatives of arbitrary high order.
From the initial condition

N Y(x)=C - (10.12)
and (10.11) it follows that
Y (x,) = C,. (ro0.13)

As is well-known the function Y, (x) is, however, not uniquely determined by

(10.13), i.e. by its Taylor series. If, namely, Y, is a function for which (10.13)
is fulfilled, e. g. the funetion

YO=ZCW(36—:TJC°)—, {10.14)
=0 -
then for instance the function
, 1
Yi= Y,+kexp [———————(x_xo),] (10. 135)

will for arbitrary values of the constant % also satisfy (10.13). The equation
(10.10) has thus, corresponding to an arbitrary initial condition (10.12) for which
(10.14) has a non-vanishing radius of convergence, an infinity of solutions.'

We note the very important fact, that this property is characteristic for a
whole class of Znfinite equations Y'=4-Y. By a row semi-finite matrix we
understand an infinite matrix which has in each row only a finste number of
non-vanishing elements, but not necessarily the same number for different rows.
Let us by ,» denote the maximum column index in the p’th row of A4, i.e.

AM{#O for j=m (10. 16)

=0 » all j>pm.

! The equation (10.10) need not, however, have any solutions at all, as (10.14) may only be
convergent for x=:mx,, e. g. if Cp=(»!) :
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If especially ,n satisfies

nm>p forall p=o,1,2,...! (10.17)

we obtain the class just mentioned.?
Each of the single equations in ¥'=A4-Y we may, namely, under the
conditions (10.16) and (10.17) solve with respect to Y .(x), thus obtaining

n—1
Y () = m [Y,; (z) —'g e Yj(x)] for all p=0,1,2,.... (10.18)
This equation means that each Y, may either be chosen as an arbitrary function,
having, only, derivatives of arbitrary high order, or may be determined uniquely and
successively from the lower Y functions, i.e. those with lower index p. If the
equation ¥'=A4-¥ has any solution at all, ¥, satisfying the initial condition
(10.12), it will thus be seen that making again the substitution (10.15) we may
obtain a different solution ¥ * satisfying the same initial condition (10.12). Even
Jor such simple equations with row semi-finite matrices satisfying (10.17) it is, con-
sequently, necessary to vmpose certain vestrictions — e. g. our condition (3) — on the
solutions considered in order to maintain a theorem of wuniqueness. This fact is
especially interesting because in the practical statistical applications of stochastic
processes we often meet with processes governed by equations of just this type.

Example (10.IV). (@):+. @):+. un:—. ex: +).

Let us as an example consider a stochastic process® with the intensity function
p(n,t)=n and the relative transition probability matrix IT having only the non-
vanishing elements

A
and Ily_qn =

y .
My w = 2 ie
SR g ity V¢

! We observe that a row semi-finite matrix of the type (10.17) need not be absolutely ex-
ponentiable, cf. (5.8) and (5.9).

* In the other extreme case, m=p for all p=o,1,2,..., 4 is simply a row half matrix,
and our first condition () is thus fulfilled (cf. p. 273). The equation ¥'=A-Y is, therefore, in
this case covered by our theory. Furthermore, it will be seen from the proof of the theorem of
uniqueness (§ 2) that in this case our second condition (B). is automatically fulfilled, as the ex-
ponential will again be a row half matrix. Under this condition the theorems of uniqueness and
existence thus both hold gemerally true without any further conditions, i.e. the equation behaves
exactly as a finife equation.

3 Ct. Arley (1043), 88 4.6—4.8.
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(o ye1 o )
Io —(A4y)1 72 0 ]

P=:0 A1 —(@A+y)-2 Y3 e P=A4-P, P,(0)=26,: (10.19)
,o ) A-2 —(,l+7)-3---‘

By means of the generating function it is possible to deduce the following exact
probability solution®

- y—4
Pot) =1 + L—yexp [y —A)¢]
. . (10. 20)
P, () = (y ;gl) exp [(y — A)¢] (r— exp [ly —A)f) T R=1,2,3,....
(1= exp 1y —21)

It is easily seen that (10.19) has apart from the solution (10.20), which is easily
seen to satisfy (7.7) and (7.8), an infinity of solutions satisfying the same initial
condition P,(0)=4dy,,;. In fact we find. putting

Po(t) =P,() + k exp[— ‘Ia . (10.21)
successively that

. k 1]2
Pi(t)=P,(t) + , €XP [— g;]p

(10.22)
PI(f)= Py() + ;% exp [— tl] AP —38+ 2)

and so on.

The solution given in (10.21) and (10.22) is, however, no probability solution
because even if >0 we may obtain negative values for some of the P} (¢) functions

at various times £. If e.g. l=7=é it is seen that the second term of P3({)

is negative in the interval 1 < ¢<1 +V 2 The first term being at most 1, we
thus obtain P3(f)<o in an interval 1 +e<t< 1+ V2 —¢ for sufficiently high
values of £. (We note that in this example it may be shown that no solution

other than (10.20) can be non-negative throughout (cf. p. 280)).

! This calculation is due to tekn. d:r. Conny Palm. We wish to express our most sincere
thanks to Dr. Palm for communicating this solution to us. We have, however, later succeeded in
obtaining the solution by a much simpler method, which may even be generalized to processes
for which the method of the generating function cannot be carried through. We intend to discuss
this method in another paper.
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§ 11.

In the preceding paragraph we have discussed pathologies concerning the
theorem of uniqueness. We shall now discuss pathologies concerning the theorem
of exzstence. First we give an example showing that although the condition (a)
is not fulfilled, the theorem of existence may nevertheless hold true.

Example (11.I). (=ex. (10.1I). (@):—. un:+. ex: +).
Let us again consider the example (10.1). As shown there the equation

(10.1) admits of only one solution obtained by solving successively the equatiotis
(10.3). We thus find, corresponding to the special initial value

Y(xo)= {Ynn’(xo)}:{ann’}, 'n'=0, ,2,... (II.I)

Yiw (x) = gy et ==7)
O (I I. 2)

You = A s p—ni{x—x,) e TR (p—h ) ol pend{—a)
nn (.’L‘) Onn' € o -+ 12(n+ I)(n—-l)(e o e ") (’I1> I)

and

, A ot A . s .
YOn' (.’B) _— Y]n' + l Z 7 Ynn’ =T2 61 n' e—/.(l‘—-.ro) + AZ n 61“;' e_"/'(x_x(') -+

1-2
n=2 n=2 ‘
. L3 1 I e i T P
S1 o=t le—za) — Oy = B — = 11.3)"
“' 2Z n—1 n+1 1"222 n—1 n+1 (11.3)
- —
An' e~ ile—2) 4 (g = 2) +
Aot L (penas — pmiiema) I (1 — emiten)],
2 2

[1for n'=2

Rel(x—%)%O, d(n’£2)=1o » n’<2

The last series in (11.3) is seen to be uniformly convergeht, thus having a con-
tinuous sum for Re‘l(x—xo)go, but to be divergent for Rei(x — zy) < 0. The
point x=ux, is thus a singular point as also shown by the result of the summa-
tion containing a term In (1 —e *®~%) This fact means that although the ma
trix 4 is so regular as we may demand, i.e. constant, one of the functions,
Yow(t), does not even exist everywhere, but only in the complex half-plane
Rei{z—2y) = 0 and is, consequently, not analytic in x=u,.

We thus have the very interesting fact that the singular points of an infinite
equation mneed not at all coincide with those of the matrix A of the equation and
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may, not, wn fact, cven be read off from A by an immediate tnspection. This fact
shows wn a most striking way the fundamental difference between infinite systems
and finite systems, which last systems can only have the singular points of A as
singular points (¢f. § 4).

As Yo (x) given in (11.3)is a continuous function for Rei(r—ux,) =0, it may
be integrated and we thus find that Y, {(x) is uniquely given by (substituting
t = e~ *—w)

Youle)==do + j Youw(@)dw =8y + (0" = 2)(1 — e~W i) 4
0

1

O [(I — ) — Mae—a) 1 j (l__n (It‘_,ﬁ f_ In {(1— t)) d tJ ==

2 2
oA (—ry) (r1.4)

Sow + (0" = 2) (1 — e 2la=0)) 4

. dl w [;_ (I o e——).l\:t—.n,)) — _’I; (I — e»—}.u‘—)\,))ﬂ e). {x—2q) In ([ _ e—}. (.1'—.’(",))] s

Reld(x — x,) = o.

We see that Y. (x) has for x=ux, a very serious singularity of the same type as
the function y==2"Inx, namely an infinite branch-point.

It will be seen that all the functions in (11.2) and (11.4) are non-negative
and satisfy

D Yuww)=1 for all = and n'=o0,1,2,..., (11.5)

as should be the case because our equation represents a stochastic process. /

The column matrices Y, (x)= Y, (x —x,) corresponding to »'=o0,1,2,...
are now seen to constitute a fundamental solution. Taking together these columns
to form a quadratic matrix, which we shall again denote as a product-integral

&£

P+ A4d)={You (w—2x)), x=un, (11.6)

o

we see, namely, that our equation has for an arbitrary initial value

Y(z)=C={Cw} with D|Cw|< o (11.7)

n'=0

a unique solution for all . = x, which is given by
V)= P+ 4ady C, (11.8)

Lo

10-632047 Acta mathematica. 76:3—4



302 Niels Arley and Vibeke Borchsenius.

i. e. formally identical with {3.12). In our case (11.7) will always be satisfied as
¥ (x,) denotes the absolute probabilities at the time &=, Due to (11.1). (11.5)
and (11.7) the matrix {11.6) is seen to have both the properties (3. 11) and (3. 14)
when 2z, =< ;=2 As (11.6) exists only for »=. it will, however, not have
the property (3.16) i.e. a reciprocal, in accordance with the fact that in all
probability problems the time variable will move only in the forward direction.

As Y(r) is not analytic for .= ., it can, consequently, not be expanded
in a power series in x —ux, from the initial value z,. Nevertheless, as Y () is
differentiable to the right also for .« =1ux,, ¥ being a solution of a differential

equation, the matrix (11.6) is seen also to satisfy (4.1), i.e. we may for small
values of z — x, obtain a good approximation by putting

Yio)=(+Adx—ug) Vi) (Jo—a]=<1) (11.9)

i.e. useng the fivst terms in the power sertes (4.6), in spite of the fact that this
series itself is divergent, as already A® does not exist (cf. {10.2)).

We may, furthermore, make the interesting observation that in spite of
the divergence of A* and, consequently, of all higher powers of 4, we can,
nevertheless, in this example obtain the power series for any other initial
point by the usual method. As ¥ (x) given in (11.2) and (11.4) is analytic for
Rel(r—x,) >0, it may be expanded in a power series from any point 2, in this
region

Y(x)= > Y,(L%I'X Yi=Y(x) (Rex;>Reu, Reuw>Re.r) (11.10)

?
1 ={

Introducing (11.10) into ¥'=A-Y we obtain, due to the convergence of A- Y}

being uniform,

. < (£ — g, 1 o . s (x — ) » k
4 —TZTI Y,“(:T———x‘ y~—-'2>:0f‘ Y., o (l].]l)

Equating corresponding coefficients we next obtain the well-known expressions
Yi=A4.¥,, V.=A4-Y,=A4-(A-Y,)== A% Y, and so on, (11.12)

in which the associative rule may not be applied due to the divergence of A*,
¥=2,3,4,.... The relations (11.12) do not, however, hold generally true —
except the first one ¥, = A4-¥, — because the inversion of the order of summation

in (11.11) is not legitimate in general. If it were legitimate it would, namely,
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implicate that the sum of the infinite series represented by A4-Y could be
differentiated arbitrarily often term by term, but as is well-known, this is in
general not legitimate even if the sum of the series is an analytic function —
as in our case (cf. ex. 12.I).

In contrast to the case of our equation ¥'=A"Y being of a finite dimension
we shall now show that the theorem of existence proper may fail in the case
of infinite dimension.:

Example (1L.II). ((@):—. un:+. ex:(4)).

o1 1 1
iy
Y'=11 o o ¢ Y=A4-Y. (11.13)
>0

0 O O

Obviously this A4 is not exponentiable as already A® is divergent since
(ABpp=1+14+1+ - =0, (11.14)

Next it is seen that (11.13) admits of at most one solution given by, due to ¥,

being continuous,
Y.=Y, for n=1,
(11.15)

ie Yo=[Y,da+ C

and

Yo= fi Yida + OO:f(i fYodx)dx—i—(iCi)(x—xo) + Cp. (11.16)

xp =1 T i=1 @,

(11.16) shows that for all initial values not satisfying the very special conditions
(;'0:01 ZOi:O, (11'17)
i=1

our equation (11.13) has no solution at all. For the only allowed initial condition
given in (11.17) we find, however, the trivial solution

Y =0C for all x. (11.18)

10 % 632047 Acta mathematica. 76:3—4
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In the two examples hitherto discussed in this paragraph our first condition
(x) has not been fulfilled. We shall now discuss examples in which our condition
(«) is fulfilled, but our second condition (B), i.e.

exp [K|x—x|]- G < oo, (11.19)
is not. '

We first give an example of this kind, in which the theorem of existence
does hold true.

Example (11. ITI). (~ ex.(10.II). (a): +. (B):—. un: +. ex:+)
We again consider the example (10.II), i.e. equation (10.4). Let us now
put x,=o, .
o
1
Y(0)=C=lll' (11.20)
1
and :
7 2 I
G=3 Graen=0, Grewy=— o (r1.21)

As is well-known from the theory of Fourier series, our equation has thus in fact

a — unique — solution corresponding to the initial value (11.20), viz.
9,.2
— for o=x<=n
,, 2
Y, =f xzldx= x?
o 0|l _ es=o
2
o » x=2=x
(11.22)
Y, =1
Y2n+1=8—i"z —n=ax =7, n=1,2,3,....
1727‘: einm

In fact it is seen that () is in this case not fulfilled, since, due to (10.5) and z,= o,

(exp K |z1- Gz (exp[K Jafl- C)=Z]|+ £ 3

! )3(6(2"+1)|T|——I)=m. (11.23)
=0

(2v+1
We note the interesting fact that our equation given in (10.4) and (11.21) has
only solutions for real values of x, as the series defining Y, is divergent for non-

real values of z.
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Thus every point of the complex plane except the real axis is a singular potnt
of the equation in spite of the fact that A is constant, 7.e. analytic in the whole
complex plane.

Finally we consider an equation for which the condition («) is satisfied, and
the theorem of existence does not hold true.

Example (11.IV). ((@):+. @):(F). un:+. ex: (4)).

o a; a, ay---

01 0o o ]

o 0o 1 o0-¢¥=A4-Y. (11.24)
o0 0 0 1 I :

As A is a half matrix, (a) is in fact fulfilled with

1 |a | (ed2=l—1) |a,](e*—®l—1) -

0 g'x_“'ol fe)

exp [K |z —x|]= (11.25)

el z—xy|

Obviously
Yn (Z') = Cﬂ ex_:‘"’, n g I

3

(11.26)
Yo(@)=Co+ (=™ —1) Y an (.
n=1

Thus we see that if the initial point C does not satisfy the condition that the

series
(-]

D\ ax Cu is convergent, (11.27)

n=1

our equation (11.24) has no solution at all.

§ 12.

In fact, we have now given examples of all types of pathologies — in respect
to our conditions («) and (§) — which may arise in the case of infinite systems
of simultaneous linear differential equations in contrast to the case of finite
systems. There remain, however, still a few questions which it may be interesting



306 Niels Arley and Vibeke Borchsenius.

to discuss. Firstly, we shall remind of another proof of the theorem of uniqueness
of the finite equation (2.1), i.e. Y'=A4-Y+ B, in case 4 and B are assumed
to be analytic in a certain region. If there were two analytic solutions ¥, and
Y, of (2.1) for the same initial condition (2.3), then Y=Y, — Y, would be a
solution of the homogeneous equation (2.5), i.e. Y'=A4-Y, satisfying the initial
condition (2.6), i.e. Y(x;)=0. A4 and Y being analytic and the system being
finite, we may differentiate the series in Y'=A Y term by term arbitrarily often,
thus obtaining, due to ¥Y(z,) =0,

Y (x) = A ) Y (x) =0
(12. 1)
Y () = A’ () - ¥ () + Azg) - ¥ (25) =0
and so on.

From (12.1) and Taylor’s theorem it then follows that

Yx)=0 : (12.2)

q.e.d., i.e. Y=A-Y+ B has at most one analytic solution.

This proof may, however, not be generalized to the case of ¢nfinite systems.
Firstly, such systems need, namely, not at all admit of solutions for complex
values of x or even of solutions being only real-analytic!, even if 4 is con-
stant (cf. ex. (11.III)). ‘

Secondly, the equation

Y” :i

dw(A.-Y)zA'-YwLA-Y' (12.3)

and its analogues in (12. 1) need not at all hold true in the case of infinite systems.
The dot represents, namely, in this case an infinite sum, and the process of
differentiating term by term need not, comsequently, always be legitimate, as
shown by the following example.

Example (12.1). (=ex. (11. ITI). (a): + . (8):—. un: +. ex: +. ¥¢(0) does not exist).
We again consider example (11.III). As in this example we have

Y(;zlx':g 4 [cosx+ cos3z cosgsr

- 12 31 52

,I_.M:I‘ —n<r=mn, (12’4)
7T

! By a real-analytic funetion we mean a function of a real variable, the Taylor series of which
is convergent with a sum equal to the function.
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we see that Y; does not exist at all for x=o0. Differentiating the series term
by term we obtain, however,

sinx | sin3x | singx
+ +

Y=t
R N

_’....]:Ozo:i: Y(;'(O). (12.5)

In this connection it may be interesting to observe that we may for ¥; ob-
tain the well-known function of Weierstrass!.

Example (12.1). (~ex. (10.II). (a):+. (B):—. un:+. ex:+. Yy does not
exist for any x.)

In ex. (10.1I) we may choose the Fourier coefficients gy, a,, a.,,... of Y in
such a way that Y, becomes equal to the Weierstrass function

Yo = Y, a"cos (p"m x) (12.6)

n=0
in which a is an arbitrary number in o<<a<1 and p is an odd, positive integer
g 7. This function has just the property of being continunous
in —oo <x< oo, but not differentiable for any value of .

satisfying ap>1 +

§ 13. |
Finally we shall discuss an equation which has the following interesting
property. A certain matrix function Y(2) is analytic in the whole complex
z-plane. Furthermore, Y (2) is in a certain open region £ a solution of an equation
Y'=A4-Y, in which 4 is analytic in the whole complex z-plane except in certain
points in which 4 has simple poles, but which points do not lie on the boundary
of Q (see fig. 3). Y(z) is thus not a solution in limit-points of points in which

it is a solution, a behaviour which is excluded in the case of finife dimensions
(cf. ex. (9. IT)).

Example (13.I). ((«):+. (8):*. un:?. ex:?. The regularity region of the
equation may be open).
Let us consider the functions

Yalz) = e "% — e~(n-1)z, n=1,2,3,... (13.1)

! ¢f. e. g. Titchmarsh (1932), p. 35I.
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which are analytic in the whole complex z-plane. Next, we consider the equation

Y —1 w w® w-
Y, 0. —2 w w2I
Y =YY=y oo —3 w- - ¥=4Y (13.2)
Y, 0O 0 0O —4--
in which
o= (13.3)
26 —1 A

In this equation we see that 4 is in fact analytic in the whole complex z-plane
except in the simple poles

26— 1=0 ie z¢=—In2+p- 27 p=o, 1, *2,.... (13.4)

Next it is seen that A4, being a half matrix (cf. p. 273), is absolutely exponentiable
along any regular curve L between x, and z. In fact we have

Kyy=qdpq + M 4(q>p),

(13.5)
M = max |w(z)]|!
T=z=zx
in which the #-symbol is defined in (8.21). By induction we find
(K")pog=q"0pq + M P A(qg>p)(g—(q— 1)), v=0,1.2,..,, (13.6)

and thus
(exp [K |x—x,[l)py = 6pq exp [g|x—a, ] +

+M1=? 4 (g > p)(exp [glo—a,|| — exp ((g— 1) |x—ao]).  (13.7)
Consequently the condition () is fulfilled and the equation (13.2) thus covered.

by our theory.
It is easily verified that (13.1) satisfies our equation (13.2):

Ya (Z) =— e hi 4 pe-—lz__ g-ln-1z
* e i
(A Y)n =—n )’n + 2 ( - ) _Yn+i 1 (e—nz _ e—(n—l)z) +
4 2¢°—1
=1 © ; ar \s (r3.8)
e . .
+ e—ntilz e—m+i-1)7) =
Z (2 e — I) ( )
i=1
w ., i
—ne "+ ,ne—(n—l)z_ e-—nz(ez__ I)Z (2 eze; I) =_,’le—11:+,’10—(1z—1):_ e—(n—l)z’
=1

' If the integration curve from ., to x should be complex, we understand by this symbol
max Jw(z)| along this curve (cf. ® p. 262).
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q.e.d. The convergence of the series in (13.8) is, however, limited by the con-
dition that

2¢—1

|<1, ie. e“—;ie“cosy+—;>o o=z 7y), (13.9)

the solution of which is
2 I 5
x> 1n gcosy+gl’4cos ¥y—3
(13.10)

x<ln_(§ cosy——; V 4cos‘y-3).

In fig. 3 we have shown e closed regions of divergence
(hatched regions) and the open region of convergence £
(the rest of the complex plane) as given by (13.10).
Furthermore, we have in the same figure shown the sin-
gular points of 4 as given by (13.4) (the points denoted
by ®). We thus see that ¥ given in (13.1) satisfies the
equation (13.2) in all points of thé complex z-plane except O I

AL AN

in the points of the closed, hatched regious of fig. 3;
e.g. in the point z=0 ¥ is not a solution although (1):
z=o0 is a limit-point of points in which ¥ s a solu-
tion, (2): z=0 is an snner point of the regularity region
of 4 and (3): ¥ is analytic in the whole complex z-plane.
Consequently, we see again that in the case of infinite

systems the singular points of the equation + initial Fig. 3.
condition need not be singular points of the matrix

and cannot even be read off at all from the matrix by an immediate inspec-
tion (cf. the observation p. 300-—301).

These facts are, of course, also met with by the consideration of the con-
dition (8). If, namely, we take as initial point a point £, in the regularity region
given by (13.10) and as initial condition the corresponding values of ¥ given
in ’( 13.1), the condition (B) turns out to be fulfilled only in a region which lies
entirely within the regularity region. Let us e.g. consider the simplest case, viz.
2, real and positive, z,=ux,>0. We then have from (13.1), considering only
values 0 < z <,

Gn=max | Y, ()| =eVr—¢-r% (x=0), (13.11)

TEISa,
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from (13.5) N

szgiii |w(t)|———2;:"_I (13.12)
and, consequently, from (13.7)
(exp [K |z —,[]- G)p=
i (dpu exp [a (xy—2x)] + (%)a_pd (> p)lexp e (x,—2)]—exp (& — I)(xo—.r)])) .
a=0

“(exp [—le—Dz] — exp[—ax,)) =

(13.13)
exp [pxy — (2p —1)a] —exp [—pa] +

PEES ~-p =% I a
(Ze%__l) x (28%_1) (—exp[a(3x0f2x)+2x~x0]+

=p+1

+ expla(2x, —x) + . — x) + expla(32, — 27) + «] -—exp[a(zaco—:c)]).
These series are obviously convergent for such values of z for which

exp [37 — 2]

pursmmh S o< = iy, (13.14)

and we just see that this relation is fulfilled for x = x, but not for x =o.

PART 1IV.

Application to the Perturbation Theory of Quantum Mechanics.

§ 14.

In quantum mechanical perturbation theory stochastically definite processes
are also met with, but here the probabilities in question are described by the
numerical squares of ecertain complex functions, the probability amplitudes. Let
us shortly review the usual perturbation method, the variation of parameters,
introduced by Dirac’. This method underlies every application of the quantum
field theories to practical problems in which the perturbation H, is considered

' See any textbook on quantum theory, e.g. Heitler (1936) chap. IIT § 9. 3. See also Heisen-
berg (1938) in which paper the theory is presented in such a form that the relativistic invariance
is conspicuous.
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as causing transitions of the unperturbed system. Let this system have the
Hamiltonian H,, eigenvalues E, and eigenfunctions ,":

Hyw = Enipn. (14.1)
Here the ,’s are assumed to form a complete oftho-normalized set. Further-

more, it is assumed that all the following formal operations are legitimate. The
total Hamiltonian of the perturbed system is now

H=H,+ H, (14. 2)

in which H, H; and H; are Hermitian operators and H,, which may or may
not contain the time explicitly, is assumed to be small compared with H,. We
develop the solution ¥ of the actual Schriédinger-equation

L. 0
ihg ¥ ={(H, + H))y (14.3)
in a series of the eigenfunctions ,
¢=Zan(t)wn €xp [_gE"tJf (14. 4)

The a,mplitudes an(t)y are functions of the time only and the w,’s only of the
various space and spin coordinates of the unperturbed system. By scalar multi-
plication of (14.4) by ¥, we have

ax(t) = exp [7—2 I, t]flp,‘iw dr. (14.5)

(The integration includes here and in the following also a summation over all
spin variables.) Assuming i to be normalized to one it follows, furthermore,
from (14.4), due to the w,’s forming a, complete ortho-normalized set, the Parseval
relation .

fw*tpd'c=2|an(t)|251. (14.6)

2

The amplitudes a,(f) have the physical significance that |a.(f)|* denotes the
probability at the time ¢ of finding the system in the sfate w,, which inter-
pretation is in agreement with (14.6). From this interpretation it follows that
the time variable ¢ moves only in the positive direction, as a probability statement
can refer only to the future, not to the past (cf. p. 277).

! This notation is used whether the energy spectrum is diserete, continuous or mixed.
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Inserting (14.4) into (14.3) and forming the scalar product of both sides
with ¥, we just obtain an infinite system of linear differential equations for the

amplitudes ax(f)

o o g ey _
th di an(f) = Z" Hlnnr”ﬂ (f) exp [ 7 (]m Ln) t, (14-/)

where H denotes the matrix element

ITnn'

Hlnn’ = j’wﬁle"'dT ’ (14 8)

and represents a transition from the state »’ fo the state #». We stress the
important fact that the form of the fundamental perturbation equations (14.7)
is quite independent of whether they describe a physical system with only a
finite number of degrees of freedom (point-mechanies) or with an ¢nfinite number
(field-mechanics). In the tirst case it follows, however, from the theory proper
of the wave equation that all our formal operations are legitimate, and that
(14.7) has in fact a solution of the form required, but in the second case these
statements do no longer hold true. In fact a mathematical theory has, so far
as we know, not yet been given for a partial differential equation with an
infinity of independent variables.

By means of our matrix symbolisin (14.7) may be written in the compact.

form

—at)=da )= A)-all (14.9)

where a(f) is the matrix formed by the probability amplitudes
(l(t) = {(’n(t)} (14' IO)
and the matrix A (¢} is given by ‘
‘ 7

A= {4, ()} = vl[_ 7 H,, . exp [ 7‘1' (B — E) t]} {14.11)

By means of the diagonal matrix

ol imel = el ¢ 1 A
exp [7! Et] = lekp [h E, f] Onn ’ (14.12)

A may also be written as

U T D
A——ﬁexp[ﬁht]-H,~ekp[ hlyt]. (14.13)
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H, being a Hermitian operator it follows from (14.13) that 4 is anti-Hermitian
A*=— A, (14.14)

Assuming now A to be absolufely exponentiable, i. e. the condition (), (5. 1),
to be fulfilled, it follows immediately from part I that the equation (14.9), i.e
(14.7), has for each initial condition

a(s) = {an(s)} (14.15)

satisfying (5.3) a unique solution given by

[

a(t)= P+ Adb)-als). (14. 16)

8
Here the matrix
¢

alt,s)= P01+ Adi) (14.17)

&

may be interpreted as a relative transition probability amplitude, in analogy with
the matrix P(¢,s) in part II, because it satisfies the conditions being analogous
o (7.4)—(7.8), viz.

hm {l@nn(t, )|t} = hm {l@nn(t.9) P} = (14.18)
| @an (2, 9)] Zla,,,, (t,2)I*| @wrw (z, 5) | (14. 19)
o= |t s)P=1 (14. 20)
Z]ann'(t,s)|2= I. (14.21)

(14.18) follows immediately from (3.11). Next we have, due to the fact that
P satisfies Chapman-Kolmogoroff's equation i.e. (3. 14),

|(lnn’(t,S)|2=|Za1,n (t’t)ann 'tsl Zlann tTI Iann '5‘8‘2

n'’

2 Z Ia"n"(tv T) ann’"(ti 't)l |an"ﬂ' (1’ S) an"'n'(’[’ S)I cos (¢::n _¢tnzn + ¢n ‘n _q)n n)

arsal

(@nw (t,7) = | @i (t,7)] exp G@i%. ... ). (14.22)

Obviously the right hand side of (14.22) is, hawever, not equal to the right hand
11-632047 Acta mathematica. 76: 34
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side of (14.19) unless the interference term 2 D) vanishes. Whether or not this

n''s>n""’

is the case depends partly on.the problem itself and partly on the experimental
arrangement'. This may, namely, be of such a kind that it averages over all
the phases @ in the intermediate states n”, »’” and as cos =0, (14. 10) therefore
holds true in such cases. (We observe that this phase averaging is caused by
the fact that in quantum theory every observation means an interaction between
observer and object which brings about uncontrollable changes in the system
observed. The fact that the different probability amplitudes may interfere with
each other, i.e. that the intermediate states do not exclude each other two and
two, and that (14.19) is, consequently, not generally true is just one of the most
essential features of the quantum théory.

Thirdly it follows from (14.14), (3.8) and (3.16) that a(t,s) is a unitary
matrix:

(l*(t,s)=(CC:/L)(l+Adt) =lim H 1-A)A)= cc])hrAdt) a’'(t, s). (14.23)

s M=>Pjem—1
Consequently we have

Zla"" (&) = (a*: @) w = (@' @)ww =1 (14.24)

which proves both (14.20) and (14.21).

It may be interesting to observe that the fact that @(t,s) is a unitary matrix
can also be seen directly. If we, namely, transform @ (¢, s) from the Heisenberg-
representation used above to the Schrédinger-representation f(f,s) by means of
the transformation

a(t,s) = exp [% Et] [t 8), (14.25)
we see from (4. 10) that f satisfies

9 7

7¢ 768 = — 5 (H, + E)-f(i,s). (14. 26)

Assuming H, to be independent of the time, whiéh is usually the case, we have
from (4.6) and (14.25) that

alts)= ekp [%Et] - exp [— %(H'1 + E) (t—s)] (14.27)

which shows immediately that @(¢,s) is a unitary matrix.

! Cf. the discassion in Heisenberg (1930) chap. IV § 2. Cf. also Dirac (1930) chap. I.
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Finally we see that if @(s) in (14. 15) satisfies (5.3) and is besides a unitary
column matrix
a*(s)-a(s) =1, (14.28)

i.e. a(s) may be interpreted as an absolute probability amplitude, then @ (f) given
in (14.16) is, besides being a solution of (14.9), a unitary matrix, i. e. may also be
interpreted as an absolute probability amplitude. If, namely, @(s)is an arbitrary
unitary matrix, we have from (14.23), (14.28) and Schwarz' inequality that

(@, s)-a@h]| =Via*E, s) - alt, ) Va*(s) als)=1. (14. 29)
which shows that a(f) = a(t,s)- a(s) exists. Next we have

a*(t)-a(t)=a*(s) - a*(t,s)-a(t,s) - als)=a*(s)-als)=1 (14. 30)
q.e. d.

§ 15.

From the Peano series (3.7) for the exact solution (14. 16) of the perturbation
equations (14.7) we now obtain the well-known expressions (in the case of no
resonance) for the probability amplitudes aay, (¢, 0) — giving essentially the transition
probabilities from the initial state »" = n, at the time s=o to the final state »
at the time { — in the first, second and higher approximations

Anno(t,0) = Onn, + alt) (¢ 0) + a? (t,0)+ -, @nn(0,0)=0nn, (15.1)

in which
exp [—— %’(Eno — Ey) t] —1
Eno— En

t
all (t,0) = (nf A di),, =H,,, (n 0 (15.2)

t t
a2 (t,0) = ([ at A (¢) [at’ A("),,, =
s 0

7 . i '
Hlnn' H]n’n eXp [—— ;t (E"“ - En) t] —1I exp [—' ;l (En' —_ .En) t] —1

v Lng—Ew T E.—F, — T, (15.3)
and 8o on. (n =+ 1)

Now the perturbation H, always contains an interaction parameter — e.g.

the electric charge e in electro-dynamics or the various f and g factors in the
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meson theory — and the Peano series (15.1) consequently consists in an ex-
pansion in a power series of this interaction parameter. This procedure to be
legitimate it is, however — quite independent of the numerical magnitude of
the parameters in question i.e. whether or not H, is small compared with H, —
a necessary condition that the probability amplitudes governing the transition
probabilities we are looking for are analylic functions in the parameters, and
this is by no means always the case. Although A4 given in (14.11) may be an
analytic function of any parameter contained in H, we can, as discussed in part I
(cf. p. 269), even in the case when A fulfills our essential condition of being
absolutely exponentiable conclude only that the solutions of our perturbation
equations (14.9), i.e. (14.7), are analytic in every inner point of their convergence
region. Just the initial i)oint from which we expand our series may, namely, be
a singular point in which the first, but not the higher derivatives giving the
coefficients of our expansion exist. This fact is in a most striking way illustrated
by the equation in examples (10.I) and (11.I) in which one of the functions,
given in (11.4), has in the initial point a very serious singularity .of the same
type as the function y =2 In z, namely an infinite branch-point.

As is well-known we are in the application of quantum mechanics to the field
theories — both electro-dynamics and the various meson theories — just faced with
thts peculiar situation that the theories lead, when applied to practical problems, in the
first approximation always to convergent results (simply because the probability amplitudes
satisfy differential equations of the first order, viz. (14.9)) which agree with exper:-
mental resulls, but that the higher approximations often give divergent results, which
Jact means that no physical meaning can be attached to them. Usually this difficulty
is simply overcome by various artificial methods such as »cutting off« the diver-
gent integrals at some suitably chosen point. Such a procedure is, of course,
highly uusatisfactory, quite apart from the fact that it spoils the relativistic
invariance of the theory. From our general theory it is, furthermore, obvious
that we may not expect results obtained in such ways to have much physical
meaning in accordance with what is found to be the case, especially in the meson
theories, which give quite wrong results for very high energies.

The question thus naturally arises whether these divergence difficulties are due
to deficiences of the present quantum theory or to our usual perturbation methods
Jailing. The last possibility has previously been suggested from time to time' and
arguments may also be given in its favour. Firstly it may be said that the existence

' Cf. e.g. Rosenfeld (1935).
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of solutions of the perturbation equations (14.7) follows by means of (14.5) from
the theory of the wave equation. Secondly such examples as that discussed in
examples (10.I) and (11.1) show that even if our main condition of the operator
matrix 4 of the equations being absolutely exponentiable is not fulfilled, i.e.
that the usual method of solving by means of the Peano series diverges, the
equations may still have a unique — although non-analytic — solution. In fact
it may not be wondered at that the usual perturbation methods may fail because
these methods of solution have been formally carried over from finite systems of
equations which, as shown in part I, can have no other singularities than the
singular points of the matrix A itself, to infinite systems in which, as discussed
in part II1, the singular points may arise through the limiting processes proper
defining the system itself and need not at all be singular points of 4 or even
be detectable by an immediate inspection of 4. Just as the divergence difficulties
which arose in the theory of collision problems by a too rough application of
the Born approximation at low velocities were later removed by the more suitable
perturbation methods of e.g. Faxén and Holtsmark, we ought perhaps at present
rather look for better mathematical methods of solving the perturbation equations
(14.7) than for better physical theories. Although for this purpose eventually
quite new, and perhaps hitherto unknown, mathematical methods have to be
invented for dealing with infinite systems of differential equations not admitting
of iteration solutions, i.e. which are not covered by the condition of 4 being
absolutely exponentiable, it may not be premature to suggest such methods to
consist simply in new ways of expanding our solutions in series. Bearing in mind
how partial differential equations are solved in problems of heat conduction or
diffusion it is an obvious idea to suggest the application e.g. of Fourier analysis
on our solutions. This method seems specially promising in as much as it is
well-known that alone the existence of the first derivative of a function is enough
to ensure its Fourier series to be convergent. Also the work of Poincaré on the
application of infinite determinants in the perturbation theory of astronomy may
perhaps turn out to be useful'.

In spite of the arguments just discussed, the first of the above mentioned
possibilities of understanding the divergence difficulties, viz. that they are more deep-
rooted, bexng due to deficiences of the present quantum theory itself, must now be
favoured by the following reasons. As regards the first argument in the discussion

! We intend to investigate these problems more closely.



318 . Niels Arley and Vibeke Borchsenius.

above it must not be. forgotten, firstly that the Schrédinger equations (14.3) oc-
curring in the field theories describe physical systems with an ¢nfinity of degrees
of freedom, and secondly that the perturbing interaction term H, between the
atomic systems and the wave fields in question must, due to the relativistic in-
variance, involve the highly discontinuous Dirac d-functions. Rigorous proofs of
the existence of finite eigenvalues and eigenfunctions and of the completeness of
the latter have, however, as already mentioned (p. 312) not yet been given.. (In
fact such systems may be constructed which have infinite eigenvalues.) These
facts underlying the deduction of (14.5) we cannot, consequently, conclude that
the existence of solutions of the perturbation equations follows from the theory
of the wave equation.

Secondly our discussion in part III shows equally well that our perturbation
equations may bave no solutions at all. In fact this may be the case in spite of
A being anti-Hermitian as shown by example (11.1II) if, only, we multiply the
— symmetric — matrix of equation (11.13) by <.

Thirdly Heisenberg' has given strong arguments showing that in order that
the present quantum mechanics shall give a consistent description of nature, the
perturbation equations must not at all give convergent results. If this were the
case, this fact would, e.g., imply that the theory would yield convergent ex-
pressions for the self-energies of all the elementary particles. Consequently the
masses of these particles would be given by the theory itself in spite of the
fact that these masses enter also in the theory as arbitrary parameters, the
values of which we may ourselves dispose of freely. The whole present quantum
theory being just founded on the correspondence principle as shown by the way
the Hamiltonian (14.2) itself is built up from a o-approximation term, H,, and
a I-approximation term, H,, we cannot, consequently, expect the present theory
to give convergent results beyond the first approximation — and if it did; this fact
would, as mentioned, even lead to contradictions in the interpretation of the
theory.

Notwithstanding the fact that a more general theory of infinste systems of
differential equations than the present theory will certainly be created in the futyre,
and that such a generalization is much needed in e. g. the theory of stochastic processes,
we must conclude from the above discussion that such a generalization may not be
expected to overcome any of the divergence difficulties of the present quantum theory,
these difficulties being far more deep-rooted in this theory itself.

' We wish to thank prof. Heisenberg for valuable discussions on these questions.
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Summary.

In part I (§§ 1—s5) we first review (§§ 1—4) the usual theory of finite
systems of simultaneous linear differential equations of arbitrary order. In § 1
we present the theory in matrix form, thé theory becoming thus independent of
the dimension of the system. In §§ 2—3 we prove the theorems of uniqueness
and existence, respectively. In § 4 we give some properties of the product-integral
representing the exact solutions. In § 5 we perform the transition to infintte
systems, giving conditions which are sufficient to allow us of maintaining the
whole theory of §§ 1—4 for infinite systems.

In part II (§§ 6—8) we give the application of snfinite equations to the
theory of stochastic, discontinuous processes. It is shown that a wide class of
such processes, being most important in the practical statistical applications of
this theory, is covered by our theory and satisfies all the requirements being
necessary for an interpretation of the solutions as probabilities being possible.

In part II1 (§§ 9—13) we investigate the conditions of § 5, ensuring the
necessary convergences. By means of suitably constructed examples we show,
partly that our conditions are only sufficient, but not necessary to maintain the
theorems of uniqueness and existence, and partly the important fact that these
theorems themselves do not generally hold true for infinife systems. Especially
we discuss in §§ 10—11 the questions regarding the theorems of uniqueness and
existence, respectively. As a result the important fact turns out that in contrast
to finite systems an ¢mfinife system may have singular points other than the
singular points of the matrix of the equation and that the former singular points
may not always be read off from the matrix itself by an immediate inspection.

In part IV (§§ 14—15) we give the application of infinite equations to the

“perturbation theory of quantum mechanics. It is shown that the fact that the
usual perturbation method gives in the first approximation always convergent
results, being in agreement with experiments, in spite of the higher approximations
diverging, is simply explained by the fact that the solutions of the perturbation
equations — if they exist at all — need not be analytic functions in the para-
meters, but that the initial point from which we expand our series may be
a singular point in which the first, but not the higher derivatives, giving the
coefficients of our expansion, exist. Finally we shortly discuss whether these
divergence difficulties are due to deficiences of the present quantum theory or to
our usual perturbation methods failing. Notwithstanding the fact that a more
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general theory of infinite systems of differential eqnations than the present theory
is required (and possibilities for such generalizations are suggested in the form
of other ways of expanding the solutions in series) we conclude with Heisenberg
that the divergence difficulties are more deep-rooted. They are, namely, a con-
sequence of the present quantum theory being based on the correspondence prin-
ciple, a consequence which is not to be regretted, but on the contrary necessary
for the consistent interpretation of the theory.
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List of pathological examples in part III.

(The symbols (a): +, (8): —, un: +, ex: — and so on denote, respectively,
the condition («) is fulfilled, (8) is not, the theorem of uniqueness is fulfilled,

that of existence is not, and so on.)
Page

Example (9.I). (@):+. (B):—. un: +. ex: +. A==const. K- G divergent . . 289
» (9.TI). (a):+. (B):—. un:+. ex:(+). A=const. ¥'=A4:Y only

almost everywhere .. . . . . . . . . . . .. ... ... 290
» (9.III). (@):+. (B):—. un:+. ex:+. A is not constant, | ¥’| not

integrable . . . . . . . . . . ... ... 0L 291
> (10.I). (@):—. un:+. ex:+. A=const. A4* divergent . . . . . 294
» (10.1I). (a):+. (B):—. wn:+. ex:*. (Fourier series) A = const,

but no solutions for non-real . . . . . . . . ... .. .. 295
» (ro.1I1). (a): +. (§):—. un:—. ex: ¥, A=const. If any solution,

an infinity of (non-analytic) solutions . . . . . . . . . . .. 296
’ (10.IV). (@):+. (B): x. on:—. ex:+. Ad=comnst. . . . . . . . . 298
> (11.1). (=ex. (10.1)). .4 = const., but no solutions for Re A(z— z,)<o.

The solutions only analytic for Re A{(x—2z,)>0. . . . . . . . 300

» (11.I0). (a):~—. wn:+. ex: 7, A=const. 4" divergent. Only solu-
tions — being constants — for very special initial values . . . . 303

> (11.II). (~ex.(10.II)). (a):+. (B):—. wn:+. ex:+ . . . . . . 304
» (11.IV). (a): +. (B):(—). wn:+. ex: 7. Ad=comst. . . . . . .. 305
> (12.1). (=ex. (11.III)). Yo(0) does not exist. . . . . . . . . . . 306
» (12.II). (~ex. (10.II)). (a):+. (B):—. un:+. ex: +. Weierstrass’
function: Yy (x) does not exist forany . . . . . . . . . . . 307

» (13.I). (@):+. (B): . un:?. ex:?. A analytic except in isolated,
simple poles. There exists a ¥ which is only a solution in open
regions, i. e. ¥ is not a solution in limit points of regularity
points . . . . . .. ... Lo 307
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