ON THE POLYNOMIALS R¥(x), NV(x) AND M (x).
By

J. F. STEFFENSEN

of COPENHAGEN.

1. In a former paper' I have considered a class of polynomials, the pow-
eroids, which may be defined by the relation

xﬂ=x(—?—) z 1, (1)
6 denoting the operator
0=¢D)=2kD  (k+o). (2)
r=1
The function @(f) is assumed to be analytical at the origin, and expan-
sions in powers of D or any other theta-symbol are only permitted when the

operation is applied to a polynomial.
A consideration of the form (1) leads to an examination of the polynomials

R# () = (%)) x", (3)

where v is the degree of the polynomial, while 2 can be any real or complex
number.

These polynomials contain as particular cases several polynomials which have
already proved usefal in analysis. Thus, the Norlund polynomials Bi¥(x) and
84(z), which again include the Bernoulli and Euler polynomials, are obtained

for 6=A and 0= (I + %—)D respectively, see P. (105) and P. (118), and for

6 = ¢ D the polynomial

! The Poweroid, an Extension of the Mathematical Notion of Power. Acta mathematica,
Vol. 73 (1941), p. 333. This paper will be referred to below as »P».
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or P. (71), results. The poweroid z*, expressed by the polynomials (3), is written

o =z R (x). (4)

From (3) we obtain at once the two important relations

D R¥(x) =» R (), (s)
6 BlA (x) = » B2 (). (6)

From these follow the expansions in powers and in poweroids

fa ~9( “
Rv (x + ?/) %(s)xs‘Rv—s (y)’ (7)
7k = o (7 A Rl "
RU (g + ) zo(s)x RIS (y), (8)
and, if we write
REf} = Rld (o), (9)
in particular
R @)= 3 (1), (re)
=0
R () = (y) AR, (1)
&=0 °

We shall presently oceupy ourselves with the guestion of determining the
coefficients R¥, which can be done in several ways, but first we propose to find
the generating function of the polynomials R (). This is obtained by P.(37), or

mMW=§£mww; (12)

v=0

which is valid if @(¢) is analytical at the origin. In this formula we may, owing
to the assumptions we have made about ¢ (f), put

o) = (&—%) (13)
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@ {t} being the function defined by (2)

p)= Skt (k+o) (14)
r=1
We thus obtain from (12), by (3), the generating function of R\ (x)
_f_}':u_w'i [4] (s
()« =3 R (15)

In particular, for # =0, we have the generating function of R4

(Bﬁt))z - 2:‘40% RE. (16)

These coefficients deserve to be considered separately on account of their

application to certain summation problems. Thus, if we put
1

pt)=(1 + 9 —1,
we have Rl!l=19! 4, the .4, being the coefficients in Lubbock’s summation for-
mula.! If 4 is any positive integer, we get the coefficients in the corresponding
formula for repeated summation of any order.

2. In certain cases @(t) is such a simple function that R (x) can be ob-

D\
tained directly from (3) by expanding (—16—’)-) . But here we are chiefly concerned

with the general case where @(¢) is only known by its expansion (14), so that
the main problem is to express R!Y, and hence R!*(x), by the coefficients F,.
This may be done in several ways.

The first one that occurs is to derive a recurrence formula from (16), using
as initial value

R = ki (17)

which is obtained directly from (16) for t=o0. We take the logarithm on both
sides of (16) and differentiate, the result being

oo

2

)v lq)’(t . r=I

¢ @ (1)

tv—l
(v —1)!

Rl
v

—

! J. F. STEFFENSEN: Interpolation § 15(5) and § 18(41), or the Danish edition {where m is
written for A).
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whence

|28 —ap 0] 3 5o =0i3

y=20 y=1

By (14) this may be written

-—lZsh.Ht" 2 R“ st# 2 Rv-H’

&=1 w-o 1'=0

and if we now compare the coefficients of {* on both sides, we find the required
recurrence formula

d rd +v{1—2)
Zkr—v+1__———;!_‘

v=40

R¥ =0 (18)
with the initial valne (17).

3. A direct expression for RIY is obtained as follows. In order to expand
the left-hand side of (16) we write

(o) = ()

= (kl + Z Fviy t")

r=1

-4

If, now, we put

E = ks t” (19)

r=1

and expand in powers of ¥, we find

(—g_)l — o (—)') ]c—n—l 1 (20)
ot né, n)™ '
Next, we put

o= a7, (21)

y=n

where the coefficients a!”, which are independent of A, satisfy the recurrence
formula
Z krevizlnr —v(n + 1)]a, =0 (22)
»=0

with the initial value
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resulting from (21) and (19). We may derive (22) in the same way as (18), but
it is easier to observe that (22) is really (18) with a change of notation. For,
comparing (16), written in the form

oo -4 wt"
She) =S w,
t pl®

=0

with (21) written in the form

o0 n -]
(2 kys1 t’_l) = Z a‘;’ln r,
y==1 =0
it is seen at once that, if
ks, A, Rl

are replaced respectively by
7(',,,_}.1, —n. v'afjﬂ;n,
then (18) is changed into (22).
If, now, we regard the coefficients a{" as known and insert (z1) in (20), we
have

(L)l= i ( 2-) h i a®p
@ (t) “\n v

r=n

or, arranging in powers of ¢, taking into account that «™ =o for n <,

B (e
so that comparison with (16) shows that
_ : A
Rl =y ¥ (—1) o by rialm (24)

n=0

where A=Y =A(A + 1)--- A+ n—1), 49 =1,
It is seen that if £,=1, as is frequently the case, then R is-a polynomial
in 4 of degree ».

4. A direct expression for «™ is obtained from (21) by expanding the po-
lynomial
(kyt + kgt + -+ + kyiy ),
viz.
kEE kY. .
() —
ay) = ”'Zalﬂlyl ._’ (25)
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where the summation extends to all positive integers «, 8, ¥ ... for which si-
multaneously

a+B+y+ - =n (26)
and

a+28+3y+ - =w (27)

We state below a few special results, found by (25) and checked by (22)

al™ =17,
n) — n—1
aM =nk kN
— n [ T yT
a = nk ki~ + (2) B2

= ks Bet + n® k kg Ry + (’3’) W ks,

n+8

(3)
a, = nkgkr=t + (’2’) (2lshy + B R + — kR + ( )k;;a;-*.

n
n+4d
4

(3)
a® =k k4 0 (koky + ky k) AV + %—(/rq by + B) k ko8 +

n+5

'72(4) 3In—4 ”) 5 pm—>5
+ o kK +(5 B ks

al = nkgk"t + ('2’) (2F, by + 2kg by + KA+ (’;)(3 koki + 6kskykg + k) A3 +

“1n+8

+ (Z)(4k5k§ + 6K Rt + 5(’;) kRS + (g) KRy,

We further have, by (21) and (19)

a® =1, a% =0 (v>o0), (28)
a(()) =0, a‘v” = k1 (> 0)- (29)
In the expression (24) for R we want al%, alt), al?, ... a!”. These may be

written down as far as »=238 by the formulas given above. The results are,
leaving out a!® and alV, given by (28) and (29),

v=2. a’=1.

v=13. af = 2ksk,. at = k.
v=4. a¥=2kk, + k. uP = 3k, k3. al = k.
v=15. a¥l=2ksk, + 2k, ky. a = 3k, k, + 3k ks.

4 3 5 __ 1.5
a; =4k3]f2. ag)-—kg.
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v==6. af = 2ksk, + ki + 2ksk,. a¥ = 3k, /c2+6k7ck2+k3
a = 4k, K + 6k3ik;. ad = s ky k3. ad = k.

v=17. aP =2k ky + 2ksk, + 2ksk,. aP = 3keki + 3k, k3 + 3Kk + 6kskyky
al = 4kghi + 12k, kB + 4 K3k, a? = sk kK + 108343,
aP=6kk.  a? =K.

v=238. ai’ = 2kyk, + 2k ks + 2kgh, + K.
AP = 3k K2 + Ghyhoks + Ohyhshs + 3Hs k2 + 3K Ky
a0 = 4k kS + 12k, ki + 12k, KHy + 6RKE + K.
a = s ko ki + 20k k ikl + 10343,
aP = 6k, ks + 15k k. adl = 7 ka kS, as’ = k.

By means of these results, R¥) may be immediately written down by (24),
and thereafter R (x) by (10) or, in terms of poweroids, by (11).
In the particular case where A= —1 we have directly by (16) and (10)

B =k, ROV =01 Dk T (30)

3. A formula of some generality, a sort of binomial theorem for the R-po-
lynomials, is obtained as follows. We replace, in (3), A by 4 + u, and z by x + ¥,
writing the result in the form

RElo+ )= (5) (§) @+ o

Here, it evidently dees not matter whether (%2) acts on x or on y. We may,

4 @
therefore, let (—?) act on x, and (g) on y. Expanding (z+y)” by the binomial
theorem and performing the two operations, we find, by (3),

k4

{ha] = (") p [x]
Rz + y) go(s) RY () Y (y) (31)
which is the binomial theorem for our polynomials.

Several particular cases of this formula are of interest. Thus, observing

that, by (3)
RV (x) = 2, (32)

we obtain, putting g = — 41 in (31),
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@+ oy = 3 () B9 B30, (33)

&=0

and from this, for y = o,

2 = (”) RU¥ (2) Ri=4. (34)

This may be looked upon either as the expansion of z* in R-polynomials,
or as a recurrence formula for Rl (z). In the latter case we have as initial
value

R (z) = kT, (35)
resulting from (15) for ¢=0.

Next, putting u =0 in (31), we have, by (32),

v

(] = "\ g -
Bz +y)= 2 (6) R (z)y (36)
§=0
which is really only the Maclaurin expansion in y.
Putting y = — «w.in (36) we find

»

[r— — p\r—s ’”) a—x e}
1= 3 (= () (57)
another recurrence formula for Rl (x), which may also be obtained from (7).
We further note that, putting ¥y =0 in (31), we have

k4

RU+0) (z) = 3 (:’) R (z) R\l | (38)

=0

and putting x =0 in this

v v )
Rt = (s) RO RY,, (39)
8=0
or the binomial theorem for the R-coefficients.
These binomial theorems are evidently generalizations of corresponding theo-
rems by Norlund! (in the case where the intervals of differencing are identical).

6. The R-polynomials may be generalized considerably without losing their
essential properties. We may, in fact, in (3) replace D by any theta-symbo),
provided that 2* is replaced by the corresponding poweroid. Let, therefore, 0

! N. E. NORLUND: Differenzenrechnung, chapter VI.
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and 6; be any two theta-symbols, 'l and x;_' the corresponding poweroids; we
write then, instead of (3),

N g\ _
N9 = () (o
I
It is seen at once that the N-polynomials satisfy the two fundamental re-
lations
O NP (x) = » NZL, () (41)
01 N () = » N2 (x), (42)

corresponding to (5) and (6).

From these polynomials we obtain the R-polynomials by choosing 6 = D
x71=1g2", but the N-polynomials contain many other interesting polynomials.
Thus, for instance, if 6 = A, a"l = 2!V, where z!*) is the factorial

w
2 =zlx—w) .. @—rvo+ o) 2% =, (43)

and 6y = /A, we obtain the polynomial

A i
wi A w

I have on a former occasion' dealt with this polynomial in the case where 2
is a non-negative integer, ». In that case, the polynomial is completely deter-
mined by sa.tisfying the two relations (41) and (42), or

v v—1
{-}'an 1’33‘”” ’

YV e gy pp—1
Ax,, =V

w, n—1"?

besides the initial conditions 20, =1 and 2! = x". This proves that it can be
represented in the convenient form (44), where A may, however, be any real or
complex number.

For w—0 we obtain from (44) z}, = B (x).

Related to (44) is the corresponding »central> polynomial

6 Iy
ol = (6) a4, (49

' J. F. STEFFENSEN: On a Generalization of Norlund's Polynomials. Det Kgl. Danske Viden-
skabernes Selskab, Mathematisk-fysiske Meddelelser, VII, 5 (1926). Referred to below as »G.N.P.»,
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where central differences and central factorials

jad - y—2 (v—1)
E*— E ¥, = '(x-{— p w)

w

are employed.
We may further mention. the polynomials

3 (2) = (§) = (45)
and
-

e (z) = (I + %) P (47)

which are related to the Norlund polynomials Bl (x) and g* (). The case 4 =1
has been dealt with by Charles Jordan', who ealls v—I! b!!(x) the Bernoulli poly-
nomial of the second kind, and ﬁeﬂ”(x) Boole’s polynomial.

The corresponding central polynomials are

89 = (5) =, (49)

e(a) = O~ *ab, (49)
1.1 .
where [] = 5(E2+ E ’).
7. The theory of the N-polynomials runs parallel to that of the R-poly-

nomials. Writing
N = N (o), (50)

we obtain from (41) and (42) the two expansions corresponding to (10) and (11)

Ni(g) = (:) i N (51)
§=0
and
@ () == () ,7 [a—s]
NE(z) = 3 o) e Vi (52)
8=0

in the poweroids 29 and xf’ respectively.

! CHABRLES JORDAN: Calculus of Finite Differences, p. 265 and p. 317. The notation differs
from ours.
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More generally we have

§=0
NBw+y) =2 (:) 2] NV (y). (54)
8=0

In order to obtain the generating function of N4 (x), we must begin by
generalizing (12). According to P. (34) and P. (33) we have

for sufficiently small |{| and all x. If now
o) =Dl
»=0
means any function which is analytical at the origin, and we reguire the coef-

ficient of {* in the expansion of @()¢*!, this coefficient is

v T _
e %’:: L @ (6) 7.
=0 :

vl
We therefore have
o= 3 06, (55)
=0
where ¢ is regarded as the function of [ determined by { = ¢ ().
~ This theorem contains (12), which is obtained for § = D, 2" =2, [ = p(t) = ¢.

Since any theta-symbol may be expanded in powers of any other theta-
symbol, we may, in extension of (2), assume that 6; is given in the form

01 = @1 (H) = i hw g (h] :‘F—' O). (56)

Corresponding to this we write, when 6 and 6; are replaced by numbers, { in-
stead of 6, and Z; instead of 6;, thus

G=gil)= Dbt h+o) (57)

We now put, in (55),




302 J. F. Steffensen.

( ) e“*ZC (59)

Since ¢ is & function of {, (59) represents the generating function of N (x),
and is a generalization of (15).

and find, by (40),

Putting x =0 in (59), we have the generating function of NI

being an extension of (16).
It now appears that the results obtained for R!Y can be utilized for NI
by a change of notation. Comparing, in fact, (60) with (16), and (356) with (2),
we see that if ¢ is replaced by {, and ¢(t) by @i((), that is, & by h., then R is
replaced by N. Hence, we may write down from (18) and (17) the recurrence
formula
rd +v{1—1)

Z bor ey gy —————— o1 N =o (61)
v==0
with the initial value )
N{O‘l = h;t, (62)
Further, if we write
(I’I 2 hv-}-l (63)
and
P == S Mg (64)

y=R
instead of (19) and (21), we have instead of (22) and (23) the recurrence formula

D brsialnr —w(n + D]B, = (65)

y=0

with the initial value
bir) = h1.

From (24) we obtain the direct expression
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and from (25)

KHERY ... |
(M) = g A A0
b M'Za!ﬂ!y!... (67)
where «, 8, 7, ... satisfy the simultaneous relations (26) and (27). A number of

special values of ™, expressed by h,, are obtained from the values of 4 given
above, if we replace a by b, and % by h; we need not write them down.
Finally we note the particular cases resulting from (30)

v o
N =yl by, Ni-1(z) = »! Z hosi1 % : (68)

=0

8. A binomial theorem for the N-polynomials may be derived as follows.
From (40) we obtain

A
psto v = (g) (5) e + o2,
1 I

] 3 7
where we may let (F) act on «, and (g); on y. Now we have, by P. (141),
I I

»

vt gfl= ”),,;;,:, 6
(2 + v %(S aly =, (69)
and on inserting this above we find the desired theorem
. - v .
N+ ) = 3 (7) NG M, ), (70)
£=0

which has the same form as (31).
From (70) we obtain formulas corresponding to (33), (34) and (36)—(39).
Thus, since, by (40),
NU(z) = 271, (71)

we find on putting u= —2 in (70)

(x + ypl = i (y) NL/'-] (x) Nl{v:’;} {v) (72)

and from this for y =o
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being the expansion of z*l in N-polynomials, or, if preferred, a recurrence for-
mula for these. In the latter case we have the initial value

N @) = it (74)

resulting from (39) for { ==o0, since ¢ vanishes with {.
For u = o, (70) yields, by (71},

Nl + )= 3 (7) N9 ()7, 3)
§=0
and hence we find for y= —=x

v

w3
£=0

which is another recurrence formula for the N-polynomials. A similar formula

is obtained by putting x = —y in (54) and writing thereafter = for y.
If, finally, we put y = 0 in (70), we find
[2.+‘..:__v YN (Al () A Iul
Nltul(z) Zﬂ(s) N () Nl (76)
and, patting x = o in this,
. > v .
NG+l = 3 (s) NN (77)
$=0

being the binomial theorem for the N-coefficients. The two last formulas have
the same form as (38) and (39), only with R instead of N.

9. As an application, we will consider the polynomials x} , defined by (44).
We have here

(“,m])—“l
f=/N\= -, O =N =¢e"— 1,
w w
so that
. 1
g___;(ewl‘__ l), é‘Izet_Iz(I +w€)w—'l.
Hence
I’:")
b == =;_!(I —w)(1—2w)...(1 —vw + ).

The generating function is, therefore, by (50)

f—i%—ﬂ%+w&=z§%r (78)
(1 + 0l — 1 '
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For x =0 we have the generating function of the coefficients o} ,

Q——i——ﬂ i ;- (79)

I+ el —

From {41) and {42) we find

A L.:n = yx:u_;:.l’ (80)
szn‘. 2”3,,_5_1- (81)

The binomial theorem is, by (70),

¥ » i
o = 3 () ot 52
&=0
We note the following particular cases of (82). Putting u= — 4, we bave,
since, by (44), 7, =z,
@Tﬁ’~V(Jdm$L~ (83)
s==0 ‘

and from this, for y = o,
v
a2 = 3" or-c g (84)
w g o, ~% Twi? 4
£=0
a recurrence formula for a7 ., the initial value being

al . =1, (85)

resulting from (78} for { =0. We may also look upon (84) as the expansion of
the factorial on the left in polynomials z? .
Putting & = o in (82), we find

(@ + ), = Z()“m'“ (86)

and from this, for ¥y = —x,
= 3(2) = e, (87)
u/ o w wr
&=0
another recurrence formula for a” .

wit

Finally, putting y =0 in (82), we have

»
14

I — Z: P8 4.8

‘I’m. it (.ﬁ‘) Owy, '/I’w}. (88)

&=0
20-632046 Acta mathematica. 78
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and, putting x = o in this, the binomial theorem for the coefficients o,

» v )
OZ), At = Z‘J (9) OZ)—;: ofn,‘t' (89)
s=0
By (80) and (81) we find the two expansions of z?, in factorials
» o (7 y—8 %)
Ly = Z g Ow). Lo (90)
8=0
< (7 s
o= 3 (2) ot o0
§=0
More generally we have
iy
@+ = 3 () vzt (92)
s=0
P \i‘ L P (%)
(x + ), ;4_'([]<s) Yo, 1™ (93)

Several of these relations have been derived in G.N.P., but only for in-

tegral, non-negative values of 1.

10. Another application of the N-polynomials may be made to the gener-
alized Laguerre polynomials Li*(x)!. We put, in (40)%

_ v (l + S—])q(:) (z). ] (95)

In order to show that this polynomial, after multiplication by a suitable
constant, is a (generalized) Laguerre polynomial, we observe that we have here

0 . & : ot
0= m—l whence ;= - so that, since [ = t t—I e (59) becomes
(1 + ¢ eﬁi:ZSINL”(x). (96)
+=0

'PoLYA und SzEGO: Aufgaben und Lehrsiitze aus der Analysis, Il p. 204. These authors
write LL“) (@) while I prefer LE,“] ().
t P, (98).
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Comparison with the generating function of L% (x) shows thereafter that
N o) = (101 i a), (97

We may now write down a number of results, several of them already
known, for Ll*(x).

From (95) we obtain

1) = s Do ]

. (98)
13 .
=2 (=) (a : I) 9\ (x), [
s=0
and (96) is written
(14 et e = 3 (—1) L L9 (). (99)
v=0

Puatting x = o in this, we find, on expanding the left-hand side,

Ll = (“ ': ”). (100)
From (42} we find
D L) = — Li=t1 () (101)
and from (41)
D

—" 1 Lo (z) = — Ll (x) (102)

or )
D L% (x) = D Li# | () — L (). (ro03)

Hence, comparing (103) and (101), we have
Lis+1) () = L9 () — D Liv) (z). (104)
By (53) we obtain

L + 9= 3 g e, ), (105)
§=0
whence, for y = o0, by (100),
L9 (x) = 1% i (—1)° (Z) (@ +v—s)"—9 g, (x). (106)
s=0
Similarly, we find, by (54),
1z + )= 3w g ) (107)

s=0
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and, for y = 0, the well-known explicit expression

L) = 1 3 (= 1y (2) w4 )i, (108)

The binomial theorem for thé Laguerre polynomials is!, by (70)

Lietf+1 (g + y) = 2 Ll (z) LI? (). {100)

By (98) we have

D) ="V ), (110)

showing that ¢,(z) is, apart from a constant factor, a special Laguerre poly-

nomial.
Putting now = —a— 2, we find, from (109) and (110},
(e +y)=(-1) v'Z’L[“] x) L2 (y). (111)
8=0

Putting y =0 in (111), we obtain, by (100),
. a+ 1
@ =341 1) o (112)
&=0

an expansion of ¢,(x) in Laguerre polynomials, which expansion may be regarded
as the inversion of (106).
A similar expansion is found by (98), writing this formula

qv (@) = (—1)»! (1 — D)=t LI (x), (113)

whence, on expanding and applying (101),

x\—v'z ’+*(a+s)L£,"$”(m). (114)
Putting ¢ = 0 and writing » —s for s, we have the simpler expansion
gv (@) = #! D (—1) LI~ (). (115)
§=0

! This result shows that it would be more consistent to define the Laguerre polynomial as
el (@) = Lo (),
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If, in (109), we put = —1, we find, by (110),

_ v (_l)v——s
{a] 3y = {a]
LWz 4 ) ;;0(” — 3 Li*l(z) g, —s (y), (116)
or (105) in a different notation, whence, for y = — x, by (100),
a+vy . (*l)"“" (a] N
(*)7) = 3y we a2 (117
Finally, we obtain from (109), for y =o,
gt () — 1“”—8) ol
Llets+1] (g) s%')( s L (). (118)
For a = — 1 we bave again (106), with 8 instead of «.

11. An extension of (1) is P. (23) which may be written, by a change of
notation,

x?=x (g—)vxfl—l. (119)

I

A consideration of this formula, which allows to obtain one poweroid from an-
other, leads to examining the polynomials M (z), defined by

" 0\4
MU () = (H) oy (120)
v - \&:
and analogous to the N-polynomials defined by (40).

In this notation (119) may be written

= a MU (2), (121)
in analogy with (4).

Owing to the relation P. (17), or
O v +il—1 = g, (122)

where ¢ = a number of relations for M4 (x) may be obtained with great

6
D
ease from those for N (x). We need only observe that, performing 6 on both
sides of (120) and applying (122), we have

; :
0 MH () = (*g-)/ 0 g Fil-1 = (g) x
I

or
¢ MU () = N (z). (123)
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Since, now, 8’ contains a constant term, the operation % is completely de-

termined and may be performed on both sides of (123), the result being

MY (@) = 5 N (3). (124)
This shows that relations implying M (z) may be obtained from those for

NW(z) simply by performing ~ on both sides. Thus, for instance, we obtain

g
from (41) and (42)
O MW (o) =» M (), (125)
Oy MU () = » MU=1 (). (126)
Further, since, by (122),
%.x;l-_—_xv+l—l, (127)
we find, by (51) and (53),
(4] () e S (” T 1-1 N4
‘Z”v (27) bzz(,) (s) s+ -1 Nv_s, (128)
M@+ y) = 3 () o N2 ). (129)
=0

If, in (53), we operate on y instead of on x, we find

W+ )= 3 () A M0, (130

8=0
and if, in (54), we act .on », we have
Mo+ ) = 3 () e i ), (131)

$
§=0

These are the expansions of M (z + y) in the poweroids x4 and xf_‘
For y =o0 we obtain the corresponding expansions of M (x), viz., writing
M = M o)

1 )= 3 () A ms,, (132)
§:=0
() = S (7 o e
JIV’ (w)—z § Xy M[:—ss]' (133)

$=0
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Since the definition (120) assumes that z*+1-1 is known, the constants
o**1—1 are also known, and we may express the M-polynomials by the N-poly-
nomials if, in (129), we put x = o, and, thereafter, replace y by x. The result is

v

. y — B .
1) = 3 () o1 M (o). (134)
=0
Putting =0 in this, we have the constants M!# expressed by the con-
stants N[,
From the binomial theorem for the N-polynomials, or (70), we find, per-

é‘,‘ on both sides

forming

v

MU+ (g + y) = Z(

&=0

14

") a0 o) ¥, ). (135)
This is, however, not strictly a binomial theorem, since both M- and N-func-
tions enter on the right.
Since, by (120),

MO (z) = @r+1l-, (136)
we obtain from (135), on putting u= —1,
DL AT~ — o (*\ ar o) N4
(et g =3 () arg o 4 . (137)
and hence, for y = o,
w1 —1 =— W‘ v [4] A/T’—/‘J. )
v 1 é}(s) M# () Ni—% (138)

¥ this is used as recurrence formula for M (x), we want M| (x), which
may be found by (124) and (74), thus:
1

. 1 R
7 Nxb,.z () - e

MU (i) = S S—
Hov k¥ 2k D+ -

or

MM (x) = - (139)

We may also note the formula obtained from (135) by putting y = o, viz.

v

MLHM (x) = 2 (:) M[sl} () N;/i (140)

{=0
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whence, for x = o,

L4

M+l =N (’;) MANM . (141)

8=0

Recurrence formulas for M!4(x) are obtained from (130) and (131) by put-
ting x = —y and thereafter writing = for y. We need not write them down.
The question of the generating function of M4 (z) must be considered in-

dependently, because we may not apply @I— to the two sides of (59), since they

are not polynomials. We proceed as follows.
Differentiating the relation P. (34)

< 2,
=R (142)

r=0

with respect to , the result may be written

avt+1i|— ‘Y
d; Z (143)
We now find for the coefficient of {” in the expansion of @(( )c”fl—z, where
‘D(C) == 3 ("P va
r=0 —
d prt1]—1 I -
chv—x ..S‘! 2;‘?@(0)1)"_}']'—1
=0
Hence
; xt’_l__t-_—_- o Q v+1]—1
ol e at goy!‘p(o)fo ) (144)
where ¢ and — throucrh the relation { = @ (t) are regarded as functions of {.

dC

If, now, we choose

el = (qnc(’;'))l' 20 =(g).

we have the generating function of M4 (x)

BRSSO § SR

Putting « =0, we obtain the generating function of M, or

L dt °°1Z” ;
((PI (;)) dT Zﬂ'ﬂ M. (146)
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12.  Examples of the polynomials M4 (zx) may be obtained from (120) on
inserting any poweroid, or from (124) when N (x) is given. In certain cases
the M-polynomial is, however, only an N-polynomial in a different notation.

Thus, for instance, if we choose 8 =A, 0;= A, we find, by (44) and (124),

since 6" = P = Eo

NW(z) = a2

Wi

M () = (2 — o)

wi?

so that MW (x)= NW(r—w). These M-polynomials therefore only differ from
the corresponding N-polynomials by a displacement of the variable, and several
of the M-relations are, therefore, really N-relations. A noteworthy result is,
however, obtained by (121) which shows that z(x — )’ ! is the poweroid cor-
responding to the operator A. We have, therefore

) = z(r — w)=? (147)

wv?

which may also be written

'1;:), r+1 = ('1" +w - I)(IN)' (148)
In the Ilatter form the theorem wus proved Ly a wmore eluborate method in
G.N.P. (38).

D

Again, putting GZITIS’ 0 =D, we find, by (g7). (95) and (124), since

N (g) = (—1)»! L= (), M (x) = (—1)»! LU~ (z),

so that M (x) = N@=2(x). Here, too, there is therefore only a question of
notation.
Since, then,
MO (z) = (—1)v! LM ()
and, by (120),

1
ME.O] (x) = ;L‘,tlv+1 (1)

we have
gol®) = (—1) ="y — 1)l LM (),
or P. (100).
But let us now consider the poweroid P. (44), putting

0=ZE—F),  al=ole—va— g (149)

o~
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1f
b= (B —1), =gy, (150)
we have g-zE"‘, so that, by (40) and (149),
I
N (x)=(x + el)(x + ek —va— By~ (151)
In this case
0 =l + § B+~ B, (152)

but the reciprocal of this operator is inconvenient, so that, instead of using (124),
we apply (120), the result being

Mi(z) = (2 + ek —0 + Da—p) (153)

It is easy to ascertain that this polynomial together with (151) satisfies (123).
The M- and N-polynomials are here really distinet.



