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ON A SYSTEM OF DIFFERENTIAL EQUATIONS LEADING TO
PERIODIC FUNCTIONS

BY

H. ¥. BAKER

of CAMBRIDGE (Engl.).

The present paper contains an elementary algebraic deduction of a
system of differential equations satisfied by all the hyperelliptic sigma
functions which, as is believed, were first stated, but without demonstration,
in the Proceedings of the Cambridge Philosophical Society, Vol
IX, Part IX, 1898, p. 513. In that note will be found indications of
a method of solution of the equations in connexion with the theory,
considered by PicArD, of integrals of total differentials, and of a method
of obtaining from them the expansion of any sigma function, and of
their use, in case p = 2, for expressing the geometry of KuMMER’s sixteen
nodal quartic surface. The establishment of a theory of the sigma func-
tions directly from these differential equations would appear likely to be
of the greatest suggestiveness for the development of the theory of func-
tions of several variables. It is from this general point of view that the
equations appear to the present writer to be of peculiar interest; though
their simplicity would also recommend them merely as a contribution to
the theory of the hyperelliptic functions.
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136 H. F. Baker.

I.

Let (#,9,) ... (x,y,) be pairs satisfying the equation
y* = f(z) = 4P(2)Q(2),

where
Plr)=(x—a)...(—a,), Qz) =(x—=¢c)...(@&—c)e—c);
let
Flg)=(@—uwx)...(z — x,), F'(x) =d—diF(x),

and, ¢, ,¢,, ¢, ... being undetermined quantities, let

— A=A
Z (ec— a:,)F ()’ A, = e&—e
so that
(82 _ea)Azs + (ea - el)A31 + (ex - ea)An =0
(62 - es)(e4 - el)A23A41 + (83 - el)(eA - 32) A:nAu
+ (6, —e)e,—&)AA,,
put further
f(e) = ¢,
[F(e)? )
and
L = (e, — e,-)’A?; — @i ¢
also let
Api(B) = @ — By @ o By — L (— 1)P Ry,
so that
F
8 — o (@) + () F - F (),

h, being the sum of the homogeneous products of z,...x,,
repetitions, r together.

without
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We assume in this paper that u«,...w, are arbitrary variables, and
that the pairs (z,4,)...(x,y,) are determined from them by the p equations

1 i d

x,
™ ldx 2~ ldz
f Yy + LR +f y = um r=1,..,p

™,

where the lower limits denote p pairs satisfying the equation y* = f(z),
to be chosen arbitrarily and kept the same throughout the following in-
vestigation. It is further assumed that any rational symmetric function
of the pairs (2,4,)...(,¥,) is a single valued analytic function of w,...u,,
Such a function has in fact no essential singularities for finite values
of uy...u,.

It is proved at once that

dn, = 3 [y el ],

r=1 '

and therefore

T Y Yy, 1 () )
u, F'(xi))(p—r(ﬂ?i), u, mep—r< i

we put further
r
?
3’.‘_1 — ..
Z o ou, 1
r=1
Now consider the expression

H — E_F?(e )F?(e )A22__F(61)P(ea) - F(en)P(ex) F(el)Q(ez) — F(BQ)Q(eI) .
2 1 2] A . ;

€ — €& €, —6

it is easily seen to vanish when e is replaced by x,; it is therefore an
integral polynomial in ¢, and e, dividing identically by F(e,)F(e,).

Take a symmetrical system of 51 p(p + 1) constants c,,, of arbitrary
values, and put '
. p» P
(e, &) = 4[P(e)Q(e) + Ple) @(er)] — 4(ei— 82)212:1 #gl eper e,

so that the expression

2 4 < — —_ 1 F 2 2 F 1
fles, &) + 4(e, — e;) Z:“E cmei 1gpt —f(elv)'(ef)e )hf(e[g(ef)e )
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is equal to
__4[F(e)P(e,) — F(e,) Pe,)lIF () Q(e,) — F(e,) Qe )]
Fle)F(e,)
then the quantity
H » P
0= — X Yo e et

F(el)F(e,) A=1p=1

18 equal to

F
(T T AL + ool o) — Ml g — o) 523

which is therefore a rational symmetric polynomial in e, and e,, of degree
(p — 1) in each, of which the coefficients are rational symmetric functions
of the p pairs (z,) ... (z,y,).

We may therefore define ?Iz p(p + 1) single-valued analytic functions

of the variables w, ... u,, without essential singularity for finite values of

these variables, by putting
P 7
I/ — 21 Zl g)m(u)eﬁ—le';—l.
A=] p=

These functions depend on the -p(p -+ 1) arbitrary constants c,,, but only

additively; and they depend on the p arbitrary fixed places denoted above
by m,...m,, of which the alteration is equivalent only to the addition
of constants to the arguments u,...u,;, moreover they satisfy the equations

Solﬂ(u) = 50#1(“)‘
We shall put

agom(u) o 383)_#,(“)

pluV(“) ou, ’ Solﬂw(u) - u,

and it will be found to be an incidental consequence of the following
work that in all the functions @,, (%), ¢,,,(%), the order of the suffixes
is indifferent, or @,,(v) = @,,.(u); ete.

The definition of the functions @,,() is equivalent with

P
4{e,— &)’ E‘PZ___:‘S?).,;(“) ey —fley, €) = F(e) F(e,) Ly,
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where, as before,
2 2
2, = (6 —e)AL—a¢ &,.

To this equation we apply the operator

Recalling the values of dz,|3w, and dy,|2, we find easily

é\F( ):~F(61)A =2¢1A13

1 b
F(es) 139 Fle,) 03¢
with some calculation, of which the details are given below, we find

I s A = £(61 — &) Al — (€, — €) Al

Fle,) 03845 = 3 ¢ e,
i Pe s
+ 2(e, —e,)e, —e,) + 2(e, — e,)e, —ey) + 2(e, —e,)e, — e,)’
which gives
I A
Fley Fley ey 2[4 F (@) F(en)]

1,2,3
= (e, —¢,) A]?[(el — e) Al — (6a — €;) AL 4 (6, — &) Z 2(e, — :)‘(e ___es)]

— 20, Ag; — 20, Bys — (Ayy + Ayll(er — &)’ A, — ¢1 — ¢4,
and in virtue of
(e —e) Ay + (65— e) Ay + (6, — &) Ay = 0
“this reduces to

0,9, F(e)F(e,)]
(81 - 62)’F(81)F(62)F(€3)

-— AZS Asx AIZ + (62 b es)?l Aes + (33 ‘—‘;l)sﬂ,A“ + (el — eﬁ)spaAn
where
Byyy = (6, —¢,)(e; —¢))e, — &)

We thus deduce that the expression

P ? »
W@)F—( E:El El e ale
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is, for all values of e ,¢e,, ¢, equal to the expression on the right side
of the last written equation. As this is symmetrical in ¢, ¢,, ¢, it follows
that in @,,(u) the order of the suffixes is indifferent. It is not possible
to express the functions g,,(u) rationally in terms of the functions @,,(u);

it is a consequence of what follows that the squares and products

P (W) 5 P20 (W), (10)
can be so expressed. We proceed therefore to further apply the operator
-
=Y,
to obtain the expressions for p,,,(u).

Before doing this we give the calculation referred to above to find
the expression for

I ~
Fle,) 034,

we have

? ’_‘/k] I (=) () — 2

u, | F'(21) 2[F (-'l‘k)}’xp—— (F" ()] ou F(x,)]

=1

(k) y| u _I
—; F(a:) P'—’(x) k‘—xz}

_ I @) Y Ys w_ 1
2 PP o)~ F ()| Flag bV 02 e —

P
where zl‘k) is a summation from which the term for ¢ = k is omitted,
1=

so that

therefore

Gl 7 S S _ e F @),
au,[F’(xk) —E[F'(xk)]“[p""(x") 2 [F(zo)] ,(p_,.(xk)

i(k) Yi  fo—r(Z).
F'(z) = F'(x) 2 — x;’
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hence
I Yk 1 (@) F' (@) — f(2) P (xk) Z(k) Y
F(es) 3 [F (xk)] 2 (e, — )l F' (ap)}? F'(xk) (e,— 1)@y — 2 F'(s)’
while
Y f(zx) F(e,) + I [ Ye 7.
3(8 —an)F(m) (6 — a0'(e, — ap [ F (@) ' & — @ *LF ()]’
wherefore
I £
F(es) L [(e —x;,)F (zx)
— i 1 f(ac) B () — f(@) B () f(zr)
< |2 (6 — ae, — a)[F'(@)]® ' (e— wn)* (e, — x)lF (@)’

(k) Y
;: (e, — xk)F (zx) 2 (e, — z:)\@w — x) F” (xi)’

herein the second term of the right side, arising in a form consisting of

p(p— 1) terms, is in fact a sum of é p(p — 1) terms, namely equal to

ii YiYi (65— @ue,— @) — (6, — #ife,— %)
7, = (e — @ie,— ) F(wie, — zile, — 2) F' (@)

X — Xi

wherein % == ¢, and therefore equal to

Ez (& — e)Yryi
< = (e, — zale, — xp) F (wp e, — ziXe, — @)F"(20)

or

N T flaw)
iy (6 — el){[zi (e, — xk)(e — xk)F (xk)J L};{ (e, — xx)*(e, — xk)z[F’(wk)]s} .

Thus
1

I
m63A1 =3 (6, — ) AT,

LS (F @) F (a)— f@)F" (2 | (e, + €, — 2a0f(a)
+ 2 ;{ (e, — X, — 2 F" (z)]® + (e, — zx)*(e, —— @)’ [F" (ar)]" }
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which i1s the same as

I I & I 3 flxx)
A R OL S D I et frres ey i &

This gives

1 o . 1 (ex - eg) A?B - (e-) - 83)A§3
F(es)o3 A = > e — e,

19 fz) )
+3 ; F'(x) 5;,6[ e, — &xXe, — TiXe, — xk)F'(wk)]’

now if R(z) be a rational function of z not becoming infinite or zero
for # = =, it is easy to prove that the coefficient of (x — z,)~' in the
expansion of R(z)|[F(z)]’ is equal to

19 R(xi)7.
F'(.’l)k) oLy [F,(xkil'

thus, applying the well known partial fraction theorem

f(2) ) dz] _ o
[(el — z)e, — xXe, — o) F ()]’ dt]rl-— ’
we find, finally, as stated above, that
2 9 1,2,
1 [N AI? _ {(ex_eg)Axa—(ez*eg)A%_*_ I Z [<h

— 0 f— .
F(ea) 3 2 6 — 6 (el - ez)(el - 83)

N

Proceeding now to apply the operator

(‘)\4:

-

°
e —
¢ ou,

I
—

»

to the equation before proved

p P P
4 21—l gyl
Fle)Fle)F(e.) 2 5 E pwlu) a6

[ n
= ApAg Ay, + > ¢ (62 — 33) Ay,

6123
we have at once, by use of the equations

0. F(e) = — F(e,) F(e,) Ay, dig; = 2Fe)p Ay

1,2,4

N R S

€ — 6 Wqy

¢ (e — 34)}

1
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the result that

p » P

4 : —1 v—1 z0—1
_I«(el)F(e,)F(ea)Fe)ElElElp:lW“P(“) e

is equal to
1,2,3 1,2,3

— (A + A24+ A34)[A23A31A12+ E @1(€2— ) A23]+ Z ei(e €,— €5) Ags Ay

_ - 2,3,4 -
I I — n—(&;—e)A%u RS

+ 2 _Au A+ B (32“83)_ b(eg 64)A82_S: A &, 2z (32—33)594J
1 1 Te—e)An—(e,—e)AL  1%% l

+ 2| Bnla @, @y(es — el)_ i —t ;:_ el' = 5_); )2 (€s —el)fot
g I e, —e)AL—(e,—e)AL 1 ]

+ 2 _A31 A32 + @, (el —“82)J _<e‘ )Ael ——<eg A @ Z (81—32)¢4J )

124

by means of the identity
G —e)du + (6 —e)Au + (6 —e)A; =0
the right side,‘ multiplied by — 2, reduces to
ALALALA + ALALALA, + ALALA LA,

1,2,3,4

_Z%[(e AjA +(eh Ak Aji + AwlAy J

r— e,)(e;, —ep) —een—e)  (en— €)er— &)

1,2,84

ongi + @igr
+ Z (i — e;)Xe: — ex)en — e)en— ex)

If now we put

M= (62 - 63)(63 —¢ )(31 _ 62)(64 —¢& )(64 - 62)(64 - es)) Aij = (ei - ej)zAzi

and use the identities

1,2,3,4 1,2,3

2 (e,—e)e,—e) A, A, = 2 (e,—e,)A,, =0,

we find that the expression above, multiplied by M, can be written as
the sum of three expressions of the form

(€, —e,)le,— )[A Ay —A(e- + 9,) — A, (0, + ¢;) — (5025”3 + 504501)]
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which is equal to

(62 _*63)(84 - el)[()‘n ¢y ¢3)(A41 — ¢, 551) - iu(fpgfps + 504501)];

thus, with
Qy =ty — ¢:i— ¢

we finally have the formula
D

8(e,—e;)(e,—e,)(e,—e,)(e,—e, ) e,—e,)(e,—¢,) % Zp: i > P20 (%) - e et e et

l=lp=1v=1p=1

= es—eea—e)| 16y, 6)— a6 — ) T T g (w)eiter

B P P
e, ) —ale,—e) T T () ter

- P
+ (63 _81)(64_62)_f(63 ’ e:) —4 (e., —-61)2 Z fal,u<u)e§_lelli—l

.

v P
f(e4 y 62) _4(64_62)2 Z z 97).,'L(u)ei_le§—1J

- i=1p=1

+ (61 —62)(64—83) f(el ) 62) - 4‘(61 - 32)2 i é Soly@‘)e)lv—le"lk‘ﬂ

- rA=1n=1 n

fler, e) — ale— e Z T puwpei e

which, to save repetitions, we shall refer to as the fundamental formula.
It is clear from it that the functions @,,,(#) have values independent of
the order of the suffixes A, u,v,p. It is also clear that the arbitrariness
in the lower limits of the integrals by which «, ...z, were initially de-
termined from w,...w, equivalent as it is only to arbitrary additive
constants for the arguments w,...w,, is of no importance, and that,
similarly, the arbitrariness of the coefficients ¢,, in the definition of the
polynomial f(z, 2), cancelled as it is by corresponding arbitrary additive
constants for the functions g,,(«), is of no importance.

The above work has been carried out on the hypothesis that the
hyperelliptic equation %’ = f(2) has no term in z**’. By putting
4 o A 4 (& —apr

E—a’ i g‘-'.-——a’ i Ei—a’ /i H b
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Where A and « are arbitrary, and, with A,,,, arbitrary,
H*=—4a,...0, ...60C| .,
we easily find the corresponding results for an equation
7 =ty —a)f—a)...E—a)l—nE—n) .- E—r)

I have carried through the work, which, though long, is not difficult.
It will be sufficient to state the result, which may therefore be reckoned

equivalent with the former, or can be directly proved in the same way.
Let

Y = Ay P(2) Q) = f()
where

Pa)=@—as—a)...6—a), Qa)=(@—d@—0c)... (6—c);

let w,...u, be arbitrary variables, and z, ..., be thence determined by
means of

Zx
»r
zfx"_ldx__u
— Wy r=1.p
=1 y
my )

and put
RB(z)=(@—a@—n)...@—21), &) =/[(o)|[B@),

P
— Yi )
Vi = ; (e, — i) e, — zp) B (2x)’

further, taking ; p(p -+ 1) arbitrary constant coefficients c,,, define, for

undetermined quantities e, , e,, the function f(e, , e,) by means of

f(el ’ e?) = A2p+2 [P(el) Q(62> + P(ea) Q(Q)) - 4'(81 _62)2; z CA;Lei—le';—H

=1p=1

then, if we define ; p(p + 1) functions @,,(%) by means of the equation

4 4
4(e — e)? El ’El () e —fler, e)
' R(e1)R(er)

= (6, — €)' Vi,— &(e;) — ?(es),

we shall arrive at an equation having precisely the same form as the

previously deduced fundamental formula.
Acta mathematica. 27, Imprimé le 5 janvier 1903. 19
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This second equation being regarded as deducible from the former
by the transformation suggested, the functions g,,(u) occurring in it are
not identical with but linear functions of the former.

It is easy to see, as is well known, that the polynomial f(z, 2)
satisfies the two conditions (1) of being a rational polynomial in z and z,
of degree p-4 1 in each, and symmetrical in regard to them, (2) of re-
ducing to 2f(z) when 2=, (3) of being such that

[af(x, z)] _ (=)
2z t=z dy
the condition (3) being a consequence of (1) and (2); and that conversely
any expression satisfying these is included in our form above by suitably
choosing the constants ¢,,. This is so whether f(z) is of order 2p - 2
or 2p+ 1. If we write f(x) symbolically in the form a2*? one possible
form for f(x, z), considered by Prof. Kirix, is 2a2*'a?*'. Another form
(suggested by an identity due to ABEL, see the present writer's Abelian
Functions, p. 195) though not invariantive, appears to possess great sim-
2p+2
plicity for purposes of calculation, namely putting f(z) = g A%" we may
r+1
take f(z, 2) = Eofv‘z‘[zllz.- + A (@ + 2)}, with 2,,,,=o0. It will save re-
petitions to refer to this as ABeL’s form for f(z, 2).

If we suppose A,,,, =0, A,,, =4, and take this form for f(x, 2),
the equations which express (z,y,). .. (%,%,) in terms of u,...u, are given
at once in a simple form by the formulae above. From the definition
formula for the functions g,,(u), dividing by €*', putting e, = 0o, and
then e, = x,, we find that x, ...z, are the roots of the equation

o' — 2" P (u) — 2P @, () —. .. — ¢, (u) = 0O;

while, taking the formula

14
— 2 XX Pr(u)ei e et

1,2,3

— Fe) Pl Fle)| Apdnd,, + ZPE =50 |

w123
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we obtain, for the right side, after dividing by e}~ and putting e; = oo,
the value

—4F(e,) F(e,)A,;
if we now divide by &
we find that

Y= xf_lsoppp(u) + xfﬂgsop,p,p—l(u) + et + prl(u)°
The fact we have proved, that g, (#) = @u.(«), shews that
Pan(w)du, + ... F @, (u)du,, = —d(u), say,

18 a perfect differential; in the present order of developmeﬁt the study of
the character of the functions {(u) is subsequent to that of the differen-
tial equations. From

and put ¢, = 0o, and afterwards put ¢, =uz;,

ol (u)

o

ol (u)
qu(u) g’l,(q
follows that

Glu)du, 4 ... + & (u)du,

is also a perfect differential. If we write it equal to dlog 6(u) it will
be found that the differential equations naturally suggest the consideration
of 6(u) as a dependent variable, and that they are satisfied by the hypo-
thesis that G(%) is an integral function.

Note. 'The formula for the functions g;,(%) which is made the basis of this paper
was first given by Borza, Gott. Nachr., 1894, p. 270. A deduction from the theory
of algebraic integrals was given by him, Amer. J. of Math., XVII (1895), and, inde-
pendently, by the present writer (Abel. Functions, Cambridge, 1897, p. 329); see also
BAKER, On the hyperelliptic sigma fumclions, Amer. J. of Math., XX, 1898, p. 378,
and Math. Annal., L, 1898, p. 462. For the equations of this paper, without de-
monstration, but with indications of their application, see Camb. Phil. Proc., Vol. IX,
Pt. IX, p. 513, September 1898. The expression for the functions {3(#) in terms of
algebraic integrals are given in the writers Abelian PFunctions (pp. 321 and 195). The
present development is complete in itself, and requires no previous study of the associated
RiEMANN surface, if the simple case of JacoBr's theorem of inversion which is utilised
be assumed. But, if we allow the formula which expresses a theta function of any
characteristic, not necessarily half-integral, by the addition of certain constants (parts of
the period system) to the arguments of a theta function with zero characteristic, we see
that the equations are satisfied by sigma functions of quite arbitrary characteristic.
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11,

We consider now, as next in logical order, the algebraic problem of
forming the explicit differential equations from the fundamental formula
above established, obtaining them by way of example for p=2 and p=3.
The method followed can be regarded only as provisional. Not only is
the question how far some of these equations are deducible from the others
left unconsidered; but the isobaric character of the equations, remarked be-
low, which promises a general rule for writing down the equations for
any value of p, remains not utilised. The present deduction has however
great simplicity and some algebraic interest.

The following notation is employed:

The quantities before denoted by e ,e,,e,, e, are denoted respectively
by z,y, 2, ¢ and so

M= (y— &)z —a)z —y)(t — z)(t —y){t — 2);

a summation extending to these four letters is denoted by S; so that
for instance

Sy—2ft —af =@ —2(t—2) + (¢—2)’(t —9)’ + (e —y)'(( —2)";

further we denote the symmetric function S(2*y°2’¢°) by (af8yd), and the
sum of the homogeneous products of z,y, 2, ¢, including repetitions,
a together, by H,, so that for instance H, = Sx*+ Syz or H, = (2000)
+ (1100); and we denote by |afyd| the determinant

Iaﬁrdl =|H, H, o, H;
H, , H,_, H_, H,
H_, H, ., H , H_,
H_, H,_, H_, H,,|,

where H, =1 and, when n is negative, H, = 0; similarly in what follows
quantities usually arising with positive suffixes are to be put zero when
the general rules would give negative suffixes;
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we shall need to consider the coefficients (af) arising in the product
N41 V41
O,(@,y)=(@—y) 0,y) = (&—y) E Z B0y = — 2 X (af)a’y

a=0pf= a=0 =0

wherein @(x , y) is any rational polynomial symmetric in # and y so that
Qo = g, and
(aﬂ) =51 Bay,p)

for which (af) = — (fa), (¢f) ==0; and shall meet with the Pfaffian forms

{aBrd} = (af)(r0) — (a)(B0) + (ad)(Bp);
it is easy to see that when the polynomial @(x, y) is the Abelian form

p+1

Eowiyi[ﬂ% + Ay (® 4+ 9)]

all the quantities (#8) are zero in which the difference of « and £ is not
1 or 2, and that

(a’ a+ I)=2A24,' (a; a+ 2)=A2a+1;
similarly from two such rational symmetric polynomia.ls
N N
— @, .8
O(wy) = X 2 aga®y’, Pz, y) = azoﬁzoa oy’

we shall form the quantifies
{00’} = ()Y &) — (ap)(f'0") + (@0)(BT) + (ro)@'B’) — (BO)aT’) + (B)(e'd’

reducing, when @, =a,, to 2{afrd}; in particular when the first poly-
nomial is the Abelian form above and the second is

p—1p—1

(z—y) PP Fat1,541% 7,

a=0pf=0

that is

p+1p+1

ago ﬂ§0 (Soa—1”5+1 - zsoa,ﬁ + pa+1,ﬂ_1) w“yﬁ,
then («f) is as before and

(a'ﬂ ') = — (5")1;—2, g1 301,58 + 30, 5—1— 50a+1,,9—2),

functions @,, with negative suffixes being, as explained above, put zero.
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The forms just explained arise naturally in the problem of expressing
the quotient

1
— 2 Sly— 2t —2) Oy, 2) 0, 3),
which is an integral symmetric polynomial in z,y, 2z, ¢; it is equal to
. .
ﬂ'[¢1(x)y)¢1(z’ t)— (bx(z; z)ml(yi t) + @l(ﬁ, t)¢1(y7 Z)],

and contains the term

I e,
2 Ty 7t {afrd},

and is therefore equal to the sum, for all combinations four together of
the unequal numbers a, 8, y, 0 chosen from the set o... (N4 1), of
the expressions

ﬁ * ¥ o 2°|{afro},
¥y vy

P S

A A
that is, as is well known, of the expressions

| apro|{agrd}.

In precisely the same way the expression
— 5 Sy — 2t —a)| 0y, O, 2) + Ot )y, )]
is equal to the sum of all possible expressions arising of the form

|2Bro|{afr'd’s-

Returning now to our differential equations, and writing for brevity
fi,=1Ffx,y), etc., the suffixes 1,2, 3,4 being respectively associated
with ©,y,2,¢, and f(x,y) denoting as before a rational polynomial
symmetrical in %, y, of degree p + 1 in each, for which f(x, z) = 2f(x),
and writing further

p—1 p—1
P, = ago ,9§o Par1,p+1 Y,
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the differential equations can be put into the form

A, v, p

e
8 2 (A“— I, p—1,yv—1I1,p— I)[solpwp_“ 2(5010.80;»1 + P o + m%v)]

—S(y_z)( )fasfu (y—-z)( )[fzs(t 41 +f41(?/_3)2P23]

237 41

+%E%ﬁ%ﬂ—@PP
wherein

H= éS(y-—z)”(t-—x)2= (2200) —(2110) + 6(1111)

and the summation on the left extends to every combination of four of
the numbers A — 1, p—1,v—1, p—1 from the set o...(p—1). We
are to express the right side in terms of the symmetric functions («fyd)
and equate coefficients of these on the two sides. The form of the
fundamental formula here taken is recommended, not only by the simpli-
city of the right side, but also by the fact that if we put

P = ———log 6(u), 6,=200) g 26

elLC.
du; Y QU ou; ! ’

the expression

I
Q)/vazsollzvp-' 2(8/’)/wsolp+sovlsopp.+ solﬂsopv)—‘:—_; { Avp T 26 GA;Lv+ Z pl}

involves only G* in its denominator ; when it is proved, as indeed follows
from the differential equations, that G(w) is an integral function, it will
be permissable to say that ¢),,, is a function whose (unessential) singula-

rities are such that G*(w)@,,,(#) is an integral function. We remark
moreover that if
3 3

then
507-/4(“) 262(M)A A 6( )6( ))

Q)./Avp(u) 262(’“) A).A A A 6(“) ( )

where, after differentiation, w; is to be replaced by w,.
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On consideration of the forms arising in the fundamental formula it
is immediately clear that if we reckon g,,(u) as of weight A4 pu, ©s,,(%)
as of weight A4+ pu+4v 4 p, and, in

p+lp+1

f(x 3 y) = % % aaﬂxayﬁ)

reckon a,, as of weight a4+ §, then the coefficient of the symmetric
function (afyd) on each side of the formula is isobarically of weight
a4+ f+7r+ 0+ 4. Thus the expression to be obtained for g@,,,(u) is
isobarically of weight A+ g+ v + p; for instance the function @,,,,(%)
can only contain terms of weight 4, and therefore, however great p may
be, cannot have more than a limited number of terms. While further,
the form of @,,, () being obtained for any value of p, its form for any
lower value, p,, of p, is obtainable by the mere omission of coefficients
a,; which contain suffixes a or B greater then p, + 1 and of functions
#:.() which contain suffixes A or p greater then p,. As before terms to
which the general rules give negative suffixes are throughout to be omitted.

We content ourselves here with forming the equations for p = 3.
In every form |aByé|, or {afyd}, we suppose a < g <y < d; the only forms
|aBré| arising for p=3, with their values in terms of the symmetric
functions (afyd), are

|o123| =1; |o124]=(1000), |o134|=(1100),
jo234] = (1110), [1234] = (1111);
Jor25]| = (2000) + (1100), |o135]==(2100) + 2(1110),
|o235| = (2110) + 3(1111), |o145|=(2200) 4 (2110) 4 2(1111)
|o245] = (2210) 4 2(2111), |0345|=(2220) 4 (2211),
|1235| = (2111), |1245]=(2211), |1345]=(2221), [2345]=(2222).
‘With the help of these equations we can arrange the expression
— Sy — 2t —a)fly , (¢, 2) = T |apro|{apro}
where

4 4
f(x b ?/) = % g aaﬁwayﬁr
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in terms of the symmetric functions (0000). .. (2222); for the expression
I ’
7 Sy —2)(t—=)P,,P,, = b3 |“ﬂT3|{aﬂT3} )
where
2 2
Pn = ? %pai—l,ﬁﬂxa?/ﬂ:
only one term arises, namely
[or23f{or23}" = (o1)(23)' —(02)'(13)" + (03)'(12),

wherein
(@B) = Par1,5— Pa,p415

so that the term is equal to

— (52910 — P51§22 + {031 — Pss11)

which we shall denote by — A.

For instance by equating the coefficients of (0112) on the two sides
of the fundamental formula we obtain the equation

8{P133 — 49120735 — 205a1,) = — {0235} — {0145}
+ 4{023'5'} + 4{o14'5"} 4 16{0123}’;
it will be sufficient to denote the right side of the equation by
—{o235} —{o145} + 4{.."}— 16A,

and so for the others, and the left side by [1223]. With these notations
the set of equations is as follows, the left column giving the symmetrical
function (afyd) of which the other terms in the same horizontal line are
the. coefficients: —

( [3333] = — {2345} +4{.."}
( [3332] = — {1345} +4{. "}
(2220); [3331] = — {0345} +4{.."}
(2211); [3322] =— {0345} — {1245} + 4.."}
( ]=— {0245} + 4{.."}

cta mathematica. 27, Imprimé le 5 janvier 1903. 20
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(2200); [3311) = — {or4s5} 4 4{ "} 4 16A

(2111); [3222) = — 2{o245}— {1235} + 4{.."}

(2110); [3221] = — {0235} — {o145) 4 4{.."} —16A

(2100); [3211] =— {or35} + 4{.."}

(2000); [3111]=— {or25}+ 4{.."}

(1111); [2222) = — {1234} — 3{0235) — 2{o145} + 4{.."} + 96A
(1110); [2221)=— {0234} — 2{o135}) + 4{.."}

(1100); [2211)=— {o134}— {or25}+ 4{.."}

(1000); [2111]=— {0124} + 4{.."}

(0000); [r111)=— {0123} + 4{.."}.

To calculate now explicit values for the quantities {afyd} we limit
ourselves to the hypothesis that f(z, y) is of the socalled Abelian form

flz,y) = 20: %x‘?/‘[2/12¢ + Ay (@ + ?/)],

where A, = o, the corresponding results for other forms of f(x,y) being
obtainable by adding a suitable constant to each of the functions g,,(u).
Then with the equations, remarked before, (a, a-+ 1)=24,, (&, a4 2)=4y 41,
we obtain, for the forms {afyd} which arise when p = 3,

{o123} = 442, —AA; {0124} = 244, {0134} =4AA, {0234} =24,
{1234} = 4,4, — AAg;
{orz5} =0, {o135} =241, {0235}=22, {0145} = 44,4,
{0245} =244, {0345} =0, {1235p=24A, {1245} =4AA,
{1345} = 24,4, {2345} =arA — 24,

To calculate the quantities {a'f'y'd’} we require the values of the
quantities

(“’,5/) =— (Wa—z,s-u — 3§a-1,5 T 3§a5-1— at1,5-2);
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those which enter are found to be given by

ot

o'y )=gp,, (©'s

4)=g,,— 305 (1’5
4)= 5
')

(0'r)=0 (0'2')=0 (0'3)=py, )
)
—20,. (2'5")=g,,
5
5)

’ ’

’

(2'3’)=4W13_3922 2

’

(o
(12")=—3p,, (1'3)=—2p,, (1
(
(

3'4 4)=—3@;;

‘ (3’
(4'5")=o0
From these we easily calculate the fifteen quantities {012'3'}...{234'5'};
for instance

{o12'3") = (01)(2'3") —(02)(1'3") +(03)(1"2) +(23)(0'1") — (13)(0"2") + (12)(0'3))
= 2%0(45013— 33922) + 2)‘1 212 + 2/12 #11-
When all these are substituted we find the following differential equations

Psess— O = — A+ gl At Pt h(49m— 39m)
P35 0P P33 = i Asds + A+ ;2/17(3 Ps1— ) + 2 Ao
331 O3 = A3t —é)wsﬂm + Apu
Psom— 4% — 2n@Pn=— ; Ao + %’155932 + A — 2178"21— 2Asp1s
P21 2012033 4P 13 = — i g + ;&5031

§3311—— 48031 2§13 = —2/10/18 + 2A

1

I
§73222—— 0290 793 =3 Adg— 4 Aoby— 2135033 + AP0+ A5z — 21175011

I R
221 412023 20213 g Mhy— ;‘ Mohg+ Mg —2A

‘ I
P 412013 2P P = — P Aohy + ; Asfa

Ps3111— O 11 Pa Ao§P33— % Asat Aoy
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P — 6% = — 3ok F 3 hoh— 3 h— Aks— 3D+ hofom
+ Ao+ A @ — 3/16-8011 + 12A
2201 — 631 920 = —‘i'hle_ ‘; Aobg— % Aoz -+ A2 + Ag§02 — ZI, /1584711

1 I
Poor1— 46‘7?2" 2400011 = —— ; Aohg— 2925 — > M§s+ gy + 2 Ay

P21~ 6911912 = — i Aoks— 240 + ”; M(3§231— @) + Aogony

Pun— 695 =1 Aoy -+ 1\111/‘13 + X(4931— 392) + A po 4+ Apn
2 8

wherein

A = Py — PuPn + P — Pupn.

Of these the last five equations give the proper equations for p = 2,
by putting therein ;=2 =0 and @y = @ = @, = 0; while the last
equation gives the proper equation for p = 1.

These equations put a problem: To obtain a theory of differential
equations which shall shew from them why, if we assume

Pau(u) = — & log 6(u) | du,0u,,

the function G(u) has the properties which a priori we know it to possess,
and how far the forms of the equations are essential to these properties.
It must suffice for the present to have stated the problem.

Cambridge (Engl), 14 February, 1902.
[15 August. In illustration of the remarks as to weight (p. 152), it may be
added that the equation given above for (»,,,, i3 true for any value of p, and that the

equations for the preceding four functions @,,,, @a;» 2321 » P2290 are true for any
value of p if we add to the right sides the respective terms,

for @,,,, the term 34,9,,, for @,, , the terms 4,(2p,, + @,,) + gllp“,
for ,,,, the terms
. 3
Ao(sole t 3945 — 38934) + 11 (Soxs + 2 S’]24> + )‘25914!

and for g,,,, the terms

10(4920 - 35044) + 21(4915 - 35934) + 4'115024 + 12<5911$924 - 8‘7188'714)']




