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Introduction

This paper will deal with the set M of measures with compact support on the
real line. To each positive number a we associate the set m, consisting of measures
with support contained in [—a, a]. M and 'ma will denote the sets of Fourier trans-
forms i for p belonging to M and M, respectively. By reason of convenience the
identically vanishing measure shall not be included in M or M,.

Our main objective is to decide if for each a>0 there exists u € M, which tend
to 0 in a prescribed sense as z— + co. Since each /Z(x)em is the restriction to the
real axis of an entire function of exponential type <a, bounded for real z, we know
by a classical theorem that

J(log™ | a)) = f ” 13%%1‘%" de> — oo, (0.0)
This property is thercfore a necessary condition.
Let w(z)>1 be a measurable function on the real line and let L}, (1<p< o)

be the space of measurable functions f(x) with norm

R 1/p
IIIII=U_ |/($)|"w(x)”dx} .

The following problem will be considered. Determine for & given p the set W, of

all weight functions w(z)>1 subject to these two conditions:

(*) Partially supported by the Air Force Office of Scientific Research contract AF 49(638)-253.
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(a) The translation operators f(x)—f(x+¢) are bounded in L},

(b) For each a>0, L} contains elements of m,

On defining w(x)=logw(zx) we find that each of our postulates leads trivially
to a necessary condition on w(z). Thus (a) implies that

true max |w(z +1t) — w(x)| < o, (0.1)
d (b) impli © vk : :
and (b) implies f_w 1+xzd.ar:<0<> 0.2)

We shall prove

THEOREM I. The sets W, are independent of p and W consists of all weight functions
w(x) = e*® =1 satisfying (0.1) and (0.2).

The main step in the proof of this result is not elementary and requires the
development of new techniques, basically depending on a variational problem in a
certain Hilbert space.

The same method will also yield:

TaEOREM II. Let g0 be an entire function of exponential type such that J(log*|g|)
< oo, Then each 'fna contains element fi with the property fi(x)g(x) eMm.

The preceding result can also be expressed in terms of the convolution algebra
M: Let v, u€M and assume that p divides » in the sense that the function ¥/4 is
entire. Then for each &>0, there exists an « € M, such that axy is contained in
the ideal generated by u.

Another formulation of Theorem II deserves to be recognized, viz.: The sets

{f(x)|f entire, f= -, », pe‘m}

=

and {f(x)|f entire of exponential type, J(|log|f|) < oo}

are identical.

The property described above can be considered as a formal analogue of a
theorem of Nevanlinna stating that a meromorphic function with bounded charac-
teristic in the unit disc can be expressed as the quotient of two bounded analytic
functions.

We should also like to point out that Theorem I combined with a result by
Beurling ([1], Theorem IV, lecture 3) give rise to this striking conclusion: If trans-
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lations are bounded operators in a space Lj,(w(z)=1, 1<p<oo) then one of the
following two alternatives holds true. The space either contains elements f+¢ with
Fourier transforms f vanishing outside any given interval [a, b], or the space does

not contain any f+¢ with a transform f vanishing on any interval.

1. Preliminaries on Harmonic Functions

In the following sections we shall frequently be concerned with functions u(z + iy)
harmonic in the upper half plane and with boundary values u(x) on the real axis.
It will always be assumed, although not always explicitly stated, that the relation
between u(z) and its boundarv values u(z) is such that

lim | |u(z+iy)—ulx)|dz=0 (L.1)
yi0Jz,

for finite intervals (a,, x,). If in addition

J e

then wu(x) has a well defined Poisson integral which we shall denote

Pt f” yul§)ds

T a) et @—&)

If therefore w(z) satisfies (2.1) and (2.2), then u(z) — P,u is harmonic in the upper
half plane with boundary values vanishing almost everywhere on the real line. By

an application of the symmetry principle it follows that

u(z) — Pyw =Jm {3 e z} (y>0),
0

where ¢, are real constants such that the series represent an entire function. The
sets P, and P, are defined as follows: u €], if ¢,=0, >0, and thus u(z) = P,u;
u€P, if ¢,=0 (n>1), and consequently u(z)=P,u+c,y.

Let p be a positive measure on [0, o) such that the integral

2

WMEfl%l—%

(1]

do(t)

converges for y>0. If U?(z) is bounded from above for real z and if
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t
f do = O(t),

0

then the boundary values

2
X
-
t

U (x) = fm log

0

do(t)

are finite almost everywhere and satisfy (1.1) and (1.2). By a Tauberian theorem of
Paley-Wiener it follows that the limit

1 T
a=zlm ’Tfo de

exists and is finite. Moreover U?(z) €], and the constant ¢, equals a.

2. Atomizing of Positive Measures

This section will contain an elementary but important step in establishing the
existence of functions f €M, with prescribed properties.

We shall denote by Q the collection of all measurable functions w(z)> 0 satis-
fying (0.2) and in addition meeting this condition: For each a >0 there exists on

[0, oo( a continuous positive measure g such that

U¢(x) < — w(x) + const. for a.a. real z, (2.1)
Fa
— X
-- <a. .
lim fo dg<a (2.2)

It should be observed that (0.1) is not included as a condition for Q. We rec-
ognize that Q is a convex cone: If w,, w,€£2 then the same is true of 4, w, +4;,w,
for A,, 2, 0. Moreover, if w(z) belongs to  so does w(—x) as well as w(x)+ w( —z).
Each non-negative measurable minorant of an @€ will also belong to Q. The set

Q is therefore uniquely determined by the even functions it contains.

LeEMMA 1. Assume w €Q and let y be a given positive number < 1. Then for each
a> 0 there exists a ,zem, such that

J‘_m | a(z)|exp (w(z) + 2| 2 |") da < oo. (2.3)

Proof. We recall the formula

f log
0

2
1 —% dt"=|z|"ncotgn?y (0<y<2).
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Thus, if s{t)=at—28a7" tg 3y (@>0, 0<y<1), then

f log
0

The function s(f) is obviously increasing for ¢>¢,, where ¢, depends on a and y. If

therefore 7 is the measure obtained by restricting s to (¢, oo) we shall have

2

X
1 -2 |ds(t)= —2|z).

U*(x) < — |« |* + const. (2.4)

Hence, |z|'€Q for 0<y<1. Let a>0 be given and let ¢ be a measure satisfying
the stipulated conditions with respect to a and to w, (z) =2w(z)+ 5|z |". We construct
an atomized measure po* by the procedure:

t 1 t
o*(t) = fo do* = [g(t) + 5], olt) = fo de, (2.5)

where [z] denotes the integral part of x.

Since @ is positive and continuous, p* is uniquely determined. Define for

z=x+wy (y>0),
h(z) = cxp {f"" log (1 — :—:) dg(t)}, (2.6)
)

00 2
f(z) = exp { fo log (1 - j—z) dQ*(t)}, @

where the logarithm is real for z=idy (y>0). We observe that f(z) is an entire
function,

o0 2 1
f(z)=H(1—;—ﬁ), g(l,.)+~2—;n'.

1
Our conditions on ¢ and on o imply that
log|k(z)|< — P,w, +by + const.  (y>0), (2.8)

where b is a constant <a. The function

@)

og @ = u(z) + 1(z)

is holomorphic in the upper half plane and its imaginary part v is bounded there

and vanishes for z=14y (y>0). For >0 the boundary value of v is
20— 62173068. Acta mathematica. 107. Imprimé le 27 juin 1962.
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1
v(x) =n(o*(x) —o(x)) =7 ([e(x) + 5] - g(x)) .

Since v(—x+iy)= —ev(x+iy) we shall have —in<wv(x)<}m on the real axis and
those incqualities will hold throughout the upper half plane by virtue of the maxi-

mum-minimum principle. Assume 0 <k<1 and set

k
(%) = cos kv + i€ sinkv= U, + iV,

Then U, is a positive harmonic function and

k
coslcg;i <U,. (2.9)
By an inequality of Harnack
LfzFe|+|z—1d

In the half plane y>1, the factor in (2.10) is majorized by (1+|z|)®.. On com-
bining (2.8), (2.9) and (2.10) taking k=§, we obtain for y>1,

log|f(z)| < — P,w, + by + 4log (1 +|z|) + const. (2.11)

Since the same inequality holds for z=xz—4y it follows that f(z) is of exponential

type <a. By virtue of the definition of w; we conclude that
| fx + iy) | < Me-a2¥ (—1<y<]1), (2.12)

where M is a finite constant. This proves that /Ema.
Since Uy (z) is positive for y>0, and U,€D,,

1 o0
;-J_ :]’;(zgdx:a,(i). (2.13)
Hence, by (2.9), taking k=14,
= @)} de
f_w M| Toa <" (2.14)

By the definition of ,

log|k(z)| = U%(x) < — 2w(x) — 5|2 |’ + const.
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Therefore (2.14) implies that

fw | ) [t oxp (@(@) + 2| ]?) do < oo,

-~ o0

and (2.3) follows since f(z)=f(x) is bounded.
We shall now derive a stronger result under the assumption that w(x) has a

certain weak continuity property.

LeMMA II. Suppose w(x) is continuous and let there exist positive numbers o and
B <1 such that for all x outside some compact set and for |h|<exp (—|x|f),

|o(x+ k) — w(z)| <|z|® (2.15).
Then the swummability (2.3) for y > max («, ) implies that
| H(zx) | exp ((x) + | 2 |") < const. (2.16)

Proof. The lemma is a simple consequence of the following minimum modulus
theorem. There exists an absolute constant #>0 such that if g(z) is holomorphic for
|z] <R and |g(z)| <M, then

for a set of values r of measure >@#R. If therefore (2.16) were false there would

exist arbitrary large x, such that
| (o) | > exp (— e(g) — | 2o [")-
Since f is bounded by a constant M in the strip —1<y<1 we would have
|f(z)|> M exp (— (@) ~|2o")

on a set E contained in the interval |&—z,| <exp(—|z,|?) and of measure >2dexp-
(—|%o[?). This inequality together with (2.15) contradicts the summability expressed

in (2.3) and the lemma is therefore true.
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3. A Variational Problem in a Hilbert Space

The main objective of this section is to connect the set of functions  with a
certain variational problem in a suitably chosen real Hilbert space. By definition #
shall consist of all odd real valued measurable function on (— oo, co) satisfying the

condition

[T

and such that the harmonic function u(2)=P,u has a finite Dirichlet integral

R f f |gradu [Fdzdy. (3.2)
0o Jo
The norm in # shall be defined by (3.2). Because u(iy)=0 (y>0), it follows by

well established properties of the Dirichlet norm that ¥ is complete.
Frequent use will be made of the inequality

had dx =
2 7 2
fo ui(z)— < 2||u|| . (3.3)

In order to prove (3.3) define m(r)=supocs<yn|u(re’®)|. Then

$n ou 2 7 in ou 2
wo=([] o) =3[ ()

Consequently fo mz(f) f f ( ) b < _”“”2

and (3.3) follows. The norm in H can of course be expressed directly in terms of

u(x). One such expression is furnished by the Douglas functional

f f (“"” -”)) dzdy. (3.4)
27:

We shall later on define an equivalent norm in ¥ more convenient than (3.4)
for our specific purposes. It should be pointed out that H is a Dirichlet space in
the sense of Beurling and Deny [2, 3]. We shall use the technique of these spaces
without referring to the general theory.

For each u(x)€EH the harmonic function wu(z)=P,u has a conjugate harmonie

function %(z) uniquely determined except for an additive constant. Since u(z) and
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%(z) have the same Dirichlet integral we conclude that (z) has boundary values
t%(z) which are at least locally L®-summable. If u, v € the scalar product is.formally
expressed by the integrals

(u, v) = fw u(x) dd(z) = fw v(x) dii(x).
0 0

If, however, v belongs to the set C c¥H consisting of all odd real-valued differentiable

function with compact support then we shall have

(u, v)= — Jm i(z) dv(z), (3.5)
0

where the integral is well defined. The proof of (3.5) is elementary.

The main result of this paper is contained in

LemMma III. Let w(z) be a non-negative measurable function such that for almost
all 2> 0
w(x) < xo(x) + const., (3.6)
where c €W and
f K:) dx < oo, (3.7)

[

Then w€Q.

Proof. In order to exhibit the existence of measures g with the prescribed prop-

erties we assume a>0 given and we choose b (0 <b<a). Define
K,={u|u€H, u(z)> o), a.e. for z>0}.
This set is convex and it is closed by virtue of (3.3). Define further

Cwi:)d:t:, m= inf @(u). (3.8)

uekKy

d><u)=||ullz+2bf

0

Since ¢€K,, m is finite. Assume u,, u, € K, O(x,), ®(u,) <m—+e. Then O (4 (u, +u,))
>m and consequently

$O(uy) + 3 Oluy) — D (3 (uy +uy)) <e.

This inequality can also be written in the form

[ 3 (e — wp)|I? <.
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If therefore u,€K,, ®(u,)—>m, then {u,}7 is a Cauchy sequence and converges to

an element u€K,. By (3.3) we shall have for 0 <z, <z, < oo,

tim | |u@) —un)x)ld—; —0.

n=o00Jz,

Hence ||u||2+2bf ’u(-:v)d;x <m,

and it follows that ®(u)=m since u(x)>0 a.e. for 2>0. Let now v€C and assume
o(x)>0 for x>0. Then u+ €K, for 1> 0 and ®(u + Av) — ®(z) = 0. This implies that

(u, v) + bf ix)dar:> 0. (3.9)
[

The left-hand side of this relation is therefore a linear form F(v) defined for v€C

and F(»)>0 if v>0 for z>0. By a familiar argument we conclude that

F(v) = J- v(z) daz), (3.10)
0
where « is a non-negative measure on {0, oo).

We now introduce a normalized conjugate function 4(z) by the formula

dt.

o t—2 i Jo t2—2*

u(e) +dle) = = f T b g 2T MYt

The integral is well defined because

on |Lt)ldl,%oo.

e |2

On combining (3.5) and (3.9) we obtain for v€C

—f w(x) do(x) = —bf Mdawkf v(x) doe(x). (3.11)
0 o 0
This relation implies that d(z) a.e. coincide with a function locally of bounded va-
riation on (0, o).

The precise pointwise limit

d(x) =lim %(x+ ty)
V40
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is therefore of bounded variation on finite intervals [z, #,], z; > 0. This implies that

the limits 4(x—0) and #@(z+0) exist. By another version of (3.3),
f (e +) e )% <afjul
0

It follows that #(z+ 0)=4(x—0), and 4%(x) is thus continuous on (0, oo). In addition
it follows by (3.11) that

i{g) — i) > — b log% (> 7, > 0). (3.12)
1

We shall next prove

liTm (@(x) - a(sz)) =0,
1153 (i(x) — Hi(iz)) = 0. (3.13)

To this purpose we consider

Ar .
J(r, l)=f |12(z)~?2(ix)]%x (r>0,A>1),

and we observe that

lim @(iz) =0, lim @(iz) = — = f u(t) 4y
z{0 b4

T4oo 0 T

By an application of Schwarz inequality and by the proof of (3.3),
J(r, A) < (g log A - D(r, 1))&,

where D(r, A) denotes the Dirichlet integral of # extended over the region
{z|r<|z|<r, 0<arg z<in}.

Hence, for bounded A, J(r, 1) tends to 0 as r4 o or r| 0. If (3.13) were not true

there would exist a positive » and arbitrary large (or small) >0 such that
| #i() — di(ix) | > 2.

By virtue of (3.12) we conclude that for some fixed A>1 only depending on & and
7 we would have

| #(x) — d(ix) | >n (x€(r, Ar)

for some values of 7 arbitrary large (or small). This contradicts our result on J{r, 1)
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and (3.13)-is therefore established. Hence, #(x) is a bounded continuous function
tending to 0 at co, and to a finite limit at z=0.
We now turn to the construction of the measures p. Since u(z), 4(2) €D, we
shall have
. O (7 2z [~ a(t
) +id(e) = tim2 | H g = —"f )
T-f J_7t—2 7w Jo t°—2

This function «(z) coincides with the original u(z)=P,u because both vanish on the
positive imaginary axis and both have the same conjugate function. By adding the
constant a to (t), we obtain

2z [ a(t)+a

u(z) + 14(z) + 1a = — o dt.

2

z
LA 1
b (3.14)

Consequently 2(u(z) + ti(2) + i) = }zf:t(ﬁ(t) + a)
where the last factor in the integral is the derivative of log (1 —2z°/t*) with respect
to t. Since a>b there exists a finite f, such that for ¢>¢,, #(t)>b—a. We also re-
call that the lower derivative of (f) is > —b/t at each point £>0. These properties
imply that s(¢) =#(4(f) + a) is increasing for ¢>f, and of bounded variation on [0, {).
We obtain by first making a partial integration in (3.14) and then by letting y | 0,

x

2
1~ 7 |ds(o).

—xu(x) = 71!,[0 log

A continuous positive measure p, is now readily obtained by defining

ndp, =ds for t>t,,
mdo, =adt+tdi for O<t<t,

By construction of u(x),

w(z) < zo(x) + const < zu(x) + const., a.e. for >0.

Therefore

t, 2

U (z)< —ow(x)— if.d(t) log |1 —-7—2- dt + const.

0

Since i(t) is bounded we conclude that for a.a. >0,

U% (z) < — w(z) + cylog (1 + 2%).+ const.
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In order to obtain a p strictly satisfying all the conditions, we have only to form
@=p;+7, where v is one of the previously constructed measures satisfying (2.4) for
y=1% and (2.2) with the constant a—?b.

This concludes the proof of Lemma IIT.

4. An Equivalent Norm in ¥

In order to obtain simple and explicit conditions implying that functions u(x)

belong to H we shall introduce an equivalent norm in H.

Lemma IV. For odd measurable functions u(zx) on (— oo, o0) let

lull = [ wendes [T 7 ern - (1)

Then ||u|| and ||ully are equivalent norms in W, i.c. ||ul|/||ull, remains included between
positive finite constants.

Proof. Any of the assumptions ||#]|<co or ||ul|,< oo imply that
u(ef) EL? (— oo, o).

We may therefore assume that y(&)=wu(ef) has a Fourier transform () € L? (— oo, o).

By an application of Parseval relation

f (W(E+n) — &) Pde=4 fjo Sin2%] [p(t) > at.

- 00

Consequently JJulf = f | (8) [ Ao (£) dt
where lo(t)=1+4|t|f sin2%§=l+n|tl.
0

On the other hand the function (£ + in)=wu(e!**") is harmonic in the strip 0<n <}z

and vanishes for n=4}x. Since the Dirichlet integral is invariant under conformal
mapping ) ' '

£ Y] ]
lult=lylt = [["an [~ Jeradypas
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1
sh (§ - ’I]) “t

T
-- t
sh

The kernel K(t, & n)=¢*

is harmonic in (&, %) and K(¢, &, 0)=e', K(t, & Lm)=0. By this we conclude that

. 1 et R
w<5+m>=V:f K & mptdt (0<n<in).
27 J -0

By a straightforward computation using the Parseval relation,

lult = [ lyorrana

. 1 shmt e*nl_*_e—}nl
e MO = 5 e =t g v

The ratio 1,/A is obviously bounded from below and from above by positive con-

stants, and the lemma follows.

LeMMaA V. Let w(x) be an even non-negative function uniformly Lip 1 on the real
azxis and such that

A=f 6u—(ai)d:tc<0<>.
x

0

Then o(x)=w(z)/z€H, and by Lemma I1I, »€Q.

Proof. Without loss of generality we may assume that e is differentiable for

z+0 and that its derivative w’ is bounded by a constant M. We define on ( — oo, o0),

P(&) =o(e') =w(ef) ¢,

and observe that A =on p(&)dé, (4.2)
¥ (&) (&) =o' (). (4.3)

If (4.3) is multiplied by y and then integrated over (— oo, &),

1 ¢
§w2(£)+f_ Y (EdE<MA. (4.4)
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Thus f w Y (E)dE<MA, (4.5)
lp(&)|<Ve M4, (4.6)
lv' &) |<M+V2MA =M, (4.7)

By virtue of the definition of the equivalent norm the lemma is proved if we can
show that (4.7) implies

oo d oo
fo 5, w)n—2<4M1f_ P(&)de, (4.8)

o0

where 8, p)= f

— 00

(p(&+7) ~w(§))2d5=f +f .
Ap Ay

By A, we denote the set where at least one of the functions y(&), p(&-+-7) is >,
and we define E,={£|y(&)>7}. Let m(n) be the measure of E, and observe that

-0 0

f Yy (&) dE= —f n*dm(n), f_ w(E)d§=J’O m(n)dy.

By reason of homogeneity it is sufficient to establish (4.8) in the particular case
that M, =1. Since the mcasure of 4, is less than 2m(n) we shall have ‘

f <2n?m(n),
A

N

J < 2_[ Y (E)dE= —2fnt2dm(t).
A E’ 0

7 "
Consequently
o0 d 00 o q n 0
f 8 (n, p) —2 < 2f m(n)dn—zf —Zf tzdm(t)=4f p(&) dE.
] n 0 o N Jo —o0

This proves (4.8) and the lemma follows.

5. Proofs of Theorems I and 11

The necessary condition (0.1) states that

a(t) = true max |w(z+¢) — (=) |

—R0 LT <R
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is finite for all ¢ If therefore M is sufficiently large the set E={f|«(t)|<M) has

positive measure. By a well known argument the set
E, ={t|t=t,—t, t,, t,€E}

contains an interval. Since «f{t) is subadditive and even we shall have a(t)<2M
on some interval [a, b]. Consequently a(t)<4M for |t|<b—a. Again by subaddi-
tivity it follows that a(f) <M, for |¢|<1, M, being a finite constant. Define

¥
o, (x)= f w(z+t)dt.
-t

Then |w;(x)| <M, and we shall have

| o0y (@) — @y (2} | < My |2, — 3, ], (5.1)
3

|o(x) — o, (x)|:’f (w(z) —w(x+1))dt| < M, (5.2)
-1

The last inequality implies that the weight functions w(z)=¢“® and w, (z) =™ are
equivalent. Without loss of generality we may also assume that , vanishes on
(—1, 1). The summability (0.2) and the Lipschitz condition (5.1) imply that Lemma
V applies to
_ o @)+, (=2)

x

o(x)

Thus, ¢€H. By Lemma III, w,€Q. Lemmas I and II ascertain the existence of
functions g with the stipulated properties, and Theorem I follows.

The proof of Theorem II is also based on Lemma III, while Lemmas IT and
V are dispensable. If g is entire of exponential type, then the elementary theory of
Fourier integrals implies that ﬂgem, if gg is summable on the real line.

We also observe that it suffices to prove Theorem II for functions of the form

00 2
g(z)=H(1 - %‘) (5.3)

1
because each g has a majorant of this kind on the real axis, viz.

1+2%(g(2) g(2) + g( — 2) g( — 2)).

As a substitute for Lemma V we shall use
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LemMMa VI. Let (5.3) be entire of exponential type and such that for real z, |g(z)|>1.
If J (log|g|) < oo, then

m@=9Q§ﬂeu (5.4)

Proof. Tt is well known that our conditions imply

od 1
Jm (—) } < oo, (5.5)
3
nlimﬂr—) =lim sup M =4, (5.6)
r=c0 T 2|00 IZl
where N(r)= > 1 and where Jm is the imaginary part. Assume, as we may,

1Api<r

A=A € (0<6,<m), and define

o110 1)

By (5.5) this product converges and represents an entire function f(z) of the same
exponential type A as g(z). For real z, |f(z)|=]g(x)|. Since f(z) is free from zeros

in the upper half plane we shall have there
log f(z) =log| f(z) | + iB(z),

where #(iy)=0 (y>0). At each real point =, |f(x+iy)| increases with y and d(z) is
therefore a monotonic decreasing function. In particular, #(x) has a jump —am at

each real zero of f. An elementary consequence of (5.5) and (5.6) is that

limM= —xlim — =

r=00 X r=oc0 T

There exists therefore a finite constant M such that

'9—(’”—)2—111 (z>0). (8.7)

x
We now define 4 and % in the upper half plane by the relation

log f(2) + idz
2 b

w(z) + ti(z) =
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and observe that on the real axis,

u(x) el o] I:ﬁ(x) | , 4z} = ? + 4.

Because of (5.7) and the fact that ¥J(x) is decreasing we shall have for >0, 1>1,
#Ax) — d(z) < Mlog A (5.8)

We recall that both #(z) and 4i(z) belong to J),, and that % is an odd and @ an
even function of x. Our objective is to show that the Dirichlet integral of u(z) is

finite. By assumption on g, u(z) is positive in the first quadrant, and

2" u(z) L0, oo).

o dr 20\ [~ dr
Theref f—=1-= — (0<0<in).
erefore fo u(re'?) . (1 ﬂ)fo u(r) ; (0<sb<in) (5.9)
2Ty dr .
In particular f u(re) >0 (rg—>ce),

and we conclude by Harnack’s inequality that u(re’®)—>0 as r—oo, § being fixed.

This implies that we have uniformly

u(z)=o0(1) (6<O6<imn). (5.10)

As a consequence of (5.10),
1
|gradu|=|gradd|=o(;) (0<0<}m). (5.11)
We now turn our attention to #. By virtuc of (5.8) the funection 4(Az)—qi(z) is

bounded by M log A on the real axis. The same bound therefore holds throughout
the upper half plane. Consequently

~ 040 M
gulre) <M 150, 0<b<n). (5.12)
or r
. 2 di
The classical formula |grad u[*dzdy = U~ ds
s as ds

is now valid for each sector S={z=re' 0<r<r, 6<0<}n}. According to (5.10),
(5.11), the integral extended over the circular arc tends to 0 as ry—co. The Dirichlet
integral for the angle d <@ <l is therefore properly expressed by the integral
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* w0 O . s
fo u(re )aru(re ydr

and consequently majorized by
M f u(r) dr .
0 r

This proves the lemma.

6. Concluding Remarks

It should be observed that the lemmas admit a strengthening of Theorem I
independently of whether (0.1) is satisfied or not. Assume for example that w(z)>0
is even and that the necessary summability condition (0.2) is satisfied. If w(z)/x €H,
then f=a G'ma can be constructed as in section 2 with w replaced by pw (1 <p< o),
so that

j-w | () |” PP dxx < oo (6.1)

The corresponding result for p= oo,
| a(z) | e*® < const. for a.a. real =, (6.2)

is of course not true since our present condition does not imply that w(x) is essen-
tially bounded on any interval. If however, w(z) has the continuity stipulated in
Lemma II then again each ma (@>0), contains elements i such that (6.2) holds
for all real .

In another paper we shall use the results of this study to resolve a closure
problem for given systems of characters. This application together with some aspects

of the present problem have been outlined in recent lectures by one of the authors [4].
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