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1. In t roduct ion .  Let  A and B denote linear operators, bounded or unbounded,  on 

a Hilbert  space H of elements x. As is customary,  let Ilxll = (x, x)~ and p u t  IIA II = supllA xll, 

where IIxll = 1. i f  A and B are bounded and if C denotes the commuta to r  of A and  B, 

then it is well known tha t  

C = A B - B A ,  (1.I) 

IlCll 211All IIBII, (,.2) 

and tha t  the inequali ty cannot  be improved by  replacing the 2 by  2 - s with s > 0. Indeed,  

simple examples with finite matrices A ~ 0, B # 0 and A, i B (hence also C) even se l l  

adjoint  show tha t  the equali ty of (1.2) m a y  hold. 

Pa r t  I of this paper  will be concerned with an improvement  of (1.2) when B is bounded 

bu t  otherwise arbitrary,  A and C are bounded and self-adjoint, and C is non-negative. I f  

the space H is finite-dimensional this last restriction forces C to be 0, since the trace of 

C, which equals the sum of its eigenvalues, is 0. On the other hand, in the infinite dimen- 

sional case, examples show tha t  bo th  conditions C ~> 0, C # 0  are compatible; see, e.g., 

[20], [23]. The principal result  of Pa r t  I will be an inequali ty corresponding to (1.2) bu t  

where IIA II is replaced by  (1)meas sp(A), where sp(A) denotes the spectrum of A. 

I n  Par t  I I  there will be considered a related problem concerning per turbat ions of a 

self-adjoint operator  A. I t  will be supposed first (Theorem 2) tha t  A and B are uni tar i ly  

equivalent  bounded self-adjoint operators whose difference D is semi-definite, so tha t  

D = A - B ~ > 0 ( o r ~ < 0 )  a n d B = U A U *  (Uun i ta ry ) .  (1.3) 
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In Theorem 3 the boundedness restriction on A and B will be relaxed to half-boundedness. 

The results to be obtained will concern not the spectra of A or B but  rather the spectrum 

of any unitary operator U effecting their equivalence. In fact, the operator U will, in the 

theorems involving (1.3), play a role similar to that  of A in (1.1) of Par t  I. I t  will be shown 

that  under certain hypotheses the relation (1.3) assures the existence of continuous, and 

even absolutely continuous, spectra for U, and in addition, sometimes implies tha t  the 

entire unit circle must belong to sp (U). 

In Part  I I I  there will be given applications of the results of Par t  I I  to semi-normal 

operators, Laurent matrices, measure-preserving transformations, and to what correspond 

to certain operators occurring in scattering theory in quantum mechanics. 

Part  I .  The c o m m u t a t o r  A B -  B A  

2. There will be proved the following 

T~EORE~ 1. Let B be arbitrary, A and C be sel/-ad]oint, C satis/y C >~ O, and suppose 

that all operators are bounded. Then 

IlCll < IIBII meas sp(A), (2.1) 

where "mens" re/ers to ordinary Lebesgue measure on the real line. 

Since A is self-adjoint, the set S = sp (A) is contained in the interval - I IA II ~< 2 ~< llA H 

and so meas S < 21]A ]l" Consequently, the inequality (2.1) is, under the assumptions made, 

an improvement of (1.2). The proof has, in essentials, been given elsewhere, see [20] and 

the remarks of [25, p. 107], but, for completeness, will be given below. 

3. Proo/o/ Theorem 1. If A has the spectral resolution A =f~dE(~) and if A denotes 

any 2-intel'val, then multiplications on the left and right of both sides of (1.1) by E(A) 

lead to 

E(A) CE(A) = fzx , ~ d E B E ( A ) -  E(A)B fA  ,~dE, (3.1) 

an equality which continues to hold if each of the integrartds 2 is replaced by ~ - ~, where 

is any constant. If cr is taken to be the midpoint of A, then ]4 - ~] ~< �89 where d is the 

length of A, and one obtains ]]C~ E(A)xl l  = ( E ( A ) C E ( A ) x ,  x) ~ <~ [2]]BII IIE(A)xH2(�89 �89 

where C "~ denotes the non-negative square root of C, and the factor 2 corresponds to the 

two terms on the right of the operator equation (3.1). If the intervals {A} are disjoint and 

cover S, an application of the Sehwarz inequality readily leads to I[ C~ x H ~< II B][~ (reeds S)II xl] 

and, since I[C~II 2 = H cH, hence to (2.1) This completes the proof. 



COMMUTATORS, PERTURBATIO:NS, AND UNITARY SPECTRA 217  

4. Remarks. I t  is clear from the proof of Theorem 1 (see [20, p. 1028], also [23, p. 514]) 

tha t  (2.1) can be refined to the inequality 

IICII ~< IIBII meas T, (4.1) 

where ( d E =  I (thus, T is a set for which ( dl[Ex!]e = [[x[[2 for all x in H). In particular, 
J T J T 

if C 4 0, A cannot have a pure point spectrum. Moreover, if 0 is not in the point spectrum 

of C, then A must  be absolutely continuous, tha t  is, [[ E (A)xll 2 must  be absolutely continuous 

for all x. 

I f / (~ )  is measurable with respect to E(~) (see, e.g., [27, p. 227] and [28, pp. 41 if.f) and 

belongs to L 2 ( - oo, oo), a modification of the argument  of section 3 leads to the generaliza- 

tion of (2.1), 

According as /(2) is the characteristic function of S or of T one obtains (2.1) or (4.1). 

Under the assumptions of Theorem 1, it is seen tha t  if the equality of (1.2) holds, and 

if C 4 0 ,  then necessarily the spectrum and, by  (4.1), even the continuous spectrum, of A 

is the interval -[JAil <A < H AH. If, in addition, both d and i B  are self-adjoint, then it 

is clear from Theorem 1 tha t  also the spectrum, as well as the continuous spectrum, of i B 

is the interval - I IBH <~ < IIBII. However, in the absence of an example, it will remain 

undecided whether this situation can actually obtain, tha t  is, whether the equality of (1.2) 

can hold, with C >~ 0 and C 4 0 ,  and the pair A and iB ,  or even just A, self-adjoint. 

Part II. Perturbations and unitary equivalence 

5. There will be proved the following 

THEOREM 2. Let A and B denote bounded unitarily equivalent self-ad]oint operators 

satisfying (1.3) for some unitary operator U. Then 

meas sp (C) >~ 2 ~H DII ~-1, (5.1) 

where ~ denotes the distance between the maximum and minimum points o / sp  (A). 

I t  is seen tha t  (5.1) is similar to (2.1), especially if it is noted tha t  6 ~< 211A]] , so tha t  

(5.1) implies 
meas sp (U) >~ ~]l DII I[ A H-l, (5.2) 

or, if A >~ 0 so tha t  5 ~< HAll, implies 

meas sp (U) >7 2 ~llnll IIA II -1 (A >/0). (5.3) 
15-- 61173060. Acta mathematlca. 106. Imprim6 le 20 d6cembre 1961. 
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If, in (5.2), I]DII assumes the largest value consistent with (1.3), namely  211All, it is seen 

tha t  meas sp (U) ~ 2 ~ (hence, is 2 ~) and so the entire uni t  circle ] z I = 1 belongs to sp (U). 

Unlike the corresponding si tuation in P a r t  I (cf. the last sentence of section 4), in the present  

ease it is easy to give an example where Ilnll = 211All and hence equal i ty  holds in (5.2) or 

(5.1). I n f ac t ,  let A = diag(1, 0, - 1 ,  0, 1; 1, 0 . . . .  ) a n d  B = d i a g ( - 1 ,  0, - 1 ,  0, 1; - 1 ,  0 . . . .  ). 

Then D = A - B = diag (2, 0, 0, 0, 0; 2, 0 . . . .  ) ~> 0 and the spectrum of A as well as t ha t  

of B consists of 1, - 1, 0 each of infinite multiplicity. Hence A and B are uni tar i ly  equivalent  

and so (1.3) holds. I t  is clear t ha t  linll = 2 = 2[]A[I and so the equality of (5.1) holds and 

meas sp(U) = 2 z  for any uni ta ry  operator  U for which B = U A  U*. 

6. Proo/ o/ Theorem 2. Condition (1.3) can be wri t ten either as A - U A  U* = D or as 

A -  U * A U = -  U*DU. Since IlDII =IIU*DUil and since the assertions of Theorem 2 

regarding U hold if and only if the corresponding assertions hold for U*, there is no loss 

of generali ty in supposing D >~ 0. 

Let  U have the spectral resolution 

= f2"e ~ dE(A), U (6.1) 

and let S denote the set of values A on 0 ~ A ~< 2 ~ for which cta belongs to the spectrum of 

U. Let  S* denote the complement  of S (with respect to the interval 0 ~ A ~< 2 z). I f  / (A) 

is any  E-measurable funct ion which is 0 on S, then / (A)dE(A) =0.  I f  D ~ is applied 

to bo th  sides of this last operator  equation, one obtains 

D �89 /(A) dE(A) = 0, /(A) = 0 on S. (6.2) 

Since, if S is the entire interval  [0, 2 z],  relation (5.1) surely holds, it can be supposed, in 

the proof of Theorem 2, t h a t  the (open) set S* is not  empty.  Next,  let /(A) be a funct ion 

on [0, 2 ~] equal to 0 on S and possessing a continuous first derivative. Then / (A)  equals 

its Fourier  series, thus 

/(A) = ~ eke ~k~, ck=(2~)  -1 /(A) e-~k~dA. (6.3) 

The reason for want ing the equali ty sign in (6.3) ra ther  t h a n  merely "~-, " is to  avoid pos- 

sible trouble with zero sets in ease U is not  absolutely continuous (of. [25], p. 103). 

Subst i tut ion of the series (6.3) for/(A) into (6.2) yields, by  vir tue of (6.1), 

co D �89 + ~ '  ck D ~ U k = 0, (6.4) 
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where the  pr ime means  t h a t  ]c = 0  is to be omi t t ed  f rom the summat ion .  I f  x is an  

a rb i t r a ry  e lement  of the  Hi lbe r t  space H,  i t  follows f rom (6.4) and  the Schwarz in- 

equal i ty  t h a t  
HcoDi xl12 ~ (~' lckl 2) (~' liD �89 U~ xll2). (6.5) 

Next ,  as a s t ra ight forward  consequence of (1.3), there  follows the  pa i r  of re la t ions 

• U *~ D U  k = U *n A U  '~-  U A U *  (6.6} 
k=0 

and ~ UZ DU *k = UAU* - U n + l  A U  *~+1, (6.7) 
k=l  

val id for n =0 ,  1, 2 . . . . .  On adding the equat ions of (6.6) and  (6.7) one obtains  

Uk D U  *~ = U *n A U '~ - U n+l A U *n+l. (6.8) 
k= n 

Consequently,  if (~ is defined as in Theorem 2, 

for n =1 ,  2, . . . ,  and  hence 

5'[ID �89 U *k x]l 2 < 8(x, x) - (Dx, x). (6.9) 

Next ,  choose x = x =  to be uni t  vectors  satisfying / )x=- I ]n ] ]  x~-~0 as n - . o o ,  l~ela- 

t ion (6.5) then  implies, b y  vir tue  of (6.9) and  the  Parseval  relation 

2 i%1 = i/(x)l 2dz, 

t h a t  

(2~) -1 f2 /( )d2 2HDI[<~ [(2~) -lf;:~l/[ 2 d 2 -  (2~)If;'/d2 [~- IIDH]. 
Then  l e t / ( 2 )  = / n  (2) where {/~ (2)} denotes a un i formly  bounded  sequence of smooth  func-  

tions equal  to 0 on S and  tending (almost everywhere)  to the  characterist ic  funct ion c (2) 

of the set S*. Thus one obtains a relat ion similar to (6.10) bu t  in wh ich / (2 )  is replaced b y  

c (2). I t  t hen  follows t h a t  

(meas S* /2  ~)2]] D I[ • (meas s * / e  z ) (1  - meas  s * / e  ~) (6 - ][ DII), 

which, b y  the  equal i ty  1 - meas  S * / 2 ~  = meas  S/27~, simplifies to IIDII < ~ meas  S/27~, 

t h a t  is, to (5.1). 

(6.10) 
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7. Hal/-boundedness. I n  this section the boundedness restriction on A and B will be 

relaxed to half-boundedness. 

THEOREM 3. Let A and B denote unitarily equivalent hall-bounded (say, /rom below) 

~el/-adjoint operators with a bounded di//erenee D = A - B >~ 0 (or <~ 0), thus, 

D = A  - B, D bounded, A >~ k I ,  B = UA U*. (7.1) 

Let IDI = D or - -D according as D >~ 0 or D <~ 0 and let x be any element/or which y = IDI �89 ~= 0 

and y is in the domain o / B .  Then 

meas sp (V) >~ 2 ~ [1 + 211xll ~ ((B - k I)y, y)/llyll4] -1. (7.2) 

I f  A and B are half-bounded but  not  bounded, their domains are not  the entire Hilbert  

space H.  The equation D = A - B with D bounded then  means tha t  A and B have the 

same (dense) domain and tha t  Dx = A x -  B x  for all elements x in this domain. (The 

domain  of D is, of course, H.) Since D is bounded, it is clear t h a t  each of the operators 

UkA U *~, for k = 0, _+ 1, _+ 2 . . . . .  has the same domain (namely, t ha t  of A). 

8. Proo[ of Theorem 3. As in the proof of Theorem 2, i t  can be supposed t h a t  

D ~> 0; the proof will be a modification of tha t  of Theorem 2. I f  it is noted  t h a t  

- o o  

ck D ~ Uk = ~ c-k D �89 U *k, 
k = - - I  k = l  

t h e n  relation (6.4) is seen to  imply (since / is real and hence c - ~ g k )  

coD�89 ~ ckD~Uk+ ~ 5kD�89 (8.1) 
k = l  k = l  

a n d  hence, on forming inner products,  

--(coD�89 y, x) =(k~=1ckD~ Uk y, x) + (~_lSkD�89 U*k y, x) ,  (8.2) 

where x and y are defined as in Theorem 3. Bu t  the first expression on the  r ight  

of  the equat ion (8 .2) i s  equal to (Y' k-l~SkU*~D�89 ' which is (D~x, k=l~Sk U *ky), or 

a n d  hence, by  the Schwarz inequal i ty  ( together  with •' [%1 ~ = 2  k=l ~ Ickl2) ' 



COMMUTATORS, PERTURBATIONS,  AND UNITARY SPECTRA 2 2 ~  

/ \ 

(s.a) 

Since (6.7) can be written also as 

n--1 

Uk D U * ~ =  A _ U~ A U * ~ ,  
k=0 

it follows from the assumption A >~ k I tha t  the second parenthetical expression on the righb 

of (8.3) is majorized by  2((B - ]cI)y ,  y). Proceeding as in section 6 one is led to an equat ion 

similar to (6.10) but  in which / is replaced by  the characteristic function of S*. Thus, 

(meas 8*/2  zr) 211yll* < (meas S* /2  ~)(1 -- meas S* /2  =) [2 ((B - ~ I)  y, Y) llxll~], (8.4) 

which, on simplification, becomes (7.2). 

9. Unres tr ic ted  case. In  case relation (1.3) is assumed for the pair of self-adjoint opera: 

tors A and B without any restriction as to boundedness or half-boundedness, it will remain 

undecided whether there exists an estimate for meas sp(U) corresponding to (7.2) of 

Theorem 3. I t  can be pointed out that ,  under proper assumptions on the domains of A 

and B, if 0 is not in the set sp (A) ( =sp  (B)) and if the (very severe) condition A B = B A  >~ 0 

is imposed, then (1.3) implies a similar relation for certain bounded operators. Thus,  

proceeding formally, one obtains B -1 - A-1 = (A - B) (A B)-I  = (A B)-  �89 (A - B) (A B)-  ~ >~ 0, 

tha t  is U A  -1 U* - A -1 ~ 0, where now A -1 is bounded. This case will not be considered 

further however. 

Part III. Applications 

10. S e m i - n o r m a l  operators.  Let A be a bounded operator for which 

A A *  - A * A  = C >~ O. (10.1) 

I f  A is non-singular, then A = P U, where P is positive definite and U is unitary; see 

Wintner [33], also [32, p. 282]. Relation (10.1) then yields 

P~ - U * P  ~ U = C >~ O, (10.2) 

so tha t  Theorem 2 (as well as Theorem 3) is applicable to U. I t  was shown by  H a r t m a n  

[6, p. 233], using a generalization due to yon Neumann [19, p. 307], of a result of Wintner  

(loc. cir.) that ,  even if A is singular, A A *  and A * A  are unitarily equivalent in case the 

multiplicities of 2 = 0 in the point spectra of A A *  and A * A  are equal. Thus, if A * A  = 

U* ( A A * )  U, relation (10.1) holds, tha t  is, (1.3) holds, and Theorems 2 and 3 can be applied 
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tO determine properties of the spectrum of U. Since H a r t m a n ' s  result  is valid even if A 

is not  bounded, provided it has a domain dense in H, and since A A *  and A * A  are non- 

negative,  Theorem 3 is applicable in this case also. 

11. Laurent matrices. Let  (Cn}, n -  0, _ 1, _+ 2 . . . .  denote a sequence of complex 

numbers  satisfying 

c_n--g~ and ~ Ic~12< ~ ,  (11.1) 
- o o  

and  let L - ( c i - k ) ,  where ], k = 0 ,  _+1, _+2 . . . .  denote the associated Laurent  matrix.  I t  
or  

was shown by  Toeplitz ([29], [30]; ef. also [4, p. 62]) that ,  if the Lauren t  series ~ c ~ z  ~ 

is convergent for r x < I z [ < r 2, where 0 < r 1 < 1 < r 2, so that ,  in particular,  the function 

/(0) ~: ~ c,~e ~~ (11.2) 

is continuous, then  the spectrum of L is the range of / (0) on 0 ~< 0 ~< 2 ~. I t  has been noted 

b y  H a r t m a n  and Wintrier [7] that ,  even without  the restrictive assumption on the Lauren t  

series (involving convergence on an  annulus containing ]z] = 1) mentioned above, bu t  

supposing only (11.1), then L is bounded if and only if the funct ion /(0) of (11.2) is essentially 

bounded  (i.e., [/(0)] ~ const, almost  everywhere on 0 ~< 0 ~ 2z r) and, furthermore,  the 

spect rum of L is the set of values ~ for which 

meas {0;]] (0) - 2] < e} > 0, for all s > 0. (11.3) 

I n  this section, a proof of the above-ment ioned theorem, and even more, concerning 

the  location of the spectrum of a bounded Laurent  matrix,  using the results of [25] and 

the  present paper,  will be given. To this end, let U - (u~k) denote the un i ta ry  operator  on 
or 

the  Hilbert  space of sequences x = (  .... x_i, Xo, X 1 . . . .  ) s a t i s f y i n g  IIxll 2 =  ~ Ix~12< oo, 
- o o  

defined by  u j k = l  or 0 according as k = ] + l  or k 4 = ? ' + l ,  so tha t  U effects the shift 

Xn-+ x~+l(n = 0, Jr 1, -+ 2 . . . .  ). Then it is easily verified t h a t  U z effects the shift x~--> x=+ k 

(n, k = 0, -+ 1, -+ 2 . . . .  ) and hence tha t  L is given by  

L =  ~ c~U k. ( l l .4)  
k =  o o  

Consequently,  if U has the spectral resolution (6.1) then 

L = f ~ / ( ~ )  dE(~), (11.5) 
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where / (2 )  is defined by  (11.2). At  least (11.5) holds as soon as it is shown tha t  U, with 

the spectral resolution of (6.1), is absolutely continuous (see [25, p. 103], also the remark  

following formula (6.3) of the presmlt paper). The reason for this proviso is the fact  t ha t  

/(0) is defined by  its Fourier  series in (11.2) only to within a zero set and that ,  if U were 

not  absolutely continuous, the operator  on the r ight  side of equat ion (11.5) could depend 

upon this set. 

The assertion involving (11.3) concerning the  spectrum of L will then  follow if it is 

verified tha t  (i) sp(U) is the entire circle { z { = 1, and tha t  (ii) U is absolutely continuous. 

The assertion (i) follows from Toeplitz 's  result  with a Lauren t  series consisting of the 

single term z, but  will be deduced below as a consequence of Theorem 2 of the present paper. 

Let  A = (ajk) denote the (doubly infinite) diagonal matr ix  defined by  ajk = 5jk2k and 

let B - (bjk) be tha t  defined by  bj~ = (~jk2~ 1, where {2~}, for n = 0, + 1, • 2 ...... denotes 

any  sequence of real numbers  satisfying {~l  < const, and 2~ <2n+1 for all n. I t  is easily 

verified tha t  condition (1.3) holds with {{D]{ = sup(2n+l -2n) .  Since 0 is no t  in the point  

spectrum of D, assertion (ii) is a consequence of [25, p. 105]. Moreover, by  (5.1) of Theorem 2, 

meas sp (U) ~> 2 a [sup (2,+ 1 - 2~)] (2~ - 2_~r (11.6) 

where 2~ and 2-00 denote the limits of 2~ as n tends to o~ or - ~ respectively. Let  e > 0 

and choose the sequence {2n} so tha t  ~oo = 1 ,  2_~ = - 1 , ~ - 2 1  < e  and 2 0 - ~ - ~  <e .  

Then relation (11.6) implies 

meas sp (U) ~ 2 z (21 - 20) 2-1 > 2 z (1 - s) (11.7) 

for every e > 0. Thus meas sp (U) = 27r and assertion (i) follows. 

12. Some continuity considerations. Let  B and D denote a fixed pair  of bounded self- 

adjoint  operators, e be a real parameter ,  and let A~ be the per turbed self-adjoint operator  

defined by  

A~ = B  + e D. (12.1) 

Suppose tha t  A~ is uni tar i ly  equivalent  to B for all sufficiently small values of s, or at  least 

for all small e satisfying either e >~ 0 or s ~< 0, so that ,  for such s, 

A~ = U~B U* (122) 

holds for some (perhaps more t h a n  one) un i ta ry  opera%or U,. (Of course, if (12.2) holds for 

some U~ = V it holds for U~ = z V where [z{ = 1. Possibly, though,  (12.2) holds for other  

uni ta ry  operators which are not  constant  multiples of V.) Define the funct ion (I)(s) by  

(b (s) = inf [reeds sp (U~)], (12.3) 
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where " inf"  is t a k e n  wi th  reference to  a l l  u n i t a r y  opera to rs  sa t is fying (12.2). Since, for 

e = 0, A = B, i t  is seen t h a t  (12.2) holds for U 0 = I and  so r (0) = 0. The  p rob lem to be con- 

s idered in th is  sect ion concerns the  behav ior  of (I) (e) near  e = 0 and,  in pa r t i cu la r ,  whe the r  

or no t  (for a f ixed  pa i r  B and  D) the  func t ion  r (e), which is supposed  to  be def ined a t  

leas t  on some in te rva l  hav ing  0 as an  end-poin t ,  is cont inuous  a t  e = 0. 

I n  [1], F r i edr ichs  considered the  p e r t u r b a t i o n  equa t ion  (12.1) for smal l  s, where B 

was a cer ta in  opera to r  wi th  a n  abso lu te ly  cont inuous  spec t rum and  where D was an  

in tegra l  ope ra to r  wi th  a kerne l  sa t i s fy ing cer ta in  Lipschi tz  condi t ions  and  t hen  showed 

t h a t  (12.2) was va l id  where  U~ was an  ana ly t i c  func t ion  of s of the  t y p e  U~ = I + 

e V 1 + . . . .  I n  par t i cu la r ,  ]1U~- I H - + 0  as e - + 0 ,  for the  u n i t a r y  opera to rs  he obta ined .  As 

a consequence, the  func t ion  r (e) as def ined b y  (12.3) is, in this  case, cont inuous  a t  e = 0. 

I t  will be shown below t h a t  there  exis t  pai rs  B and  D, where in fac t  D ~< 0, for which 

(12.1) and  (12.2) hold  for 0 ~< e < 1 and  for which r no t  on ly  fails to  be cont inuous  a t  

s = 0 b u t  even satisfies (1) (e) -= 2 ~ for 0 < s < 1. 

13. A n  example.  Let  q (t) be def ined for 0 ~< t < c~ b y  

q(t) = (t/(t  + 1))~ (13.1) 

and  define a funct ion  Q~ (t) b y  

Q~(t) = s(1 + t )q ( t ) / ( t  + 1 + (1 - s)q(t))  (13.2) 

for  0 < e < 1. On the  space L 2 (0, oo) le t  N denote  the  mul t ip l i ca t ion  opera to r  N = t and  

t hen  define the  mul t ip l i ca t ion  opera to r  Me b y  

Me = N + Q~. (13.3) 

I t  is clear t h a t  N ~> 0 and  tha t ,  for 0 < s < l ,  ]Q~] < e, so t h a t  (M: § 1) -1 and  (N § 1) -1 

are  bounded .  A s t r a igh t fo rward  ca lcula t ion  shows t h a t  

(M~ + 1) -1 - ( N  + 1) -1 = e D ,  (13.4) 

where D is def ined b y  

D = - q ( t ) / ( t  + 1)(t + 1 + q(t)), (13.5) 

so t h a t  D, r ega rded  as a mul t ip l i ca t ion  opera to r  on L 2 (0, co) satisfies D ~< 0. 

N e x t  p u t  B = (N + i ) -1  and  A~ = (Me + 1) -1, (13.6) 

so t h a t  02 .1)  holds b y  v i r tue  of (13.4). 
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Next,  it will be shown tha t  for 0 < s < 1, relation (12.2) holds for at  least one un i ta ry  

Us. To this end, it can first be noted t h a t  (12.2) holds for some U~, t h a t  is, t h a t  (M~ + I )  -1 

and (N + 1) -1 are unitari ly equivalent,  by  some U~, if and only if M~ and N are uni tar i ly  

equivalent,  by  the same U~. Thus it is sufficient to consider the problem of un i ta ry  equi- 

valence of the operators N = t and M~ = t + Q~ (t) on L 2 (0, c~), where Q~ (t) is defined by  

(13.2). 

I t  will next  be shown tha t  t and t + Q~ (t) are uni tar i ly  equivalent.  Let  U be the operator  

defined on L 2 (0, ~ )  by  

U: x (t)-> x ( T) (d T /d t )  �89 (13.7) 

where T (t) = t + Q~ (t). Since d T / d t  = 1 + s [q2 (1 - s )  + (1 + t) 2 q']/(t + 1 + (1 - s )q)e ,  it is 

seen tha t  d T / d t  > 0 for 0 < s < 1 and 0 < t < oo. Moreover, since T (0) = 0 and T (c~) = oo, 

it follows tha t  

( Zx, Ux)=/olX(T)12(dT/at)dt= f21x(T)12dT=(x, (13.S) 

and hence U of (13.7) is isometric. Similarly, U -1 is isometric and hence U is uni tary.  I n  

addition, it is seen tha t  the sequence of t ransformations x--~ Ux--+M,  Ux -+  U*M~ Ux  is 

given by  

x (t)--~ x (T  (t)) (d T/dt )~-+ T (t) x (T  (t)) (d T/dt)�89 tx  (t). (13.9) 

Thus U*M~ U = N or M~ = U N  U*; (13.10) 

hence, as was noted earlier, 

A,  = U B U * .  (13.11) 

Thus  far it has been shown that ,  for the pair  of (13.6), (I)(e) is actual ly  defined (that  

is, (12.2) holds for some Us) for 0 ~< e < 1. I t  will next  be shown tha t  if U~ is any uni ta ry  

operator  satisfying (12.2) for 0 < e < 1, then  necessarily meas sp (U~)=  2~r. I n  order to 

show this, use will be made of Theorem 3 of Pa r t  I I .  I t  is sufficient to apply  relation (7.2) 

if use is made of the fact  noted earlier t ha t  (13.10) holds if and only if (13.11) holds. I t  is 

clear t ha t  M~ ~> 0, N ~> 0, and  tha t  Mr - N = Q~ ~> 0 for 0 < s < 1, so tha t  the  k of Theorem 3 

can now be chosen to be 0. I n  order to show tha t  meas sp (U~) = 2 ~, it is sufficient, by  

vir tue of (7.2), to  show tha t  

inf [llxll ~ ( N y ,  y)/llyl143 = 0 (13.12) 
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for f unc t i ons  x (t), y (t) = Q~ (t) x (t), t y (t) of class L 2 (0, ~ ) .  T h u s  i t  is suf f ic ient  to  show t h a t  

t he  express ion  

f / y ~ ( t ) Q ; ~ ( t ) d t ,  f / t y 2 ( t ) d t .  ( f / y 2 ( t ) d t )  2 (13.13) 

can  be  m a d e  a r b i t r a r i l y  smal l  for s u i t a b l y  chosen r ea l -va lued  func t i ons  y = y (t) on  0 ~< t < ~ .  

Le t  h a n d  6 deno te  pos i t ive  c o n s t a n t s  a n d  p u t  y = t (2~- ~)/4 on  0 < t ~< h a n d  y = 0 for 

t > h. Clear ly  y a n d  ty be long  to  L 2 (0, ~ ) .  Since,  n e a r  t = O, Q~ (t) ~ q (t) ~ t �89 i t  is clear t h a t  

x(t),  def ined  b y  y ( t ) = Q ~ ( t ) x ( t ) ,  also be longs  to L2(0, ~ ) .  Moreover ,  (13 .13) reduces  to 

f~ t�89 1 (t) dt" h ~(1 25) 0(1) (13.14) 

(0  (1) d e p e n d i n g  o n l y  on  5), which,  b y  the  e s t ima te  Q~ (t) ~ t ~ n e a r  t = 0, reduces  to h �89 0 (1). 

Th i s  l a s t  e s t imate ,  for ~ fixed,  t e n d s  to  0 as h-->0. H e n c e  (13.12) holds  a n d  i t  fotlows t h a t  

meas  sp(U~) = 2 z ,  as was to  be  shown.  

14. On  - ~ < t < ~ ,  cons ider  a f u n c t i o n  T = T (t) of class C* which  is s t r i c t ly  increas-  

ing a n d  has the  r ange  ( - ~ ,  ~ ). A ca l cu la t ion  s imi lar  to t h a t  of sec t ion  13 shows t h a t  the  

U de f ined  b y  (13.7) is a u n i t a r y  ope ra to r  on  t he  space L 2 ( -  co, ~ ) .  I f ,  for i n s t ance ,  ~ i s  a 

pos i t ive  c o n s t a n t  a n d  T( t )  = t + ~, t h e n  U of (13.7) is the  t r a n s l a t i o n  ope ra to r  de f ined  b y  

U: x(t)--~x(t  + a), - ~ < t < ~ ,  (14.1) 

where  x (t) be longs  to  L 2 ( - co, co). Le t  A a n d  B d e n o t e  t he  b o u n d e d  m u l t i p l i c a t i o n  opera-  

tors  

A = arc  t a n  ( f i - l ( t  + ~)), B - arc t a n  (fi-lt) ,  (14.2) 

where  fl deno tes  a pos i t ive  co n s t an t .  T h e n  i t  is seen t h a t  A = U B  U*, where  U is de f ined  

b y  (14.1), a n d  t h a t  A - B = are  t a n  (fi-1 (t + :r - arc  t a n  (fl- l t)  - d(t) > 0. T h u s  r e l a t i on  

(1.3) holds  a n d  Theo rems  2 a n d  3 (the l a t t e r  wi th  k = -  �89 are  appl icable .  The  second 

t e r m  in  the  b r a c k e t  of (7.2) is twice  

:r  �9 (7e/2 + a r c  t a n  ( f i - l t ) )y~dt .  _ y2dt . (14.3) 

Choose a c o n s t a n t  ~ sa t i s fy ing  0 < 5 < 41 ~ a n d  t h e n  le t  y be  chosen so t h a t  y ~ 0 ou t s ide  

t he  i n t e r v a l  - 2 d ~< t ~< - d a n d  0 < y~ d t < ~ .  F o r  va lues  t on  th is  in te rva l ,  t + ~ >~ 10~ 



COMMUTATOICS, PERTURBATIONS, AND UNITARY SPECTRA 227 

and  i t  is clear t h a t  for a n y  s > 0 i t  is possible  to  choose/3 > 0 so small ,  t h a t  bo th  inequal i t ies  

�89 + arc t a n  (fl- l t)  < e and  d(t) > ~ - e hold  t in - 2 5  ~< t ~< - 6. I t  follows f rom the  same 

type  of a rgumen t  as t h a t  used in sect ion 13 t h a t  the  express ion (14.3) can be made  a rb i t r a r i l y  

smal l  b y  choosing fi suff ic ient ly  small .  Hence,  b y  (7.2), meas  s p ( U ) =  2 ~. I n  addi t ion ,  

since d (t) ( = D) > 0, t hen  0 is no t  in the  po in t  spec t rum of D and  i t  follows from [25] t h a t  

the  spec t rum of U is abso lu te ly  continuous.  

The example  discussed above  suggests  genera l iza t ions  to  a measure  preserv ing  t rans-  

fo rma t ion  T on a space ~2 of po in ts  P .  The t r ans fo rma t ion  U: / ( P ) - - > / ( T P )  is t hen  un i t a ry .  

I n  add i t i on  i t  will  be supposed  t h a t  ~ is a met r ic  space wi th  a d is tance  [PQ] defined for 

a n y  two poin ts  P and  Q. 

The t r ans fo rma t ion  T is said to be d iss ipa t ive  (cf. Hopf  [9, p. 46], Ha lmos  [5, p. 11]) 

if there  exists  a set A of posi t ive  measure  for which the  images A n = T n (A) are d is jo in t  and  

g2 = ~ A n. Le t  such a set A be called a genera t ing  set of ~2. 
- o o  

There  will  he p roved  the  following 

THEOREM 4. (i) I /  T is dissipative on the space ~ and i~ U is the associated unitary 

trans/ormation, then U is absolutely continuous. (ii) I / ,  in addition, there exists some point R 

belonging to the interior o / a  generating set A,  so that there exists some sphere S n with center at 

R satis/ying 

Sn is contained in A,  (14.4) 

and i~ T is continuous at R, (14.5) 

then sp(U)  is the entire unit circle [z] = 1. 

15. Proo/ o/ Theorem 4. Since ~) = ~ An where meas  A > 0 and  the  An are dis joint ,  

t hen  ~ is ob ta ined  b y  t ak ing  al l  the  images of the  set  A - A 0. I f  P is an  a r b i t r a r y  po in t  of 

g2 then  P is in a (unique) set An and  so P - Q= - T~Q, where Q belongs to A.  I f  n = 1, le t  

s (P)  = 0 .  I f  n>~2,  le t  s ( P ) =  ~ IQk-lQk], and  if n~<0,  let  s ( P ) = -  ~ [QkQk+l[- Thus  
k - 2  k - - 0  

s (P) is the  (signed) d i s tance  to  P f rom its image  in A 1. Since the  sets A n are dis joint ,  i t  

is clear t h a t  s ( T P )  - s (P) > 0 for al l  P in (2 and  hence k (P) = g (s (P)), where g is the  pr in-  

cipal  inverse t angen t  func t ion  of sect ion 14 def ined b y  

g(t) = g(t,/3) = arc t a n  (fl-lt), /3 > 0, (15.1) 

satisfies the  condi t ion  

D = Ic(TP) - lc(P) =-d(P) > 0. (15.2) 
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As in section 14, it follows t h a t  if A and B are the multiplication operators A = g  (s (TP) )  

and B = g (s (P)), then  A = U B  U* and A - B = d > 0, so tha t  0 is no t  in the point  spectrum 

of D. The result  of [25] then  implies the absolute cont inui ty  of U and (i) is proved.  

I t  will follow from (7.2) t ha t  meas sp (U) = 2 n if it can be shown tha t  the expression 

corresponding to  (14.3), namely,  

can be made arbitrari ly small by  choosing functions y (P) = d �89 (P)x  (P), where both  x (P) 

and y (P) belong to  L ~ (~). B y  (14.4) and (14.5), s ( T P )  =-- 0 for P near R and s (P) is continuous 

a t  R. Hence k ( T P )  -- 0 for P near R, also k (P) and d (P) are continuous at  R. Since s (R) < 0 

(R being in A) it follows t h a t  for e > 0, then �89 + k(P)  < e holds, if fl > 0 is sufficiently 

small, for all points  P in the set A sufficiently close to R. I n  addition, d(P)  = d ( T P )  - 

k (P) = 0 - k (P) for all such points, since T P  is in  A1. Thus d (P) > �89 7~ - e. I f  now one con- 

siders functions y equal to 0 outside a sufficiently small sphere Sn satisfying (14.4), it 

follows from the type  of a rgument  used in section 13 and  14 t h a t  the expression of (15.3) 

can be made arbitrari ly small by  choosing fl sufficiently small. This completes the proof 

of (ii). 

16. The following theorem is similar to Theorem 4. 

THEOREM 5. Let T be a measure-preserving transformation, with associated unitary 

transformation U, on the space ~ .  Suppose that there exists a real-valued measurable ]unction 

/ (P)  on g2 ]or which 
/ ( T P )  - - / ( P )  >~ 0 and ~ O. (16.1) 

I /  U has the spectral resolution (6.1), then 

f z d E ( ~ )  I ,  (16.2) < 

where Z is any zero set, so that U must  have some continuous spectrum. I / ,  instead o/ (16.1), 

it is assumed that even 

/ ( T P )  - f ( P )  > 0 almost everywhere, (16.3) 

then U is absolutely continuous. Furthermore, i f  only (16.1) holds, i f  f (P)  and f ( T P )  are 

continuous at some point R,  i f  also f ( T R )  - f (R) > O, and finally, i f  there exists some sphere 

S n with center R satisfying 

SR is contained in ~2, (16.4) 

then sp(U) is the entire circle I zl = 1. 



COMiV[UTATORS, PERTURBATIONS~ A~D UNITAI~Y SPECTRA 229 

P r o o / o /  Theorem 5. In t roduce  the functions It(P) =g( / (P) ) ,  where g(t) is defined by  

(15.1), and d(P)  = ]c(TP) - k(P) .  Let  A = ]c(TP) and B =/~(P) and note  t ha t  again A = 

U B  U* and A - B = d(P).  Since d(P)  corresponds to D and since (16.1) implies D ~> 0 and 

D ~=0, then (16.2) follows from [25, p. 105]. Since (16.3) implies t ha t  0 is not  in the point  

spectrum of D, the assertion concerning the absolute cont inui ty  of U also follows from 

[25]. I n  order to prove the last par t  of the theorem note tha t  ] (P) can be replaced by  

/ (P)  § const., so tha t  it can be supposed tha t  / ( T R )  = 0. The remainder  of the proof is 

then similar to t ha t  of Theorem 4 and  can therefore be omitted.  

17. Examples.  I n  order to illustrate the results of the last section, consider a con- 

servative, incompressible, n-component  vector  system of differential equations 

x'  = • (x), F of class C 1 and div F = 0. (17.1) 

Suppose tha t  (17.1) possesses unique solutions x =x ( t )  for - ~  < t  < ~ on the space s 

of points x. I n  addition, suppose tha t  there exists a funct ion /(x) of class C I satisfying, for 

instance, 

d] /d t -~  g r a d / .  F > 0 almost  everywhere on ~ .  (17.2) 

Since the incompressibility assumption div F = 0 assures t ha t  the flow x(O)--->x(t) deter- 

mined by  (17.1) is measure preserving, t ha t  port ion of Theorem 5, in which assumption 

(16.3) occurs, corresponding now to condition (17.2), is applicable. I t  follows tha t  if U = U t 

is the associated un i ta ry  t ransformat ion Ut:g(x(O))---~g(x(t)) , where g is of class L~(s 

then U is absolutely continuous and  sp (U) is the  entire circle I z I = 1. 

I n  case (17.1) holds with n = l ,  then one obtains the single equation x' = a ,  

a = const. ~= 0, with the solution x = at + b (b - const.). I f  / = ax, then (17.2) holds. This 

example is, in essentials, tha t  of the t ranslat ion operator  considered in section 14. 

I n  case (17.1) holds with n = 2, it is known (cf. Wintner  [34, p. 88]) t ha t  the system 

is Hamil tonian,  t ha t  is, there exists an energy funct ion H = H(x ,  y) such tha t  (17.1) can 

be wri t ten as 

x ' = ~ H / e y ,  y ' = - ~ H / e x .  (17.3) 

The condition (17.2) now becomes 

(~//~x) (~H/ay)  - (~ / /~y ) (~H/~x )  > 0 almost  everywhere on s (17.4) 

If, for example, H of (17.3) is harmonic,  let / denote its harmonic conjugate, so tha t  

~ / / ~ x  = ~ H / ~ y  and ~ / / ~ y  = - ~ H / ~ x  and (17.4) reduces to the condition 

igra d HI  2 > 0 almost  everywhere on ~ .  (17.5) 
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For  a system of the type (17.3) in which H is harmonic and H ~ const., then in fact, (17.5) 

does hold. I t  follows tha t  the uni tary operator U of the Hamfltonian system (17.3) is, in 

this case, absolutely continuous and has a spectrum consisting of the entire circle ]zl = 1. 

18. Scattering operators. Investigations of the perturbat ion equation B = A -  D (in 

the notation of (1.3)) where A and B are self-adjoint, and the problem of unitary equivalence 

of A and B, by  Friedrichs [1, 2] and subsequently by  Rosenblum [26] and Kato  [12, 13] 

have been mentioned earlier. In  these papers it was shown, under appropriate assumptions 

on A and the perturbations D, that  

e itB e- irA_._> U+ 

and e ~tB e- ira __> U 

as t--~ ~ (18.1) 

as t---~ - c~, (18.2) 

where U+ and U denote unitary operators and the limits are meant  in the sense of strong 

convergence. See also Kuroda [16, 17]. Moreover, each of the operators U = U+ and U = U_ 

satisfies relation (1.3). The operator U+* U_ corresponds to the scattering operator of 

quantum mechanics (see, e.g., Friedrichs [3], Jauch [10], Moses [18]); the operators U+ and 

U have been termed "half-scattering operators" by Friedrichs [3, p. 233], and "wave 

operators" by  Jauch  [10, p. 137]. 

I f  D satisfies the additional assumption 

D bounded, D ~> 0 (or D ~< 0) and D # 0, (18.3) 

then the theorems of Par t  I I  relating to the spectra of any uni tary U satisfying (1.3), 

hence in the present case, in particular, to U+ and U_, are applicable, at  least if A and B 

are half-bounded. In  the quantum mechanical case, when A corresponds to the energy of 

the system, this latter assumption appears to be natural  (cf. Kemble [14, p. 107], Ka to  

[11, p. 205], Jauch [10, p. 134].). 

19. DiHerential  operators. Consider a limit point differential equation L ( u ) §  ~ u  = 0 

on, say, 0 ~< t < ~ (L(u) ,  ~ linear differential operator) with a boundary condition a t  t = 0; 

see Weyl [31], also Kodaira [15]. Let A 1 and A~ denote self-adjoint extensions of the as- 

sociated symmetric operator, corresponding to two distinct boundary conditions, and 

suppose tha t  ~ = #  is real and belongs to the resolvent set of both A 1 and A 2. I t  is known 

[31, p. 251] tha t  the difference 

(A 1 _ ~i)-1 _ (A2 _ ~i) -1  = D (19.1) 

is a constant multiple of a one-dimensional projection operator. I t  was shown in [21], using 

results of Rosenblum [26] tha t  if, in addition, each of the two boundary value problems 
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had a purely continuous spectrum with absolutely continuous basis functions, then A = 

( A ~ - 2 I )  -1 and B = ( A ~ - ~ I )  -1 are unitarily equivalent, and thus satisfy (1.3). (Inei- 

o j~ dE(#).) dentally, the projection F(~) of [21, p. 994] should be given by  -1<~ Theo- 

rems 2 and 3 are then applicable to any such uni tary operator, in particular, to the U+ 

and U_ occurring in section 18 and which exist in the present instance. 
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