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1. Introduction. Let 4 and B denote linear operators, bounded or unbounded, on
a Hilbert space H of elements . As is customary, let ||z]| = (2, z)* and put || 4| = sup|| 4 ||,
where x| =1. If 4 and B are bounded and if C' denotes the commutator of 4 and B,

C=AB—- BA, (1.1)
then it is well known that
el <24 8| (1.2)

and that the inequality cannot be improved by replacing the 2 by 2 — & with ¢ > 0. Indeed,
simple examples with finite matrices 4 =0, B =0 and 4, i B (hence also C) even self-
adjoint show that the equality of (1.2) may hold.

Part I of this paper will be concerned with an improvement of (1.2) when B is bounded
but otherwise arbitrary, 4 and C are bounded and self-adjoint, and C is non-negative. If
the space H is finite-dimensional this last restriction forces C' to be 0, since the trace of
C, which equals the sum of its eigenvalues, is 0. On the other hand, in the infinite dimen-
sional case, examples show that both conditions €' =0, C +0 are compatible; see, e.g.,
[20], [23]. The principal result of Part I will be an inequality corresponding to (1.2) but
where || 4|| is replaced by (}) meas sp(A4), where sp(4) denotes the spectrum of 4.

In Part IT there will be considered a related problem concerning perturbations of a
self-adjoint operator 4. It will be supposed first (Theorem 2) that A and B are unitarily

equivalent bounded self-adjoint operators whose difference D is semi-definite, so that

D=A—-B>0(or<0)and B=UAU* (U unitary). (1.3)
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entific Research of the Air Research and Development Command, under Contract No. AF 18 (603)-139.
Reproduction in whole or in part is permitted for any purpose of the United States Government.
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In Theorem 3 the boundedness restriction on 4 and B will be relaxed to half-boundedness.
The results to be obtained will concern not the spectra of 4 or B but rather the spectrum
of any unitary operator U effecting their equivalence. In fact, the operator U will, in the
theorems involving (1.3), play a role similar to that of 4 in (1.1) of Part I. It will be shown
that under certain hypotheses the relation (1.3) assures the existence of continuous, and
even absolutely continuous, spectra for U, and in addition, sometimes implies that the
entire unit circle must belong to sp(U).

In Part III there will be given applications of the results of Part II to semi-normal
operators, Laurent matrices, measure-preserving transformations, and to what correspond

to certain operators occurring in scattering theory in quantum mechanics.

Part I. The commutator AB - BA

2. There will be proved the following
THEOREM 1. Let B be arbitrary, A and C be self-adjoint, C satisfy C = 0, and suppose

that all operators are bounded. Then
IO <1 Bl meas sp (), 1)

where “‘meas’ refers to ordinary Lebesgue measure on the real line.

Since 4 is self-adjoint, the set S =sp(4) is contained in the interval — || 4| <A <||4]||
and so meas § < 2||4||. Consequently, the inequality (2.1) is, under the assumptions made,
an improvement of (1.2). The proof has, in essentials, been given elsewhere, see [20] and

the remarks of [25, p. 107], but, for completeness, will be given below.

3. Proof of Theorem 1. If A has the spectral resolution 4 =f1dE () and if A denotes

any A-interval, then multiplications on the left and right of both sides of (1.1) by E(A)
lead to

E(A)CE(A f AdEBE(A f 2dE, (3.1)

an equality which continues to hold if each of the integrands A is replaced by 4 — «, where
o is any constant. If « is taken to be the midpoint of A, then |2 — | < }d, where d is the
length of A, and one obtains |0 E(A)x| = (B (A)C E(A)z, )t < [2|| B||| B (A)x|® (3d)]},
where CF denotes the non-negative square root of O, and the factor 2 corresponds to the
two terms on the right of the operator equation (3.1). If the intervals {A} are disjoint and
cover S, an application of the Schwarz inequality readily leads to || Ctz|| <|| B||* (meas S)||=||
and, since ||C?||*=||C||. hence to (2.1) This completes the proof.
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4. Remarks. It is clear from the proof of Theorem 1 (see [20, p. 1028], also [23, p. 514])
that (2.1) can be refined to the inequality

|Cll <|| B|| meas T, 4.1)

where f d B = I (thus, T is a set for which f d|| Ez|?® =||z|* for all z in H). In particular,
T T

if C &0, 4 cannot have a pure point spectrum. Moreover, if 0 is not in the point spectrum
of C, then 4 must be absolutely continuous, that s, | E (1) z||* must be absolutely continuous
for all «.

If f(A) is measurable with respect to E (1) (see, e.g., [27, p. 227] and [28, pp. 41 ££.]) and
belongs to L?(— oo, o), a modification of the argument of section 3 leads to the generaliza-
tion of (2.1),

H |__iwame [ f(MdEH <l [ ywpas @)

According as f(A) is the characteristic function of S or of 7 one obtains (2.1) or (4.1).

Under the assumptions of Theorem 1, it is seen that if the equality of (1.2) holds, and

if ¢ +0, then necessarily the spectrum and, by (4.1), even the continuous spectrum, of 4

is the interval —||4]| <A <| 4}. I, in addition, both 4 and i B are self-adjoint, then it

is clear from Theorem 1 that also the spectrum, as well as the continuous spectrum, of ¢ B

is the interval —| B|| <4 <||B|. However, in the absence of an example, it will remain

undecided whether this situation can actually obtain, that is, whether the equality of (1.2)
can hold, with €' >0 and C 40, and the pair A and 7 B, or even just 4, self-adjoint.

Part II. Perturbations and unitary equivalence

5. There will be proved the following
THEOREM 2. Let A and B denote bounded unitarily equivalent self-adjoint operators

satisfying (1.3) for some unitary operator U. Then

meas sp(U) = 2x|| D||67, (5.1)

where § denotes the distance between the maximum and minimum points of sp (4).
It is seen that (5.1) is similar to (2.1), especially if it is noted that 6 < 2||4||, so that
(6.1) implies
meas sp (U) = x| D| || 4] (5.2)
or, if 4 >0 so that ¢ <||4], implies

meas sp(U) = 2x|D| ||4||* (4 =0). (5.3)
15— 61173060. Acta mathematica. 106. Imprimé le 20 décembre 1961.
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If, in (5.2), || D|| assumes the largest value consistent with (1.3), namely 2||4]], it is seen
that meas sp(U) = 27 (hence, is 27) and so the entire unit circle |z| =1 belongs tosp(U).
Unlike the corresponding situation in Part I (cf. the last sentence of section 4), in the present
case it is easy to give an example where ||.D||=2||4|| and hence equality holds in (5.2) or
(5.1). Infact, let 4 = diag(1,0, —1,0,1; 1,0, ...)and B =diag(—1,0, —1,0,1; —1,0,...).
Then D=4 — B =diag(2,0,0,0,0;2,0,...) >0 and the spectrum of 4 as well as that
of B consists of 1, ~1, 0 each of infinite multiplicity. Hence 4 and B are unitarily equivalent
and so (1.3) holds. It is clear that || D|| =2 =2|| 4| and so the equality of (5.1) holds and
meas sp(U) =27 for any unitary operator U for which B =UAU*.

6. Proof of Theorem 2. Condition (1.3) can be written either as 4 — UAU* = D or as
A—U*¥AU =—U*DU. Since ||D|=||U*DU|| and since the assertions of Theorem 2
regarding U hold if and only if the corresponding assertions hold for U*, there is no loss
of generality in supposing D = 0.

Let U have the spectral resolution

27
U= fo et dE(A), (6.1)

and let S denote the set of values 4 on 0 < A < 2 for which e belongs to the spectrum of
U. Let 8* denote the complement of S (with respect to the interval 0 <A <2z). If f(4)

27
is any E-measurable function which is 0 on S, then f f(AYAE(A) =0. If D* is applied
0

to both sides of this last operator equation, one obtains
27
D? f HAAE() =0, f(A)=0on S. (6.2)
0

Since, if § is the entire interval [0, 27], relation (5.1) surely holds, it can be supposed, in
the proof of Theorem 2, that the (open) set S* is not empty. Next, let f(4) be a function
on [0, 2x] equal to 0 on S and possessing a continuous first derivative. Then f(4) equals

its Fourier series, thus

%) 277
fA) =3 ¢, e, ck=(2n)*1f H(2) e " dA. (6.3)
— 00 )

The reason for wanting the equality sign in (6.3) rather than merely “~* is to avoid pos-
sible trouble with zero sets in case U is not absolutely continuous (cf. [25], p. 103).
Substitution of the series (6.3) for (1) into (6.2) yields, by virtue of (6.1),

co D* +2' ¢, DY UF =0, (6.4)
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where the prime means that k=0 is to be omitted from the summation. If z is an
arbitrary element of the Hilbert space H, it follows from (6.4) and the Schwarz in-
equality that

lleo D¥ |2 < (2" |ei]?) (27 || DF U* 2||%). (6.5)
Next, as a straightforward consequence of (1.3), there follows the pair of relations

n

IZ U DU*=U*" AU*— UAU* (6.6)
and kzl U DU =UAU* - U™+t AU, (6.7)
valid for =0, 1,2, .... On adding the equations of (6.6) and (6.7) one obtains

ké UsDU* =U* AU — U™ Au*"*, (6.8)

Consequently, if § is defined as in Theorem 2,

( Z U* DU** x, ;1;) = kzn ”Dk U*x x“2 <6(x, x)

k=—-n
for n=1, 2, ..., and hence
2 ||D U 2| < 6(x, ) — (Dz, ). (6.9)

Next, choose =, to be unit vectors satisfying Dux,—||D|| #,—>0 as n—>co. Rela-

tion (6.5) then implies, by virtue of (6.9) and the Parseval relation

2
5 Jof = (2)1 f W da,

‘m-ff yia| ol <[ [l an=| e [ ran

Then let f(1) = f,(4) where {f,(4)} denotes a uniformly bounded sequence of smooth func-

that

][6—IIDH]- (6.10)

tions equal to 0 on § and tending (almost everywhere) to the characteristic function c(A)
of the set 8*. Thus one obtains a relation similar to (6.10) but in which f(4) is replaced by
c(2). It then follows that

(meas S*/27)*|| D|| < (meas 8*/27) (1 — meas S*/27) (8 — || D)),

which, by the equality 1 — meas §*/27 = meas S/2x, simplifies to ||D| <6 meas /2,
that is, to (5.1).
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7. Half-boundedness. In this section the boundedness restriction on 4 and B will be
relaxed to half-boundedness.

THEOREM 3. Let A and B denote unitarily equivalent half-bounded (say, from below)
self-adjoint operators with a bounded difference D = A — B =0 (or <0), thus,

D=A—B, Dbounded, A =kI, B=UAU*. (7.1)

Let |D| =D or —D according as D=0 or D <0 and let x be any element for which y = |DJ} 40
and y is in the domain of B. Then

meas sp(U) > 2w (1 +2||«||?(B — kD)y, )/||y}|*1 (7.2)

If 4 and B are half-bounded but not bounded, their domains are not the entire Hilbert
space H. The equation D = A — B with D bounded then means that 4 and B have the
same (dense) domain and that Dz = Ax — Bz for all elements z in this domain. (The
domain of D is, of course, H.) Since D is bounded, it is clear that each of the operators
U*AU*, for k=0, +1, +2, ..., has the same domain (namely, that of A4).

8. Proof of Theorem 3. As in the proof of Theorem 2, it can be supposed that
D>0; the proof will be a modification of that of Theorem 2. If it is noted that

S ¢, D¥U*= 3 ¢, DU,

k=—1 k=1

then relation (6.4) is seen to imply (since f is real and hence c_;=¢,)
oD+ 3 ¢, DU+ 3 6 DY U™ =0, (8.1)
k=1 k=1
and hence, on forming inner products,

_(CoD%?/, x):(z CkDQ. Uk?/: x)+ ( 2 C—kD% U*k% Z'), (82)
k=1

where x and y are defined as in Theorem 3. But the first expression on the right

of the equation (8.2) is equal to (y, > & U Dt x), which is (D% x, > & U™ y), or
=1

k=1

(x, > & DYU* y) Consequently, relation (8.2) implies

k=1

leo| |(DY y, x)| <2 ‘Re (Z G DY Uy, x)

k=1

and hence, by the Schwarz inequality (together with 2'|e>*=2 > |ck[2),
Ko1



COMMUTATORS, PERTURBATIONS, AND UNITARY SPECTRA 221

e o < elP ) (2 5, 10 0% ). 83)

Since (6.7) can be written also as

n—-1
> U*DU* =4 - U" AU,

K=0
it follows from the assumption 4 > kI that the second parenthetical expression on the right
of (8.3) is majorized by 2((B — k I}y, y). Proceeding as in section 6 one is led to an equation
similar to (6.10) but in which f is replaced by the characteristic function of S*. Thus,

(meas 8*/27)%||y||* < (meas S*/27) (1 —meas S*/27) [2(B —kD)y, »)|=|*], (8.4)
which, on simplification, becomes (7.2).

9. Unrestricted case. In case relation (1.3) is assumed for the pair of self-adjoint opera-
tors A and B without any restriction as to boundedness or half-boundedness, it will remain
undecided whether there exists an estimate for meassp(U) corresponding to (7.2) of
Theorem 3. It can be pointed out that, under proper assumptions on the domains of A4
and B, if 0 is not in the set sp (4) (=sp(B)) and if the (very severe) condition 4 B= B4 >0
is imposed, then (1.3) implies a similar relation for certain bounded operators. Thus,
proceeding formally, one obtains B-1 — 4-1 = (4 — B)(A B)"1 = (4 B) ¥*(4 — B)(4B)"* >0,
that is UA-1U* — 4-1 >0, where now 4! is bounded. This case will not be considered

further however.

Part III, Applications

10. Semi-normal operators. Let A be a bounded operator for which
AA* —A*4=C>0. (10.1)

If A is non-singular, then A = PU, where P is positive definite and U is unitary; see
Wintner [33], also [32, p. 282]. Relation (10.1) then yields

PP-U*P*U = (>0, (10.2)

so that Theorem 2 (as well as Theorem 3) is applicable to U. It was shown by Hartman
[6, p. 233], using a generalization due to von Neumann [19, p. 307], of a result of Wintner
(loc. cit.) that, even if A4 is singular, 4 A* and A*A are unitarily equivalent in case the
multiplicities of 4 =0 in the point spectra of 4 A* and A* 4 are equal. Thus, if 4*4 =
U*(A4.4*) U, relation (10.1) holds, that is, (1.3) holds, and Theorems 2 and 3 can be applied



222 C. R. PUTNAM

to determine properties of the spectrum of U. Since Hartman’s result is valid even if 4
is not bounded, provided it has a domain dense in H, and since 4 4* and 4* 4 are non-

negative, Theorem 3 is applicable in this case also.

11. Laurent matrices. Let {c,},n=0, +1, £2,... denote a sequence of complex

numbers satisfying

con=0¢, and > |eff< oo, (11.1)

and let L = (¢;_;), where 7, k=0, £ 1, -2, ... denote the associated Laurent matrix. It
was shown by Toeplitz ([29], [30]; cf. also [4, p. 62]} that, if the Laurent series >e,2t

is convergent for r; <|z| <r,, where 0 <r; <1 <r,, so that, in particular, the function

f(0)~ § cne™? (11.2)
is continuous, then the spectrum of L is the range of f(6) on 0 < 6 < 27. It has been noted
by Hartman and Wintner [7] that, even without the restrictive assumption on the Laurent
series (involving convergence on an annulus containing |z| =1) mentioned above, but
supposing only (11.1), then L is bounded if and only if the function f(0) of (11.2) is essentially
bounded (ie., |f(f)| < const. almost everywhere on 0 <6 <2x) and, furthermore, the

spectrum of L is the set of values 4 for which
meas {6;]/(0) — 2| <&} >0, for all £ > 0. (11.8)

In this section, a proof of the above-mentioned theorem, and even more, concerning
the location of the spectrum of a bounded Laurent matrix, using the results of [25] and

the present paper, will be given. To this end, let U = (uy;,) denote the unitary operator on
the Hilbert space of sequences = (..., x_y, %y, %y, ...) satisfying ||z]|® = 2 |z,|* <oo,
— o0

defined by u; =1 or 0 according as k=j+1 or k=j+1, so that U effects the shift
> X (n =0, +1, +2,..)). Then it is easily verified that U* effects the shift x,—>w,
{(n, k=0, X1, +2,...) and hence that L is given by

L= 3 ¢U" (11.4)

k=—co

Consequently, if U has the spectral resolution (6.1) then

L= f " 1) dE), (11.5)
0
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where f(2) is defined by (11.2). At least (11.5) holds as soon as it is shown that U, with
the spectral resolution of (6.1), is absolutely continuous (see [25, p. 103}, also the remark
following formula (6.3) of the present paper). The reason for this proviso is the fact that
f(6) is defined by its Fourier series in (11.2) only to within a zero set and that, if U were
not absolutely continuous, the operator on the right side of equation (11.5) could depend
upon this set.

The assertion involving (11.3) concerning the spectrum of L will then follow if it is
verified that (i) sp (U) is the entire circle | z |=1, and that (ii) U is absolutely continuous.
The assertion (i) follows from Toeplitz’s result with a Laurent series consisting of the
single term z, but will be deduced below as a consequence of Theorem 2 of the present paper.

Let 4 = (a,) denote the (doubly infinite) diagonal matrix defined by a, = 0,4, and
let B = (by) be that defined by b, =34 ,, where {1,}, for n =0, %1, £2, ..., denotes
any sequence of real numbers satisfying |1,] <const. and 1, <1,,, for all n. It is easily
verified that condition (1.3) holds with || D) = sup(4,., —2,). Since 0 is not in the point
spectrum of D, assertion (ii) is a consequence of [25, p. 105]. Moreover, by (5.1) of Theorem 2,

meas sp(U) 2 2x[sup (A — )] (Ao — A-w) L (11.6)

where 1, and 1_., denote the limits of 4, as »# tends to oo or — co respectively. Let ¢ >0
and choose the sequence {A4,} so that A, =1, Ao =—1,4c — A, <& and 4, — 1. <&
Then relation (11.6) implies

meas sp(U) 22m(A, —2)2 1> 2a (1 —¢) (11.7)
for every ¢ > 0. Thus meas sp(U) = 2z and assertion (i) follows.

12. Some continuity considerations. Let B and D denote a fixed pair of bounded self-
adjoint operators, ¢ be a real parameter, and let A, be the perturbed self-adjoint operator

defined by
A.=B+¢eD. (12.1)

Suppose that 4, is unitarily equivalent to B for all sufficiently small values of ¢, or at least

for all small ¢ satisfying either £ > 0 or £ <0, so that, for such &,
A.=U.BU} (12.2)

holds for some (perhaps more than one) unitary operator U,. (Of course, if (12.2) holds for
some U, =V it holds for U, =2V where |z| = 1. Possibly, though, (12.2) holds for other
unitary operators which are not constant multiples of V.) Define the function @ (¢) by

@ (¢) = inf [meas sp(U.)], (12.3)
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where “inf” is taken with reference to all unitary operators satisfying (12.2). Since, for
¢ =0, A = B, it is seen that (12.2) holds for U, = I and so @ (0) = 0. The problem to be con-
sidered in this section concerns the behavior of @ (¢) near ¢ = 0 and, in particular, whether
or not (for a fixed pair B and D) the function ® (¢), which is supposed to be defined at
least on some interval having 0 as an end-point, is continuous at ¢ =0.

In [1], Friedrichs considered the perturbation equation (12.1) for small ¢, where B
was a certain operator with an absolutely continuous spectrum and where D was an
integral operator with a kernel satisfying certain Lipschitz conditions and then showed
that (12.2) was valid where U, was an analytic function of ¢ of the type U, =1+
eU, +.... In particular, ||U, — I||—0 as ¢—>0, for the unitary operators he obtained. As
a consequence, the function @ (¢) as defined by (12.3) is, in this case, continuous at ¢ =0.

It will be shown below that there exist pairs B and D, where in fact D < 0, for which
(12.1) and (12.2) hold for 0 <& <1 and for which ® (¢) not only fails to be continuous at

¢ =0 but even satisfies ®(¢)=27x for 0 <e <1.

13. An example. Let q(t) be defined for 0 <t < oo by

q(t) = ¢/t + 1) B¢ ER))
and define a function Q. () by

Q:(t) =e(1 +1)q(t)/(t +1 + (L —&)q(t)) (13.2)

for 0 <e <1. On the space L*(0, o) let N denote the multiplication operator N = ¢ and
then define the multiplication operator M, by

M.=N +Q.. (13.3)

It is clear that N >0 and that, for 0 <e <1, |@.] <e, so that (M, + I) and (N + I)72

are bounded. A straightforward calculation shows that

M+ —(N+I)r=¢D, (13.4)
where D is defined by
D=—q@)/¢+1)t+1+q(), (13.5)

so that D, regarded as a multiplication operator on L?(0, o) satisfies D <0.
Next put B=(N+1I)'and 4, =(M,+ I), (13.6)

so that (12.1) holds by virtue of (13.4).
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Next, it will be shown that for 0 <¢ < 1, relation (12.2) holds for at least one unitary
Us. To this end, it can first be noted that (12.2) holds for some U,, that is, that (M, + I)-*
and (¥ + I)~! are unitarily equivalent, by some U, if and only if M, and N are unitarily
equivalent, by the same U,. Thus it is sufficient to consider the problem of unitary equi-
valence of the operators N =¢ and M, =1¢+Q,(f) on L?(0, o), where Q. () is defined by
(13.2).

It will next be shown that f and ¢ + @, (t) are unitarily equivalent. Let U be the operator
defined on L*(0, <o) by

U: w(t)—>a(T)(dT/dt), (13.7)

where T'(t) =t + Q. (¢). Since d7/dt =1+¢[g*(1 —e) + (1 + 821/t +1+ (1 —&)g) it is
seen that dT'/d¢ > 0 for 0 <& <1 and 0 <t < oo, Moreover, since 7 (0) =0 and 7' (c0) = oo,
it follows that

(Uz, Ux) =Jmloc(’l‘)|2 (dT/dt) dt=fm|x(T)]2 dT = (z, x), (13.8)
0 0

and hence U of (13.7) is isometric. Similarly, U~ is isometric and hence U is unitary. In
addition, it is seen that the sequence of transformations z—>Ux— M Uz—>U*M Uz is

given by
x(t)—>z(T ) @T/dt)— T @)z (T &) (dT/dt)t —tx(t). (13.9)

Thus UM, U=NorM,=UNU* (13.10)

hence, as was noted earlier,

A4, = UBU*. (13.11)

Thus far it has been shown that, for the pair of (13.6), @ (¢) is actually defined (that
is, (12.2) holds for some U,) for 0 < e < 1. It will next be shown that if U, is any unitary
operator satisfying (12.2) for 0 <& <1, then necessarily meas sp(U.) =2x. In order to
show this, use will be made of Theorem 3 of Part II. It is sufficient to apply relation (7.2)
if use is made of the fact noted earlier that (13.10) holds if and only if (13.11) holds. It is
clear that M, >0, N > 0, and that M, —~ N =@, > 0 for 0 <& < 1, so that the £ of Theorem 3
can now be chosen to be 0. In order to show that meas sp(U,) =2z, it is sufficient, by
virtue of (7.2), to show that

inf [[|=]*(Ny, y)/||y]|"1 =0 (13.12)
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for functions x (t), y (t) = Q} (t)x (t), ty(t) of class L*(0, o). Thus it is sufficient to show that
the expression

=) =) o0 -2
f YRty Q: T (8)dt f > () dt - (J 0] dt) (13.13)
0 0

[

can be made arbitrarily small for suitably chosen real-valued functions y =y (f) on0 <& < oo,

Let % and ¢ denote positive constants and put y =t* " on 0 <t <h and y =0 for
¢ > h. Clearly y and ty belong to L*(0, o). Since, near t =0, @, (t) ~ ¢ (t) ~ ¢, it is clear that
z(t), defined by y(t) =@} (t)x(t), also belongs to L?(0, o). Moreover, (13.13) reduces to

h
£#E-D -1y dp - B2 o1 (13.14)
@ (1

0

(O (1) depending only on ), which, by the estimate @, (f) ~ #* near ¢ = 0, reduces to h*O(1).
This last estimate, for § fixed, tends to 0 as A—0. Hence {13.12) holds and it follows that

meas sp(U,) = 2x, as was to be shown.

14. On — oo <t < oo, consider a function T' = 7' (¢) of class C" which is strictly increas-
ing and has the range (— oo, o0). A calculation similar to that of section 13 shows that the
U defined by (13.7) is a unitary operator on the space L?( — oo, oo). If, for instance, acis a

positive constant and T (8) =t + «, then U of (13.7) is the translation operator defined by

U: z()—>x(t +a), —oo<t<oo, (14.1)

where x(t) belongs to L?*(— o0, o). Let 4 and B denote the bounded multiplication opera-

tors
A =arc tan (7 (t + o)), B = arc tan (ft), (14.2)

where 8 denotes a positive constant. Then it is seen that 4 = U BU*, where U is defined
by (14.1), and that 4 — B = arc tan (1 (¢ + «)) — arc tan (§-1t) =d(t) > 0. Thus relation
(1.3) holds and Theorems 2 and 3 (the latter with ¥ = — } ) are applicable. The second

term in the bracket of (7.2) is twice

fw dtey? dt-fm (/2 +arc tan (7)) y2dt - (fm yzdt)yz. (14.3)

-

Choose a constant ¢ satisfying 0 <6 <1« and then let y be chosen so that y=0 outside

0
the interval —2§ <t<—¢ and 0 <f y*dt < oo, For values f on this interval, { + o« > Ja

—o0
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and it is clear that for any & > 0 it is possible to choose § > 0 so small, that both inequalities
1o +arc tan (~14) <g and d(t) >m —e hold ¢ in —28 << —4. It follows from the same
type of argument as that used in section 13 that the expression (14.3) can be made arbitrarily
small by choosing S sufficiently small. Hence, by (7.2), meas sp(U) =2a. In addition,
since d (t) (= D) > 0, then 0 is not in the point spectrum of D and it follows from [25] that
the spectrum of U is absolutely continuous.

The example discussed above suggests generalizations to a measure preserving trans-
formation T on a space Q of points P. The transformation U: f(P)—f(T P) is then unitary.
In addition it will be supposed that Q is a metric space with a distance |P@| defined for
any two points P and Q.

The transformation 7' is said to be dissipative (cf. Hopf [9, p. 46], Halmos [5, p. 11])

if there exists a set A of positive measure for which the images 4, = T"(4) are disjoint and

Q=73 A,. Let such a set 4 be called a generating set of Q.

— o0

There will be proved the following

THEOREM 4. (i) If T is dissipative on the space Q and if U is the associated unitary
transformation, then U is absolutely continuous. (ii) If, in addition, there exists some point B
belonging to the interior of a generating set A, so that there exists some sphere Sy with center at
R satisfying

Sy ts contained in A, (14.4)

and if T is continuous at R, (14.5)

then sp(U) is the entire unit circle |z] = 1.

15. Proof of Theorem 4. Since Q = > A, where meas 4 >0 and the 4, are disjoint,

then Q is obtained by taking all the images of the set 4 = 4,. If P is an arbitrary point of
Q then P is in a (unique) set 4, and so P =@, = T"Q, where @ belongs to 4. If n =1, let

s(P)=0. If n=2, let s(P)= 2 |@1Qx|, and if 7 <0, let s(P)=— > |@QcQx;:|- Thus
k=2 k=0

8(P) is the (signed) distance to P from its image in 4,. Since the sets 4, are disjoint, it
is clear that s(T'P) — s(P) > 0 for all P in Q) and hence k(P) = g(s(P)), where g is the prin-

cipal inverse tangent function of section 14 defined by

g(¢) =g(t, f) =arc tan (f~1t), p>0, (15.1)
satisfies the condition

D =k(TP)—k(P)=d(P) > 0. (15.2)
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As in section 14, it follows that if 4 and B are the multiplication operators 4 =g (s(T P))
and B =g (s(P)), then A = UBU*and A — B =d > 0, so that 0 is not in the point spectrum
of D. The result of {25] then implies the absolute continuity of U and (i) is proved.

It will follow from (7.2) that meas sp(U) =2 if it can be shown that the expression

corresponding to (14.3), namely,

fd‘l(P)yz(P)dV-f (z+k(P))y2(P)dV-(f yz(P)dV)—, (15.3)
o o\2 o

can be made arbitrarily small by choosing functions y(P) = d* (P)x(P), where both z(P)
and y (P) belong to L* (Q). By (14.4) and (14.5), s(T P) =0 for P near R and s (P) is continuous
at R. Hence k(7T P)=0 for P near R, also k(P) and d(P) are continuous at R. Since s(R) <0
(R being in A4) it follows that for £ >0, then }n + k(P) <e holds, if § > 0 is sufficiently
small, for all points P in the set 4 sufficiently close to R. In addition, d(P) =d(TP) —
k(P) =0 — k(P) for all such points, since TP is in' 4,. Thus d(P) > t = — e. If now one con-
siders functions y equal to 0 outside a sufficiently small sphere Sy satisfying (14.4), it
follows from the type of argument used in section 13 and 14 that the expression of (15.3)
can be made arbitrarily small by choosing § sufficiently small. This completes the proof
of (ii).

16. The following theorem is similar to Theorem 4.

THEOREM 5. Let T be a measure-preserving transformation, with associated umitary

transformation U, on the space . Suppose that there exists a real-valued measurable funciion
F(P) on Q for which
f(TP)—f(P)=0and £ 0. (16.1)

If U has the spectral resolution (6.1), then
f dE(A) <1, (16.2)

where Z is any zero set, so that U must have some continuous spectrum. If, instead of (16.1),
it is assumed that even
f(T'P) —{(P) >0 almost everywhere, (16.3)

then U is absolutely continuous. Furthermore, if only (16.1) holds, if f(P) and f(TP) are
continuous at some point R, if also f(TR) — f(R) >0, and finally, if there exists some sphere
Sz with center B satisfying

Sy, @8 contained in , (16.4)

then sp(U) is the entire circle |z| =1.
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Proof of Theorem 5. Introduce the functions &(P) =g (f(P)), where g(t) is defined by
(15.1), and d(P) =k(TP) — k(P). Let A =k(TP) and B = Ek(P) and note that again 4 =
UBU* and A — B =d(P). Since d(P) corresponds to D and since (16.1) implies D > 0 and
D =0, then (16.2) follows from [25, p. 105]. Since (16.3) implies that 0 is not in the point
gpectrum of D, the assertion concerning the absolute continuity of U also follows from
[25]). In order to prove the last part of the theorem note that f(£) can be replaced by
f(P) + const., so that it can be supposed that f(7 R) =0. The remainder of the proof is

then similar to that of Theorem 4 and can therefore be omitted.

17. Examples. In order to illustrate the results of the last section, consider a con-

servative, incompressible, n-component vector system of differential equations

z' = F(x), F of class C' and div F =0. (17.1)

Suppose that (17.1) possesses unique solutions x = z(f) for — oo <¢ < co on the space Q
of points z. In addition, suppose that there exists a function f () of class C! satisfying, for
instance,

df/dt=grad - F >0 almost everywhere on €. (17.2)

Since the incompressibility assumption div F =0 assures that the flow z(0)—=z(f) deter-
mined by (17.1) is measure preserving, that portion of Theorem 5, in which assumption
(16.3) occurs, corresponding now to condition (17.2), is applicable. It follows that if U = U,
is the associated unitary transformation U, : g(x(0))—>g(x(t)), where g is of class L*(Q),
then U is absolutely continuous and sp (U) is the entire circle |z|=1.

In case (17.1) holds with n =1, then one obtains the single equation 2 =a,
a =const. =0, with the solution z =at + b(b = const.). If f =ax, then (17.2) holds. This
example is, in essentials, that of the translation operator considered in section 14.

In case (17.1) holds with n =2, it is known (cf. Wintner [34, p. 88]) that the system
is Hamiltonian, that is, there exists an energy function H = H («, y) such that (17.1) can

be written as
o' =oH/oy, y =-—0H/ox. (17.3)

The condition (17.2) now becomes
(0f/ox)(@H/oy) — (0f/oy) (0 H/dx) > 0 almost everywhere on Q. (17.4)

If, for example, H of (17.3) is harmonic, let f denote its harmonic conjugate, so that
of/ox =0H/0y and 9f/0y = —&H/ox and (17.4) reduces to the condition

|grad H|?> >0 almost everywhere on . (17.5)
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For a system of the type (17.3) in which H is harmonic and H = const., then in fact, (17.5)
does hold. Tt follows that the unitary operator U of the Hamiltonian system (17.3) is, in

this case, absolutely continuous and has a spectrum consisting of the entire circle |[z| =1.

18. Scattering operators. Investigations of the perturbation equation B=4 — D (in
the notation of (1.3)) where 4 and B are self-adjoint, and the problem of unitary equivalence
of A and B, by Friedrichs [1, 2] and subsequently by Rosenblum [26] and Kato [12, 13]
have been mentioned earlier. In these papers it was shown, under appropriate assumptions
on 4 and the perturbations D, that

e Bt U, asi-—>oo (18.1)
and eBe 4 U ast—>— oo, (18.2)

where U, and U_ denote unitary operators and the limits are meant in the sense of strong
convergence. See also Kuroda [16, 17]. Moreover, each of the operators U = U, and U = U_
satisfies relation (1.3). The operator U_ *U_ corresponds to the scattering operator of
quantum mechanics (see, e.g., Friedrichs [3], Jauch [10], Moses [18]); the operators U, and
U_ have been termed ‘‘half-scattering operators” by Friedrichs [3, p. 233], and “wave
operators” by Jauch [10, p. 137].

If D satisfies the additional assumption
D bounded, D >0 (or D <0) and D =0, (18.3)

then the theorems of Part II relating to the spectra of any unitary U satisfying (1.3),
hence in the present case, in particular, to U and U_, are applicable, at least if 4 and B
are half-bounded. In the quantum mechanical case, when A4 corresponds to the energy of
the system, this latter assumption appears to be natural (cf. Kemble [14, p. 107], Kato
[11, p. 205], Jauch [10, p. 134].).

19. Differential operators. Consider a limit point differential equation L(u)+Au =0
on, say, 0 <f < oo (L{u), a linear differential operator) with a boundary condition at{=0;
see Weyl [31], also Kodaira [15]. Let 4, and 4, denote self-adjoint extensions of the as-
sociated symmetric operator, corresponding to two distinct boundary conditions, and
suppose that 4 =y is real and belongs to the resolvent set of both 4, and A4,. It is known
[31, p. 251] that the difference

(4, — A1 —(4,— A" =D (19.1)

is a constant multiple of a one-dimensional projection operator. It was shown in [21], using

results of Rosenblum [26] that if, in addition, each of the two boundary value problems
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had a purely continuous spectrum with absolutely continuous basis functions, then 4 =
(d; A1)t and B=(4,— A1) are unitarily equivalent, and thus satisfy (1.3). (Inci-

dentally, the projection F(4) of [21, p. 994] should be given byf . dE(u).) Theo-
[t N

rems 2 and 3 are then applicable to any such unitary operator, in particular, to the U,

and U_ occurring in section 18 and which exist in the present instance.

11
[2].
[3].
[4].

{5J.
(6]

[7].
[8].
[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[1s].

[19].

[20].

[21].

[22].
[23].

References

K. O. Frievricus, Uber die Spektraldarstellung eines Integraloperators. Math. Ann., 115
(1938), 249-272.

——, On the perturbation of continuous spectra. Comm. Appl. Math., 1 (1948), 361-406.

——, Mathematical Aspects of the Quantum Theory of Fields. New York, 1953.

U. GrReENANDER & G. SzrGO, Toeplitz Forms and thewr Applications. Berkeley and Los
Angeles (1958).

P. R. Harmos, Lectures on Ergodic Theory. The Mathematical Society of Japan (1956).

P. HarTMaN, On the essential spectra of symmetric operators in Hilbert space. Amer. J.
Math., 75 (1953), 229-240.

P. HarTvMAN & A. WINTNER, On the spectra of Toeplitz’s matrices. Amer. J. Math., 72
(1950), 359-366.

———, The spectra of Toeplitz’s matrices. Amer. J. Math., 76 (1954), 867-882.

E. Horr, Ergodentheorie. New York (1948).

J. M. JavcH, Theory of the scattering operator. Helv. Phys. Acta, 31 (1958), 127-158.

T. Karo, Fundamental properties of Hamiltonian operators of Schrédinger type. Trans.
Amer. Math. Soc., 70 (1951), 195-211.

——, On finite-dimensional perturbations of self-adjoint operators. J. Math. Soc. Japan,
9 (1957), 239-249.

——, Perturbation of continuous spectra by trace class operators. Proc. Japan Academy,
33 (1957), 260-264.

E. C. KemBLE, The Fundamental Principles of Quantum Mechanics. New York and London
(1937).

K. Kopaira, The eigenvalue problem for ordinary differential equations of the second
order and Heisenberg’s theory of S-matrices. Amer. J. Math., 71 (1949), 921-945.

S. T. Kuroba, On the existence and the unitary property of the scattering operator.
Nuovo Cimenio, 12 (1959), 431-454.

———, A remark on the unitary property of the scattering operator. Nuovo Cimento, 12
(1959), 1102-1107.

H. Mosgs, The scattering operator and the adiabatic theorem. Nuovo Cimento, 1 (1955),

103-131.

J. v. Neuvmaxw, Uber adjungierte Funktionaloperatoren. Ann. of Math., 33 (1932), 294
310.

C. R. PurNam, On commutators and Jacobi matrices. Proc. Amer. Math. Soc., 7 (1956),
1026-1030.

——, Continuous spectra and unitary equivalence. Pacific J. Math., T (1957), 993-995.

~——, On semi-normal operators, Pacific J. Math., 7 (1957), 1649-1652.

——, Commutators and absolutely continuous operators. Trans. Amer. Math. Soc., 87
(1958), 513-525.



232

[24]

[25].

[26]
[27]
(28]

[29]

r301.

(31]

[32]

[33].
(34].

C. R. PUTNAM

. C. R. PurNam, On Toeplitz matrices, absolute continuity and unitary equivalence.
Pacific J. Math., 9 (1959), 837-846.
——, On differences of unitarily equivalent self-adjoint operators. Proc. Glasgow Math.
Assoc., 4 (1960), 103-107.
. M. RosexBruM, Perturbation of the continuous spectrum and unitary equivalence.
Pacific J. Math.,7 (1957), 997-1010.
. M. H. StoNE, Linear Transformations in Hilbert Space and Their Applications to Analysis.
New York (1932).
. B. v. Sz.-Naav, Spektraldarstellung linearer Transformationen des Hilbertschen Rawmes.
Springer, Berlin, 1942.
. O. TorrLITZ, Zur Theorie der quadratischen Formen von unendlichvielen Verdnderlichen.
Gattinger Nachrichten (1910), 489-506.
———, Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Ver-
anderlichen. Math. Ann., 70 (1911), 351-376.
. H. WrvL, Uber gewdhnliche Differentialgleichungen mit Singularitéten und die zuge-
hérigen Entwicklungen willkiirlicher Funktionen. Math. Ann., 68 (1910), 222-269.
. A. WiNTNER, Zur Theorie der beschrinkten Bilinearformen. Math. Z., 30 (1929), 228-282.
——, On non-singular bounded matrices. Amer. J. Math., 54 (1932), 145-149.
———, Analytical Foundations of Celestial Mechanics. Princeton, 1941.

Received December 3, 1960



