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PERIODIC  ORBITS  

BY 

G. H. DARWIN 
of C A M B I ~ I  D G E .  

w 1. In t roduct ion .  

The existing methods of treating the Problem of the three Bodies 
are only applicable to the determination, by approximation, of the path 
of the third body when the attraction of the first largely preponderates 
over that of the second. A general solution of the problem is accord- 
ingly not to be obtained by these methods. 

In the Lunar and Planetary theories it has always been found ne- 
cessary to specify the motion of the perturbed body by reference to a 
standard curve or intermediate orbit, of which the properties are fully 
known. The degree of success attained by any of these methods has 
always depended on the aptness of the chosen intermediate orbit for the 
object in view. It is probable that future efforts will resemble their 
precursors in the use of standard curves of reference. 

M r G. W. HILL'S papers on the Lunar Theory i mark an epoch 
in the history of the subject. His substitution of the Variational Curve 
for the ellipse as the intermediate orbit is not only of primary impor- 
tance in the Lunar Theory itself, but has pointed the way towards new 
fields of research. 

The variational curve may be described as the distortion of the 
moon's circular orbit by the solar attraction. It is one of that class 

1 Amer ican  J o u r n a l  of M~thematies~ Vol. I pp. 5--29~ I29--I47~ 245--260 
and Acta Mathematica~ T. 8 pp. 1--36. 

A~la ma~hemativa. 21 Imprim~ le 20 juillet 1897. 
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of periodic solutions of the Problem of the three Bodies which forms 
the subject of the present paper. 

Of these solutions M. POlSCAn~ writes: 
))Voici un fait que je n'ai pu d6montrer rigoureusement, mais qui 

me parait pourtant tr~s vraisemblable.)) 
))Etant donn6es des 6quations de la forme d~finie dans le n ~ 13 et 

une solution particuli~re de ces 6quations, on peut toujours trouver une 
solution p6riodique (dont la p6riode peut, il est vrai, ~tre trSs longue), 
telle que la diff6rence entre les deux solutions soit aussi petite qu'on le 
veut, pendant un temps aussi long qu'on le veut. D'ailleurs, ce qui 
nous rend cos solutions p6riodiques si pr~cieuses, c'est qu'elles sont, pour 
ainsi dire, la seule br~che par oh nous puissions essayer de p6n6trer daJs 
une place jusqu'ici r6put6e inabordable.~ 1 

He tells us that h e  has been led to distinguish three kinds of 
periodic solutions. In those of the first kind the inclinations vanish and 
the eccentricities are very small; in those of the second kind the inclina- 
tions vanish and the eccentricities are finite; and in those of the third 
kind the inclinations do not vanish. 2 

If  I understand this classification correctly the periodic orbits, con- 
sidered in this paper, belong to the first kind, for they arise when the 
perturbed body has infinitely small mass, and when the two others re- 
volve about one another in circles. 

M. POI~CAR~ remarks that there is a quadruple infinity of periodic 
solutions, for there are four arbitrary constants viz. the period of the 
infinitesimal body, the constant of energy, the moment of conjunction, 
and the longitude of conjunction. 3 For the purpose of the present in- 
vestigation this quadruple infinity may however bc reduced to a single 
infinity, for the moment and longitude of conjunction need not be con- 
sidered; and the scale on which we draw the circular orbit of the second 
body round the first is immaterial. Thus we are only left with the 
constant of relative energy of the motion of the infinitesimal body as a 
single arbitrary. 

1 M ~ c a n i q u e  C 6 1 e s t %  T. I~ p. 82.  

v ~ T.  I ,  p. 97  and B u l l .  A s t r . ,  T. I~ p. 65 . 

a 9 9 T. I ,  p. IOI .  
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Notwithstanding the great interest attaching to periodic orbits, no 
suggestion has, up to the present time, been made by any writer for a 
general method of determining them. As far as I can see, the search 
resolves itself into the discussion of particular cases by nmnerical pro- 
cesses, and such a search necessarily involves a prodigious amount of 
work. It is not for me to say" whether the enormous labour I have 
undertaken was justifiable in the first instance; but I may remark that 
I have been led on, by the interest of my results, step by step, to 
investigate more and again more cases. Now that so much has been 
attained I cannot but think that the conclusions will prove of interest 
both to astronomers and to mathematicians. 

In conducting extensive arithmetical operations, it would be natural 
to avail oneself of the skill of professional computers. But unfortunately 
the trained computer, who is also a mathematician, is rare. I have thus 
found myself compelled to forego the advantage of the rapidity and 
accuracy of the computer, for the higher qualities of mathematical 
knowledge and judgment. 

In my earlier work I received the greatest assistance from M r J. W. 
F. ALL~UTT; his early death has deprived me of a friend and of an 
assistant, whose zeal and care were not to be easily surpassed. Since 
his death M ~ J. I. CaAm" (of Emmanuel College) and M r M. J. BERRr 
(of Tr ini ty  College) have rendered and are rendering valuable help. I 
have besides done a grea t  deal of computing myself. 1 

The reader will see that the figures have been admirably rendered 
by M r EDWI~ WILSON of Cambridge, and I only regret that it has not 
seemed expedient to give them on a larger scale. 

The first part of the paper is devoted to the mathematical methods 
employed, the second part contains the discussion of the results, and the 
tables of numerical results are relegated to an Apperidix. 

1 About two thirds of the expense of these computations have been met by grants 

from the Government Grant and Donation Funds of the Royal Society. 
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P A R T .  I. 

w 2. Equations of motion. 

The particular case of the problem of the three bodies, considered 
in this paper, is where the mass of the third body is infinitesimal com- 
pared with that of either of the two others which revolve about one 
another in circles, and where the whole motion takes place in one plane. 

For the sake of brevity the largest body will be called the Sun, 
the planet which moves round it will be called Jove, and the third 
body will be called the planet or the s'~tellite, as the case may be. 

Jove J, of unit mass, moves round the Sun S, of mass ~, in 
circle of unit radius SJ, and the orbit to be considered is that of an 
infinitesimal body P moving in the plane of Jove's orbit. 

Let S be the origin of rectangular axes; let S J  be the x axis, and 
let the y axis be such that a rotation from x to y is consentaneous with 
the orbital motion of J .  Let x ,  y be the heliocentric coordinates Of P,  
so that x - -  I , y are the jovicentric coordinates referred to the same x 
axis and a parallel y axis. 

Let r denote ST', and 0 the angle JSP; let p denote JP, and let 
the angle SJP be I8o ~ 1 6 2  Thus r ,  0 are the polar heliocentric co. 
ordinates, and p , r the polar jovicentric coordinates of P. 

Let n denote Jove's orbital angular velocity, so that in :~ccordance 
with KePLER'S law 

n ~  ~--~- P -{ -- I .  

The equations of motion of a particle referred to axes rotating with 
angular velocity w, under the influence of forces whose potential is U, are 

d "dY X) (dX Y) ~ U - i - w  
d--e ( dV  + oj d-s - -  , 

where t is the time. 
Now in the present problem, if the origin be taken at the centre 

of inertia of the Sun and Jove with SJ for the X axis, the coordinates 
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y = y .  of P are X = x 

Hence the equations of motion are 

Also the potential function is ~'-{-~-I~ I, 

d2x dy + dr- q- - -  2n  ~ 

d~Y 2n ~tt - -  (~ dr' "3t- "Jr- I)ff 

B u t  r ~ = x ~ + y : ,  p2 = (x  - -  I )  ~ -{- y l  

IJ "{- I ~ + 

~y -}- , 

Hence if we put 

the equations of motion may be written 

(i) 

d~x dy Ol), 

d~y dx ~J2 
~y 

where n ~ = u +  x. 
d~ dy 

Let the second of (i) be multiplied by e ~ ,  and the third by e h-/-, 

let the two be added together and integrated, and we have JACOBI'S 
integral 

(2) + 

where C is a constant, and V denotes the velocity of P relatively to 
the rotating axes. 

Let s be the arc of the planet's relative orbit measured from any 
fixed point, and let ~ be the inclination to the x axis of the outward 
normal of the orbit. Then 

d z  sin ~ , dy 
ds ~ d---; --- cos ~,. 

1 I t  is perhaps worth noting that 2• may be written in the form 

2 
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Hence if 19 be the component of inward effective force, 

aQ aQ . 
( 3 )  t :)  = - -  - ~  COS 99 - -  O-y s i n  99. 

Therefore 
/g V - -  aJ2 dy aJ2 dx 

az dt + ay-dt" 

Now if R denotes 
relative orbit of P ,  

the radius of curvature at the point x ,  y ,  of the 

d*y dz  d 2~, dy .  

I dts dt dt ~ dt 

R 3 

L \ ~ ]  + \~-/1 J 

On substituting for the second differentials from (1), we have 

R - -  ay dt ax dt 2n  Lkdt  I d-t " 

Hence by means of (2) and (3) 

1 P 2n 
(4) ~ - =  v '  v 

If the value of ~2 in (~) be substituted in (3) we easily find 

(4) and 

( ' )  (z)  2, = ~ p - - , -  cos  (99 - -  o) + - -  p cos ( 9 9 - -  r 

Thus the curvature at any point of the orbit is expressible in terms of 
the coordinates and of the direction of the normal. If s o, 990, x0, Y0, to 
be the initial values of the same quantities, it is clear that 
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$ 

~0 

$ 

x = z .  - -  f s i n  ~ ds, 

(5) " 
$ 

Y ---- Yo § f e e s  f ds, 
So 

$ 

,(,-,o)-- f 
Also the polar coordinates of P relatively to axes fixed in space with 
heliocentric origin are r ,  O + n ( t - - t o )  , and with jovicentrie origin are 

e, r + n(t--t0). 
Hence the determination of x and y involves in each ease two inte- 

grations, and another integration is necessary to find the time, and the 
orbit in space. 

w 3. Par t i t ion  o f  relat ive space a c c o r d i n g  to the  value  o f  the  

~elative energy.  

It may be easily shown that the function ~ arises from three 
sources, and that  it is the sum of the rotation potential, t he  potential 
of the Sun and the disturbing function for motion relatively to the Sun. 
Hence B is the potential of the system, inclusive of the rotation po- 
tential. Thus the equation V 2 ----- 2 ~ - -  C may be  called the equation 
of relative energy. 

For a real motion of the planet V ~ must be positive, and therefore 
292 must be greater than C. Accordingly the planet can never cross 
the curve represented by 2~ ~-C,  and if this curve has a closed branch 

z A somewhat similar investigation is contained in a paper by M. BoHLrs, A c t a  
Math. T. Io~ p. IO9 (I887).  The author takes the Sun as a fixed eentr% which is 
equivalent to taking the Sun's mass as very large compared with that of Jove; he thus 
fails to obtain the function • in the symmetrical form used above. 

Aeta ~nathsmatica. 21. Imprim~ le 21 juillet 1897. 14 
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with P inside, it must always remain inside; or if P be outside, it must 
always remain so. 

This is M ~ HILL'S result in his celebrated memoir ~ on the Lunar 
Theory, save that  the value of ~2 used here has not been reduced to 
an approximate form. 

We shall now proceed to a consideration of the family of curves 
2B-----C. That is to say we shall find, for a given value of 6, the locus 
of points for which the three bodies may move for an instant as parts 
of a single rigid body. We are clearly at the same time finding the 
curves of constant velocity relatively to the moving axes for other 
values of C. 

For any given value of p,  the valges of r are the roots of the 
cubic equation 

If C' be written for the value of the right hand of this equation, the 
cubic becomes 

r " ~  C'r-I- ~ = o .  

The solution is 

r  �84 - i ,p _ 3  
r = 2  C eosa, where c o s 3 a = - - C '  ~/)-7. 

In order that  a may be a real angle, such a value of p must be assumed 

that C' may be greater than 3, or P~A-z less than C - - 3 u .  The lim- 
P 

iting form of this last inequality is p " n  a 2 = C__3u ' a cubic of the 
P 

same form as before. Hence it follows that  C - - 3 ~  must be greater 
than 3. Thus the minimum value of C is 3(u n u i). 

With C greater than 3(~ + I), let fl be the smallest positive angle 

such that c o s 3 f l ~  C'-~/27. Then fl is clearly less than 3 ~ , and the 
three roots  of the cubic are 

r  C' cos ~.  2 3i- C' cos (60 ~ _+/~) , - -  2 

1 Amer. Journ. of Math. Vol. I: pp. 5--29. 
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The ttiird of these roots is essentially negative, and may be omitted as 
not corresponding to a geometrical solution. But the first two roots are 
positive and will give a real geometrical meaning to the solution provided 
that i f p > I ,  

r < p + I  

and if p <  I, 

> p - - i ;  

r < p +  i 

> I ~ p .  

In some cases there are two solutions, in others one and in others none. 
By the solution of a number of cubic equations I have found a 

number of values of r ,  p which satisfy 2 f l =  C, and have thus traced 
the curves in Fig. I, to the consideration of which I shall return beIow. 

Some idea of the nature of the family of curves may he derived 
from general considerations; for when r and p are small the equation 

approximates to 2~ + 2 r P = C', and the curves are like the equipotentials 

due to two attractive particles of masses 2v and 2. 
Thus for large values of C they are closed ovals round S and J ,  

the one round S being the larger. As C declines the ovals swell and 
coalesce into a figure-of-8, which then assumes the form of an hour-glass 
with a gradually thickening neck. 

When on the other hand r and p are large the equation approxi- 
mates to v r ~ + p 2 - ~  C, and this represents an oval enclosing both S and 
J ,  which decreases in size as C decreases. 

It is thus clear by general reasoning that for large values of C the 
curve consists of two closed branches round S and J respectively, and 
of a third closed branch round both S and d. The spaces within which 
the velocity of the planet is real are inside of either of the smaller ovals, 
and outside of the larger one. Since the larger oval shrinks and the 
hour-glass swells, as C declines, a stage will be reached when the two 
curves meet and coalesce. This first occurs at the end of the small 
bulb of the hour-glass which encloses J.  The curve, is then shaped 
like a horse-shoe, but is narrow at the toe and broad at the two points. 
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For still smaller values of C, the horse-shoe narrows to nothing 
at the toe, and breaks into two elongated pieces. These elongated pieces, 
one on each side of 8d, then shrink quickly in length and slowly in 
breadth, until they contract to two points when C reaches its minimum. 

This sketch of the sequence of changes shows that there are four 
critical stages in the history of the curves, 

(a) when the internal ovals coalesce to a figure-of-8; 
(/~) when the small end of the hour-glass coalesces with the ex- 

ternal oval; 
(p-) when the horse-shoe breaks; 
(~) when the halves of the broken shoe shrink to points. 
The points of coalescence and rupture in (a), (/~), 0") are obviously 

on the line S J  (produced either way), and the points in (d) are symme- 
trically situated on each side of 8.I. 

We must now consider the physical meaning of the critical points, 
and show how to determine their positions. 

In the first three cases the condition which enables us to find the critical 
point is that a certain equation derived from 2 ~2==C shall have equal roots. 

(a) The coalescence into a figure-of-8 must occur between S and J ;  
hence r----- I - - p ,  and 2 ~ = C  becomes 

(6) , - - v ) ' +  2 

This equation must have equal roots. Accordingly by differentiation we 
find that p must satisfy, 

v__L_ - t --~(~--p) + (~ _p), + p - - ~ =  o, 

or 
(1~ -{- I)~o ~ - ( 3 p  ~- 2)p 4 -{- (ap -~- I)p a - a O '  "$1- 210-- I = O, 

a quintie equation from which p may be found. 
This equation may be put in the form, 

p ( ' .  p ' ) ( ' - - ~ , )  
(3v + I)p s =  x x 

I --p + ~pS 
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When the Sun is large compared with Jove v is large, and p is ob- 
viously smal l ,  and we have approximately 

whence 

1 I 

(3v + I)Zp = I 3p , 

(7) p --~ 
(3~ + x) ~ + -~ 

3 

If this value of p be substituted in (6) we obtain the approximate result 

+ 3 ( 3 v +  x) (S) C = + +-----5 �9 

In this paper the value adopted for v is I o, and the approximate formulze 
(7) and (8) give 

p = "28779, r E  , 7 1 2 2 i ,  C =  40"0693. 

The correct results derived from the quintie equation and from the full 
formula for C are 

(9) p = "28249 , r =  "7175 t, 6 ' =  40"  I 8 2  I.  

Thus for even so small a value of v as IO, the approximation is near 
the truth, and for such eases as actually occur in the solar sys tem it 
would be accurate enough for every purpose. 

The formula from Which p has been derived is equivalent to a/2 

and since y o, we have also ~2 = - - =  o. Hence the point is one of zero ~y 
effective force at which the planet may revolvc without motion rela- 
tively to the Sun and Jove. 

This position of conjunction between the two larger bodies is ob- 
viously one of dynamical instability. 

(/~) The coalescence of the hour-glass with the external oval must 
occur at a point in S J  produced beyond J ;  hence r ~ I + p ,  a n d  
2 ~ = C becomes 

2 
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This equation must have equal roots, and p must satisfy 

,) ! 

'~(~ + P )  (t + p ) , + P  t, , - ~  

o r  

(Y "31- I)/O5 "3 t- (3u Jr- 2)p'  -4- (3u Jr- I )p  "~ - - p 2 - - e p - -  ~ -~ o .  

This quintic equation may be written in the form 

(3~-[- I)p 3 =  I A- 

2 p(I - -  p a ) ( I  "q- ~/O) 
I 

I +p+-3p" 

With the same approximation as in (a) 

I 
( 1 o )  p = , 

(3~ + I) ~ I 
3 

1 
2u A- 3(3u-b x) z ( , i )  C = 3 ~  3'~+ ~ " 

When v is IO, the approximate formulae (,o), (, I) give 

p . . . .  356t2 ,  r - - ~ [ ' 3 5 6 1 2 ,  C = 3 8 " 7 7 9 o .  

The correct results derived from the quintic equation are 

(~2) p = "34700, r = x '347oo,  C=-  38 '8760.  

The approximation is not so good as in (a), b u t  in such cases as actually 
occur iu the solar system the tbrmulm (~o), (1I) would lead to a high 
degree of accuracy. 

This second critical point is another one at which the planet may 
revolve without motion relatively to the Sun and dove, and such a motion 
is dynamically unstable. 

(~-) The thinning of tile toe of the horse-shoe to nothing must occur 
at a point in J S  produced beyond S; hence / 9 = r - I - i ,  and 2 ~ 2 = C  
becomes 

( r ~ + + ( , - +  i ) '  + r +--5 " 
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This equation must  have equal roots,-and r must  satisfy 

( ' )  r--~ + ( r+ I )  (,.+0,-o, 

o r  

(u-I- I)r5 + (2U-[ - 3 ) r '  q- (u -b 3 ) r3 - -p ( r~  + 2r-]- ~ ) = o ,  

a quintie for finding r.  
I f  we put  r---- I - - ~ ,  the equation becomes 

111 

This equation may  be solved by approximation,  and the first approxima- 
tion, which is all that  I shall consider, gives 

( I3)  ~ = I - - r =  7 
Izu + z6 

Thus the approximate solution is r = I - -  

We also find 

7 
I2Uq-- 26 

' 4 

7 

If we take only the term in $ in (I4), and put  ~ ~ io  the approximate 
result is 

r ---~ "95205, p~--- r "952o5, C ~--- 34"9oI2 .  

The exact solution derived from the quintic equation is 

(xs) r---- "94693, p ----- I '94693,  C ~  34"9054. 

With  large values of ~ the first approximation would give nearly accurate 
results. This critical point is another one at which the three bodies may 
move round without relative motion, but  as before the motion is dyna- 
micaiIy unstable. 

(~ -~- I ) ~  - -  (7~ qt-8)~'~t_ (I 9~ "~- 25)~ 3 -  (24~ nt- 37) ~'-~ -- (I 2~ ~t_ 2 6 ) ~ - -  7 = O. 
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(a) The fourth and last critical position occurs when C is a minimum. 

Now C is a minimum when aC ~C ~r o, ~/~ o; whence r - ~  i, p i, and 

C----- 3~ ~ 3. We arrived above at this minimum value of C from another 
point of view. 

If an equilateral triangle be drawn on S J, its vertex is at this 
fourth critical point; and since this vertex may be on either the positive 
or negative side of SJ, there are two points of this kind. 

It  is well known that there is an exact solution of the problem of 
three bodies in which they stand at the corners of an equilateral tri- 
angle, which revolves with a uniform angular velocity. The motion is 
stable in this case. 

Thus all the five critical points correspond with particular exact 
solutions of the problem, and of these solutions three are unstable and 
the symmetrical pair is stable. 

Fig. I represents the critical curves of the family 2t2 ~ C, for the 
case ~ Io. The points in the curves were determined, as explained 
above, by the solution of a number of cubic equations. I have only 
drawn the critical curves, because the addition of other members of the 
family would merely complicate the figure. 

An important classification of orbits may be derived from this 
figure. When C is greater than 4o' i8~I  the third body must be either 
a superior planet moving outside of the large oval, or an inferior planet 
moving inside of the larger internal oval, or a satellite moving inside 
the smaller internal oval; and it can never exchange one of these parts 
for either of the other two. The limiting case C = 4 o ' I 8 2 I  gives su- 
perior limits to the radii vectores of inferior planets and of satellites, 
which cannot sever their connections with their primaries. 

When C is less than 4o" 182I but greater than 38"875o, the third 
body may be a superior planet, or an inferior planet or satellite, or a body 
which moves in an orbit which partakes of the two latter characteristics; 
but it can never pass from the first condition to any of the latter ones. 

When C is less than 38"876o and greater than 34"9o54, the body 
may move anywhere save inside of a region shaped like a horse-shoe. 
The distinction between the two sorts of planetary motion and the motion 
as a satellite ceases to exist, and if the body is started in any one of 
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these three ways it is possible for it to exchange the characteristics of 
its motion for either of the two other modes. 

When C is less than 34-9o54 and greater than 33, the forbidden 
region consists of two strangely shaped portions of space on each side of SJ. 

Lastly when C is equal to 33, than which it cannot be less, the 
forbidden regions have shrunk to a pair of infinitely small closed curves 
enclosing the ~,hird angles of a pair of equilateral triangles erected on 
S J  as a base. 

Fig.I 

Curves of zero veloeity~ IO r 2 -~- ..~ 2 .~_ 2 ~ C .  

w 4. A ce r ta in  p a r t i t i o n  o f  s p a c e  a c c o r d i n g  to the n a t u r e  o f  

the  c u r v a t u r e  o f  the orb i t .  

It appears from (4) of w 2 that the curvature of an orbit is given by 

V ~ ~9 ~9 . 
-~ = P - -  2nV, where P =  - - - - ~ c o s ~ - - - - s m ~ .  ay 

Now if V 0 denotes any constant velocity, the equation 2 B =  C +  V0 ~ 
defines a curve of constant  velocity; it i s  one of the family of curves 
considered in w 3 .  We have seen that this family consists of a large 
oval enclosing two smaller ones, or of curves arising from the coalescence 
of ovals. In the mathematical sense of the term the ,,interior,, of the 
curve of constant velocity consists of the space inside of either of the 

Acta mathematica. 21. Imprim~ le 26 juillet 1897. 15 
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smaller ovals or outside of the large one, or of the corresponding spaces 
when there is coalescence of ovals. It is a convenient and ordinary 
convention that when the circuit of a closed curve is described in a 
positive direction, the >>interior~ of the curve is on the left-hand side. 
According to this convention the meaning of the ~inward>)normal of one 
of these curves of constant velocity is clear, for it is directed towards 
the >>interior>>. Similarly the inward normal of an orbit is towards the 
left-hand side, as the body moves along its path. 

It is clear then that P is the component of effective force estimated 
a long  the inward normal of the orbit. Also if T be the resultant effec- 

tive force T'  /~[2~' (~[2) ~ = (~x) -}-. . ~  ; and i f x  be the angle between T a n d t h e  

inward normal to the orbit, P ~ Tcos Z. 
Hence 

V 2 
----- Tcos Z -  2nV. 

If we consider curvature as a quantity which may range from infinite 
positive to infinite negative, it may be stated that of all the orbits 
passing through a given point the curvature is greatest for that orbit 
which is tangential to the curve of constant velocity, when the motion 
takes place in a positive direction along that curve. 

2nV 
If ~, lies between ---+Z0, where cosz0 = X--v-, the orbit has positive 

curvature; if 2' ~ +2'0, there is a point of contrary flexure in the orbit; 
and if Z lies outside of the limits --+2"0, the curvature is negative. 
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If however T be less than 2nV, there are no orbits, passing through 
the point under consideration, which have positive curvature. Hence the 
equation T =  2nV defines a family of curves which separate the regions 
in which the curvature of orbits is necessarily negative, from those in 
which it rfiay be positive. 

Since 

= V ~ ( ~) (p~ ; )  T~ (aS)'+~ \/a'Q' ,b' P + I, = I~ r '  + + + - - C ,  = (~j-j~ , 

the equation T---- 2nV becomes, 

= 4<,.,.-,- (,o, + ; ) -  q. 

Since 2rp cos (8 - -  r = r" -[- p~ - -  i, it may be written 

(I6) ,~2(I IO ) (p-i IO ) 
' r 3r~ -b P 3p ~ 

P I I _ _  p2 + ,)<,.,..,,- -----O, 

This equation is reducible to the sextic equation, 

(I6) p~ + I ) r '  + ,r]  

+ ,o"[3.~(,,, + 0 , . ~  (4, ,c  + 4 c - - , . , ) r "  + (Io,., ' + 9,.,) ,-: - -  ,,," - -  ,., ~] 

+ ,o~[(9,, + I o ) r ' - - . ~ r ]  + ,o,. , , . ' (~- r ' ) ( i  - -  r ~ ) - - , "  = o. 

It may also be written as a sextic in r, by interchanging r and p and 

by writing -~ for ~ and - C for C. P 
It would require a great deal of computation to trace the curves 

represented by (i6), and for the present I have not thought it worth 
while to undertake the task. 

When however we adopt M r HILL's approximate value for the po- 
tential f2, the equation becomes so much simpler that  it may be worth 
while to consider it further. 
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If m ,  a ,  n be the mass, distance from Sun and orbital angular ve- 
locity of Jove, the expression for B reduces to 

~2-~- m--+ 3 n2(x--a)2 + 3 n'a2. 
p 2 

The last term is constant, so that if C be replaced by Co, where 
U o = C - - 3 n 2 a  2, we may omit the last term in .(2 and use C O in place of C. 

Now taking units of length and time such that  m = ,, n = 1; also 
writing $ = ( x - - a ) ,  r / =  y; we have 

3 2 V , = 2 . e _ _ O o  ' 
P 

Then 

.2 ~2 p2. c "at- 

2 )~2 I ~aQ" ( % ~ _  - - p  
T 2 2 [ ~ - )  + \ a F /  - - 3  3 "+'~" 

Hence the equation (16) becomes 

3 3 - -  + ~  

or 

- -4(;+ 3, 

(I8) ~ ( I + ~ )  4 C 2 I 

Since $ = p  cos C, the polar equation to the curve is 

4_ c -~o + 4~Yo,O ~ 
( ,8)  c ~ 1 6 2  o p ~ + 2  " 

M' HILt& curve 2B = C O gives 

(,9) or 

=~ 0 ~ - - ~ ,  

I C o 2 

It is clear that  the two curves present similar characteristics, but  the 

former is the more complicated one. 
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The asymptotes of ( I 8 ) a r e  ~---- + 2  ~ i ;  C~ whilst those of ( I9)  

+ 

Again to find where the curves cut the positive half of the axis o f  
7/, we put $ =  o, p =~2 and find that  (18) becomes 

( 2 0 )  2 3 i --~oo~2 "l-4Co =~ 
whilst (19) becomes simply ~----~-~. 

6 
The condition that (20) shall have equal roots is 4~]=b-~ , or- 

i 2 C 2 i and therefore C o ---- 3. ;2-----3 0" But C 0- -~-4~-- - i ,  2 ~ 

The quartic for ~ has two real roots if C o is less than 3_~ o r  
2 ~ 

I '8899,  but no real roots if it is greater than this value. 
It is easy to show that  when the roots are real, one is greater than  

3 and the other less than yO o. 

It  follows that if C O is greater than 1"8899 the curve does not cut 
the axis of ~7, but  if less it does so twice. 

To find the critical values of C o in the case of M r HILL'S curve J 
(I9), we put (as in w 3) r]-= o and therefore p = $, and we then find 
the condition that  the equation shall have equal roots. 

Now with p----$, (19) becomes 

~2 I 2 

2 3} Hence C 0 = 36 ~ + ~ = = 4"3267. This has equal roots when 6 = 3~. 

If C o be greater than 4"3267 the curve consists of an internal oval and 
of two asymptotic branches. With smaller values of 6 o the oval has  
coalesced with the two external branches. 

Following the same procedure with our curve (I8), we have to~ 
find when 

I 

has equal roots. 
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The condition is that 3~ 6 -  7~ 3 + 2 ----- o, and the solutions are ~3__ 2, 
~ 3  I 

3 
NO~,V 

Hence when 

_ 39 _ 3 . 8 6 9 3 ;  ~ =  2, C O 8.2~ 

and when 

~ I 3~ = ~, Co = = 4"3267 . 
0 

Thus there are three critical values of Co, viz: C O = I '8899 ,  which 
separates the curves which do from those which do not intersect the 

axis of r2; C 0 = 3"8593 when two branches coalesce; and C o = 4"3267 
when two branches again coalesce. The last is also a critical value of 

C o in the case of Mr HILL'S curve. 
It  would seem then that  if these curves were traced for the values 

Co = 1 " 5 , 3 , 4 , 5  a good idea migLht be obtained of their character, bu t  
I , have  not yet  undertaken the task. 

w 5. F o r m u l w  o f  i J~ te rpo la t ion  a n d  q u a d r a t u r e .  

The object of this paper is to search for periodic orbits, but no 

general method has been as yet discovered by which they may be traced. 
I have therefore been compelled to employ a laborious method of tracing 

orbit~ by quadratures, and of finding the periodic orbits by t rM.  The 
formuke of integration used in this process will now be exhibited. 

According to the usual notation of the calculus of finite differences, 
% is to denote a function of x ,  and the operators E and A are de- 

fined by 
Eu~ --- ux+l, Au,~ = u ~ + ~ -  u~ = ( E - -  I)u,~. 

d 

It is obvious that  E = e "~ , where e is the base of Napierian logarithms, 

and that  EXuo = u~. 
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In most of the work, as it presents itself in this investigation, the series 
�9 . . u . _ 2 , u ~ _ ~ , u .  are known, but u , ,+~ ,u .+~, . . ,  are as yet  

J ~ =  I ~- i = (I- AE-1)  -1, 

u~ = E~uo = (i - -  AE-~)- 'u0 ,  

so that 

(2I)  U x =  ( I  ~ - x A E - i  . 4  - z ( ~ ; I ) A 2 ~ _ 2  j i_ ~(x-~I)(x~-2)l_ 3 A~E_ 3 ~_ ...)Uo. 

In the course of the work occasion will arise for finding u_~ by inter- 

i in (2I), we have polation; putting then x = - - 2  

(22) u_~= 

I ~I A 3 E _  , 5 A ~ E - ~  7 A ~ E - ~  X - - -  A~2~ '-1 I 2 -2 - - ~ A  E . . . . . .  . . /u  o . 2 I6 I28  256 " 

In a subsequent section the two following well-known formulm of inter- 
polation will be of service, 

(23)  Ux~ 

+ - -  

x(A + AE-1)+ ~ ' E  -1 I + x ' 2  

�9 (g~'-- I) I 3E._2) ~'(~'-- I) A 4j~-2 ] {~ " ~ ( A 3 E - I - ~  i "JI- " 14 . .~ U 0, 

(23) 

+ 

~ ( ~ . I )  I (A 2 •x ----" I + X A "Jr- /2 ~ -~-- /~ 2E-l)  

]_3~ [4 2 (A 4E--1 + h 4 E - 2 ) "  ~ ~ ~0~ 

Of these formulm the first is the better when the interpolated value of 

i and x = + x ux lies between x = - - ~  ~; and the second is the better when 

i and x = +  -3 i t  lies between x-- - - -+~ 4" 
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In order to obtain a formula of integration we require to prove that  

log (I --  a) 

1 
r ~ o o  f"<'' ,-o ,.!~ ~v, 

0 

where  v (~ denotes the factorial v ( v - - I ) . . . ( v - - r +  I). 

This is easily proved as follows: - -  

But  

1 [ evlog(1--a) ]1 -- a 
f (:-a)~dv-- l o g  (I - -  a)--  ]0 = l o g  ( I  - -  a ) "  
0 

1 
1 : r r v(r) 

f ( : - - , ) ' d v  = ~. (--)~ ~d.. 
o 

O 

If the last two forms of this integral be equated to one another,  we 

obtain the required formula. 

Now 
d 

e ~ =  ( I - - A E - ' ) - L  

and  therefore 

S 

Hence 

d = - -  log (I - -  A E - 1 ) .  

log(x -- A E  -I) f v(r) 

o 

dr.  

I f  the definite integrals o n  the right hand side be evaluated, we find 

Since 

(24) 

(& I I A E _ X  - ~xdx = - - I E  2 12 

0 

3 A 4.E-4 863 
16o 6o48o 

I / ~ 2 E _ 2  I 9  ~ k 3 . E - 3  
24 720 

- -  A ~ E - ' . . . )  (u. - -  uo). 

A - :  contains an arbi t rary  constant we may choose 

I I x A2u_~ + I9 A ~ u _ 3 + . . . ,  
~, :u:  = ~Uo + ~ &u_: "4" 2-~ 720 
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and we then have as our formula of integration, 

n 

f I I A ~ n _  1 I (24) UxdX~--- A- lun+I - -~ .  u'~ i2 24 A u,~_= 
0 

I9 3 3 A 4 863 . 5 u 
720 A u.-3 ---i-65 u._4 6o--~o A ._~. 

This is the most convenient formula of integration when only the inte- 
gral  from n to 0 is wanted, and the integrals from n - - i  to o, n - - 2  

to o, etc. are not also wanted. But in the greater part  of the work the 
intermediate integrals are also required. Now on applying the operator 

A to (24), we have 

n + l  

f I ~ I 3U 19 I A u . - - - - &  u._~ A ~ - 2 - - - -  A4u~-3 . . . .  
(25) u.dx ~- u~+l 2 12 24 72o 

n 

If this be added to the integral  from n to o we have the integral from 

n + I  t o o .  
I have found that  a table of integration may  be conveniently 

arranged as follows: - -  
Let us suppose that  the integral from n - - I  to o has been already 

found, and that  the integral  from n to o is required; write us and its diffe- 

x Aun_l rences AU~.l, A~u~_~, A3u._8 in vertical column; below write - - ~  

i A~u._~ ' A3u._3, and add them together;  add us to the last; 
I2 2 4 

mult iply  the last sum by the common difference Ax, and the result  is 

the integral from n to n - - i ;  add to this the integral f rom n - - I  to o, 
and the result is the required integral from n to zero. 

Thus each integration requires i 3 lines of a vertical column, and 

the successive columns follow one another, headed by the value of the 
independent variable to which it applies. 

A similar schedule would apply  when the formula  (24) is used; 
but  when the initial value of A -1 has been so chosen as to insure the 
vanishing of the integral from o to o, the final value of A -~ is to be 
found by adding to it the successive u's, so that  the intermediate columns 

need not be written down. 
Aeta mathematica. 21. Imprimf~ le 29 juillet 1897. 16 
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When the successive values of u depend on their precursors, it is 
necessary at the first stage to take Ax small, because in the first inte- 
gration it is only possible to take the first difference into account. At 
the second stage the second difference may be included and at the third 
the third difference. 

But in almost every case I begin integration with such a value of 
the independent variable (say x = o), that we either have ux an even 
function of x, or an odd function of x; in the first case ux = u _ x ,  in 
the second ux = -  u_x. Both these cases present special advantages for 
the commencement of integration, for in the first integration we may 
take second differences into account. Thus when u~ is an even function, 
the second difference involved in the table of integration from I to o is 
2Au0; and when ux is an odd function it is zero. In both cases third 

differences may be included in the second integration. 

It is of course desirable to use the largest value of the increment 
of the independent variable consistent with adequate accuracy. If at any 
stage of the work it appears by the smallness of the second and third 
differences involved in the integrals, that  longer steps may safely be 
employed, it is easy to double the value of Ax ,  by forming a new 
difference table with omission of alternate entries amongst the values 
already computed. Thus if the change is to be  made at the stage 
where x----n, the new difference table will be formed from u,_~,u,,_~, 

u~; and thereafter Ax  will have double its previous value. 

When on the other hand it appears by the growth of the second 
and third differences that ~ Ax  is becoming too large, Ax can be halved, 
and the new difference table must be formed by interpolation. The 
formula (22) enables us to find u,_~ from u . ,  u,_~,  u . : ~ , . . ,  with suffi- 

cient accuracy for the purpose of obtaining the differences of u~_~, u,,_l, 

u~_�89 u,. The process of halving the value of Ax  is therefore similar 

to that of doubl ingqt .  
In some of the curves which I have to trace there are sharp bends 

or quasi-cusps, and in these cases the process is very tedious. It is 
sometimes necessary to repeatedly halve the increments of the independent 
variable, which is the arc s of the curve. Thus if (s) denotes the func- 
tion of the arc to be integrated, and if s be the value of the arc at 



Periodic Orbits. 123 

the point where the curvature begins to increase with great rapidity, 
and if 3 be the previous increment of arc; then in integrating (s) from 

s to s + ? 3 ,  the difference table is to be formed f r o m ( s - - 3 ) ,  s - - -~3 , 

(s), the middle one of these three being an interpolated value. At the 

i 3  to s+43. 3, and the dif- next step (s) has to be integrated from s + ? 

ferenee table is formed from (s),  ( s + 4 d ) ,  ( s+ -~d) ,  the middle term 

being again an interpolation. This process may clearly be employed over 
and over again. In some of the curves traced the increment of are has 
been 32 times less in one part than in another. 

But the chief difficulty about these quasi-cusps arises when they are 
past, and when it is time to double the are again. For the fact that 
the earlier Values of the function to be used in the more open ranked 
difference tables are thrown back nearly to the cusp or even beyond it, 
makes the higher differences very large. Now the correctness of the 
formula of integration depends on the correctness of the hypothesis that 
an algebraic curve will give a good approximation to actuality. But 
in the neigh'b0urhood of a quasi-cusp, and with increasing arcs this is 
far from correct. I have found then that in these cases of doubling 
the are, a better result is obtained in the first and second lntegration 
by only including the second difference in the table of integration. 

If  we are tracing one member of a family of curves which are 
widely spaced throughout the greater part of their courses, but in one 
region are closely crowded into quasi-cusps, it is difficult to follow one 
member of the family through the crowded region, and on emerging 
from the region we shall probably find ourselves tracing a closely 
neighbouring member, and hot t h e  original one. I have applied the 
method to trace the curve drawn by a point attached to a circle at nine- 
tenths of its radius from the centre, as the circle rolls along a straight 
line. After the passage of the quasi-cusp I found that I was no longer 
exactly pursuing the correct line; nevertheless on a figure of the size 
of this page the difference between the two lines would be barely discern- 
ible. But the orbits which it is my object to trace do not quite resemble 
this ease, since their cusps do not lie crowded together in one region 
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of space. I believe therefore that these cases have been treated with 
substantial accuracy. 

Another procedure has however been occasionally employed which 

I shall explain in w 7. 

w 6. On the  m e t h o d  o f  t r a c i n g  a c u r v e  f r o m  i t s  c u r v a t u r e .  

It will be supposed that the curve to be traced is symmetrical 
with respect to the x axis, and starts at right angles to it so that 
x = x  0, y-----o, 9 , = o ,  s----o. This is not a necessary condition for the 
use of the method, b u t  it appears from w 5 that the start is thus 
rendered somewhat easier than would be the case otherwise. The curva- 
ture at each point of the curve is supposed to be a known function of 
the coordinates x ,  y of the point, and of the direction of the normal 

defined by the angle 9,. 
I 

The first step is to compute the initial curvature ~--~; it is then 

necessary to choose such a value for the increment of arc ds as will give 
the requisite degree of accuracy. 

I have found that it is well to take, as a rule, ds of such a size that 

shall not be greater than about 8~ but later, when all the differences 
Ro 
in the tables of integration have come into use, I allow the increments 
of ~ to increase to about 12 ~ 

It is obvious that the curvature is even, when considered as a 
function of s. When nothing further is known of the nature of the 
curve, it is necessary to assume that the curvature is constant throughout 
the first arc 3s, but it is often possible to make a conjecture that the 

i 
curvature at the end of the arc ds will be say ~-~. By the formula 

of integration with first and second differences we then compute ~ = ~1 
at the end of the arc, by the first of equations (5) in w 2. 

With this value of ~ we find sin v~, cos~,  and observing that 
sin~0 = o ,  cos~, o = I, we compute x 1,y~ by means of the second and 
third of (5), using first and second differences. 
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I 
We next compute ~ with these values of x , y ,  and if it agrees 

with the conjecture the Work is done; and if not so, the work is repeated 
until there is agreement between the initial and final values of the 
curvature. 

After the first arc, a second is computed, and higher differences are 
introduced into the tables of integration. We thus proceed by steps 
along the curve. 

The approximation to the final result is usually so rapid, that in 
the recalculation it commonly suffices to note the changes in the last 
significant figure of the numbers involved in the original computation, 
without rewriting the whole. 

The correction of the tables of integration is also very simple; for 
suppose that the first assumed value of the function to be integrated is u, 
and that the second approximation shows that it should have been u -1- e?u; 
then all the differences in the column of the table have to be augmented 
by 3u, and therefore the integral has to be augmented by 

( ) I I I 

I 2 I2  2 4 . . .  ~ U ~ 8 .  

If we stop with third differences, this gives the simple rule that the 

integral is to augmented by 33u3s. 

It has been shown in w 5 how the chosen arc 3s is to be increased or 
diminished according to the requirements of the case. 

This method is the numerical counterpart of the graphical process 
described by Lord KELVIN in his Popular Lectures, 1 but it is very much 
more accurate, and when the formula for the curvature is complex it is 
hardly if at all more laborious. In the present investigation it would have 
been far more troublesome to use the graphical method, with such care 
as to attain the requisite accuracy, than to follow the numerical method. 

In order to trace orbits I first computed auxiliary tables of r~-I - ~, 

and of log , ~ - - r  for r < I ,  and of log - - ~  for r > l ;  the tables 

1 Popular  Lectures:  vol. I~ 2 nd ed. pp. 3 1 - - 4 2 ;  Phil.  Mag. vol. 34~ I892~ PP. 

443 - - 4 4 8 .  
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extend from r----o to i" 5 at intervals of "ooI ,  but they will ultimately 

r e qu i r e  further extension. 
The following schedule shows the arrangement  for the computation 

of the curvature at ally point. The table has been arranged so as to be 
as compact as possible, and is not in strictly logical order; for the cal- 
culation of W should follow that  of r ,  p,  but is entered a t  the foot 
of the first column. It will be observed that the calculation is in ac- 

cordance with the formula (4) of w 2. 
L denotes logari thm and C denotes cologarithm; ~ the sun's mars 

is taken as xo, and L 2n----"82 x7, being L 2 v'~ t ,  a constant. The brackets 
indicate that  the numbers so marked are to be added together. 

Schedule  for c o m p u t a t i o n  of curvature .  

x !t 
ILy { I~y 

C~ O ( z -  I) 
L tan ~ L tan 

]LsecY [ Lsec~b 
I L .  IL( .~--  ~) 

Lr L,o 
p 

[ L~cos(~--O) 
C V' 
La 

L cos (~ - -  r  
CV' 
Lb 

b 

2 p~ + -  
P 

V ' + O  

V 2 

2~b L~ 
2rt  

V 
a + b  

I 

R 
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The formulae r = y cosec d, p = y cosec r are used, when the values 
of 0 or ~ show that these are the better forms. 

The tables of integration are kept on separate sheets in the forms 
indicated in w 5. 

As the computation proceeds I keep tables of differences of x ,  y, 
9 ,  r ,  p ,  V 2, and this check has been of immense advantage in detec- 
ting errors. 

The auxiliary tables of logarithms are computed to 5 figures, but 
the last figure is not always correct to unity, and the fifth figure is prin- 
cipally of use in order to make correct interpolation possible. 

The conversion of ~ from circular measure to degrees and the values 
of sin ~ and cos~ are obtained from Bottomley's four-figured table. 

Most of the work has been done with these tables, but as it appears 
that  the principal source of error lies in the determination of r and p, 
five-figured logarithms have generally been used in this part  of the 
work, and the values of 0 and ~ are written down to o " l .  

In those parts of an orbit in which V 2 becomes small I have often 

( ceased to use the auxiliary table for u r2-t - ~ ; for since the auxiliary 

table of this f u n c t i o n  only contains four decimal places and since v is 
I o, it follows that only three places are obtainable from the table, and 
of course there may be an error of unity or even of 2 in the las~ 
significant figure of V ~. 

In order to test the method, I computed an unperturbed elliptic 

orbit by means of the curvature. The formulae were V~ = ~'2 IOI, 

i P i 
R -  V ' '  where P = ~ cos (9 - -  6), and the initial values were x 0 ----5, 

Y0 = o ,  90 ~ o ,  s 0 ~ o .  
The curve described should b e  the ellipse of semiaxes IO and 5 ~/3, 

and x ,  y ought to satisfy the equation 

( ...4-- 5 ' ~ +  y 

I take the square root of the left hand side of this equation, with 
computed x , y ,  as one measure of the error of position in the ellipse. 
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4 

Again if tan z = , Z ought to be identical with 9~; hence Z--9~ 
z + 5  

measures the error of the direction of motion. 

the area conserved h is 5 ~r or 2"7386; but it is also Lastly 

Vr cos ( p -  0), if the computation gives perfect results. Hence h--Vrcos(9,--6) 
measures the error in the equable description of areas. The semi-period 

should be zt~/~ooo or 99"346. 
The computations were made partly with five-figured and partly with 

four-figured logarithms, and the process followed the lines of my other 
work very closely. 

The following table exhibits the results together with the errors. 
It will be observed that when s = 24 there is a sudden increase in the 
second column of errors, but I have not been able to detect the arithme- 
tical mistake which is probably responsible for it. The accordance still 
remains so close, that it appeared to be a waste of time to work any 
longer at this example. 

Computed positions in an ellipse described under the action of a 

central force. 

r / -+ov [ , 
s x Y 9 Z ~ 9  L~,-i~'/ +~,~-~!  .I - -  

0 5"0000 "0000 0 ~ O' 0"0 + "00000 "0000 

I 4"9337 "9971 7 ~ 37' + 0 " 3  + '0oo02  "oOoo 
~- 4'7364 I"9768 z5 ~ 8' + o  "8 +-oooo  5 - - 'ooo1  
3 4"4t37 2"9227 22 ~ 29' + 0 " 3  + "oooo4 - - ' o o o i  
4 3'9749 3"8205 29 ~ 35' - - o  "3 + ' o o o o 4  - - '0oo2  
5 3"4304 4"6586 360 23' o "o + "00004 - - ' o o o i  
6 2"7925 5"4281 420 53' + o " I  + 'oo004  - - ' o o o i  
8 1"2843 6"7363 55 ~ I '  + o  "2 - - ' oooo2  + - o o o !  

Io  - -  "4567 7"7147 66~ 9' + I "o - - ' o o o o !  + ' o o o 2  
12 - -  2-3497 8.3507 760 36' + o ' 6  "ooooo + ' o o o 3  
x 4 - -  4"3259 8"64o7 86~ 39' + o ' 1  - - '0ooo1 -oooo 
16 - -  6"3225 8"5845 960 35' + o ' 4  + ' o o o o 3  "oooo 
I8 - -  8 " 2 7 8 7  8.1823 Io6~ 43' + o ' 6  + . oooxo  + ' ooo3  
2o - - I o ' t 3 o 5  7'4349 117 ~ 21' + o ' 8  +-ooo12 + 'o0o3  
22 - -z i"8o5x 6"3481 128~ 47' + I "o + "ooool + '0004  
24 --13"2181 4"9385 ~4 I~ 17' + o ' 8  + 'ooo28  + ' o o o 4  
25 - - i3 .7968  4"t237 148~ o' - - o  "4 + ' ooo27  + ' o o o 3  
26 --14-274 ~ 3"2456 155 ~ o '  - - o  "8 + ' o o o z 7  +-ooo i  
27 --14"6385 2"315I I62 ~ 15' - - 0 " 5  + "ooo23 + '0oo3  
*'8 --14"8808 I"3456 169 ~ 43' - - 0  "5 + ' 0 0 0 2 I  +'OO03 
29 - - I4 .9938  "35*'6 177 ~ 19' - - 0 " 6  + '00020  +'000." 
3 ~ --14"9740 --- "6465 184 ~ 57' - - 0  "6 +'OOO19 +'OO04 
*'9"3546 --15"0020 "OOOO I80 ~ I '  + t "0 
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The last line in the above table was found by interpolation: 
The computed values of the semiaxes of the ellipse (both involving 

interpolations) were found to be i o ' o o l o  and '866o4; their correct values 
are IO'OOOO and "856025. The computed semiperiod (requiring another 
integration and interpolation) was found to be 99"345, agreeing with the 
correct value to the last place of decimals. 

Considering that a considerable part of the computation was done 
with four-figured tables, the accuracy shown in this table is surprising. 

This calculation is exactly comparable with the best of my calcu- 
lations of orbits, but there has been from time to time a good deal of 
variety in my procedure. My object has been throughout to cover a 
wide field with adequate accuracy rather than a far smaller one with 
scrupulous exactness, for economy of labour is of the greatest importance 
in so heavy a piece of work. I shall in the appendix generally indicate 
which are the more exact and which the less exact computations. I do 
not think i t  would in any case have been possible in the figures to show 
the difference between an exactly computed and a roughly computed 
curve, because the lines would be almost or quite indistinguishable on 
the scale of the plates of figures. This however might not be quite true 
of the orbits which have very sharp bends in them. 

w 7, D e v e l o p m e ~ t  i n  p o w e r s  o f  t h e  t i m e ;  t h e  f o r m  o f  c u s p s .  

In a few cases the quasi,cusps of orbits have been computed by 
means of series; the mode of development will therefore now be con- 
sidered. 

If for brevity we write 

dx dy 
2n --~ m ,  d---[ ---" u ,  dt - -  v ,  

the equations of motion (i) become 

(2 6) ~ at2 dv aa9 
dt--: = m y  + a-7' 7[  = - - m u  + ay 

Aeta matt~matlea. 20, imprim~ le 29 juillet 1897, 17 
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Now let  
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i )  i ~ d r u S d i v 
dt ---~ S~ "Jr- d t  i Sy ' where  i is o , I , 2 , 3  . . . .  

Then  tota l  d i f ferent ia t ion of a func t ion  of  x , y , t  or of x , y ,  u,  v is ex- 

pressed in te rms  of par t ia l  different ials  as fol lows: 

d s + 73 
dt St "w~ 

m 

It  is obvious  t ha t  ~D. - - - -Ds+ i ,  and el st ~ ~ p e r f o r m e d  on a func t ion  of x , y ,  

b u t  no t  of u ,  v, is s imp ly  D O . 

I f  we dif ferent ia te  (26) r e p e a t e d l y  wi th  respect  to the  t ime,  we have  

(2 7) dti+ , = m ~ [ ~  + \ d t ]  S,v '  dti+ 1 - -  m ~ - ~ -  ~ S-~d" 

Now 3/2 and ~.(2 
- -  - -  are func t ions  of  x , y  only ,  and  not  also of  u,  v; therefore  Sx Sg 

in the  last  t e rms  of these equat ions ,  

(:7) 

when  i ~- i ,  

when  i = 2, 

when  i---- 3, 

when  i ----- 4, 

d 
d-t = Do, 

2i = D1 + D~, 

= D2 + 3DoD1 + D~, 

----/)3 + 4DoD, + 3D~ + 6Do/)1 + / ) I ,  

and so forth.  

The  func t ion  t2 consists of two  par ts ,  one be ing  a func t ion  of r, the  

o ther  of  p ;  if in the  la t te r  pa r t  we wri te  ~ -=  ( x - - I ) ,  7] = y ,  

I x (~  _~ + i 

The  par t ia l  di f ferent ia ls  of ~2 wi th  respect  to x , y  m a y  be r ega rded  also 

as cons is t ing  of two par ts  viz. of  the  pa r t i a l  differentials  wi th  respect  to 
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v and of the partial  differentials with respect to x , y  of ' ( x ~ + Y ~ ) + 7 '  

I I These two parts may be considered separately, ~ , ~  of ~ ( ~ - t - 7 / ' ) - I - ; .  

since, except as regard the factor v, the one is the exact counterpart of 
the other. 

The partial  differentials of i -v(x  2 nt-y 2) disappear after the first two 
2 

orders, and those of u - are exactly those functions which occur in the r 
theory of spherical harmonic analysis. 

Thus 

8 I I ~ I I 
~ r ~, cos 0, ~ ;. = f i  sin 0; 

~'  I I ~2 I 3 sinO cos0, ~* ' r  = 7  (3 c ~  I)' O.~y r = r  -z 

~ I I 
~y,r - -  j ( 3  sin20 - I); 

~a I 3 COS 30), a , s ~ . = j ( 3 c o s 0  5 

~ I 

OxOy ~ r 
3 ( c o s 0 - -  5 cos 0sin 28), ?,5 

I 
= ~( s in  0 - -  5 sin 0cos ~ 0), 

~ x ~ y  T -  

a' I 3 (3 sin 0 _ _  5 sin3 0); 
~yS r r ~ 

and so forth. 
It  thus appears that  the calculation of the successive differentials 

of u ,  v with regard to the t ime is easy, al though laborious. These diffe- 
rentials, when appropriately divided by the factorials of I ,  2 , 3 , 4  etc., 
are the successive coefficients of the powers of the time in the develop- 
ments of x ,  y. If the series for x ,  y be differentiated, we obtain those 
for u , v .  

The Jacobian integral is useful as a control to the applicabili ty of 
the series; for the square of the velocity corresponding to any position 
computed from the series for x and y should agree with the value of 
u2-[ -v  2 as coinputed from the series for u und v. 

The computation of an orbit by series is however so tedious, that  
I have made very little use of this method. 
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I have also obtained a less extended development for x ,  y in terms 
of powers of the arc of the orbit, but the formulae are so cumbrous as 

to be of little service. 
The development in powers of the time becomes much less laborious 

if we start from a point in the curve of zero velocity, and in this case 

the symbols D~ may be replaced by their full  expressions in terms of the 
partial differentials of t2. But is does not seem worth while to give 

these special forms, except as regard the first two terms. 

If  we have init ially x----x0, y = y 0 ,  u----o, v = o ,  D o and all its 
powers vanish, and 

du @.(2 d v @.C2 
dt ~.~ dt ~g 

d~u O.O d2v ~.~ 
dt ---i- ~- ~ ~ ~ dt ~ -- m @x 

Hence a~ far as the cube of the time, 

it2@.(2 i 3 @-q 
X - - X o = - 2  @z'4-~t  m ~ ,  

i t~ @.q i @.g 
Y ~ Y o  ----- ~ ~ 6t3m@--~" 

These may be writ ten 

~.~ ~!2 ~ th m T  2, ( X - - X o ) ~ - - ( y - - y o ) ~  = 

~.q ) @~ r t2" T~ r + ( y - - y o  = ~ , 

where r- - - -  (~'  ?%'. 
\@x/ q- k@y/ 

By elimination of t, and substitution of : n  for m, we obtain the 

equation to the cusp, 

+ (y--~o) #--(y--yo)@,j @yJ 

The cusp is therefore a semieubical parabola, with the tangent at the 

cusp normal  to the curve 2t2 = C. 
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w 8. F a r i a t i o n  o f  o rb i t .  

The object of this paper is not only to discover periodic orbits but 
also to consider their stability. 

Now the stability of a periodic orbit is determinable by discovering 
whether the motion is oscillatory or not, when the path varies by in- 
finitely little from that of the  periodic orbit. The w riafion of an orbit 
may be of two kinds, for the constant of relative energy may be varied, 
or the planet may be displaced from the periodic orbit. 

Suppose that the constant C undergoes a small variation and be- 
comes C-{-dC; then there must be a periodic orbit, corresponding to 
C + dC, which differs by very little f rom that corresponding to C. 

Now if a planet be moving in a periodic orbit, and if C suddenly 
becomes C-t-dC, we may henceforth refer the motion to the varied 
periodic orbit, and may consider the constant of relative energy as 
C +  3C and invariable. The periodic orbit of reference then varies per 
saltum~ but the instantaneous position of the planet is unvaried, and 
therefore the planet is now disph~ced from its orbit of reference. Hence 
the result of a variat ion of C will virtually be determined by regarding 
C as constant, and by supposing the planet to be displaced from t h e  
periodic orbit. This subject is considered in the present section. 

The whole of the following investigation is founded on the work 
of M r HILL, 1 but it is presented in a different form.- 

If  the Jacobian integral (2) be differentiated with respect to the 

time, and if the equations dx - - V s i n F  dy Vcos~ be used in the d-i----- ' ~ - - - -  
result, we obtain 

(2 8) dtd--V = _ sin e ~ q" cos F ~-y" 

Again if the first of the equations of motion (I) be multiplied by 

' On the part of the motion of the moon's perigee etc. A e t a  Ma them.  Vo]. 8, 
pp. 1--36.  
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- - e o s ~ ,  and the second by - - s i n ~ ,  and if the two be added together, 
the result may be written 

a9 a.q d . d (Vcosv)  + 2 n V =  --eosg~ - ;  - -  sin ~ ~-y �9 cos~, ~ (Vsm ~) - -  sin ~ 

Completing the differentiations on the left-hand side, we have 

(29) V/'~(dfi, + 2nJ  \ = - - c o s  
V aQ a.q 

a,~- - -  sin V ~j-,.j �9 
/ 

Let s be the arc of the orbit, and p the arc of an orthogonal trajectory 
of the orbit, estimated in the direction of the outward normal of the 
orbit; then 

a - - s i n f "  a a aS = ~ + cos r a T '  

(3o) 
I a a . a 

a~-7 = cos ~ ~ + sm r a-7" 

Accordingly (28), (29) and the Jacobian integral become 

dV a.Q 
dt as ' 

/d~ ", a.q (so)  v + = 

V ~ =  2 . q - -  6. 

The equations (30) are equivalent to (x) and (2). 
Now suppose that x ,  y are the coordinates of a point on an orbit, 

and that  x + 3x, y + dy are the coordinates of a point on an adjacent 
orbit. Then if we put 

@ = dx cos 9" + @ sin g, 

3s = - - 3 x s i n  9- + 3#cosF,  

3p, as are the distances, measured along the outward normal and along 
the arc of the unvaried orbit, from the original point x ,  y to the adjacent 
point x + 3x, y + 3y. 

If, with x ,  y as origin, rectangular axes be drawn along the outward 
normal and along the arc of the unvaried orbit, we may regard ap ,  3s 
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as the coordinates of the new point relatively to the old one. The new 
d? 

axes rotate with angular velocity ~ - +  n, the first term representing the 

angular velocity of the normal and the second that of our original axes 
of x and y. 

The well-known formulm for the component accelerations of a point 
along two directions, which instantaneously coincide with a pair  of ro- 
tating rectangular axes by reference to which the position of the point 
is determined, give the accelerations 

d3s d~ d27 -~~176 ~ ~ /d~ + n ) 2 _ _ 2 _ f [  ( ~ir~ along thenormal  

(31) g~ (d? )2+ 2_~_ (~/ ) d, d3g~ d 9 d 2 
3S ---'~3S ~ + n  + n + 3p ~ ,  along the tangent. 

These are the accelerations of the new point relatively to the old, esti- 
mated along lines fixed in Space which coincide instantaneously with the 
normal and tangent of the unvaried orbit. 

The function t? includes the potential of the rotation n of the original 

i n2r~ is the true potential of the forces axes of x and y. Hence ~2--~. 

under which the body moves in the unvaried orbit, and 

~p 

are the components of force in the unvaried orbit along the normal and 
along the arc. 

Therefore the excess of the forces in the varied orbit above those 
in the unvaried orbit arc 

Now by considering the meaning (3 ~ ) of the o p e r a t i o n s -  -- 

easy to prove that 

I ~ r  ~ I ~t~.~ I ~ 
2 3 ~  = 2 ~S ~ = I '  - - - r 2 = o ' 2 ~ p ~ s  

~])~ ~s ~ it is 
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Hence the excess of the forces in the varied orbit above those in the 
unvaried orbit are 

" ~ " q  ~"q  n~@, and 

along the nornml and along the arc of the unvaried orbit. 
But these are necessarily equal to the accelerations (31) of which 

they are the cause. Then transferring ~ n ~ @ ,  ~n~3s  to the left hand 
sides of the equations, we have 

[ )'] 
-dii @ + @ ~.'-- 

os-d- ~ 

= o p ~  + ~ s ~ ,  
(32) , [ ) ]  ,o,, ) 

o s + # s  n ~ -  + n  + 2 + ~  + \dr ~ \dr op 

= o1~1-;~ ~ + ~s---r- 

These are the equations of motion in the varied orbit. 
The variation of the last of (3o), the Jacobian integral, gives 

(33) 

Now 3V is the tangential velocity of tl~e point x- t -3x ,  y-1-#7t in the 
varied orbit, relatively to the original point x ,  y. But as we only want 
to consider a velocity relatively to the axes of x and y,  which themselves 
rotate,  with angular velocity n, our p ,  s axes must be regarded as 

d f  d~ 
rotating with angular velocity gt-, instead of j / q - n .  

Accordingly 

d , . d f  
(34) 3 V =  ~os  + o192- [ �9 

This may also be proved by putting V3V--dtdZd3Zdt nt- dtdyd3Ydt ' and by sub- 

stituting for the differentials in terms of @,  ~s, V, F" 
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The formula (34) enables us to get rid of 5V in (33) but we may 

also get rid of ~__9 and ~_99 by means of the equations of motion (30). 
~p as 

Thus the variation of the Jacobian integral leads to 

dV $s (~ ~s + + ?,) = _ ~ ( ~  + . . ) +  + ~ 

Therefore 

(35) 

~+s + ++(+~ + . )  , ,+v+ = 1 r dt o, 

or  

v++ (~) + 2~,0(~ + =o. 

The equations (35) are two forms of the varied Jacobian integral. 
A great simplication of the equations of motion (32) is possible by 

reference to the unvaried motion. 
Let us suppose then that  5p, $s are no longer displacements to a 

varied orbit, but are the actual displacements occurring in time 5t in 
the unvaried orbit. Thus ~p = o, #s = VSt. 

The equations (32) then give 

(36) 

av (~ ,,) vaV 
--2dr \dt + ----dr' 

~ +  - .)'] 

V a'~ 

v~,+2 
a s s  �9 

The first of (36) may be written 

2 dV (d~ " 
Vdt  ~ J l "  n). 

These two terms, multiplied by ds, occur in the first of (32), which 
may therefore be written 

+'+ +[ . ,_(~+ ' _  (~+ +,, + -)] ~++ .) 

+ V ~  \~+  --dp~e,---o. 
A~ia math~nat'i~. 21. Imprlm6 le 9 aofit 1897. 18 
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The terms in this which involve o~s may now be eliminated by the first 

of (35), and we have 

& _  (7 +.)'+ ,, 
If then we put 

(37) 0 = ~ + 3  ~/+ n ) - - ~ ,  

we have 

(37) 

d'@ + o@ --o, 
dt ~ 

~ O .  

The differential equation for ~10 is M r HILL'S well-known result. 
We have now to consider the form of the function 8. 

a* a 2 a* a 2 ~ $ t ~  
Let us write V ~ =  = - -  Tz' + ~ ap ~ + ass'; then adding va- ~ 

side of the second of (36), we have 

to each 

i d~V . n2 (d  ~ ) '  a'12 
v~7~+ ~ + n  + ~  = v '~,  

so that 

=, )' 
- -  ~p-----~ = ~ ~ + \ V d t }  d-[ + n + 2n 2 - -  V 2p,. 

Substituting in (37), 

d~ '"l- -~t ~ \ Vdt ] " O = 2n ~ -  V2p .  + 2 ~ + n + 

d 
If we put u = x-at-Ye,  s = x - - y t ,  -di = ~D, where t =  ~--Y, it is easy 

to show that Du = Ve ~', D s  = -  Ire -~',  and 

d~ D~'tt D's 
2-d-['~'-ffuu Ds ' 

a r  :D'~, D'=~ 
2 ~ t t  = t~-ff-u--u + Ds ]" 

M" HILL'S form for the function ~0 follows as once from these trans- 
formations. 
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Another form for 0, deducible directly from (37), is 

2 \~z* ~y,} cos 2~- - -  sin 25, + 3 + n 2 ~z~y ~ ' 

whence 

o = v + p~ c o s ~ ( ~ - -  o ) - -  cos~(~- -  r + 3 v ~ + �9 

w 9. Change  o1" i n d e p e n d e n t  v a r i a b l e  f r o n t  t i m e  to arc  o f  orbit .  

For the purpose of future developments it is now necessary to 
change the independent variable from the time t to the arc s. 

Let 

(3 8) ~q ---- 3p V �89 

Then 

( ) t 2V ~ o~-~ ), 

But 

d s  ~ 2 ,~qV~ ,, v~ d--f/" 

d8 \ v~ ~T / = Xt \ ~ -r ) - 
3 [ d r ' +  ~ , z 'V  

2V~ \7~)  V~ dt ~ ' 

3 ( dV)  * ~ I d2v 

2 V�89 ~s V ~ dt* 

Hence 

Also 

d'@ d'3q 3 1/dV'~ ~ 3q d 'V  

4V ~ 2V ~ dt 

o@ = ooq 
V ~ 
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If  these two be added together, and divided by V ~ ' w e  obtain 

(39) where 

a',q 
d :  + u = o, 

o 3 ( a v ~ '  , a ' v  
~" = -#  + Y, \Vd~/  2 p  dr' 

It remains to obtain the expression for the function 

Since 
d~ i and n 2 
d s - - - / r  =V2 t  - I, 

) , .  
0 = ~ + I + 3  + n  ~ ap--~ �9 

Now from the first of (30) and the second of (36), 

V d V ~9 
ds ~s 

I d'~r ( ~  ) t '4-  a2~ 
dP ~ + n as" - - - - V - - I .  

Then by substitution in the second of (39), 

~ + n  '+~ ~/ 

Also 

a2Q I at9 I I a ' ~  ap' +~-~- = ~v '~ + ~ "  

a'_O t a2.Q 

a p ~ 2 aS s 

NOW 2 . Q - - - - - v ( r 2 + ~ ) - - l - ( p ~ + p ) ,  and 

a~9 
a~ ~ v -]- I r' ?3+ cos'O+pco:r 

s'~ = ~sinO cosO + 3-sin r eosr 
azay r p '  

a'# ~ I + ,~sing0 + ~sin2 ~b" ' - - - - - V - } -  I- rs p* ayS 



Hence 

and 
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V I 

@ = oos ~ ~ ~ + ~ sin ~ cos ~ ~ + sin ~ ~ ~ ,  

=v-+-  I 

Therefore 

5 + _ _ _ _  (40) q ; = ?  

Also since 

(40) 

?,s p , + ~ x  3Vcos2(~__0 )+p3 cos~(~__~b). 

2W ~ 

aid ~Q Vdr~s =as=vQ - - s i n ~ + c o s ~ , ~ ,  

vas  - r ~' ~ - -  r sin (e - -  0) + ~ p - p sin (~ - -  r 

This completes the formula for qz in terms of the coordinates, the velocity, 
the curvature and of ~. 

It may be useful to obtain the expressions for o~s and t~ in terms 
of the new independent variable s. 

The second of (37) may be written down at once, namely 

Also it is clear from geometrical considerations that 

whence 
- - d - ~ P  + ~ ,  

(42) o ~ =  v ~ L ~  2 ~ + ~ "  
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w 10. The solu t ion  o f  the d i f ferent ia l  equat ion  ]'or 3q. 

The function q; has a definite va lue  at each point of a periodic 
orbit whose complete arc is S. Therefore ~" is a function of the arc s 
of the orbit, measured from any point therein, and when s has increased 
from zero to S ,  ~" has returned to its initial value. Also since a 
periodic orbit is symmetrical with respect to the x-axis, ~" is an even - 
function of the arc s, when s is measured from an orthogonal intersec- 
tion of the orbit with the x-axis. If the periodic orbit only goes once 
round S or J ,  or round both, all the intersections with the x-axis are 
necessarily "orthogonal. I call such an orbit simply periodic, but the 
term must have its meaning extended so as to embrace the possibili W 
of loops. But when there are loops all the intersections with the x-axis 
are not necessarily orthogonal, and if the orbit is only periodic after 
several revolutions some of the intersections cannot be orthogonal. 

With  the understanding that s is measured from an orthogonal inter- 
section with the x-axis, ~" is an even function of s and is expressible 
by the Fourier series 

- - -  + + + . . . .  

S ~ 
Now mult iply the differential equation (39) for 3q b y -  write a for 7T~t 

7l'8 S ~ 
~-, and put $-----=-a ~F, and we have 

d 2 
oq + $~!l  = o.  

~ I d 

and the equation (43) becomes 

/ - /  

(43) 
S~ /F,, 

Also if Sj = z- ~ 

$---- $ 0 + 2 5 1 c o s 2 ~ + 2 5 2 e ~  . . . .  

If then we write ~ =  e ~r 
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where ~ ? j O j ~  "~', the summation being taken from j =  + c~ to 
j = - - c ~ ,  and O_ s being equal to ~j. 

Let us assume as the solution of (44) 

3q = 2:;[(b; + e_,) cos(c + 2])a + (b,--e_j)~/-- I sin(c + 2j)a], 

= ,~ [b~+~J + ej~-~+~]. 

The equation (44) must be separately satisfied for the terms involving b 
and for those involving e; hence we need only regard one series of terms. 

On substituting in (44) the assumed expression for ~q, and equating 
to zero the coefficients of the several powers of ~', we have 

b,(c + v ) ' - -  ,V,b~_, ~,, ' 

written in extenso this is 

. . . - -  bj_~r b~_,r + b~[(c + 2~) ' - -  ~o]- -  bj+, , , - -  b~+~r = o. 

There are an infinite number of equations like the above, but the in- 
finity must be regarded as an odd number. 

If from these equations the b's be eliminated, we have an infinite 
determinantal equation for determining c. If we write 

the equation is 
(c + 2 j ) , - -  ~o = P},  

. . .  { -  I} ,  - ~ , ,  - ~ ;  . . .  

. . - ~ ,  {o} , - ~ 1  . . .  

�9 . . - - ~ , , - - ~ , ,  { I }  . . .  

~ O .  

This is the same in form as M r HILL'S determinantal equation. 

i The equation of condition for the e's is easily shown to be 

e _ j (  c ..i t- 2 j )  t ~-. .2.,'iei_ j ~).--i ; 

and since Oi = g)--/~ this is exactly the same as that for the b's save that  e_y cor- 
respoads with b i .  
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As much has been written on the subject, it is unnecessary to 
reproduce the arguments by which it may be shown that if 

[ j ]  ----- 0o - -  4J', 

and 

( 4 5 )  A = 

I - -  - -  , o ~  

' [I]  ' [ q  

" ' "  [o ]  ' 
I m o o  �9 

' [ o ]  

" "  Ix] ' [ I ]  ' 
I . . .  

the solution of the determinantal equation is given by 

(45) sin:~ rc = A s i n ~  

w 11. On the s tab i l i t y  or ins tab i l i t y  o f  an  orbit .  

When c is real, 3q is expressible by a series of sines and cosines 
of multiples of the arc. Since V is an even function of the arc, it is 
expressible by a series of cosines of the same form as that for O; hence 

Sp, which is equal to V6o~q, is expressible in a series, similar in form 

to that for $q. 
But $p denotes normal displacement from the periodic orbit, and 

therefore the motion in the varied orbit is oscillatory with reference to 
the periodic orbit. In other words the periodic orbit is stable. 

If c o be any one value of c, all its infinite values are comprised 
in the formula •  o • 2i, where i is an integer. It is however con- 
venient to choose one value of c as fundamental. When the choice has 

been made we may refer to the terms in the series for ~q of which the 
argument is c o as the principal terms, although it does not appear to 
be necessary that these terms should have the largest coefficients. In 
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fact since two arbitrary constants are involved in the specification of a 
definite variation of orbit, it is probable that  the terms, which are nu- 
merically t h e m o s t  important in one variation, will not be so in another. 

If the body be considered as moving in an elliptic orbit, it will 
be at its pericentre or apocentre, when o'p is a negative or positive 
maximum, respectively. The principal terms of 3q, and therefore also 

of 8p, have the argument  ca or ~ - ;  hence if we may assume that  the 

principal term is also the most important, the body has passed through 
' S 

a complete anomalistic circuit when s has increased from zero to 2 - .  
r 

I 
Since S is the synodic arc in the relative orbit, - c  is the ratio of "the 

2 
anomalistic to the synodic arc, both arcs being measured on the orbit 
as drawn with reference to the moving axes. 

Now I propose to adopt as a convention that the fundamental  value 
of c shall be that value which lies nearest to ~/~0, where ~P0 denotes the 

i 
mean value of ~P. This convention certainly attributes to ~c a physical 

meaning, which is correct i n  all those cases which have any resemblance 
to the motion of an actual satellite in the solar system. I shall accordingly 
use the value of C which lies nearest to ~/r as fundamental. 

We have just arrived at a physical meaning for c by considering 
the principal term in the series; now in so doing we were in effect 
considering only the mean motion of the body  with reference to the 

i is also the ratio of the synodic to the anomalistic moving axes; therefore ~c 

period. 
If  T denotes the synodic period, the mean motion of the body 

referred to axes fixed in space is 2~ d~o 7-7-4-n; and if ~ denotes the 

mean angular velocity of the pericentre with reference to axes fixed in 

1 I t  may be observed that when V is constant (as is the case when we only 

consider mean motion) V~q/---~ 01 and M r HILL'S equati, on for ~p becomes identical with 

the present one for ~ .  I t  is well to remark- that what I denote by c is 2c of M r HILL's 

notation. 
Aeta mathematiea. 2l. lmprim6 le 23 aofit 1897. 19 
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space, the mean motion of the body with reference to the perlcentre is 
2r: d(o . . . . .  r[~ l 
;/, + n t i t"  I ran, since angular velocities vary inversely '~s periods, 

27:, do~ 

I rl~ + ~' d t  
c =  , where n 2=- -~+  I. 

2 2Z 
~/' 

Therefore 

(46) o r  

2 ~ ( .  C - -  [ . T n - - d T  / ,_ 

M r HILL's c is equal to one half of my c. and accordingly the first of 
(46) is identical with the formula from which M r HILL derives ~)a part 
of the motion of the lunar perigee)). ] 

( l O )  

The angublr velocity of regression of the pericentre being n - - ~ l t '  

it follows from (46) that 2~(*[c--2 I). is tile "mlount of that  re~ression.. 

with respect to tile moving axes in the synodic period. 
Whilst the pericentre regredes with reference to the moving axes, 

it advances with reference to fixed axes; the advance in the synodic 
/ I  ) 

period is n T - - 2 r : ( ) c - - i  , and in the sidereal period the advance is 

- e  
2 

27:', I n T  " 

I +  27r_ 

In the numerical t r ea tmen t  of stable periodic orbit~ I tabulate the 

apparent regression 2 ~ ( ~ c - - , ) ,  and the actual advance n T - - 2 ~ ( ~ c - - I )  

in the synodic period; also 2r  t 5~:/' the advance in the sidereal 

period. 

A e t a  M a t h e m .  vol. 8. 
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Let us now consider the case where c is imaginary,  so that  the 

motion is no longer oscillatory wi~h respect to the periodic orbit, al~d 
the periodic orbit is unstable. 

The form of (45) shows (hat c becomes imaginary either when 
i 

zXsin:5r,~/tP0 is negative, or when it is greater  than unity;  this function 

will therefore be described below as the criterion of stability. 

If  (1) 0 were negative it would indicate that  the mean force of 

restitution towards the periodic orbit was negative. Hence it seems ob- 
vious that  the body would then depart from the periodic orbit, which 

would therefore be unstable. If  however A were negative as well as 

(P0, it would seem as if it were possible to have a real value for c; 

but it is not easy to see how this condition couhl lead to a stable orbit. 
I have not yet  come on any case where  (Po is negative and ac- 

cordingly that  condition is left out of consideration for the present. We 

are left then with the two conditions, A negative or A sin: - ,-r V' (Po greater 2 
than uni ty;  these lead to two kinds of instability. 

In instability of the first kind A is negative; for reasons which 

will appear below, I shall call this ))even instability)). 

In this case let us put  

A s i n ~ - I  ~ , , ' (p0 = - - D  ~, 
2 

so that  (45) becomes sin-I :re = + D~/ - -  I. 
2 

The sine in this case is hyperbolic, and if we write c = 2i + k~ / - - I ,  
I 

where i is an integer, the equation for k becomes s inh -=k  = _.+_ D. 
2 

Since the values of c occur in pairs, equal in magnitude arid opposite 

in sign, it is only necessary to consider the upper sign and the result  

may be written 

e = + + D ,  

(47) or 
k 2 = l o g e  + + D]. 

I shall return in w I2 to the form of solution adapted to the case of 
))even instability)). 
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Turning ~o the instability of the second kind, which I shall call 
~uneven instability)), we have 

s i n ~  rrc = A sin~_ I ~r ~/(P o = D ~, 
2 

where D 2 is greater than unity, so that c is imaginary. 
The sine in this case also becomes a hyperbolic fimction, and if 

we write c~--- 2 i +  t + k ~ / ~ i ,  where i is an integer, we have 

a hyperbolic cosine. 
Hence 

I I 
sin ~ ~ = (--)~ cosh 2- z:,k, 

cosh [ ~rk - -  _+ D.  
2 

Taking only the upper sign as before, this may be written 

(48) / or 
e ~*  = ~ / ( D  2 -  i) + D,  

k = 3 loge [v/(D~-- ,) + D]. 

I shall return in w i2 to the form of solution adapted to tile case of 
))uneven instability)), but I wish now to consider the nature of the transi- 
tions from instability to stability. 

Suppose that we are considering a family of periodic orbits, the 
members of which are determined by the continuous increase or decrease 

of the constant C of relative energy; and let us suppose that  A sin ~-x zr~/~o, 2 
being at first negative, increases and reaches the value zero. At the 
moment  of the transition of this function fi'om negative to positive, there 
is transition from even instability to stability. I f  on the other hand 
this function were positive and less than unity, and were to increase up 
to and beyond unity there would be a Sransition from stability to uneven 
instability. 

In all the cases of stability which I have investigated, except one, ~ 
the fundamental value of c lies between 2 and 3, and the apparent 

I The orbit in question is C = 40"0, x o = I"o334; see Appendix. 
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regression of pericentre in the synodic period, namely 2r : , (~c - - l ) ,  lies 

between o and I8o ~ these extreme values corresponding with transit ional 
stages. 

I t  will now conduce to brevity to regard c as ly ing between 2 
and 3, instead of regarding it as a multiple-valued quantity.  

I f  we refer back to the form of solution assumed for the equation 
(44), we see that  when c = 2, the solution is  

:27~S 
$q = (b_, + e,) + (b 0 + e0 + b_, + e,) c o s - f t . . .  

2~8 
+ ( b o - - e 0 - - b  ~ + e~)~/~ I s i n ~ - . . . ,  

and that  when c = 3, it is 

5 q =  (b~ + e_~ + b_~ + e,~) cos ~- + (bo + eo + b_3 + e3) cos 3~s 

7/'8 
--1- (b~-  e ~--b_: + e:) ~/-- i sin ~- -1- (bo--e o - -  b 3 + e3) ~/-- ~ sin 3~, s 

In the first case it is clear that  when s-~ 8 ,  3q has gone through a complete 
period and has returned to its initial value; but in the second case whilst 
3q is equal in value, it is opposite in sign to what it was at first. 

Consider then the first case where c = 2, and suppose that  the body 
is displaced from the periodic orbit along the normal, at a conjunction. 
Then the body starts moving at r ight  angles to the line of syzygies, 
and when s ~  S it has again returned to the same point, and is again 
moving at r ight  angles to the line of syzygies. 

Hence it follows that  we have found a new periodic orbit differing 
by i n f i n i t e l y  lit t le from the original one. Thus the original orbit is a 
double solution of the problem, and the interpretation to be put on the 
result c = 2 is, that  we h a v e  found a periodic orbit which is a member 
of two distinct families. 

The A sin=-I=~/rp0 corresponding to our family of orbits has been 
2 

supposed to be increasing from a negative to a positive value;  at the 
instant of transition the same function for the other family must also be 
passing through the value zero. 
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If C b e  the wtlue of the constant of relative energy for the critical 
orbit which gives c =-2 ,  there must be two orbits, infinitely near to one 
another, for which the constant is C - - 3 C .  

If the orbits were classified according to values of the parameter 

A sin ~ I - , ' r (~P  o instead of according to val,ms of C, these two families 
2 ' 

would have to 1)e regarded as "t. single family, and the critical stage 
would be that in which C reached a maximum or minimum value. 

But when the classification is according to values of 6', we say that 
there are two families which eoalesce at the critical value of C; it i s  
also clear that, as the orl)it we were following was unstable up to this 
critical value, the other must have been stable. 

An interesting example of this will be found below, where the fa- 
milies of orbits B and C' spring from a single orbit. 

Now reverting :~gain to the question of the transition from instability 

to stability, let us suppose that as the constant C varies. A sin ~ I 
�9 

being at first greater than unity, diminishes, passes through the value 
tinily and continues diminishing. Then the orbit was at first unstable 
with uneven instal)lilt)- and c of the form 3 + k v / - - I ;  it becomes stable 
at the critical stage witti c less than 3- But there is now no real d o u b l e  
solution at the moment of transition and no co'descence of' families. '  It 
is probable that there is coalescence with another family of imaginary 
orbits at this crisis, but I do not discuss this, since I am not looking at 
the subject from the point of view of the theory of differential equations. 
Accordingly in out- figures of orbits there will be nothing to mark the 
transition from uneven instability to stability, and it will only be by 

the consideration of the ftmction A sin"2rX/4) 0 that we shall be aware 

of the change. 
The conclusions arrived at in this section seem to accord with those 

of M. PoI~caui  in his M6.canique Celeste, who remarks that periodic 

orbits will disappear in pairs. 

1 When I explained the results at which I have arrived to 3I. I)OI:~OARIh, he 

suggested that there may be c,)alescence between a doubly periodic orbit and a singly 

periodic one, when the two circuits of the former become identical with one another and 

with the latter, 



Periodic Orbits. 151 

It is clear from this discussion that uneven instability can never 

graduate directly into even instability, but the transition must  take place 

through a range of stabilitv. 
But this last conclusion must not be held to be contradictory of a very 

remarkable method of transition, of which we shall find an example below. 

Suppose we have two independent orbits in either of which the body 
may move, and that  as the constant of energy varies these two orbits 

approach until  they have a common t'mgent. Then when the constant 

of energy varies still further,  we shall find only a single orbit replacing 

the t w o  independent ones. Now we shall see reason to suppose that  two 

independent orbits one of which is evenly unstable, "rod the other un- 
evenly unstable may fuse together so as to form an evenly unstable 

orbit. In this case we have, in some sense, a direct transition from 

uneven instability to even instability, without the interposition of stability. 
An example of this will  be noted in w ~8, where we shall find the satellite 

A fusing its orbit with the oscillatory orbit a and forming a figure-of-8 

orbit. 

w 12. ~lodulus  of  instability~ ttnd f o r m  of  soltttion. 

The cases of instability will  now be considered. 

When the inslability is of the first or even 

c = 2 i + k @ - 1 ,  and 

kind, we have 

(49) 
e- �89  ~/(1) 2 + I ) - - D ,  

where D ~ = - -  A sin~- I z~/q90. 
2 

The solution of (44) was 

+ %.) cos(e + s ) i - -  I sin(e + 

Now if we take the integer i involved in the expression for c as zero, 

cos(c + 2])0"---= coshka cos 2]'a--~/-- I sinhko'sin 2]o', 

~/-- I sin (c + 2]) a = - -  sinh ka cos 2]'0 + ~/-- I cosh kasin 2]a. 

Therefore when the sign of summation only runs from cx~ to o, instead 



152 G . H .  Darwin. 

of to --OO, and when b 0 and e 0 are supposed to be the halves of their values 
when the summation ran from -t-c~ to ---oc,  the solution may be written 

e~ 

Oq = ~{eosh t',r[(bj + e y +  b_r ej)eos 2/a + ( 1 , j - - e _ s - - b _ ~ +  e j ) ~ - - I  811"i2]'o-] 

q- sinh ka [ - -  v / -  I (bj -b e _ j - -  b _ i - -  ei) sin 2]'~r ,-- (b i -  e=i-t- b ~  --  ej) cos eia] 1. 

Put t ing 
b i --~ b_j = Bj,  e_ i q- ej = Ej ,  

and writing the hyperbolic functions as exponentials, we have 

(5o) ,~q Z~e (E.eos 2]'er-t- sjsin 2]'e) q- e ( t j e o .  a/~--fl ,  sin 2]~)1. 
0 ! \ J 

By means of (49) this m'ly be written 

(50) ~q = Z[(V(D ~ + ~) + D) ~ (E~.eos v ~  + -V ~' ~ n  -Va) 
0 

+ (r ~ + , ) - -  D)-" (~.eos ~i~--~.s~n 2i~)I. 

In (5 ~ ) it is not safe to assume that the most important term is that 
for which ]-----o; indeed this will usually not be the ease. A l l  that  we 
know is that the series contains sines and cosines of even multiples of a, 
that one set of terins increases without limit and that the other set di- 

minishes. 
In the numerical treatment of unstable periodic orbits it will be 

well to have a modulus of the degree of instability; ,qnd these considera- 
tions afford a convenient means of obtaining such a modulus. 

Thin modulus may be taken to be the number  of synodic revolu- 
tions in which "the augmenting factor doubles its initial v'llue; that is to 

say we are to put  
2a 

e '~ =[~/ (D'  -k- i) q- 1)] ~" = 2. 

Therefore 
s ~ l og  ~/2 

( 5 I )  S ~ l o g  [ ~ ( D  ~ -1 t- I)-1- D] "  

This is the modulus of instability, when it is of the even kind. 
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A consideration of the form of the series for &/ shows that it in- 
creases without limit, and that the planet or satellite crosses and re- 
crosses the periodic orbi t  an even number of times in a single circuit; 
it is on this account that I have called this ~even instability~>. 

When the instability is of the second or uneven kind, we have 
c = 2 i +  I + k ~ / - - i ,  or if we take i as zero, c = I  + k ~ / ~ i ;  also 

e�89 = 39 + ~(D ~ -  I), 

e -~'~' D - - ~ / ( D  ~ -  i), 

where D ~ = A sm ~'~/~0" 

Then 

c o s ( c +  2j)a= cos(2j + I )acoshka~/--  I sin(2j + I )as inhka ,  

~/~ x.sin (c + 2 j ) a = -  cos(2j + I )as inhka  + ~/~ I sin ( 2 / +  I)acoshka. 

And the solution, expressed with singly infinite summation and with the 
proper change in the meanings of b 0 and e0, is 

oq = ~0 {cosh k~[(b~ + b_~_l + e_t+ e~+,) cos (2j + ~)~ 
I 

+ (bs-- b_~_l-  e_~ + es+l) r  ~ sin (:j + I)~] 

+ sinh k a [ - -  ~/-- I (b~--b_~_a + e_~--ej+~)sin(2j + I )a  

--(bs + b_s_x -- e_i--es+,) cos(2] + I)tr]}. 

Putting 

bs + b-s-, = E ,  e-s + es+~ = ~., 

bs--  b-s-a = PSi/-- I, e - s - -  es+, ---- *s~/-- i, 

and writing the hyperbolic functions as exponentials, we have 

(5 2 ) 3q= ~o {ek~(EsCOS(2j + I)a+ essin(2j + ,)a) 

+ e-'~(Bscos(2j + I ) a - - ~ s i n ( 2 j  + I)a)}. 
Aettt mathemat~a. 20. Imprlm~ le 3 septembre 1897. 90 
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By means of (52) this may be written 

(53) 
oo 2~  

3q= ~o {(D-4-,'(D"-- I))u + I)a--I-- r sin (2] + I)a) 
? a  

+(D--~/(D ~ I))~(BjCOS(2]" + I)a--~sin(2j+ I),,)}. 

In this case again the terms for which j =  o are not usually the 
most important ones, but we see that the series contains sines and cosines 
of odd multiples of a; and that one set of terms increases without l imit 
and that  the other diminishes. As in the first sort of instability, a 
convenient modulus is the number  of synodic revolutions in which 
the amplitude of the increasing oscillation doubles its initial value; that 
is to say we put 

2 a  

e '~ = ( D  + ~ / ( D " - -  ~)) ~ = 2.  

Therefore 

(54) s ~ log ~/2 
= ?  lo~ D + ~/~D ~ - I ) ] '  

where 

D 2 = A sin~- I z~'4~0. 
2 

This is the modulus of instability, when it is of the uneven kind. A 
consideration of the principal term has shown us that  there is an oscil- 
lation, whose amplitude increases without  limit. The planet or satellite 
crosses and recrosses the periodic orbit an odd number  of times in a 
single circuit, making ever increasing excursions on each side; it is on 
this account that  I have called this >mneven instability>>. 

It is interesting to consider the form which the equations of con- 
dition assume in the two sorts of instability. 

In the case of even instability we have c = k ~ / ~  I, and the equa- 
tions for the determination of the b's are given by 

(ss) b~(c + 2j) 2 = Xibj_, ~i,  
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We now have 

2 bj ~-- Bj .-[-- ~. ~/-- i , 2 b_j = Bj - -  g. ~/-- I , 

2bi(c + 2j)2= (4j~--k2)Bj - 4jkfli + ~ - -  I [4jkBj + (42"~-- k2)~.]. 

Then noting that  /~0 is necessarily zero, and equating to zero the real 
and imaginary parts of the equation of condition (55), we have 

00 

( 4 j ' - - k ' ) B ~ - -  4]k~.= Bo Oj-j- ~ ,B,(  Os_, + #j+,), 
(5 6 ) 

In the ease of j~---o, the second equation is identically true, and the 
first becomes 

00 

(5s) -k' 0 = B0 0 + 2 

I t  is easy to show that if  we take j as negative, we are led to the 
same equations; thus it is only necessary to consider the case of j po- 
sitive. 

These equations suffice to determine all the B's and fl's in terms 
of one of them, say B0, which is an arbi t rary  constant of the solution. 

We have already seen that  the equations of condition for e_ s are 
exactly the same as those for by. Hence bearing in mind the definitions 
of E/ and r we see that  the equations of condition for ~ . ,  e1 are 
the same as those for B~,flj. Then since e0-----o, E l ,  r are the same 
multiples of E0 as Bj , f l i  are of B0. Thus E0 is the second arbi t rary 
constant of the solution. 

Suppose that  we put  B0 = i, and solve the equations finding Bj=Ai,  
/~/= 2j, then the general solution is 

0o 

(57) ~q = ~o j[Eoek~(A~ cos 2ja + 2jsin 2ja) + Boe-*"(Ateos 2 j a - -  Jlisin 2ja)]. 

Now turn  to the case of uneven instabil i ty where c----- I + k ~ / - - I ;  
the equation of condition may be written 

00 

(5 8 ) bj(c ~1_ 2 ] ) 2 =  ~0 ibi*j__ i ~- ~0 i~ i__l (~j+i+l,  
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:bj= B; +/9~ ~/-- ~, 2b+, = Bj--A~/--  x, 
=b;(c + =;) '=  [(~J + x ) ' - - k ' ] E - -  ~(~] + ~)k/9i 

+ ~--  ~12(2j+ x)#Bi+ [(2j + ~)'--#']/911- 
Then equating to zero the real and imaginary parts of the equation of 
condition (58), 

[(2j 4- ~)'--k']Bi--2(2j 4- x)kflj. ---- ~o ,B,(~i4 4- 4)i+,+1), 
(59) 

~(2g + ~)kBs+ [(v + , ) ' - -k ' ] f l ;  = oZ,/9,(~i~-- ~;+,+1). 

It is easy to show that it is only necessary to consider the positive 
values of j .  

These equations suffice to determine all the B's and /9's in terms 
of B0, which is one of the arbitrary constants of the solution. 

From the definitions of E i ,  ~i it is easy to see that the equations 
of condition are the same as (59), and that E/, e i are the same multiples 
of E0, (the second arbitrary constant) that Bi, ~ are of Bo. 

Suppose that (59) are solved with Bo = I, and that we find Bi= At, 
t9 i ----~; then the general solution is 

e e  

(60) #q=  o~t [E0e~'(Aj cos (2 /" 4- I ) a +  ,~sin(2] 4- I)a) 

4- Boe-*"(4cos(2j 4- I)a -- �89 4- I)a)]. 

It follows therefore that when k has been found from the infinite de- 
terminant the solutions for the varied orbit are expressible by means of 
two arbitrary constants in both kinds of instability. Such solutions would 
of course only express the true motion for a short time. 

I have actually applied this method to one of the unstable periodic 
orbits which was computed, but as the work leads to no useful conclusion 
I shall not give the details of it. 
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w 13. ~Vumerical determination of stability.  

When a periodic orbit has been found by quadratures, it is not 
obvious by mere inspection whether it is stable or not, and we must 
consider the numerical processes requisite to obtain an answer to the 
question. 

The points which are determined by quadratures in a periodic orbit 
do not divide the arc S into a number of equal parts. The distance 
along the arc from the first orthogonal, crossing of the x axis to the 

S; this may be determined by inter- second orthogonal crossing is 

polation, for we may find what value of s makes y vanish. 
In general there are two orbits computed, which differ from exact 

x S periodicity in opposite directions by small amounts. The arc ~ , measured 

from the first orthogonal crossing to the second, which is not exactly 
orthogonal, is determined in each of these cases. The subsequent pro- 
ceedings are then carried out in duplicate, and the final step is an inter- 
polation between the two results to obtain the result for the exactly 
periodic orbit. In many cases however the computed orbit differs from 
a truly periodic one by an amount which is so small, that it may be at- 
tributed to the errors inherent to the method of calculation. In such cases 
the duplicate computation is unnecessary, and since the operations on the 
approximately periodic orbits are exactly like those on the truly periodic 
ones, we may henceforth speak as if the true orbit had been found. 

The next step is the computation of ~ corresponding to each 
computed point of the orbit. In order to take advantage of the work 
already carried out in the quadratures, I arrange the computation of 
in the following form: 
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C o m p u t a t i o n  of ~P. 

~--~ ~--r 
Lr  Lp 

Lr  3 Lp s 

L~ sin ( ? - -  8) I L sin ( ? - -  r 
C V ~ I C V ~ 
i a  

I" 

d V  

Vds 

dye, 
Vds] 

Lb 

I I R 

V 
C 

C 2 

IO o -Uc" 

I / d V ' , *  

A 

Lv cos ~ (9 - -  O) 
C~ ,3 

C V' 

L c o s ~ ( ~ - - r  

Cp 3 
CV: 

Ld  Le 

Id I A 
le - - B  

B I A - - B  
Lq r I ( A - - B )  

As before  L ,  C s tand  for  l o g a r i t h m  and co loga r i thm,  and  the  bracke ts  

indicate  addit ions.  
I t  w o u l d  be ted ious  to f ind the  Four ier ' s  series for ~ f r o m  its c o m p u t e d  

values ,  and  it is best  to f ind i n t e rpo l a t ed  va lues  of  ~0 at  exac t  sub- 
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multiples of the arc S. I therefore interpolate ~ at the points for which 

i S i S .  i2 S, t3 values in all. These interpolations are the are is 2--4 ' 24 "" 2--4 

made by one of the formulae (23). 
The next step is the harmonic analysis of these t3 values of ~, 

which is an even function of the arc. 
The analysis may be conveniently arranged in a schedule of the 

fo l lowing  form. 

H a r m o n i c  a n a l y s i s  of an  e v e n  f u n c t i o n  of w h i c h  2 4 v a l u e s  

a o , a ~ . . . a ~ l ,  a~ . ,  a n . . . a ~  are  g iven .  

Sum o 

i ii iii iv v vi 
i - - i f  M M .  iii M M • iii M M x iii 

a o a~2 a o - - a ~ 2  ( a )  I a I a I a 

~1 %1 a1-~11 (~) o0 ~r 2 '~1 ,I1~ - ,7,  - o  2 
# 

a ,  m s a ,  ~ M s (r I ~ I r I z 

a 6 n o 0 0 0 0 0 0 0 

to 6 Sum 7 ~o i2  2 4  Sam 24  [ Sum 24 1 Sum 

Sum o to 6 ~)~ 0~ r 

Sum 0 to I2  

2 X S u m  0 tO I2 o'l-~2sinI5 ~  "5176 
a3=2sin45~ I'4142 
~4 = 2 sin 60~ = I ' 7 3 2 I  

a s = 2 s i n 7 5 ~  I ' 9 3 Z 9  

--(a~ r = ~ E ~ - 2 r 1 6 2  
24 Sum 

0o (see iii) 

vii 
i + i i  

a o -~ a l ,  

a 1 " ~  ~a 11 

~l,~ --~ a 1 o 

a 4 -~- a s 

a 5 + a 7 

a e + a 6  

viii ix x 
Last 4 of vii reversed v i i - -v i i i  vii + viii 

%+ao ( % + ~ 1 , ) - ( % + ~ )  (7) (%+al~)+(%+ao)  (~) 
% + ~7 (~1 + al, ) - (% + a~) (0) (~, + al, ) + (% + % ) (~) 
% + a~ (% + al0 ) -  (a, + %) (x) (as + %0) + (a, + a~) (~) 
a 3 + a 9 0 (a s .~- ag) + (a s "~- ag) (/9) 

I 

~o= ~4 [~/- 2~J, 
(see ix) 

~' = ~4 [('~ + z ) -  (~ +,o)]. 
I c s =  2-~ [ O - z ) - ( v - P ) ] .  

(se~ x) 
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2~s the function ~ is equal to If we write O = 2a = - ~ - ,  

r + 2 ~1 cos 0 + 2 ~ cos ~e + . . .  + 2 ~8 cos SO. 

In order to test the accuracy of the work and the convergency of the 
series, it is well to compute the values of several of the a's directly 
from the harmonic expansion. For this purpose we have 

r 2 ( ~  2 + 06 + 2({~ 1 
a l  2 

{a~ = 4o -4- 4 2 - -  44 ~ 24)~ ~ ~s + a4(01 4, r 
al  0 

{ a~ = 0 0 ~  44- [ -2r162  + 07 2 ), 
a 9 

l a4 - 4 o _ _ 0  _ _ 4 4 2 t _ 2 0 6 _ _ O s •  .4_07), 
a s 

ao = 0o + 2( 44 + 08)- -2(0 ,  + 0o). 

It may be remarked that if the harmonic expansion of �9 is con- 
vergent, the  determinant from which the stability is determinable is also 
convergent. 

But if the representation of �9 by the harmonic expansion up to 
the 8 th harmonic is very imperfect, it is necessary to give up the attempt 
to determine the stability numerically. In such cases however it is nearly 
always possible to see that the orbit is unstable, although it may not 
sometimes be so easy to perceive whether the instability is even or 
uneven. 

We next have to calculate the several members of the determinant 
A by the formula 

This is the entry for the y~h row above or below the centre of the 
determinant, and it is the i th member to the right and to the left of the 
leading diagonal, all the members on the diagonal being unity. The 
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values of @i computed by the preceding analysis suffice to enable us to 
write down I7 columns and rows of A. The method of computing A 
will be considered in the next section. 

w 1~. The caleula$ian o f  a de t e rminan t  o f  m a n y  co lumns  and  rows.  

The following transformation contains the principle by which the 
number of columns and rows of a determinant may be diminished by unity 

A = 

a I , a 2 , a 3 , �9 . . 

hi , b2, b3 , . . .  

C 1 , C 2 , 0 3 ~ . . .  

�9 . , . . �9 . �9 , 

a I 

6t2 a a 
I , - -  , - -  ~ . . .  

~ t  a t  

o b~- -b  1% % , , - -  b ,  , . . .  

a ~  a s 
O , C 2 ~ 6 1 - -  , 6 s - - C 1 . ~ -  ~ �9 �9 " % 

~ a 1 

b 2 - b ~ a ~  bs__bla~ 
at ~ a 1 ' �9 �9 . 

C ~ - - C  1 - a  x ~ C 3 - - C l - - a ,  ' " " " 

�9 . . . �9 . . �9 �9 . �9 . . �9 �9 . 

Now if we write b~=b2- -b , a~  �9 so on, and then extract the 

factor b'~ another column and row may be removed, and the process 
may be repeated until the determinant is reduced to a single member, 
say z.; then 

A = z . .  

If the determinant is convergent and if the rows and columns be removed 
in proper succession, the factors tend to unity. 

By interchanges of columns and rows any member of a determi- 
nant may be brought to stand at a corner, but if the number of inter- 
changes is odd the sign of the determinant is changed. 

It is not therefore necessary to work from a corner, as in the above 
example, but any column and any row may be chosen for elimination. 

A e t a  ~ n a t h e m a t i v a .  21. Impr im~ le 3 septembre 1897. 2 1  
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T h e  m e m b e r  which  stands a t  the  intersection of  the  chosen c o l u m n  and  

row m a y  be called the  centre  of e l iminat ion.  Then  if  the  cen t re  of 

e l iminat ion  be at  an odd or even n u m b e r  of moves f rom a corner,  the  

s ign of  the whole  is or is not  changed.  

In  t he  de t e rminan t s  which  arise in this invest igat ion the  cent re  of  

e l imina t ion  is a lways  taken  on the  diagonal ,  and thus  no change  of  sign 

is in t roduced.  

Let  us suppose tha t  the  de t e rminan t  to be eva lua ted  is a symme-  

t r i ca l  one, and tha t  the co lumns  and rows are numbered ,  as in the  

fo l lowing example :  
--2 --I 0 I 2 

- - 2  C , C 1 , C 2 , C.~ , C 4 

- - I  b I , B ,  b ~ ,  b2 ,  b 3 

o a 2 , a~ , A , a~ , a 2 

I ba , b 2 ,  b, , B , b, 

2 C4 ' Ca ' r ' C 1 , C 

Let  ( - - i , - - i )  be the  first centre  of  e l iminat ion,  and ( I ,  I) the 

second; then if the  double  e l iminat ion  be carr ied out  and a lgebra ic  re- 

duct ions effected, i t  will  be found tha t  the resu l t  is 

Where  

B ' ]  

--2 0 2 

B'  ' b~ , b l  , . 

a~ , .A' ' , G1 

i t 

b~ , bl , B '  

B ' - - - - -C 
b3c , + b,% (b, - -  bs)(c , - -  %) 

B + b~ B b~ 
B 

b ; ~ c  4 
b,c, "4" b3c s ( b , - - b s ) ( q  - - % )  

B + b, + b~ 
B 

B 
2alb 1 

B +  b~" 

~2 

0 

2 

p 
b I = c 2 

! 

a I = G  2 

b,(c, + c~) 
B + b ,  ' 

al(bl 4- b,) 
B + b ,  ' 
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If the determinant is convergent, with an odd number of columns and 
rows, (o, o) is the leart of the determinant; if the elimination proceeds 
away from the he~rt, at any stage of the process the approximation 
consists of the product of all the factors extracted, multiplied by (o,  o)r 
the heart of the remaining determinant. 

Thus in the above example after one double elimination the ap- 
proximation is 

B ~/ B + b~/ 

This is in fact the full expression for the determinant 

B ,  b~, b~ 

al~ A ,  a 1 

b 2 , b 1 , B 

I have found it most convenient in practice first to extract a squared 
factor, such as B 2 (thus reducing ( - - I , - - I )  and ( I ,  I) to unity), and 

afterwards to extract a single factor, such as x--~-~. 

This process cannot of course be applied with advantage, when the 
work is algebraical, but some process of the kind seems to be practi- 
cally necessary, when the approximate numerical value is to be found 
of a determinant of a large number of columns and rows. 

It will be noticed that after each pair of eliminations the primitive 
symmetry is restored; but the work might equally well be arranged 
otherwise. For we might first eliminate from the centre (o, o), which 
would not affect the symmetry, and we might then take the pair ( - - I , - - I )  
and (I, I). This variation of procedure would afford a valuable check on 
the arithmetic. 

Where the outer fringe of the determinant obviously has but little 
influence on the final result, and where we are in any case going to use 
all the members in the original determinant, I have found it best to 
begin from the outside. In such a case four or five columns and rows 
may, as it were, be shelled off the outside, with scarcely any alteration 
of the central entries. 
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The actual numerical work of evaluating a determinant may be 
arranged as follows: 

The number of decimal places to be retained is first fixed on. A paper 
is then marked with a gridiron of columns and rows, numbered from 
zero at the centre upwards and downwards. Each square should be 
large enough to contain four or five rows of figures. The original de- 
terminant is then written in the squares, the numbers being put as near 
the top of each square as possible. I have found it convenient to omit 
decimal points, and to express the numbers in units of the last decimal 
place retained. In most of my work, where only a rough result was 
required, I have adopted three places of decimals; thus the unit in which 
the entries are expressed is "oox, and the diagonal members are all 
written as I ooo. 

The pair of symmetrical diagonal members, which is to form the first 
pair of centres, is then chosen. As stated above, I have in my later 
work usually worked from the outside. In the first pair of eliminations 
these diagonals are already unity, but this is not so subsequently, and 
we first reduce them to unity by dividing the rows on which they stand 
by their values, and by extracting a squared factor. 

It will be found convenient to run a red line through the column 
and row to be removed. If the red lines be regarded as coordinate 
axes, the row being x and the column y, any member of the determinant 
may be specified by its x and y. If the member of the determinant 
whose coordinates are x ,  y be a; and if the member whose coordinates 
are x ,  o be b; and if the member whose coordinates are o ,  y be c; 
then the number which has to be substituted for a is a--bc .  

In other words each number on the horizontal red line has to be 
multiplied by each number on the vertical red line, and the products 
have to be subtracted from the numbers which stand at the remote 
corners of the rectangles. 

In effeeting this process I form a separate table of the subtrahends, 
and write down the differences immediately under the numbers which 
they displace. 

After the first elimination, which has rendered the determinant un- 
symmetrical, a single factor corresponding to the other chosen diagonal 
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member is extracted, its row is correspondingly altered, red lines are 
drawn to mark the column and row to be removed, and the similar 
process is repeated. The symmetry of the determinant should now be 
restored, but any pair of numbers which should agree are arrived at by 
different numerical processes. 

The restoration of symmetry affords a very valuable check on arith- 
metical processes which I have found it singularly difficult to work 
correctly. 

As only a limited number of decimal places are employed there is 
often a discrepancy of unity in the last significant figure between two 
numbers which ought to agree. It is sometimes possible to determine 
by inspection which of the two numbers is arrived at by the less risky 
series of operations, and I then adopt that number to represent both 
entries. But where there is no obvious reason for choosing one result 
more than the other, I choose one or other at hasard, and restore the 
perfect symmetry. 

The process of elimination is continued until the determinant is 
reduced to (o,o), but in the l~lst two or three stages it is well to in- 
crease the number of decimals retained. 

If at any stage the factor to be extracted becomes small, the whole 
row to which it belongs becomes large~ and the symmetry may perhaps 
be seriously affected. In this case it is well not to choose this pair of 
centres of elimination, but to take another pair, leaving this pair to a 
later stage in the calculation. 

If the determinant is negative, a negative factor will be extracted 
at some stage. In all the cases which have been worked out it is easy 
to see that no other negative factor will ever arise, and thus the de- 
terminant will remain clearly negative. Most of the determinants have 
been written with I7 columns and rows; then beginning with ( - - 8 , - - 8 )  
and (8,8)  I find that it is often possible to erase 8 columns and 8 
rows on a single sheet of paper, with scarcely any modification of the 
central part of the determinant. Thus the determinant which a~ first 
had 289 spaces (although many only contain zeros) is reduced to 81 
spaces, with but little labour. 

The multiplications have been done with Crelle's table, but a spe- 
cially computed auxiliary table of products, from "ooo X "ooo up to 
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"o4o X "040 to three places of decimals, has rendered the work much 
more rapid. 

I believe that the values obtained by this process are correct to 
within about one per cent. For the same determinant when reduced with 
different order of elimination agrees with its previous determination within 
less than that amount of discrepancy. 

P A R T  II. 

w 15. P e r i o d i c  Orbits .  

An orbit in which the third body can continually revolve, so as 
always to present the same character relatively to the two other bodies, 
is said to be periodic. If the motion is referred to a plane which is 
carried round with Jove and revolves about the Sun as a centre, any 
re-entrant orbit of the third body is periodic. Periodic orbits may consist 
of any number of revolutions round either of the primaries, or round 
other points in space. Periodic orbits, which are only re-entrant after 
several circuits, are much more di~]cult to discover than those which 
only make a single one; as hardly anything is known up to the present 
time about this subject, I determined to confine my attention to ))simple 
periodic orbits)), which are re-entrant after a single circuit. This definition 
of a simply periodic orbit must no t  preclude the consideration of orbits 
with loops, for the inclusion of such loops is necessary to the comprehen- 
sion of the subject. 

It appears from the differential equations of motion that periodic 
orbits must in general be symmetrical with respect to the line of 
syzygy; or if any periodic orbit consists of a closed circuit round a point 
which does not lie on this line, there must be a similar closed circuit 
round a symmetrical point on the other side of it. 

Periodic orbits are critical cases which separate the orbits of one 
class from those of another, and the chief difficulty in tracing them 
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consists in the fact that it is necessary to trace the gradual change of 
an orbit, as its parameters change, and to discover its form at the instant 
of its transformation into an orbit of a different character. 

The partition of space derived from the Jacobian integral (w 3) 
shows that the constant of relative energy C is of pr imary  importance 
in the classification of orbits. The work of this investigation being nu- 
merical, I was compelled to assume a definite ratio for the mass of the 
Sun in terms of that of Jove; this ratio is taken as IO. The mass of 
the actual Sun in terms of that of the actual planet Jupiter is about 
IOOO, and accordingly all the phenomena of perturbation are greatly 
exaggerated in our figures as compared with the real solar system. 
This exaggeration appeared to me advantageous for the purpose of giving 
a clear view of the phenomena. 

The mass of the Sun being Io, that of Jove being unity and the 
distance between them being unity, we found in (9) that when C is greater 
than 4o'~82~ the third body must be either a superior planet, or an 
inferior planet, or a satellite, but cannot change from one of these con- 
ditions to another. 

These larger values of C then bring us to those cases which are 
treated in the Planetary and Lunar Theories; I therefore cease my con- 
sideration of the problem for all values of C which are greater than 
4o'5. On the other hand C can never be less than 33. Hence the whole 
field to be treated is covered by the values of C between 33 and 4o'5, 
and the problem is to obtain a complete synopsis of simply periodic 
orbits and of their stabilities between these limits. 

The field of investigation is however so large that in the present 
paper I am compelled to make further restrictions. In the first place, 
the case of superior planets has not been touched at all; although, at 
the point at which I have now arrived, they must soon be taken into 
account. 

Secondly all the orbits considered are direct; the retrograde orbits 
would afford an interesting field of research. 

Lastly the present paper only covers the field from C equal to 38 
to 4o'5; and even this has occupied me for three years. 

The slowness with which results are attained by arithmetical processes 
has been very tantalising, but the interest of the work has been sustained 
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by the fact that the results have presented a succession of surprises. I 
have, over and over again, been deceived when I imagined I could foresee 
the shape which would be assumed by the next orbit to be treated, and 
thus the subject was continually presenting itself under a new light. 
Nevertheless a point has, I think, been now reached at which some 
forecasts are possible, and I shall venture to say something hereafter in 
w I9 on this head, with the full knowledge however that the conjec- 
tures may prove erroneous. 

Being ignorang of the nature of the orbits of which I was in search, 
I determined to begin by a thorough examination of one case. It seeIned 
likely that the most instructive results would be obtained from cases in 
which it should be possible for an inferior planet and satellite to inter- 
change their parts. Now when C is greater than 38"8760 but less than 
4o'I82 I, the two interior ovals of the curve of zero velocity coalesce into 
the shape of an hour-glass, and thus interchange of parts is possible. I 
therefore began by the consideration of the case where C is 39, and 
traced a large nmnber of orbits which start at right angles to S J, and 
in some cases I also traced the orbit with reference to axes fixed in space. 

The two curves, which represent the orbit in space and with re- 
ference to the moving plane, contain a complete solution of the problem. 

For if the curve on the moving plane be drawn as a transparency, 
and if the Sun in the two figures be made to coincide, and if the transparent 
figure be made to revolv'e uniformly about the sun, the intersection of 
the two curves will give the position of the body both in time and place. 

In order to exhibit this I show in fig. 2 a certain orbit with 
reference to axes fixed in space and also the same orbit referred to 
rotating axes. In the former figure the simultaneous positions of the 
planet and of Jove are joined by dotted lines. It is interesting to 
observe how the body hangs in the balance between the two centres, 
before the  elliptic form of the orbit asserts itself, as the body approaches 

the Sun. 
This figure, and others of the same sort, are instructive as illustra- 

ting the usual sequence of events in orbits of this class. 
If a planet be started to move about the Sun in an orbit of a 

certain degree of eccentlicity, it will at first move with more or less 
exactness in an ellipse with advancing perihelion. But as the aphelion 
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approaches conjunction with Jove the perturbations will augment at each 
passage of the aphelion. At length the perturbation becomes so extreme 
that the elliptic form of the orbit is entirely lost for a time, and the 
body will either revert to the Sun, or it will be drawn off and begin 

...... ~.-.-~.----~; - - - ~  . . . .  ..~ ........... ~ . . ~  

~ t t t : : i  i t t i i i i i , /  2"-,, 
itititii ~ t i ; i i : / , / \  

i t t~ i  t ~ i i t Y " " ~  . / "  .:.-~x 
 :ittt t i t  ........... ',, 
~ f { ~ \ ' \ t , ,  ~ i ......... - - ' k  

~t t t t t '  t '  ' .......... ", 
" ,~ . \ t t  t { t t . . . . .  - . .  \ 

% ~ t i X " &  

ti,i,, t~i : 

: '~ ~ Orbit z, = I "05o, 5". ng'O ~ to llie~ ~ in 
t ~ h e r  s~mul~ueous pos~on~ ~" Ja~. t~e 

i ~ "i .............. "i ..................... i ................... 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ i  

I referred to l~r a ~  

a circuit round Jove. In either case after the approximate concurrence 
of aphelion with conjunction, the orbit will have lost all resemblance to 
its previous form. 

The figure 2 exhibits the special case in which the body only makes 
a single circuit round Jove, and where the heliocentric elliptic orbit 

Acta mathematiea. 21, I m p r i m ~  le  6 s e p t e m b r e  1897.  22 
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before and after the crisis has the same form; the perihelion has however 
advanced through twice the angle marked to on the figure. In general 
the body would, after parting from the Sun, move several times round 
Jove until a concurrence of apojove with conjunction produced a severance 

of the connection, but in the figure this concurrence happens after the first 
circuit. If  the neck of the hour-glass defining the curve of zero velocity 
be narrow, the body may move hundreds of times round one of the 
centres before its removal to the other. 

It seems likely that a body of this kind would in course of time 
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find itself in every part of the space within which its motion is confined. 
Sooner or later it must pass indefinitely near either to the Sun or to Jove,. 
and as in an actual planetary system those bodies must have finite 
dimensions, the wanderer would at last collide with one of them and be 
absorbed. We thus gain some idea of the process by which stray bodies. 
are gradually swept up by the Sun and planets. 

It might be supposed that all possible orbits for any value of C 
will pass through a similar series of changes and that the bodies which 
move in them will be thus finally absorbed. Lord KELVI~ is of opinion 
that this must be the case, and that all orbits are essentially unstable, t 
This may be so when sufficient time is allowed to elapse, but we shall 
see later that, even when the hour-glass has an open neck, there are 
still stable orbits, as far as our approximation goes. The only approxi- 
mation permitted in this investigation is the neglect of the perturbation 
of Jove by the planet. For a very small planet the instability must 
accordingly be a very slow process, and I cannot but believe that the 
whole history of a planetary system may be comprised in the interval 
required for the instability to render itself manifest. Henceforward t h e n  
I shall speak as though the stability of stable orbits were absolute, 
instead of being, as it probably is, only approximate. 

w 16. ~ o n - p e r i o d i c  orb i t s ;  C = 39"0. 

(a) Orbits round Jove. :Fig. 3. 
The Sun S is outside of the figure towards the left. A small portion 

of the curve 2~2-~- 39 is shown to the right of J ,  and another portion at 
the narrowing of the neck of the hour-glass. The two points of zero 

force given by ~9 ~9 -~ ~---o, -y -=  o (see w 3) are also marked. 

The complete circuits are shown in order to obtain a better idea 
of the nature of the orbits, although this is unnecessary for the search 
for periodic orbits. 

1 Sir W~LLrAM THO~SO~ On the Instability of Periodic Motion, Philosophical 
Magazine~ vol. 321 I89I, p. 555. M. POINCAR~ also considers that orbits may have 
a temporary~ but not a secular stability. Acta Mathem. T. I3~ I89o ~ p. Ioi. 
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The satellite is supposed to be started at right angles to S J  at the 
conjunction remote from the sun, and enough of the orbits are shown to 
obtain a synopsis of the class. Here and elsewhere I define the orbits 
by the initial value of x, which is denoted by x0; in this case the final 
value of x after the complete circuit may be called x 1. 

The first on the right (dotted-line) starts with x0 ~ I'3, and x I is 
much less than x 0. The second (chain-dotted) has xo ~-- I'26, and x 1 has 
considerably increased so as to approach x0. The third (broken-line)has 
xo ~ i " 2 2 ,  and x 1 has now become greater than x0; therefore we have 
passed an orbit for which xl was equal to x0, and such an orbit is 
periodic. 

In the fourth (full-line) with x0 ~ I"I8, x 1 exceeds x 0 by more than it 
did in the third orbit. But in the fifth (dotted) with x o ~ I ' I 4 ,  x l  has 
again become less than x0; therefore we have passed another periodic orbit. 

In the sixth orbit, (broken-line) x 0 -----i'i2, x I has decreased very 
much, and in the seventh (full-line) x o ~ x ' io,  x~ has become quite 
small. This last has very nearly a cusp. It is not so accurately com- 
putdd as the preceding ones, having been the first difficult orbit under- 
taken, and my methods at that  t ime were not quite so satisfactory as 
they became subsequently. In this seventh orbit at the final intersection 

has just p a s s e d t h r o u g h  the value zero, and I think it is probable 
that  there is an orbit of very nearly this form, with the final ~ exactly 
zero. Such an orbit would be periodic, but as it would not be simply 
periodic, i t  falls outside the scope of this paper. 

The first part of the eighth orbit (chain-dot) was derived by inter- 
polation between x 0 ~-- i ' i  and x0-----I'o9 (shown in a future figure); the 
beginning of this orbit, which I call x0 ~ I'O95, is not shown. It  is a 
very remarkable curve, for after t h e  loop, the body recrosses SJ, and 
going directly towards J ,  passes so close to it that  it is impossible 
without more accurate computation to say what would happen subsequently. 
This orbit was so unexpected that  I have thought  it well to show in 
Fig. 4 its form with respect to axes fixed in space; in this figure (which 
does not claim close accuracy) the interpolated portion has been inserted. 
I do not think that any one could have conjectured how the body should 
have been projected so as to fall into Jove. 
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For smaller values of x0 the bodies are no longer simple satellites, 
as they part company with Jove and pass away towards the Sun. 

Fig.4 

Orbit round Jove referred to axes fixed in space (.rs= 1'095, C=$9"0) 

(fl) Orbits passing from Jove to Sun.  Fig. 5. 

The curve of zero velocity for C ~  39 having been computed, it is 
shown in this figure, although it is not necessary. 

The starting points are again from conjunction remote from the Sun. 
The first orbit (broken-line) is the one with which we ended in Figure 3, viz. 
x0 ~ I"o95;  the interpolated portion is however now drawn, as well as the 
computed portion. The body in this case does not pass away to the Sun. 

We next come to an orbit (dotted) of which the first part was found 
by interpolation and which I call x0 ~ x'o9375; the earlier portion of 
the curve is not drawn. 
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Where the orbit x0 ----- 1"o95 crosses SJ for the third time, ~ is clearly 

negative, but  where the orbit x0 = x'o9375 crosses for the third t ime 

is positive. There must  therefore be an intermediate case for which 
vanishes, and this will give us a third periodic orbit round J .  The orbit 

x0 = 1"o9375 passes away to the sun; and we then come to four more 
orbits x 0 =  I 'o9,  i"o8, i 'o5 ,  1"o4 which follow a similar course, but  with 
diminishing depression towards the negative side of SJ.  The next orbit  

is x0-----1"o2, in which the depression has disappeared. This curve has 
a slight hump in the place of the depression; it is the sort of feature 
which would present itself in a computed curve, when there has been 

an ari thmetical  error  in the calculation, but  we shall soon see that  this 

hump is not explicable in this way. 
The next curve which is traced (although others have been computed) 
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starts with x0 = I'OOI (chain-dot); in a figure of this scale, it apparently 

starts actual ly from J .  I t  will be observed that  we now have a r e -  

markable  cusp, and it becomes obvious that  the hump referred to above 

was an incipient elevation towards the cusp. 
Passing now to the other end of the figure where the body passes 

round the Sun, we see from the incidence of the perihelia (which are 
indicated by radii f rom the Sun) that  there can be no periodic orbit 

which is part ly the path of a satellite and par t ly  that  of a planet;  for 

such an orbit must  have the longitude of the perihelion 18o ~ . 

The positions of the perihelia and the perihelion-distances seem to 

be ahnost chaotic in the figure, but  I believe that the calculations are 
substantially correct, and a consideration of the numbers representing 

the positions of the perihelia shows that  the chaos is rather  apparent 

than real. 
The following table gives the results: 

Longitude of Perihelion 
Name of orbit. 

Perihelion. Distance. 

X 0 ~--- I'001 7 t - - 3 2 ~  ' "058 

~-~ 1"02 ~ - -  3,4 .0 "125 

---- I'O4 ~ - -  35045 ' "o93 

I'O6 ~r- -  39 ~ 15' "078 

= 1"o8 ~ - - 5 2 ~  I5 ' "II 5 

= I.O9 zv--  64 ~ 15' "240 

----- 1"o9375 ~ r ~  3o~ 45 ' "222 

Now if we were to plot out the defect of the longitudes from I8o ~ 

taking xo as abscissa and the defects of longitude as ordinates, we should 

obtain a sweeping curve starting from a min imum of 33 ~ rising to a .  
m a x i m u m  of 64 ~ , and falling abrupt ly  to 3I ~ . I f  the perihelion- 
distances be treated similarly, we find a somewhat less satisfactory curve, 
for there is a small maximum,  then a min imum and then a large maxi- 
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mum, followed by a fall in value. As I have said above, I believe that 
these results are substantially correct; but as each one of these curves 
represents three or four weeks hard work, I have not thought it good 
economy of labour to pursue the inquiry further in this respect. 

(T) orbits round the Sun; C----39"0. Fig. 6(see  p. I8I). 
These curves are drawn with less accuracy than the others, being 

computed with three-figured logarithms. I thought that sufficient 
accuracy would be attainable with this degree of approximation, but 
when I found that the saving of labour was not considerable, whilst the 
loss of accuracy was very great, I returned to the use of four-figured 
tables. It did not however seem necessary to recompute these curves. 

The complete circuit is drawn for four of the curves, but the rest 
are only carried half way round. 

The orbits start to the left of the Sun at the conjunction remote 
from Jove. The first orbit is x 0 ~ -  "6 (full-line), and at the second 
crossing of the line of conjunction the angle ~ is negative. The second 
orbit x 0 ------ '4 (dotted) has ~ positive, but small, at the second crossing; 
hence there is a periodic orbit for a value of x o a little less t h a n -  "4. 

All the succeeding orbits viz. x 0 ~ - - ' 3 5 7 ,  - - ' 5 , - - ' 2 , - - ' I , - - ' 0 4 ,  
- - ' o o i  have ~ positive and successively increasing at the second crossing; 
and thus there is no other periodic orbit. The last two of these orbits 
have loops. 

The orbit xo------'337 was found in part by interpolation. It has 
been inserted because the third crossing of the line SoT appears to be 
orthogonal, and therefore the orbit is periodic, but not simply periodic. 
No search was being made for this sort of orbit, and the discovery was 
accidental 

w 17. Per iod i c  Orbi ts  classif ied accord ing  to va lues  of  C. 
Plates I, II, III. 

P late  I, fig. I. C----40"0. 

When C is greater than 4o"18, the inner branches of the curve of 
zero velocity, 2 ~2---- C, consist of two ovals, as seen in fig. i ;  the periodic 
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orbits then consist, of two approximately circular orbits round S and J 
respectively. These cases may be treated by the methods of the Planetary 
and Lunar Theories, and fall outside the scope of this paper. 

/ 

t <>~ 

i - . 6  : - . 5  - ' 4  , 

",.,1 

Fig.6 

" 5  . . . . . . .  " "  

Non-periodic erblts round the Sun ; U= ag'o 

When C--= 4o ' I8  there is a third periodic orbit consisting of the 
point x - - - -  " 7 1 7 5 ,  y = -  o .  At this point a body is in unstable equilibrium, 
and this point is the beginning of a family of orbits; for, whilst in 
general periodic orbits begin in pairs, a single orbit may begin at a point. 

In discussing these figures I shall denote the initial value of any 
function by the suffix o; the suffix I will denote the value after the 
completion of a half circuit, and the suffix 2 the value on the completion 
of the whole circuit. 

. . . . . . .  J 

;i 
t ,  / 
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The planet A starts from x0 ~ - - ' 4 1 4 ,  9~0 = ~', and 9~ increases. 
When x 0 X - - ' 4 1 4 ,  ~ Xo ,  x ~ x  0 (x 0 < - - ' 4 1 4  of course denotes a 

start ing point more remote from S, with xo numerical ly  greater than "414). 

This orbit is stable with c ~ 2"81. 

The satellite A starts from x0----x'o334I, 9~0----o, and F increases. 
This orbit  changes its shape rapidly  with changes of C, as will  

appear below in the classification by families. Great care was bestowed 
on this case, and it was very troublesome to compute, since a considerable 

variation of x0 corresponded with a small variation of 9~1. 

When x0~I 'O3341 ,  ~1- -7~ '~o ,  x ~ l ~  0. 
The orbit is stable, but borders closely on instability, with c - ~  3'7. 
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The third orbit is the oscillating satellite a, moving slowly with a 

retrograde revolution round the point of zero force x---- '7175 , y = o ,  
which was described above as the commencement  of "a series of orbits. 

The orbit a starts from x 0 ~ "705, f'0 ~ o, and ~ diminishes. 

When x 0 ~ ' 7 o 5 ,  ~ - - ~ o .  That is to say if the. body starts too 
near to Jove the change of direction at the sharp turn is not quite 
sufficient for periodicity; and if it starts too near the Sun the converse 

is true. In the first case after one or more circuits the body passes 

away towards J ,  and in the second case towards S. 

This orbit is very unstable, and the instability is almost certainly 
of the even type. 

Pla te  I, fig. 2 .  C =  39"5 and 39"3. 

The planetary orbit A (C = 39"5) differs little from the preceding case. 

It starts from x o . - ~ - - ' 4 2 4 ,  ~ ' 0 -  7r, and ~ increases. 

When x 0 ~ - - ' 4 2 4 ,  ~1 ~ o ,  x~ ~ x  0. 
The orbit  is stable with c = 2"90; but  it is less stable than when 

C =  40. 
The classification by families below shows that  as C falls below 

40"0, the orbit of the satellite A stretches out rapidly towards S, and at 
the same time the oval a expands. When C is very little greater than 

39"5 (perhaps about 39"6), these two curves touch one another. 
At  this stage the body may either move entirely on A or entirely 

on a, or it may  move al ternate ly  on A and on a, thus describing a 

figure-of-8. 
When C has diminished to 39"5 there is no alternative; for the orbit 

A is necessarily a figure-dr-8, whilst the orbit  a remains a closed oval. 

The satellite A starts from x0 = I '~176  f0 = o, and ~ begins 
increasing. When the body has passed half  round J so that  y vanishes, 

is equal  to r e - - ~ 5 ~  shortly a f te r  this f diminishes and continues 

doiftg so until when y again vanishes fx = o. 
We have x 0 ~ : o 6 5 o  , f a X o .  When the body starts too far f rom 

J ,  it will move in some orbit round o r , and when it starts too near J 

it will  pass away to S. 
This orbit is very unstable with even instability. 



184 G . H .  Darwin. 

The oscillating orbit  a was not  computed  for C =  39"5; 1 dur ing  
one p a r t  of  its course it would be indist inguishable f rom par t  of A,  

and the  rest is shown conjectural ly  by  a dot ted line. 

This orbit  is very  unstable, with even instability. 
I t  has a l ready been remarked that  after the first hal f  circuit  of 

satellite A f was z r - -  I5~  ', or as we may  now write it lr--f~l = I5~  '. 
Now when x o is made  to increase from I"o65o unt i l  it reaches the curve 

2$2=  C, ~ - - T r  will  always be negative, or r : - - ~  positive. I t  appears 

however  tha t  r - - ~  has a m i n i m u m  value, which very near ly  reaches 

zero. In fact when x 0 = I ' I 4 o ,  ~ = ~ r - - o  ~ 
Since ~ r - - ~  is large when x 0 approaches 2~2-----C, and is I5~  ' 

when x 0 = I'O65O, it follows tha t  if it vanishes at all, it mus t  vanish 

twice. That  is to say if there is another  periodic orbit, there mus t  be two. 

As C diminishes the m i n i m u m  value of 7 r ~  falls, and I found 

tha t  when C =  39"4 the m i n i m u m  is reached when x o is about  I ' I S ;  
for this value of x0, r r ~ a  is o ~  ', and there  is still no value  of x 0 

for which , - r~  f~ vanishes. 
But  when C----39"3 I computed  the four  orbits x 0 = i ' I 8 ,  I'X7, 

x ' I 6 ,  I ' I 5  and found that  for the two middle  ones ~ was negative.  

By interpolat ion the pair  of periodic orbits B and C were found. 

The orbit  B is given by 

x0 = I ' I 5 7 5 ,  ~0 ~--" o ;  

and the orbit  C by 
X o =  I ' I 7 5 I ,  f 0 = o .  

In both eases ~ increases. 
The relationship to the ne ighbour ing  orbits is given by the inequalities 

x o > I 'X75I , ~ ~ ' < o ,  x, < x  o. 

< I ' I 7 5 I  

x~ > x'x 575 
, ~ r > o ,  x , > x  o. 

Xo ~ I ' I 5 7 5  , ~ 1 - - ~ < 0 '  X~ ~ X  o. 

x At least the computation was not completed~ for it was fouud to be so troublesome~ 
that it appeared that the work could be better bestowed elsewhere. 
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The orbit B is slightly unstable, with even instability, and c--= "I 56 ~ / - - I ;  

the orbit  C is stable, but  approaches instability, and c-----2"x63. 

Plate II, fig. I. C =  39"0. 

These are the periodic orbits which belong to the families of non- 
periodic orbits shown in figs. 3, 4, 6 above. 

The planetary orbit  A starts f rom x o = - - ' 4 3 4 ,  (Do = ~', and 
increases. The incidence amongst the neighbouring orbits is shown by 
the inequalities 

X o ~ ' 4 3 4  , ~ 1 ~ ~  , x 2 ~ x  o. 

This orbit  is unstable with slight uneven instability and c = I + ' I O  v / - - I .  

I t  thus appears that  for some value of C between 39"5 and 39"0 we 
should find the passage of the planetary orbit A from stability to in- 
stability. I t  is certainly surprising to find that  the instability of the 

planet sets in when the planet  is a little less than half  way to Jove 
at conjunction. 

The satellite A starts from x 0 ----1"o941 , ~0 = o, and ~ increases 
until  when y vanishes it is equal to about  ~ ' - -  13 ~ 3o'; it then diminishes 
to zero. 

Its incidence among neighbouring orbits (figs. 3 and 4) is given by 
the inequalities 

a; 0 ~ I ' o94I  , ~ ~ o .  

When it starts too far from Jove it wil l  move in some orbit round J ,  
and when it starts too near Jove it will  pass away towards S. 

This orbit  is very unstable, with even instability and c = "45 ~ / - - I .  

The orbit of the oscillating satellite a is indistinguishable f r o m  A 

throughout  part  of its course, but  falls more remote from J on the side 

towards S. It starts from x 0 = "687, ~'0 = o, and ~ diminishes. 

When x 0 ~ ' 6 8 7 ,  ~ l - - ~ r ~ o ;  thus if the body starts too near Jove 
the total change of direction is insufficient for periodicity; and if it starts 
too near the Sun the converse in true. In the first case it passes away 

towards Jove, ~ and in the second towards the Sun. 
This orbit  is very unstable with even instability, and c is about 

2 r  

Aeta math~matiea. 21. Imprim~ le 7 Beptembre 1897. 24 
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The satellite B starts with x 0 = I 'I5OO , f0 =--o, and f increases. 

When  x 0 ~ l ' i S O O  , ~ - - ~ o ,  x ~ x  o. 

This orbit  is unstable,  with even instability, and c =--"38 ~ / - - i .  

The satellite C starts with x 0 ---- : ' 2338  , f0 ----o, and ~ increases. 

When  x 0 ~  i ' 2338  , F : - - r r ~ o ,  x 2 ~ x  o. 

This orbit  is stable, with c-----2"46. 

Pla te  II, fig. 2. C = 3 8 " 5 .  

The planet  A starts f rom x o = - - - ' 4 4 4 ,  F0----r:, and r increases. 

When  x 0 X - - ' 4 4 4 ,  f : ~ o ,  x ~ x  o. 
The orbit  is unstable,  with uneven instabili ty and c = I -t- "I8 ~/-- I. 

The satellite A starts f rom x o = i " I I64 ,  ,r and f, increases 
unt i l  when y vanishes it  is equal  to about  ~ - - x 2 ~  it then diminishes 

to zero. I t  will  be observed that  at the first vanishing of y, the  curve 

cuts the axis more nearly at r ight  angles than was the ease when C----39"o 

and 39"5. When  x 0 ~  : ' I I 6 4 ,  f ' l ~ ~  When  it starts too far f rom Jove 
it  will  move in some orbi t  round J ,  and when its starts too near Jove 

it  will  pass away to the Sun. The orbit  is very unstable,  wi th  even 
instabili ty.  

The oscillating satellite a starts with x 0 = - ' 6814 ,  fo----o,  and 

diminishes. When  Xo~ '6814 ,  f , l - - ~ r ~ o .  In the first case it passes 

away towards Jove, in the second towards the Sun. The orbi t  is very 
unstable  with even instability. 

The satellite B starts wi th  x o = I" I497,  fo = o and f increases. 

When  X o ~ I ' I 4 9 7 ,  ~ : - - , ' r ~ o ,  x 2 ~ x  0. 
The orbit  is unstable with even instabil i ty,  and c -~  " 7 o ~ / -  :. 

The satellite C starts wi th  x 0 ---- i ' 275o  , ~0 ~--o, and F increases. 

When  Xo~ I ' : 7 6 o  , F ~ - - z ~ o ,  x 2 ~ x  o. 

This orbit  is very unstable,  and as will appear  below the instabi l i ty  

is uneven. There has in fact been a passage f rom stabil i ty to uneven 

instabil i ty for some value of C between 39"0 and 38'75 . 
This orbit  is interesting because it corresponds almost  exact ly  to the 

cusped orbit  described by M' HILL as the moon of greatest  lunation.  

It would  seem however  that  this description is incorrect,  for the satellite 

6 moves with a still longer period when the cusp is replaced by a loop. 

M' H:LL'S orbit  was, on the account of his approximat ion,  necessarily a 
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symmetrical  one with reference to the line of quadratures,  but  it will be 
observed that when the solar paral lax is taken into a c c o u n t  the orbit is 

very unsymmetrical .  

When C = 38"88 /~ new periodic orbit arises in the point x 0 = I '347o, 
y = o marked in the figure. This is the beginning of a second family 

of oscillating satellites, referred to here as b. 

When C =  38"5 this orbit  begins with x 0 = x'2919, ~0 = o, and 
diminishes. 

When x o ~ I ' 3 9 1 9 ,  F x ~ z r ~ o .  That is to say if the body starts 
too far f rom Jove for periodicity, i t  will  pass away in an orbit as a 
superior planet;  if on the other hand it starts too near  Jove for periodicity, 

it will pass to some orbit about Jove. This orbit  is very unstable. 

Plate III, fig. i. C =  38"o. 

The planet A starts from x 0 = - - ' 4 5 5 ,  ~0 = 7r, and ~ increases. 

When X o X - - ' 4 5 5 ,  ~ 1 ~ o ,  x 2 ~ x  o. 

The orbit is unstable, with uneven instability, and c ~ I -t-"I93 ~/mi .  

The satellite A starts from x o = I ' I3o5 ,  ~0 = o ,  and ~ increases. 
When x 0 ~ x ' I 3 ~  ~ l X ~  The remarks concerning this orbit in 

previous cases apply again here. 

At the point where the orbit  crosses the ax i s  of x for the second 

t ime 7 r - - ~  is less than it was in the preceding case. 
The oscillating satellite a starts from x o ~ ' 6 7 6 o ,  ~0 ~ o  and ~ decreases. 

When  x 0 ~ ' 6 7 6 o  , ~ 1 - - 7 r ~ o .  It  is very unstable, with even instability. 

The satellite B starts from x 0 = I'x 47 o, ~0 = o, and ~ increases. When 

x 0 ~ 1 " I 4 7 o  , ~ l - - r c . ~ o ,  x 2 ~ x  o. The orbi t  is very unstable with even 

instability, and c ~ "96 ~/-- I. 
The orbit B is on the point of coalescing with part of the orbit  

A, for the crossing point of the figure-of-8 in A is tending to become 

perpendicular  to S J ,  and the two curves nearly coincide. 

The satellite C starts from x 0 = I"348o, ~0 = o, and ~ increases. 

When x 0 ~ i ' 3 4 8 o  , ~ 1 - - 7 r ~ o ,  x ~ x  o. 

This orbit was very troublesome, and is not computed with a high 
degree of accuracy. A very small variation of C would make a large 

change in the size of the loops in the curve. 
The orbit is very unstable with uneven instability. 
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The oscillating satellite b starts wi~h x o - - 1 " 2 5 9 5  , 9'0 = o, and 9  ̀
decreases. 

When  x 0 <  > I"2595, ~ ~ , - r ~ o .  The remarks  made concerning this 

curve for C = 38"5 apply  again here. 

This orbit  is very unstable. 

The orbit  C seems to be about  to coalesce, in par t  of  its course, with  

the loop b .  

w 18. Classification of  orbits by fami l ies .  

Several orbits are given in this classification which were not included 

in w 17. 
Table  of resu l t s .  

2onstant 
of 

Energy 

C 

Coord. o] 
starting 

point 

20 

Synodic 
Period 

n T  

Criterion of 
Stability 

1 
A s in  2 ~- ~ V' @0 

Apparent ~ �9 . ~ [~egresslon oI 
anvance o[ . , I perleentre 

peficentre in �9 ,-,4 ~, ;~rl  
synoale perma / 

I \ ~+~/ 

Description 
of instability 

Modulus of 
instability 

log V'~ 
log[D+ r177 1]  

Remarks  

40" 5 

40"25 

4 o ' 2  

4 o ' o  

39"5 

39"o 

38" 5 

38"0 

1"1135 6 i ~  ' 

i ' i i 5 o  6 5 ~  o '  

1"1o9o 66~  o'  

1"o334 980 o'  

1"o65o 229 ~ 

1"o941 24 o~ 

1 " i 1 6 4  2580 

1"13o 5 299 ~ 

-4- " I I 2  

+ "063 

+ "064 

+ "226 

- -  ? 

- -  1 " o 6  

- -  ? 

- -  ? 

33ti57 7o4o oi: 
39"0 I ' I 5 0 0  97 ~ o "402 

38"5 I ' I 4 9 7  1130201 1"82 

38 .0  1"147 ~ 13105 ~ 4"5 

39"3 

39"0 

38"75 

38" 5 
8"0 

I ' 1 7 5 I  89o20', I + ' o 6 4  i 

1"2338 114 ~ O, + "435 1 

1"2873 179~  o, + I ' 9 5  

1 ' 276o  210~  o, > + I 

1 ' 2 4 8 o  235020  > "4- I 

Satel l i te  A,  Plate  IV ,  fig. I .  

39 ~ o '  

29 ~ o' 

29 ~ IO' 

303 ~ 

22020 t ......... 

3 I0 O' ......... 

3 1 ~  o '  . . . . . . . . .  

- -  161 ~ . . . . . . . . .  

. . . . . . . . . . . .  even 

.. . . . . . . . . . .  even 

. . . . . . . . . . . .  even 

. . . . . . . . . . . .  even 

Satel l i te  B ,  Pla te  IV ,  fig. 2. 

. . . . . . . . . . . . . . . . . . . . . . . .  even 

. . . . . . . . . . . . . . . . . . . . . . . .  even 

. . . . . . . . . . . . . . . . . . . . . . . .  even 

. . . . . . . . . . . . . . . . . . . . . . . .  even 

Satell i te C,  Pla te  IV ,  fig. 3. 

8 i  ~ o'  24~  o '  . . . . . . . . .  

8 2 ~  o '  23~  o'  . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  u n e v e n  

l . . . . . . . . . . . . . . . . . . . . . . . .  uneven 

t . . . . . . . . . . . . . . . . . . . . . . . .  uneven 

? 

0" 5 
? 

? 

I "4 2 

0"58 

o"31 

0-23 

o" 4 
? 

? 

Imin imum of cr i ter ion 
maximum of Xo 

minimum of zo 

Figure-of-8 begins 

m a x i m u m  o f  x o 
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~onstant  

of 
Energy 

C 

Coord. 
I startii 

poinl 

X 

of Synodic 
g Period 

nT 

Criterion of 
Stability 

21 /;sin Frr162162 

Apparent 
advance of 

pericentre in 
synodic period 

Regression of 
pericentre 

in sid. period 

',, ~ + ~ /  

Description 
of instability 

Modulus 
of instability 

log r 
log [D+  ~/DZ_+ i] 

Remarks 

4o"18 

40"0 

39"5 
39"0 

38" 5 
38"0 

"7175 
�9 705 

"693 
�9 687 
"68I 

"676 

1380 
9 

1460 

15 ~ 

? 

- - -  ? 

? 

148 
? 

- -  ? 

38"88 

38"5 
38"0 

1"347~ ............ I ? 

1"2919 214 ~ ? ? 

1"2595 208 ~ ? ? 

Oscillating Satellite (~. 

Oscillating Satellite b. 

4oo 14141541 9i t i4 o 16o3o I 39"5 ---'424 165 ~ + "98 162 ~ 2 ~ 

39 .0 -- "434[ 177 ~ + 1"o3 ........................ 

38"5 - - " 4 4 4  191~ q-- 1"o8 

38.0 -- 455 207 ~ + 1"o9 

e v e n  

e v e n  

e v e n  

e v e n  

e v e n  

e v e n  

Planet A, Plate IV,  fig. 4. 

. . . . . . .  .. 

uneven 

uneven 

uneven 

? 
? 

0 " I  

? 

? 

2 " I  

I ' 2  5 

1"14 

a point on S J  

a point on S J" 

Although the above table gives most of the facts, it will  be well 
to draw attention to a few important  points. 

The passage of the family A of satellites into the figure-of-8 form 

is interesting. When C lies between 4o'18 and some value a. little, less 

than 4o'o, the oval orbit  _// and the oval a must  be considered, in an 
algebraical sense, as ~ Single orbit. But I think that  we must  imagine a 

to be described twice, so that  when one of the two a orbits fuses with A 

to form the 8, the other may maintain a separate existence. The doctrine 

of the double nature of a receives confirmation from what is pointed 

out below in w 19 as to the  manner  in which the C orbit fuses with 
the oval b. 

I think it is almost certain that  a more complex sort of figure.of-8 
also exists, for we may imagine a body which describes two, three or 
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more circuits round the point of zero force in an oval like a, before 
passing off into the branch round Jove. 

We have seen that the confluence of a circuit round a alone with 
a circuit round a and round A leads to a figure-of-8 and a circuit 
round a. It seems likely then that a pair of complex figures-of-8, 
one with a double circuit round a and the other with a triple circuit 
may spring from a single orbit. However these orbits can hardly be 
described as simply periodic, and I have not considered them in detail. 

It appears from our table that the satellite orbit A is stable, but 
with only a very small margin of stability when C = 4o. It is worthy 
of note that the criterion of stability after passing a minimum value 
of "053, is rapidly increasing, so that the orbit is tending towards uneven 
instability. ] do not know whether or not that instability has set in before 
the fusion with the oval a and the formation of the figure-of-8 orbit A; 
but the figure-of-8 is evenly unstable, and we thus have the fusion of a 
stable, or unevenly unstable, orbit with an evenly unstable orbit, and 
the resultant is evenly unstable. 

This throws l ight  on the fusion of the planetary orbit A with the 
oval a, which must occur for a value of C less than 38. In the case 

of the planet we have seen that A sin2X-~r~/r has increased until it is 2 
greater than unity and there has as yet been no fusion with a. Hence 
amongst the planetary orbits we shall have the fusion of an unevenly 
unstable orbit with an evenly unstable one, and the resultant will be 
evenly unstable. 

M r HILL has drawn an interesting family of orbits of satellites, be-. 
ginning with the orbit of the moon and ending with a cusped orbit. 
Now our moon undoubtedly belongs to the faInily A, whilst the cusped 
and looped orbits belong to the family C. He neglects the solar parallax, 
and this approximation has in fact led to the absorption of two f~milies 
into one another. It appears now that it is not possible to comprehend 
the part played by this clas~ of orbit without the inclusion of the solar 
parallax, for the asymmetry of the family C with regard to the line of 
quadratures is an essential feature in it. This will appear still more 
clearly in the next section. 

M r HILL draws attention to the minimum of distance at syzygies 
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in the orbits of satellites, and this is observable in our family (7, but  
we also find a maximum of distance in the family A at the superior 
syzygy. 

The periods of some of the satellites is extraordinar i ly  long, that  

of the last figure-of-8 A being 299 36o or -55 of that  of Jove, and that  of 

the last looped orbit C being ~go235 or nearly 23 of that  of Jove. 

w 19. On the probable f o r m s  o f  per iod iv  orbits  ]'or rallies o f  C 

less than  38. 

It  is obvious from Plate III, fig. I tha t  a portion of the figure-of-8 
orbit A and the orbit B will coalesce for some value of C a l i t t le less 
than 38"o. The oval a will however continue to exist and to expand. 

The planetary orbit A will continue to expand, but  the heliocentric 
distance at the conjunction remote from J will shortly reach a maximum 
and will then diminish, whilst the heliocentric distance at the other 
conjunction will increase rapidly.  This will  continue unti l  the planetary 
orbit A touches the oval a; a new series of figure-of-8 planetary orbits 
wi l l  then arise, and the heliocentric distance at the remote conjunction 
will then increase. 

At some stage a pair of new planetary orbits B and C will  arise 
from a single orbit;  of these B will be evenly unstable and C stable. 

The orbit B will  expand, coalesce with a portion of A,  and then 
both will disappear. 

Reverting now to the satellite C, we are able to foresee its future 
course. The fig. 2, Plate II a n d  fig. I, Plate  III or fig. 3, Plate IV, 
show the growth of the two loops from two cusps. In order to throw 
l ight  on the future development of these curves I have drawn Plate III, 
fig. 2, which shows a non-periodic orbit for C---= 38'5; 1 in it we see 
tha t  the upper loop has descended below the line of conjunction, and 
the lower loop has risen above. For some value of C a l i t t le less than 

1 It would have been better to have drawn the similar curve for (7 = 38"0, but 
this one suffices for the present purpose. 
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38 there must be a periodic orbit of this general form. We shall thus 
have a periodic orbit  with five full moons in the month. In this sort 

of orbit the crossing point P will be at first a point of contact; the 

distance J P  will then diminish to a min imum and afterwards increase. 
When P has moved ontwards and Q has moved inwards, so as to meet, 

the upper loop will have spread so "~.~ to coincide with the lower, and 

the lower with the upper, and both will coincide with the oval b. I think 
that  after this stage the orbit C will disappear, but the oval b will 

continue to exist. 
This conclusion is interesting when taken in connection with the 

looped orbit to which M. POINCAr~I~ 1 drew attention, and which has been 

traced by Lord KELVIn'. ~ They both neglected the solar parallax, and 

with the degree of ,qpproximqtion adopted by them, the central space 
might  be made as small and the loops a~ l'~rge as we like. But the 

inclusion of the solar paral lax now appears to be essential to the proper 

consideration of these orbits. 
I t  appears from fig. I that  when C ~ 34"9 I, there is a new periodic 

orbit  consisting of the point x = ~ 9 4 6 9 ,  y = o. This point is the origin 
of a new family of oscillating planets, say c, which describe ovals with 

retrograde revolution round the point  of zero force, for values of C less 

than 34"9 I 
Turning now to our conjectural planetary orbit C, we see that whilst 

init ially it will be nearly circular,  it will u l t imately produce two ex- 
crescences near the ends of the oval c. These excrescencces will be- 

come cusps, and then loops; the loops will cross one another, become 
identical with one another and with the oval c, and the orbit C will  

probably then disappear. 
The case of the superior planets has not yet  been considered, and 

there is not much concerning them of which I feel confident.3 It  is obvious 

however that  they are described with an apparent ly retrograde revolution, 
and that  they contract as C falls in value. The orbits will  be near ly  

circular,  but  will  bulge inwards in the neighbourhood of Jove. At 

1 Mgc. C~I., p. Io9. 
P h i l .  Mag., Nov. I89~. 

s I have now (July I897) traced some of them. 
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some stage the inward depression of the orbit will meet the oval b in 
contact. This stage will be the commencement of a new family of orbits. 
having the form of a sort of inverted figure-of-8. If the old figure-of-8 
be likened to two circles touching one another externally, the new figure 
may be compared with a small circle touching a large one internally. 
A similar series of changes must ultimately take place with the oval c, 
and probably we may have an orbit with loops at both ends of the 
line of conjunctions. 

I will not hasard detailed conjectures as to the future of the three 
ovals a ,  b, c. I think however that it is probable that they will s tretch 
out towards the vertices o[ the two equilateral triangles which may be 
erected on S J  as base. These vertices must be themselves the origins 
of a pMr of similar ovals, and perhaps the extremities of a ,  b, c will 
stretch out to contact with this fourth system of ovals. 

w 20. Classification of stable orbits of satellites. 

We have seen that amongst satellites there are two classes of stable 
orbits, namely those of the A and C families. Plate III, fig. 5 exhibits 
the limits of the orbits which have been shown to be stable. The exact 
orbits which possess limiting stability would of course differ slightly from 
those drawn in this figure. 

When C is large the stable orbits of the A family are approximate 
circles of small radius. As C decreases the orbits swell, but when C 
reaches 4o'25 the radius vector at superior syzygy reaches a maximum. 
Hence the orbit x 0 = i ' i x5  o, C J 4 o ' 2  5 gives one limit of the stable 
orbits of this family. The orbit x o ~ I"o334, C =  4o'o gives approximately 
another limit as regards the inferior syzygy. The shaded space between 
these two orbits is filled with stable orbits. 

The stable orbits of the C family begin when C is a little grea~er 
than 39'3, and the first one' traced is that for which x 0 --~ I ' I751 and 
C ~  39"3. The stability of these orbits still subsists when C ~  39"0, but 
this orbit is already very unstable when C has fallen to 38"75 . Accordingly 
I take for the other limit of orbits of this kind x o ~ I"2338, C~-39"0. 
The shaded space between these two is filled with stable orbits. 

Aeta m~th6matioa. 21. Imprim$ le 13 septembre 1897, 25 
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It will be observed that there remains an unshaded tract within 
which no stable orbit can exist. I think moreover that it is probable 
that with a smaller mass for Jove we should have found a complete 
annulus within which stability is impossible. 

This conclusion is interesting when viewed in connection with the 
distribution of the satellites and planets of our system, and it appears 
to me to be the first exact result, which throws any light on Bode's 
empirical law as to the mean distances of planets and satellites from 
their primaries. 

I t  is as yet too soon to make a similar classification of stable 
planetary orbits, but this will follow in due course. 

We have seen in an earlier section that unstable orbits are such as 
ultimately to lead to the absorption of bodies moving in them into one 
or other of the perturbing centres. If  there were a large number of 
perturbing centres, as in our planetary system, the problem would become 
incomparably more difficult, but I think that the present investigation 
affords evidence that if we were to have a system consisting of a large 
planet moving round the sun, and of a cloud of infinitesimal bodies 
circling about them, a system would ultimately be evolved where there 
would be inferior and superior planets and a pair of satellites moving 
in certain zones indicated by our figures. 

_Postsc~ipt. 

It  is stated in w 3, P. xi2 that if the third body be placed at the 
vertex of the equilateral triangle drawn on SJ, it is stable. I have to 
thank M r S. S. HOUGH for pointing out to me that this is not universally 
true, but that if Jove is greater in mass than one twenty-fifth of the 
Sun, such a body is unstable. 

This may be proved as follows: 
1 

The coordinates of the point for which r - - - - -p~ i are x----~, 

~9 ~9 ~'9 3 a'9 



~'~ = 9(~ + ,). 
aY ~ 4 

I 

y = 7 4 3  + r~, 
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I 
Hence at a point whose coordinates are x = ~  + ~, 

3 3 9(v_{_ i)v/2 + .,  : a =  3(~ + i) + (~ + ~)~2 + ~ ( ~ _  ~ ) ~  + ~ .. 

and the equations of motion are 

3if+ ~)~+3 at~ - -  2~ a~ = ~, ~ ~/~(~ - ~)7, 

d~ 3 - 9 a'~ + 2n-~ = (~ + ~)~. de ~ 3  (~-- ~)~ + 7~ 

Noting that  n~ - -  - v + I, and assuming ~ = a #  t, 7 l = b # ' ,  we easily find 

)`' + O' + I)  )`2 + 7 ~ = o. 

It  is clear that  if (v + I ) 2 >  27v , 22 is negative, and the motion is 
oscillatory; but  if (v + 1)2< 27v  , 2 is semi-imaginary and the solution 
will  represent an oscillation with increasing amplitude. 

The limiting value of v consistent with stability is therefore given 
by (v + x ) 2 =  27~, the solution of which is u = 24"9599. The second 
solution is of course the reciprocal of the first. 

In the numerical work in this paper I have taken v ~ I o, and 
there will accordingly be no stable orbits encircling the point r = p =  i ,  
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A P P E N D I X .  

Compu ta t i ons  of  P e r i o d i c  Orbits,  and  of  t h e i r  S t ab i l i t y .  

Explanation.  

The orbits are given in families, arranged according to descending 
values of C, the constant of relative energy. The families are distin- 
guished by the initials A ,  B ,  C, a ,  b. The initial A is attached to one 
of the families of satellites and also to the family of planets, because 
the satellite A appears to bear the same relationship to Jove and the 
Sun that the planet A bears to the Sun and Jove. 

The data for the orbits are given as f o l l o w s : -  The first column is 
the arc of the relative orbit measured from conjunction; the second and 
third are the rectangular coordinates x - -  I ,  y for satellites, or x ,  y for 
planets; the fourth gives ? the inclination of the outward normal to the 
line SJ; the fifth and sixth are the coordinates p ,  r for satellites, or 
r ,  0 for planets; the last column contains the function 2n/V. 

The last column is given so that the reader may be enabled to com- 
plete the solution, by drawing the orbit with reference to axes fixed in 

I F 2 ~ _  
space. The integral 2 j - f f a s  would give nt, that is to say the angle 

turried through by the  rotating axes since conjunction; then the polar 
coordinates with reference to Jove are p, r + nt, or with reference to the 
Sun are r, 0 + nt. 

In the case of the oscillating bodies (families a and b) the polar co- 
ordinates are not given, but the rectangular coordinates with reference to 
axes fixed in space are clearly 

x cos n t - -  y sin nt, x sin nt + y cos nt 

for heliocentric origin, and 
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(x  - -  I) cos nt - -  y sin nt, (x - -  i ) sin nt + y cos nt 

for jovicentrie origin. 
The last line of these tables gives the value of the arc and of ~, 

when y vanishes. If the orbit were rigorously periodic and were com- 
puted with absolute accuracy, this angle would be I8O ~ or o ~ It may 
be remarked that in some cases a small change in the initial value of x 
leads to a large change in the final value of 9 ,  and in other cases the 
converse is true. Thus in some cases it is necessary to continue the search 
until the final value of ~ only differs from 180 ~ or 0 ~ by a few minutes 
of arc, and in others even an error of a degree of arc is unimportant. 
The coordinates are certainly given with sufficient accuracy to draw the 
figures on a large scale. 

Finally there is given the time-integral nT,  being twice the angle 
turned through by the rotating axes between the first orthogonal crossing 
of SJ and the second (closely approximate) orthogonal crossing. Since 
the circuit is completed at the third crossing T is the period, and t h e  
ratio of nT to 360 ~ is the ratio of the period of the body to that of Jove. 

After the coordinates the discussion of the stability is given. 
In order to test the sufficiency of the harmonic expansion of �9 ~o 

represent that function, a comparison is given between nine of the equidis- 
tant values of ~0 with the corresponding values derived from a synthesis 
of the harmonic series, which has been calculated as far as the eighth 
order inclusive. Following this comparison is r the mean value of ~. 

In the cases where the orbit is stable the value of c is given, and 
I 

certain functions of it. The function Asin2~r~/~00 o r s i n ~ r c  is what is 

) called in the table of w 18 the Criterion of Stability. The function 2rr ~ c - - I  

gives the retrogression of the pericentre, with respect to the rotating axes, 

in the synodic period. The function n T - - 2 7 r ( ~ c - - I ) g i v e s  the advance 

of pericentre, with respect to fixed axes, in the synodic period. And 

2~r I - - ;T  gives the advance of the pericentre, with respect to fixed 

axes, in the sidereal period. 
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Where the orbit is unstable, when the determinant A is negative the 

* rc ~/#0 is greater than instability is of the even type, and when A sin2 2 

unity the instability is of the uneven type. The modulus of instability, 
or the number of synodic circuits, in which the amplitude of displacement 
increases to twice its primitive value, is given. 

When the instability is of the even type c is of the form 2n + k ~/-- i ,  
and when of the uneven type it is of the form 2n + i + k~/- -  I; in the 
tables c is given in one or other of these two forms. 

FAMILY A OF SATELLITES. 

C-- - -  4 0 " 5  ~o = *'xi35 

2 ~  

"00 +'I135 +'0000 0 ~ O' "II35 0 ~ O' Z'4Z 3 

3 Ioz  z98 x2 ~  4x I5 ~ 7' "441 

6 ooz 580 25 ~ 58' 58 3 ~ 4' "49 z 

9 "o84I 832 39 ~  83 44 ~ 5' "574 
"I2 625 "1o4o 520 56' "x213 580 59' "679 

5 366 I89 67 ~ xo' 44 720 54' "792 
8 + 078 269 82 ~ o' 71 86 ~ 30' "893 

"2I - - ' 0 2 2 2  27I ZC-- 82 ~ 42' 90 ,"C- 80 ~ 7' '960 

4 5IX I94 67 ~ zo'  98 66~ 5 x' "9"75 

7 769 044 520 24' 96 53 ~ 36' "936 
"30 98I "0833 38 ~ 17' 87 4 ~ I9 '  "870 

3 "I137 578 24 ~ 58' 76 260 55' "803 
6 233 + 294 r r - -  I2 ~  66 ~--~3 ~  "757 

"39 - -  "*265 - - " 0 0 0 4  7r + o ~ 6' " 1 2 6 5  $T "1- O O I I '  2"740 

"3896 "OOOO 7r--  o ~ 3' 

'n,T ---- 61  ~ 23' 
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F a m i l y  A of s a t e l l i t e s  c o n t i n u e d .  

S t a b i l i t y  of x 0 ---- t" I I 3 5 ,  C == 4 ~  5 .  

Comparison 
Computed r Synthesis Computed r Synthesis 

a 0 3 ' 1 9  3 " 1 8  a, s 7 " 2 8  7 " 2 2  

a,  3"84 3 '84 % 5"80 5"9 I 

a,  4"67 4"66 aio 5"oi 4"86 

a, 4 5"8I 5"83 "1~ 3"*9 3 .oo 

% 8"04 8"04 

r - -  5 "479 .  

T h e  h a r m o n i c  series represen ts  4) we l l .  

T h e  d e t e r m i n a n t  gives & sin 2 ~ '  ~/#o ----- "I x I 9 ,  c = 2"217,  

~ _ 

i+) 2 z c ( ~ c - - x )  = 3 9  ~ 4',nT--2zc(~c--I)=~9 ~ 42', 2zc(~ 
The  orb i t  is s table.  

22 ~ i 9 ' .  

C ---~ 4 0 " 2 5  X 0 : I ' I I 5 0  

s z - - x  y 

�9 oo + ",15 ~ + "oooo o ~ o' 

3 118 z98 IZ ~ 24' 

6 022 583 24 ~ 53' 

9 "0867 839 37 ~ 34' 
"I2 659 "1o54 5 ~ 36' 

5 407 216 64 ~ I2 '  

8 + 124 312 780 29' 

"21 - -  "o175 333 r, - -  86 ~ 39' 

4 469 277 71~ 3 I '  

7 739 146 560 43' 

"3 ~ 966 "o952 42 ~ 42' 

3 " I I42  71o 29 ~ 37' 

6 260 435 17 ~ 2o' 

9 320 + i 4 i  , ' r - -  5 ~ 33' 

'42 - - " 1 3 1 9  - -  "O158 ,'r + 6 ~ 4' 

"4o42 .oooo ,-7 ~ o ~ I '  

nT : 6 5  ~ 4 o' 

2 W, 

V 
2"418 

"437 

"496 

%87 

"708 

"846 

�9 978 

3"o79 
" I 2 0  

"097 

"o33 

2"954 
886 

854 

2"855 
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F a m i l y  .A of  sate l l i tes  cont inued .  

Stabi l i ty  of x 0 ---- I ' ~ I 5 o  , C - - - - 4 o ' 2  5. 

Comparison 
Computed # Syn~esis Oompu~d # Synthesis 

a o 2"928 2"936 a s 7"839 7"865 
a~ 3"652 3"65 ~ a 9 6"050 6"036 
a3 4"574 4"580 at0 4"383 4.384 
a 4 5"885 5"881 a~  2"947 2"932 
a 6 8"718 8"730 

= 5 "5 7 4 .  

The harmonic series represents ~O well .  
�9 2 I  

T h e  d e t e r m i n a n t  g ives  A sm = . 0 6 3 0  , c----- 2 " I 6 I ,  

(~ e,--I)-----29 ~ 3', n f - - 2 ~ ( ~  e - - I ) - - - - - 3 6  ~ 3 7 ' , 2  I - • T  
, 

T h e  o r b i t  is s table �9  

201 

= 3 ~ 5 8'. 

C ----- 40"2 ~o = I'I090 
2~ 

8 Z - - I  ~ ~ -~-  

"oo + "1o9o + "oooo o ~ o' 2"276 

3 058 298 I2~ ~ "298 
6 "o961 581 25 ~ I' "362 
9 806 837 37038, "467 

"12 598 "1052 5 ~ 28' "609 
5 346 215 ~3045 ' "780 
8 + 064 314 77 ~ 41' "958 

"2I - - ' 0 2 3 4  340 " ~ - - 8 7  ~  I' 3"119 
4 529 289 72~ ' "225 
7 800 163 57~ "255 

"3 ~ "1o31 "0972 43022 ' "219 
3 21o 732 3 ~ Io' "I55 
6 331 458 17~ ' "092 
9 394 + 166 ~ - -  6~ ' "055 

"42 - - ' 139 7  - - ' o 1 3 4  ~ +  5 ~ 6' 3"053 

"4o66 "oooo ~ - -  o ~ o' 

~ T = 6 6 ~  
Act~ zmthernatie~. 2L Imprim6 le 11 septembre 1897. 26 
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Family A of satellites continued. 

S t a b i l i t y  of x o = I ' I o 9 o ,  C =  4 0 " 2 .  

Comparison 
Computed r Synthesis Computed 

a o 2"627 2"573 a, 8"640 

a s 3"3o0 3"296 a 9 6"692 

a s 4"186 4"139 at0 4'760 

a 4 5"498 5"6ox ai,  3"093 
a 6 8"184 8"345 

~o - -  5 ' 5 9 3  

The harmonic series represents # fairly well. 

The determinant gives A s i n~ z ry#0  _ "o636, c = 2"162 

/t \ .)__.o .4.. 

T h e  o r b i t  is s table.  

2 7 / ' ( ~ C - - I ) ~ - - - 3 7 0  3 8 ' ,  

Synthesis 

8"753 
6"635 

4.758 

3'033 

~c 

-nT = 
t + ~-~ 

31 o 44 ' .  

C =  40"0 ~0 ~ x ' ~  I" 

s z - - I  y f p 

"oo + "o344I + "ooooo o ~ o' "o3341 

1 3257 0995 9 ~ 4o' 3406 
2 3o10 1963 18~ 52' 3594 
3 2617 2882 27 ~ 16' 3893 

4 21Ol 3738 34 ~ 44' 4288 

5 1484 4525 41~ 17' 4762 
6 + 0787 5241 47 ~ o' 5300 
8 -- "00785 6472 560 20' 65I 9 

"IO 2518 7467 63 ~ 4 I '  7880 

2 4355 8256 69 ~ 39' 9:334 
4 6259 8866 74 ~ 42, "10852 
6 8207 9316 79 ~ 12' 2416 

8 "1o184 9617 83 ~ 29 ' 4oo 7 

"2o 2178 9769 87 ~ 49' 5613 

2 4177 9762 z r -  87 ~ 17' 7213 
"24 - - ' i 6 1 6 6  "09564 ~ r - - 8 1  ~ 3' "18783 

5 - -  

r 
0 0 O' 

I 7 ~ 0 l 

33 ~ 7' 
47 ~ 46' 
60 ~ 4 ~ 
7 I0 50'  

81 ~ 28'  

83 ~ 5' 
71~ 22' 
62 ~ I I '  

54 ~ 47' 
480 37' 

43 ~ 22' 
38o 44' 

34 ~ 33' 
3 ~ 37' 

2~ 

V 
"939 
�9 95 o 
"98i 

1"o31 

"096 

"172 

"259 
"458 
"69o 

"958 
2"269 

�9 64 ~ 

y o 9 3  
"664 

4"41o 

5"4o6 



8 

"26 

7 
8 

9 

�9 3 ~ 
I 

2 

4 

5 
6 

7 
�9 38 

"37516 
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Family ~[ of satellites continued. 

-- "18111 "09111 720 I I '  "20274 ~ - -  26 ~ 42' 

9o46 8758 66 ~ 12' o963 24 ~ 42'  

9934 8300 580 59' 1594 220 36' 

"20752 7726 5 ~ 39' 2143 20 ~ 25' 

1474 7035 41~ 46'  2596 18 ~ 8' 

2081 6241 33 ~ I I '  2946 15 ~ 47' 

2570 5369 25 ~ 34' 3200 13 ~ 23' 

2949 4444 19 ~ 9' 3375 I 0 ~  

3231 3485 13 ~ 5 o' 3491 8 ~ 32' 

3431 2505 9 ~ 2 I '  3564 6 ~ 6' 

3559 1514 5 ~ 26' 3608 3 ~ 41' 

3622 + , o516 zt - -  1~ 49' 3628 7r - -  I ~ I 5 '  

- -  "23623 --  "ooi84 ~ + I ~ 41' -23628 ~ + I 0 IOt 

"00000 7/-- 00 i t 

n T  = 97 ~ 58'. 

203 

2 ~  

V 
6"745 

7"525 

8"33 ~ 

9"030 

516 

"73o 

"71o 

"563 

"376 

�9 209 

"095 
"032  

9"032 

Stabi l i ty  of x o = I 'O3341, G = 4 0 " 0 .  

Comparison 
Computed ~) Synthesis Computed r Synthesis 

a o -- 2"49 -- 0"95 a 8 17"58 20"28 

a 2 2"32 2"2I a 9 4 I ' 05  39"5 ~ 

a 3 2"74 3"89 al0 3 y o 3  32"56 
c~ 4 2"93 1"61 a l ,  0"48 -- 2"63 

a 8 4"7 ~ 5"88 

~0 ~ 1 0 " 1 2 4 "  

The representation of ~) by the harmonic series is not very satis- 

factory, nevertheless it will  serve to give the result  with some approach 

to accuracy, for the following shows the gradual  approximation to a de- 

finite value as the number  of rows of the determinant  is increased: - -  

No. of rows Value of A 

5 "000 

9 "o52 

13 "233 

15 "243 

17 "246 



204 

2W(Ic-- I )=:303~ ', nT--2W(Ic--I)~-----2OS~ ', 2 ~ I  

The margin of stability is obviously small. 

O. H. Darwin. 

Family  A of satell ites continued.  

rr V ~P0 = ' 2 2 6 4 ,  and c = 3" 6 8 4 ;  The determinant gives A sin ~ 

' t  - ; : / ,  = _ 

~ + ~ /  
161~ '. 

C =  39"5 Figure-obeight orbit, x 0 = z'o65. 

s z - - 1  y ~ p 

�9 oo + ' o 6 5 o  + "oooo o ~ o' "0650 

2 631 199 Io  ~ 52' 662 

4 576 39 ~ zI  ~ 17' 696 

6 487 57 ~ 31~ o' 75 ~ 

8 37I  732 39 ~ 52' 821 

"Io 233 876 47 ~ 53' 9o7 

2 + 076 "1000 55 ~ I1 '  "IO04 

4 - -  "0095 104 61057 ' 109 

6 276 188 68 ~ 21' 220 

8 466 252 7 4 ~  ' 336 

"20 661 294 80056 '  453 

2 860 315 8 7 ~  57 I 

4 "1o6o 310 ~ - - 8 5  ~ o' 685 

6 257 279 760 41' 793 

8 447 217 6 7 ~  ' 891 

"30 624 125 5 7 ~  ' 975 

2 783 002 47 ~ 17' '2045 

4 917 'o855 38o 17 ' IOO 

6 "2o3o 69o 3 o ~  ' 145 

8 123 513 24 ~ 58, 184 

"40 200 329 2003 ~ 224 

2 265 + i39  i 7 o 1 4  ' 269 

4 320 -- "0053 15 ~ I '  321 

6 369 247 13 ~ 54' 382 

8 417 441 14 ~ 4' 458 

9 442 538 I 4 ~  ' 501 
"5 ~ - - ' 2 4 6 9  - - ' o 6 3 4  ~ - - - 1 6  ~ 8' "255o 

0 0 O t 

17 ~ 29' 

34 ~ 9' 

49 ~ 27 ' 

63 ~ 7' 

75 ~ 8' 

85 ~ 4o'  

~ r - - 8 5  ~ 6' 

760 55' 

69 ~ 36'  

620 57' 

560 48' 

5 I~ 2' 

45 ~ 29' 
4 ~ 4' 

34 ~ 42'  

29 ~ 20' 

24 ~ 2' 
18~ 47' 

13 ~ 36' 

8 ~ 3o'  

rr - -  3 ~ 3 I '  

rr + 1 ~ 18' 

5 ~ 56, 
I0 ~ 20' 

12 ~ 2 5' 

+ I4 ~ 24' 

2~b 

V 

1"434 

"452 

"5o8 

�9 598 

"718 
"870 

2"053 
"268 

"522 
"82o 

3"167 

"573 

4"039 

"543 

5"054 

"463 

"738 

"856 

"882 

"876 

"~22 
6"o53 

�9 287 

�9 69 ~ 

7"425 

�9 95 ~ 
8"688 
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F a m i l y  A of  s a t e l l i t e s  r  

205 

2~b 
s x - - 1  y ~ P r T 

"51 - - ' 2 4 9 8  - -  :0729 7 r - -  18 ~ 27 ' "2603 lr + I6 ~ I6 '  9"685 

2 533 823 22 ~ 26' 663 18 ~ o' 11"243 

3 577 913 3 ~ 4' 733 19 ~ 3 I '  13"953 

"535 604 955 360 54' 773 20 ~ 8' 16"633 

4 637 992 480 27' 818 2o ~ 36'  I9"56~. 

425 657 "1~176 560 52'  841 200 45 '  21"~ 

45 679 ~ 67 ~ 54' 866 2o~ 49'  23"755 

475 703 o25 r t - -  82 ~ 2' 89I  2o ~ 46'  24"553 

5 728 026 + 83 ~ 33' 915 20 ~ 36'  " 2 2 0  

525 753 020 780 35'  935 20 ~ 2o' 22"752 

"555 775 009 60~ I3 '  954 19 ~ 59' 21"19~ 

"56 814 "o979 460 34'  979 19 ~ I I '  17"987 

65 848 942 37 ~ 23' 999 18~ 19' 15"257 

7 876 9 ~  31~ 33'  "3~ 17 ~ 23' 13"597 

75 9 ~ 857 27 ~ 13' 024 16 ~ 28' 12"425 

8 922 812 23~  ' 033 i 5 ~  t '  11"445 

9 958 719 18 ~ 51' o44 13 ~ 4 o' 9"9 l o  
"60 987 624 15 ~ 15' 052 11047 ' "280 

I "3011 526 I2 ~ 22' 057 9 ~ 55' 8"666 

2 030 428 9 ~ 56' 060 80 3' " 2 2 0  

4 058 23o 5 ~ 5 ~  067 4 ~ 18' 7"727 

6 072 - -  "oo31 + 2 ~ 22' 072 rc + ~176 35'  "540 

8 - - ' 3 ~  + "~ - -  ~ 1 7 6  "3o79 r e - -  3 ~ 9' 7"595 

"66308 - -  "3o73 "oooo + I~ 49" 

n T ~  2 2 9  ~ i 9  p. 

The above is not strictly periodic, since the final value of ~ is I ~ 49'; 

but  I find that when x 0 = I"o56 the final value of ~ i s - - 6 2  ~ 24' , hence 
the periodic orbit should be x o = I ' o 6 5 o 2 8 .  Since the above only differs 

from the t rue  periodic in the fifth place of decimals of x0, I accept it as 

periodic. I t  would seem however as if the final value of x - - I  in the 

periodic orbit  is about - - ' 3 0 5  instead of - - ' 3 o 7 3 ,  as in the above. 

Stabil i ty of x 0 ~ I ' o 6 5 , C  ~ 39"5. 

The determinantal  method fails, because ~ varies from about - - 2 0  

in one part of the orbit to more than 3000 in another~ and the harmonic 
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Family A of satell ites continued.  

series gives so insufficient a representation of r  when we stop with the 

term of the eighth order, that  it does not seem worth while to form and 

evaluate the determinant.  
The orbit is clearly very unstable, with instability of the even type, 

as appears below in the case when C =  39"0.  

C =  39"0  Figure-of-eight orbit, x 0 ----- 1'o9,1 I .  

I t  appeared from various computations that  the periodic orbit  should 

commence with x 0 = I "o94 I .  
Accordingly after the lat ter  part  

the first part  was calculated. 

of the orbit had been computed 

' oo  + "o941 + "oooo o ~ o '  "o941 o ~ o '  1"875 

2 927 20o 7 ~  948 12~ 9' "888 

4 886 395 15 ~  97 ~ 24 ~ 2' "928 

6 819 583 23 ~ zo' "1oo 5 35 ~ 27 ' "991 

8 728 761 30 ~ 38 '  054  460 17' 2"o81 

"12 485 "1o77 44 ~ 27' 181 65 ~ 49 '  "34 ~ 

6 + 174 329 57 ~ 29 '  340 82032 '  "717 

�9 2o - -  "o184 504 7 ~ 41 '  515 z t - -  83 ~ o '  3"227 

4 574 589 84 ~ 5 I '  690 7 ~ 8'  "880 

8 971 565 r t - -  7 6 ~  842 5 8 ~  4"562 

"32 "1337 407 560 48' 942 460 26' "904 

6 633 139 39 ~ 5 ~  991 34 ~ 53' "807 

"40 853 "0806 27 ~ 55' "2020 23 ~ 3 o' "606 

4 "2oi3 440 x9 ~ 35' o61 12 ~ 20' "525 

8 127 + 057 13 ~  128 re - -  x ~  "639 

"5 2 - -  "221i - - ' o 3 3 4  r t - -  xo ~  "2237 zr + 8 ~ 36, 5"048 

'b2 

~ d s  2n = lO9 ~ I o'. Also the value of 9~ where the curve crosses the 

0 

axis of x for the second time is z - - I  3 ~ 22'. 
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F a m i l y  A o f  s a t e l l i t e s  c o n t i n u e d .  

The fol lowing results in square parentheses  were  

polation,  be tween ~0----I"O9 and x 0 = I ' I O .  Star t ing f rom 

the r emainder  of  the orbit  was computed  as follows: - -  

s x - - 1  V F p 

[ .44 - - " 2 0 2 0  '0437 ~ - -  200 5'] 

[ 6 084 244 17 ~ 4'] 

[ 8 138 + 055 i 4 ~  

[ '50  I 8 6  - -  "o139 I2 ~ 5o'] "219o ~ + 

2 228 334 I I  ~ 46'  252 

4 268 53 ~ 11~ ~ 329 

6 309 726 1 2 ~  ' 420 

8 356 920 14 ~ 5 o' 53 ~ 

9 383 "1o17 I7 ~ Io '  5 9 I  
"60 416 I I I  20 ~ 46'  660 

"6~ 435 158 23 ~  695 

I 456 203 26~ ' 734 

15 480 247 31~ 4' 776 
2 508 288 37 ~ I6 '  820 

25 541 326 4 6 ~  ' 866 

3 580 356 59 ~ 46'  914 

35 627 374 ~ - - 7 8 ~  965 

4 677 374 + 79 ~  "3009 

45 724 357 62 ~ 3 ~  043 

5 765 33 ~ 51~ 3' 068 

55 8Ol 295 42~  ' o87 

6 833 257 37 ~ 7' 099 
65 862 216 320 41 '  lO 9 

7 888 173 29~  ' 117 

75 9 I I  129 26 ~ 22' 121 

8 932 084 23058,  126 

85 952 038 21 ~ 5 2 '  129 

9 969 "0991 2 ~ 1 7 6  ' 131 

"7 o "300I 896 16 ~ 56, 133 

I 0 2 8  8 0 0  14 ~ 2 2 '  1 3 2  

2 0 5 0  7 0 2  12  ~ 8 '  I 3 0  

3 070 604 1o ~ 8' 129 

5 099 406 6 ~ 41'  126 

7 117 207 3037 ' 124 

9 124 - -  007 + 0043  ' 124 ~ +  

�9 8I  - - ' 3 1 2 2  + ' o 1 9 3  -- 20 8' "3128 ~-- 

found by  

these 

r 

3 ~ 38'  
8 ~ 32'  

I3  ~ 9' 
17 ~ 27' 
2 I ~ 20' 

23 ~ 6' 

24 ~ 42'  

25 ~ 2 (  

26 ~ 6' 

26 ~ 4 I '  

27 ~ I I'  

27 ~ 33' 

27 ~ 43' 

27 ~ 37' 
27  ~ I I '  

26 ~ 29' 

25041 '  

24 ~ 49'  

23 ~ 55' 
23 ~ I' 

22 ~ 6' 

21  ~ 1 2 '  

2 0  ~ I 7 '  

19 ~ 22' 

18 ~ 27' 

16 ~ 38' 

14 ~ 48'  

I 2 ~ 5 8 '  

I I ~ 8' 

7 ~ 28' 

3 ~ 48'  
0 0 8 '  

3 ~ 32' 

207 

inter-  

values 

2 n  

V 

4"847 
5"1o4 

"504 
6"1I 7 

7"092 

"839 
8"888 

9"565 
lO"476 

1 i ' 5 8 2  

13"oo8 

14"945 

16"959 
19"o68 

I8"399 

16'379 
14"4o8 

12"815 

I1"582 

lO"638 

9"932 
"189 

8"732 

"305 

7 '986 

"379 

6"953 

"647 
"380 

"o53 
5"86z 

"789 

5"847 
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Family A of satellites continued. 
2~ 

Integrating -V from the completion of the half circuit to s = "52, I 

~s 

find ]  ds=  3o~ ', and combining this with the previous integral, we 
t /  

"57 

have n T  ~ 239 ~ 43'. 

Stability of x 0 = I'O941 , C = 39"0. 

Comparison 
Computed r Synthes is  (~omputed r Synthesis  

ao 2"59 t ' 7 6  a6 5"51 8"34 

a 1 4"27 5"24 a 7 - -  8"43 - -  1 i ' o i  

a~ 8"89 7"68 0, 8 - -  I3"95 - -  13"86 

a S 18"68 19"65 a9 - -  0"87 + 3"55 

a 4 44" Io  44" I8  elo + 3 t ' 9 3  + 39"87 

a 5 4 I ' 4 9  39"87 at1 - -  18"92 - -  4"86 

a~2 - -  18"z8 - -  33"96 

~0 = 8"74" 

The computed and synthetic values of ~ present some concordance, 
but the representation of ~ by the harmonic series is unsatisfactory. 

The harmonic constituents being however used in the determinant 

give A sin2~7:~/r ~ - -  I"o63,  c = ' 4 6 ~ / - -  I ,modulus ~ "48. 

The orbit is very unstable with even instability. 

C =  38"5 Figure of-eight orbit, x 0 ---- i "i I64. 

This orbit was exceedingly troublesome, and the coordinates were 
found by several interpolations. After the calculations were completed 
an error was discovered which may be substantially corrected by increa- 
sing .all the arcs by "oooi. The following figures to three places of 
decimals suffice for drawing the curve with fairly close accuracy. I have 
not thought it worth while to recompute the whole, and only give the 

interpolated coordinates and function 2__n 
V" 
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Family A of satellites continued. 
2 ~  

s z - - x  Y --V 

"oo + ' 1 1 6 4  + ' o o o  2"20 

4 I9 4 ~ "25 
8 "o99 78 "39 

"12 79 "112 :63 

6 52 41 "99 
"20 + I9 65 3"49 

4 - - ' o 1 7  80 4"13 

8 57 85 "81 

"32 96 77 5 "xz 
6 "129 55 4"85 

"40 56 25 "39 

4 75 "090 "07 

8 90 53 3"9 ~ 
~52 "2ox + 15 "92 

6 09 - - ' 0 2 4  4"i 3 
"60 I6 64 "63 

4 22 "1o 3 5"65 
8 32 42 8"30 

"7 o 42 59 11"83 

2 60 67 15"43 
4 76 58 lO"58 
6 9 ~ 43 8"20 
8 98 24 6"88 

�9 80 "304 o6 "o8 

2 09 "086 5"59 
4 13 66 "26 

6 15 47 "05 
8 17 27 4"88 

"9 ~ - - ' 3 1 8  ---"007 4"86 

When y vanishes between s = "52 and "5 6 ,  ~, = , ' r --  I2~  '. 

n T =  258~ 

209 

The stability was not worked out, but  the o rb i t  is obviously evenly 
unstable. 

Aota mathcmat~. 21. Imprtm6 le 1~ Selatembr~ 1897. ~]7 
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Family A of sa td l i t e s  continued.  

C = s8"o Figure-of-eight orbit, s o = x" 1305 . 

The calculation of this orbit proved excessively troublesome, and 
the results given below are only obtained with sufficient accuracy to 
draw a good figure. 

Two sets of curves were traced; in the first set I travelled in a positive 
direction, starting from points on the line Sd  for which s 0 is greater 
than unity; in the second set I travelled in a negative direction, starting 
from points on the line Sd" for which x o is less than unity. One member 
of each of these two families was finally selected, such that they might 
be approximately parts of a single orbit. 

The first of these two orbits is found by interpolation between the 
two, namely a~ o - - x "  I26 and ~o-----I'I34. 

(arc increasing) (arc diminishing) 
s z--~ V s z--x V 

�9 oo +'z3o 5 +'ooo "oo --.32= 5 --'ooo 

4 27 "040 - - ' o 4  2I 40 

8 x6 "o78 8 i6  8o 

"IZ "098 "xr4 "IZ 07 "Ix9 

6 75 47 6 "294 56 

"~o 47 75 8 83 73 
4 + I4  97 "20 70 88 

8 ~ "023 " 2 i I  x 6 t  93 

�9 3 z 63 xz 2 52 94 

6 99 "I96 3 4z 9z 

�9 4 ~ "128 68 4 34 85 

4 5 ~ 34 5 ~9 77 
8 67 "098 6 z 4 68 

"52 8I  6I  7 2x 59 

6 9 ~ + 2z 8 t8  49 

"60 97 - -  "oi7 -- "3 ~ - - ' 2 1 4  ~ ' 1 2 9  

4 "2oz 57 

8 05 96 

"Tz -- "2xo --'135 

The period of the whole periodic orbit is given in round number~ 

by n T =  299 ~ 
The orbit is obviously very unstable, and the instability is doubtless 

of the even type. 
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FAMILIES B AND C OF SATELLITES. 

(7  = 39"3 

These are two orbits which nearly coalesce. It would have been more 
interesting to find the orbits for that critical value of C for which they 
exactly coalesce, but on account of the difficulty of the search I have 
only found two orbits nearly coalescent. 

:Four orbi ts  were  c o m p u t e d  viz. x 0 = I" 15 ,  I "I 6 ,  x" 17 ,  I '  x 8 ; the va lues  

of  r - -  zr a f te r  a semi-circuit  were  found to be  - -  6 "  5 , +  I'" 5, + 2' "8, - -  5 " 4 .  

I f  u 0 , u 1 , u~, ua denote any  funct ions connected respect ive ly  with the 

four  orbi ts  x o = i ' I 5 , I ' I 6 , I ' I 7 ,  I ' x 8  it appears  tha t  the  two orbi ts  for  

which the va lue  of  9 ~ -  ~r is exac t ly  zero are given b y  

•1 .31-. I I 8 8  .(~A0 - -  Ul) + "2127 (?A 1 - - ~ , )  --~ "0394(Ua - -  Ui) , 
and 

u~ + "0628 (uo--u,) + "3133 (u2 - - u l )  + "3193 (u~ --u~).  

Put t ing  the u's equa l  to I ' I 5 ,  I ' I 6 ,  I ' I 7 ,  I ' I 8  we find x o = t ' I 5 7 4 7  , 

x 0 ~ i ' 1 7 5 o 6  for  the two periodics. 

The four  compu ted  orbi ts  gave n T  equa l  to 87 ~ 15', 8 7 ~  2', 8 8 ~  

89 ~ 51'  respectively.  

On app ly ing  the formulm of  in terpolat ion to the  values  of  x - - i ,  y 

and nT I find the two  periodics as fol lows:  - -  

orbit B orbit C 
�9 --I y ~--I 

"00 + "15747 + "00000 + "I75O6 
3 5499 2986 7257 
6 4756 5889 6512 
9 3526 8620 527 ~ 

�9 12 1825 "11085 3539 
5 "09675 3172 I348 
8 7136 4756 "o8761 

"2I "o4299 "I57I 7 "o5893 

Y 
"00000 

2986 
5888 
8614 

"II058 
3o98 
46o4 

"15462 
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Famil ies  B and C of satel l i tes  cont inued.  

8 Z - - I  y $ - - I  y 

"24 + "01317 + "I5962 + "02902 + "I5616 

7 - - ' o 1 6 3 8  5475 -- "00043 5o81 

"3 o 4398 4315 2807 3923 

3 6845 2588 5r 2234 
6 8902 o412 7384 oio2 

9 "10519 "o7889 9o53 "o7615 
"42 1658 5119 "1o23~ 4860 

5 1296 + 2191 0877 + 1936 
"48 -- "12418 -- "00802 -- "IO96I - - ' 0 1 0 5 8  

nT = 87 ~ 41'. n T  ~ -  89  ~ x S'. 

The semi-arc of the periodic orbit B is '47 197, and that of C is "4694I. 
The fifth place of decimals in the coordinates has been given, although 

it is perhaps frequently inaccurate. 

= C =  Stability of orb i t  B , x  0 I ' I 5747  , 39"3. 
Comparison 

Computed ~ Synthesis Computed if) 

a 0 z'887 2"879 a 8 7"4z7 

a s 4"240 4"243 it9 4"594 
a S 6'165 6"152 alo z'676 

a 4 9"o24 9"o42 alj 1"2o9 
a~ 12"925 12"93I 

~0 = 6 " 3 9 3 .  

Synthesis 

7"418 
4"602 

2"677 
1"215 

Computed ~ Synthesis Computed �9 Synthesis 

a o 3"736 3"725 a s 6"123 6"1i 9 

as 5"5o7 5"517 ao 3"948 3"956 
a s 7"862 7"834 at 0 2"43 o z'431 
r I0"7I 5 I0"749 art i ' i 9 9  1"185 

a 6 I 1"641 lO"663 

#o = 6"489. 

Stability of orb i t  C,  x 0 = I ' I 7 5 o 6 ,  C =  39"3. 
Comparison 

The harmonic expansion represents ~ well. 

x~.~/~0 - - ' o 6 1 2 .  The determinant A is negative, and A s i n ~  = 

The modulus is I "415, and the instability is not great; c = "I 56 ~/-- i .  
The orbit is unstable. 
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F a m i l i e s  B and C of  s a t e l l i t e s  con t inued .  

T h e  h a r m o n i c  e x p a n s i o n  r e p r e s e n t s  $ w e l l  

�9 S I  
T h e  d e t e r m i n a n t  g i v e s ,  A s m  ~ zt ~/~0 = " 0 6 4  4 ,  c = 2" x 6 3 ,  

/ x \  / i \  

t + ~--~ 

The orbit is stable. 

2 4  ~ 2 7 ' .  

2 1 3  

F A M I L Y  B OF S A T E L L I T E S .  

61 = 39 .0 Z 0 = *" I 5 0 0 .  

8 z - - t  V 9 P 

"oo + "15oo + "oooo o ~ o' "15oo o ~ o' 

4 459 397 11~ 5 ~  5 Iz  15 ~ I3 '  
8 337 777 23 ~ 5 4 '  546 3 ~ t o '  

�9 x 2 136 "1122 360 34'  597 44 ~ 39 '  
6 "o862 412 5 ~ 29' 654 58 ~ 36'  

"2o 523 622 66 ~ 27' 704 720 8' 

4 + 137 723 84 ~ 44' 728 85 ~ 27' 
8 - - ' o 2 6 o  691 z t - -  75 ~  o' 711 ~ - -  81 ~  

"3 z 624 529 57 ~ 27' 651 67 ~ 48' 
6 928 271 420 I3 '  574 53 ~ 5 z '  

'4 ~ "1159 "~ 29 ~ 3' 496 39 ~ 13' 
4 316 579 17 ~ I2 '  438 23 ~ 45' 
8 395 + 188 z r - -  5 ~ 28' 408 ~ ' - -  7 ~ 41'  

.52 --  "1392 - -  "o212 l r +  5 ~  "14o8 z t +  8 ~  

�9 4991 "oooo zt + o ~ I '  

2 tb 

V 

2"975 
3"o16 

"135 
"34o 
" 6 I I  

"876 

4"o93 
�9 

3 '696 

"335 
"174 

2"832 

"738 
2"738 

n T  = 9 60 5 6 ' .  
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Family B of satellites continued. 

S t a b i l i t y  of z o ----- I'1500 , C =  39"0 .  

Comparison 
Computed # Synthesis Computed # Synthesis 

a o i ' 8 6 I  2 " o i 2  a 8 9"599 9 .602 

a 2 3"087 3"078 a 9 4"994 4"926 

a s 5"045 5"202 a l .  2"206 2"274 

a 4 8"405 8"166 als o '538 o '588 

17"315 17"I24 

#0 "-~ 6"924 �9 

The harmonic expansion represents ~ with fair accuracy. 

The determinant A is negative, and A sin2~lr~/r = - - ' 4 o 1 9 .  

The instability is of the even type, the modulus is o'58 and c is 
o'38 ~ / - - t .  The orbit is therefore very unstable. 

C =  38"$ z o ----- I ' I 4 9 7 .  

The comparison of the orbits x o = i ' i  500 with a neighbouring orbit 
showed that the exactly periodic orbit would correspond with x o = I ' 1 4 9 7 ,  

but  the results here given will be sufficiently exact. 
2~b 

8 z - - x  y- ~o p ~ -V 

�9 oo + ' 1 5 o o  + ' o o o o  o ~ o' "15oo o ~ o' 2"835 

4 464 398 IO ~ 24' 517 15 ~ I2 '  "880 

8 356 782 2o ~ 5 ~  566 29 ~ 59' 3 "~176 

"12 18I "1141 3 l~  27' 643 44 ~ I '  "264 

6 "o941 460 420 46' 737 5 7  ~ I2 '  "626 

"20 639 72  I 55 ~ 5 z' 837 69 ~ 38, 4 "I I9 

4 + 282 897 720 23' 919 810 33' "668 

8 - -  "0113 95 ~ Zt--  86 ~ 53' 953 , ' r - -  86 ~ 41' "972 

"32 5OO 854 65 ~ 19' 92o 74 ~ 54' "7 ~ 
�9 36 - -  :o831 + "1631 ~ -  480 18' "183o 63 ~ o' 4"1o6 
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F a m i l y  B of s a t e l l i t e s  continued. 

215 

2~  
s z - - I  y ~ P '~ "V 

"4o - -  "xo95 + "1333 z t - -  35 ~ :z 4' "17', 5 z t - -  5 o~ 36' 3 '574 

4 394 "0987 ' 4  ~ ' 8 '  628 37 ~ 20' "z9z 

8 427 6 I o  14 ~ 36'  5 5 '  ' 3  ~ 9' " '946  

"52 495 + 217 ~ - -  5 ~ " '  511 n - -  8 ~  ' "8 '6  

"56 - -  "1498 - -  "oi83 zr + 4 ~ z 5' "zSo 9 ,rt" + 6 ~ 5 8 '  2"8"I 

"5418 "0000 Zt + O~ 4' 

n T  = I [3 ~ 

Stabil i ty of z 0 = I ' 1497 ,  C---- 38"5�9 

The values of �9 were computed for x 0 = i ' i  500,  and were corrected 

by interpolation with values computed for x o = I " I475 ,  but  the correc- 
tions were so small that  they might  have been omitted. 

Comparison 
Computed ~ Synthesis Computed ~) Synthesis 

a o 0 '68  x ' t  5 a s i1-79 11"97 

a~ 1"83 x'81 a9 4"53 4"~9 

a8 3"77 4"I8 a~0 1"21 1"34 

a ,  8"03 7"39 a~g - -  0"82 - -  0"90 

a ,  ' 9"34  '8"97 

Oo = 8 ' 6 0 .  

The representation of r by the harmonic series is fair ly good. 
�9 21  The determinant  is negative, and  A sin ~ 7c~/r o ---- - -  t ' 8 1 5 .  

The orbit is very unstable with even instability; the modulus is 

�9 3I 3 and c = ' 7 o  ~ / - -  I .  
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Family B of satellites continued. 

C =  38"0 % _-- x.147 o. 
2r 

s z - - 1  y ~, p ~ 

"oo + ' x 4 7  o + "oooo o ~ o'  "z47o o ~ o' 2"660 

4 437 398 9 ~ 26' 491 J5 ~ 29 ' "706 
8 340 786 18~ 4 ~  553 3 ~ 23' "850 

" 1 2  183 "1153 27 ~ 39 '  652 44 ~ 17' 3 "1~ 
6 "0970 492 360 36'  779 560 58' "497 

�9 2o 706 79 z 460 x 9' 926 68 ~ 29' 4"089 

2 556 922 5 x~ 58' "2ool 73 ~ 54' "482 

4 39x "2o36 580 41' 073 79 ~ 8' "957 
6 Zx3 I28  67 ~ 4' 139 84 ~ I6 '  5"504 
8 + o23 189 77 ~ 46, 189 89 ~ 23' 6"042 

"3 ~ - -  "~  209 ~ - -  89 ~ 7' 216 n ' - -  85 ~ 28' "397 
2 373 182 74 ~ 56' 213 80 ~ 18' "353 
4 558 lO8 620 3' 181 75 ~ 10' 5"932 

6 735 "1998 5 I ~  X26 7 ~ 3' "352 
8 873 864 44 ~ 6' 059 64 ~  4"805 

"4 ~ "1~176 713 37 ~ 55'  "1986 59 ~ 37'  "336 
4 22I  378 28 ~ 22' 841 480 28' 3"653 

8 385 o14 20~  7' 717 360 13' "214 

"52 496 "o63o tz  ~ x 9' 624 22 ~ 5 I '  2"944 
"56 "I555 + ' 0 2 3 5  x - -  403 ~ "1573 I t - -  8 ~  2"8I 4 

"5836 - - ' I 5 6 4  " o o o o  7 r - -  o ~ 8' 

nT-- ,  I31045 '. 

The final value of 9, changes rapidly with the initial value of x,  
and therefore this is a very elose approximation to the periodic orbit. 

Stabi l i ty  of % - -  I ' I 4 7 o  , C =  38"0. 

Comparison 
Computed ~ Synthesis Computed �9 Synthesis 

a o - -  0.402 2"265 a s I2"358 i3"o83 

a~ *o'67o - -  0"363 a~ 3"16o x'931 

a s 2"899 5"403 azo - -  o '24x 1"439 
a,  6"413 2"487 a j l  - -  2"174 2"271 

a~ 59"339 56"777 

~ o ~ I 2 " 2 3 7 .  
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F a m i l y  B of  s a t e l l i t e s  c o n t i n u e d .  

The representation of ~ by the harmonic series is poor, but it will 
suffice to give some idea of the degree of instability. 

I The determinant is negative, a n d -  A sin2~Tr~/#o = 4"55 .  

The orbit is very unstable, with even instabil i ty;  the modulus is 
about "23 and c = ' 9 6 ~ / - - i .  

F A M I L Y  C OF S A T E L L I T E S .  

C =  39"0 Xo = 1 . 2 3 3 8 .  

The periodic orbit was found by interpolation between x 0 ----- i ' 2 3 o  and 
x 0 =  I ' 2 3 5 ,  by the formula "24[x 0 
following are the two computations, 

----- 1"23o] + ' 7 6  Ix 0 ---- 1",,35]. The 

2 n  s z - - i  y ~ p r --#- 

"oo + "23oo + "oo0o o ~ o' ' 2300 o ~ o' 6"219 

4 258 397 12 ~ IO' 293 9 ~  ' .259 

8 128 774 25 ~ 5 ~ 265 19 ~ 59' "3 o2 
"12 "19o 5 "1105 420 5' 202 3 ~ 5' "I80 

6 594 354 60 ~ 24' 092 4 ~  2I '  5"679 

.20 221 494 77 ~ 56' "1929 5 ~ 45'  4"833 

4 "0824 526 ~ - -  87 ~ IO' 735 61~ 38'  3"961 

8 43 ~ 461 74 ~ 5' 523 73~36 '  "223 
;32 + 060 311 61 ~ 52, 312 87 ~ 23' 2.652 

6 - -  "0269 085 49014  , 118 ~ - - 7 6  ~ 4' " 2 2 I  

"4 ~ 538 "o79o 35 ~ 13' 'o956 55 ~ 46'  1"914 

4 72I 436 19 ~ I9 '  843 31011 '  "719 

8 795 + 045 ~-- z ~  ' 795 ~-- 3 ~  , "643 
"52 - - ' 0 7 4 5  - - ' o 3 5  x ff + 16 ~ 6' "o823 ~ + 2 5  ~ I2t I"687 

"4846 "oooo ~ + o ~  9' 

Mr----- I I 2 ~  ' .  
Aeta mathea~tie~. 21. Imprira6 le 12 septembre 1897. 28 
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O. H. Darwin. 

F a m i l y  s of  s a t e l l i t e s  c o n t i n u e d .  

@ "2350 + "0000 0 ~ O' "2350 0 ~ O' 

3 ~  397 12~  I '  34O 9046 '  

X73 773 26 ~ 4 I '  3O7 *9 ~ 35'  

"I944 "I099 43 ~ 32, 233 29 ~ 3 ~  

627 340 62 ~ 8' I08 39 ~  

249 47 ~ 79 ~ 9' "I928 49039  ' 

"085I 495 ~ - -  86043 ' 72O 6 0 ~  ' 

458 428 7 4 ~  ' 500 7 2 ~  ' 

+ 0 8 7  281  62  ~ 21 '  2 8 4  86~ 7' 

-- "o244 059 49046,  087 ~ -- 77 ~ 2' 

5 *6 "0766 35034  , "0945 560 3' 

7 ~ 4*3 19 ~ 8*3 3 ~ 1 7 6  

771 + o21 ~ - -  I~ 3' 771 ~ - -  1~ l '  

- - ' o 7 I  5 - - " 0 3 7 4  ~ +  I 7 ~  ' "0807 ~ +  27037 , 

"oooo ~-- o ~ 6' 

~ T ~  I I 4 ~  ' .  

The interpolated coordinates for the periodic orbit  are 

z - - x  y 

�9 2338 + "oooo 

294 397 

162 773 

"I935 "IXOO 

619 343 

242 476 

"0845 502 

45 x 436 

+ o8x 288 

--'0250 065 

52x "o772 

705 4*8 

777 + 026 

-- "o722 -- "0369 

29b 

V 

6"594 
"616 

�9 64 ~ 

"434 

5"780 

4"805 

3"888 

"I47 

2"58i 

"16i 

I ' 859  

"670 

"603 

i ' 66x  

o I 
n T =  i i 3_4  t . 

The arcs with which these orbits are computed are rather  longer than 

is desirable, nor was quite sufficient pains taken to make the second ap- 
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F a m i l y  C of s a t e l l i t e s  c o n t i n u e d .  

proximations satisfactory. Thus the order of accuracy attained is not very 
high. It seemed however to be sufficient for the purpose. 

Stability of x 0 - -  i ' 2 3 3 8 , C - - - - 3 9 " o .  

The values of tp and of the determinant were computed for the two 
orbits between which the periodic orbit lies; the following are the r e s u l t s : -  

X 0 = I " 2 3 0 .  

2 ~  

2 ~  

Comparison 
Computed d) Synthesis Computed ~ Synthesis 

ao 5"4 ~ 5"57 as 4"47 4"58 
a. z lO'65 io.71 tt 9 3"06 3"04 

a s 16"3o 16"4o alo 1"93 1"99 

a, 4 18"44 18"38 at~ o'47 o'47 

a s 9"69 9"7 ~ 

#0 ----- 8"065" 

The determinant gives A sin s ~-=~/~)o = '4 .21 

(;c 
, c ~ 2"45o, 

) I 2 3 1 ~  2 9 '  , 2 I n T  

X o ~--- I " 2 3 5 .  

Comparison 
Computed q) Synthesis 

a s 4"26 4.27 

a 9 2"98 2"95 

at0 1"88 1"89 

a ~  0"43 0"42 

Computed q) Synthesis 

a 0 6"o 4 6"2o 

a~ ~ 1.94 12"oo 

an 17"77 17"81 

a 4 18"65 I8'55 
a s 9"13 9"04 

~o = 8 " I 7  6. 

[Fhe determinant gives A s i n ~  7r~/r ~ "439, c ~ 2"462, 

) ( i )  
c - - I  ----~83~ c-- I  = 3 o ~  x - ~ T  

x + - ~ - /  

= 23 ~ 59'. 

_~-23~ 28  ' . 



220 O. H. Darwin. 

F a m i l y  C of s a t e l l i t e s  con t inued .  

By interpolation between these two for x 0 -----1"2338, 

( ) Asin~r~/~Po='435,c=2"459,2,-r ~ c - - I  = 8 2 ~  ', 

( nT--2rr 2 c - - i  = 3 1  2', 2rr l = 2 3 ~  ' . 

�9 

The orbit is stable. 

C = 38"75 

�9 oo + '28733 

2 8693 

4 8568 

6 834o 

7 8174 

8 7962 

9 7688 

"io 733 ~ 
1 6856 

2 6237 

3 5465 

4 4576 
5 3621 

6 2638 

7 1644 

8 0645 
"20 "18648 

2 6655 

4 467o 

6 2697 

8 0739 
�9 3 o "08802 

2 6893 

4 5023 
�9 36 "o32o8 

x 0 =  I ' 28733 .  
2~ 

+ "ooooo o ~ o' "28733 o ~ o' i o ' 4 7 2  

1999 2 ~  ' 8763 3 ~  ' "61o 

3995 4 ~  ' 8846 7 ~  l t ' O 4 4  
5982 8024 ' 8964 11055 ' "862 

6968 IO ~ 46'  9023 I3 ~ 53' x2"47I 

7945 13 ~ 54' 9o69 15~  13"239 
8906 18 ~ 8' 9o85 17 ~ 5 ~ i4"J68  

9839 24 ~ I4 '  9o47 19 ~ 48'  15"216 

"1o719 32o 51' 8916 21 ~ 46' 16"241 

15o2 44 ~ 17' 8647 23 ~ 4 I '  "623 

2136 57 ~ 2' 821o 25 ~ 29' 15"899 

2590 68 ~ 19' 7615 27 ~ 8' 14"171 

2887 760 3 I '  6907 28~ 37' 12"217 

3 ~ 820 9' 614o 3 ~ o' lO"533 

3168 86 ~ 8' 5335 3 t ~  9"I56 

321o 89 ~ o' 45~  320 37'  8"048 

3172 ~ - - 8 7  ~ I '  2830 35 ~ 14' 6"421 

3o18 84 ~  1138 380 I '  5"289 

2774 8 1 ~  "19453 41~ 3' 4"457 

2448 79 ~ 27' 7781 44 ~ 26' 3"815 

2040 76~  ' 6133 4 8 ~  ' "3o2 

1544 74 ~ 14' 4517 520 41'  2"881 

0949 71~ 4' 2938 5 7 ~  ' "527 
o241 6 7 ~  ' 14o6 63053 ' "225 

"o94o3 ~ - - 6 2  ~  "o9935 7 l~  IO' 1"962 
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Family C of satell ites continued.  

+ "~ + "~ ~ - - 5 7 ~  ' "o8541 8~176 5' 

- -  "00154 7248 5 ~ 1 7 6  725 ~ z - 8 8 ~  

1614 5884 42039  ' 61Ol 74~  o' 

2833 43o3 320 13' 5152 56~  

3321 3431 26~ 5' 4774 45o56 '  

37~ 25~ I9 ~  4477 34 ~ 5' 

3978 I547 12~ 3' 4269 21~  

4 1 2 2  0558 4 ~ 24' 4 t 5 9  ~ - -  7 ~ 43' 

- -  "o4143 + "ooo59 ~ - -  oO3 ~ "04143 

"00000 ~ 0 ~ 2' 

n T =  I 7 9 ~  '. 

221 

V 
1"731 

"528 

"353 
"209 

"152 
"1o6 

"074 

"057 
I 'O54 

Stabil i ty of x 0 I 28733,  38"75.  

Comparison 
Computed r Synthesis Computed r Synthesis 

a o - -  4"38 8"08 as 3"42 - -  9"75 

a~ 18"34 43"45 a 9 3 'o8 11"o 3 

aa 185"33 I55"74 al0 2"57 o '49  

a 4 46"39 79"81 a12 - -  3"08 8"88 
a 6 6"22 15"65 

The representation 

~0 ~ 2 3 " 0 2 "  

of ~0 by the harmonic series is bad, but it may 
serve to give some idea of the degree of instability. 

The determinant gives A sin ~-I 7r~/r 0 = I ' 946 .  2 
The instability is uneven;  c =  i + "55 ~ / - - i  ; modulus = '40 .  
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F a m i l y  

G. H. Darwin. 

C of sate l l i tes  cont inued.  

C =  38 '5  x 0 = I ' 2 7 6 o .  

2~ 
s ~ - - t  !t ~ P r V 

"oo + "276o + "oooo o ~ o' "276o o ~ o' 7"516 

z 759 2oo o ~  766 4 ~ 9' "59 ~ 

4 756 400 1~ 3' 785 80 15' '829 

6 752 600 I ~ 25' 816 12 ~ 18' 8"258 

8 746 800 I~ 34' 86I  16 ~ 14' "984 

�9 i o  74I  "1ooo i ~ 27' 918 20 ~ 2' lO'2~2 

2 737 200 i ~ 2' 988 2304 ~ I2"467 

3 735 3 ~  o~ 49'  "3o28 25 ~ 25 ' I4"561 

4 734 4oo x ~ 2' o71 27 ~ 7' 18"4I i  

45 732 45 ~ 1~ 47'  093 27 ~ 57'  22"00 

5 730 500 4 ~ 32'  115 28~ 47'  29"20 

525 727 524 8 ~ 27'  124 29 ~ I2 '  36"46 

55 721 549 21 ~ x 7' 131 29 ~ 39'  53"80 

5625 715 560 380 47'  13I 29 ~ 52' 67"34 

575 ~ 705 567 720 47'  126 3 ~ 5' 8I"66 

5875 693 567 , 7 - -  7 I~ 23' 115 3 O0 I I '  62"13 

6OOO 681 561 63 ~ 45'  IO 3 3 ~ 12' 46"22 

6125 671 555 580 52' 090 3 ~ 13' 37"74 

6250 660 549 560 23 ' o78 3 ~ 12' 32"84 

650 640 534 54 ~ 39'  053 3 ~ lO' 26"41 

675 619 520 54 ~ 4' 028 3 ~ 7' 22"50 

7 ~ 599 505 54 ~ z' 005 3 ~ 7' 2o"315 

75 558 476 54 ~ 53' "2954 29 ~ 59' 16"355 
80 517 448 560 8' 904 29 ~  14"o83 

9 433 394 580 59' 804 29 ~ 49'  1 I '217  

"2o 346 344 6 l~  29' 704 29 ~ 49'  9"406 

2 167 256 65 ~ 5 ~ 505 3.0 ~ 6' 7"15 ~ 

4 "1982 I79 69 ~ o' 306 3 o ~  5"748 

8 603 o50 720 42'  " i916 33 ~ 14' 4"027 

"32 22o "o936 73 ~ 32' 537 37 ~ 29' 2"974 

6 "o838 818 71~  171 44 ~  "234 

"40 464 677 66~ 35'  "o821 55 ~ 36'  1"611 

2 283 591 62~ 9' 655 64 ~  "412 

4 + 112 488 55 ~ I I '  5 ~  77 ~ 4' "182 

6 - -  "oo41 360 44 ~ 3 ~ 362 , ' r - -  83 ~ 27' 0"97 i 

7 I~  285 360 53' 304 69 ~ 25' "876 

"48 - - - ' o 1 6 o  "0200 z r - -  27 ~ 7' "0256 , ' r - -  5 I~ 20' 0"795 



8 ~ - -  I 

"49 - - ' o 1 9 6  

"5 ~ 210  

"51 - - ' o 1 9 9  

Periodic Orbits, Appendix. 

Family C of satellites continued. 

y ~ a r 

"01o7 ~ - -  14 ~ 56' "0223 z ~ - -  28 ~ 36, 

+ 008 x ' - -  o ~  21o ~ - - -  2 ~  ' 

- -  "0091 7/" "[- 13 ~ 29 '  "0219  7C -[" 24 ~ 33 '  

223 

2~b 

V 

"737 

"713 

"729 

"50084 "02102 "oooo zr + o ~  

~ / , . T =  2 1 o  ~ 5 2 ' .  

A small change in x 0 makes a large change in the final value of ~, 
and it is therefore unnecessary to seek a more exact representation of 
the periodic orbit. 

The stability was not computed, since the method would fail, but 
the orbit is obviously very unstable with uneven instability. 

C = 38 '0  x 0 "= I" 2 4 8 o .  

2~  
s z - - i  Y 9 P ~ -V 

"o0 --[-. "2480  + "0000 0 ~ O' "248o o ~ O' 5'047 

4 475 400 I ~ 32, 5O7 9 ~ I I '  "176 

8 460 80O 2 ~ 27 ' 586 18 ~ I '  "591 

"12 444 "1199 + I~ 5 ~ 723 26~ 9' 6"479 

6 4 4 4  599  - -  2 ~ 3 ~ 921  33 ~ 12' 8"470  

8 461 798 8 ~ I '  "3o48 3 6 ~  lO'593 

�9 2o 51o 991 22 ~ 22' 204 38o 25' 15"63 

I 561 "2o76 4 i ~  ' 297 39 ~ 2' 22"07 

I5 599 IO8 60044  , 345 39 ~ I '  25"62 

2 646 122 - -  87 ~ I I '  389 380 44' 27"81 

z 5 695 I 13 ~ + 65 ~ 34' 424 380 6' 26"60 

3 736 084 460 34' 44 ~ 37 ~ 18' 22"64 

35 768 o46 34 ~ 36'  442 360 28' 19"6o 

4 793 003 25 ~ 52' 437 35 ~ 38' 17"~ 

5 827 "19o8 r t +  14 ~ 12' 41o 34 ~ 2' 14"16 

7 847 708 z c - -  o ~ 26' 320 3 ~ 58 '  11"02 

"29 "2824  "1512 X ' - -  13 ~ I 5 '  "32o4 28~ 9' 9 .286 
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F a m i l y  (7 of  s a t e l l i t e s  c o n t i n u e d .  
2 ~  

s z - - 1  y ~ p ~ y 

�9 31 "2759 "I323 ~ - - 2 4 ~  "3060 25037 , 8"070 

3 660 15o 34 ~ 42' "2898 23 ~ 23' 7"o72 

7 384 "o862 51~ 48' 535 19 ~ 53' 5"46z 

"41 o43 655 64 ~ 26' 145 17 ~ 46, 4"197 

5 "I67~ 512 73 ~ 2' "I747 16 ~  o' 3"218 

9 282 416 780 I6 '  348 17 ~ 58, 2"452 

"53 "0889 343 80 ~ 14' "0953 21 ~ 6' 1"824 

5 692 309 7 9 ~  758 24 ~ 4' "541 
7 495 271 78021 , 565 28045 , "266 

8 398 250 76052, 47 ~ "320 9' "127 

9 3 ~ 226 74039 ' 376 36056 '  0"986 

"60 205 196 7 I ~  ' 284 43045 , "839 

I 112 16o 65 ~ 24' 195 55 ~ o' "682 

2 + 026 I i O  5 4  ~ O' 113 76057 , "510 

25 - -  "0012 077 42046,  0783 ~ - - 8 I  ~ 6' "420 

3 ~ 039 036 23 ~ 4' 0535 42022,  "347 

325 - - ' 0 0 4 7  + "0012 ~ - -  9 ~ o' "oo481 ~ - - I 4  ~ 32, 0"328 

"63371 - - ' 0 0 4 8  "oooo u - -  1~  "00478 ~ - -  o ~ o' 0"327 

nT.-~ 2 3 5  ~ I 7 ' .  

This orbit was not computed with high accuracy. As far as can be 
judged from other computations, the exactly periodic orbit would cor- 
respond to x 0 ----1"2465,but the calculations from which this is inferred 
were not conducted with the closest-accuracy. 

A very small difference in the initial value of x makes a considerable 
change in the size of the loop described. It would be very laborious to 
obtain the exact periodic orbit for this value of C, and the above appears 
to suffice. 

The orbit is obviously very unstable, with uneven instability. 
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F A M I L Y  A OF PLANETS.  

( 7 =  40"0 X 0 = - - " 4 1 4 .  

2 ~  
s z Y 9 r O 

V 

�9 o - - ' 4 1 4  ~ - - ' o o o o  ~ +  o ~ o' "414 ~ +  o ~ o' 1"8o 9 

�9 i 032 992 12~ ' 152 i 3 ~  ' "820 

�9 ~ "3715 "1938 24049 , 191 27034 ' "851 

"3 199 "2793 37 ~  246 41~ 7' "899 

"4 "2507 "3512 5 o ~  ' 314 54 ~ 29' "960 

"5 "167 ~ "4055 63 ~ 47'  385 67 ~ 38' 2"03 ~ 

"6 - - ' 0 7 2 8  385 ~ +  7 7 ~  445 ~ +  8 o ~  ' "093 

"7 + ' o 2 6 5  474 - -  87 ~  482 - - 8 6 0 3 7  ' "135 

"8 "1249 3o9 73 ~ 9' 486 73~  o' "141 

"9 "2159 "39 ~ 58034 ' 459 61~ 3' "x~ 

i ' o  939 28o 44 ~ 27 ' 4o 5 480 8' 'o45 

"I "3549 "249 ~ 31~ 9' 336 35 ~ 4' 1"967 

"2 969 "1585 I 8 ~  ' 274 2 I ~  '897 

"3 "4191 "o612 7 ~ 5' 235 8 ~ 19' '856 

1"35 + "4228 - - ' o 1 1 4  - -  I ~  " 4 2 2 9  - -  l ~  1"848 

1"3614 + "423 "ooo - -  o ~ 6' 

n T =  154 ~ 13'. 

Although this is not strictly periodic, since the final value of 9~ is 
- - o  ~ 6', it is sufficiently nearly so to be accepted as such. 

Stabi l i ty  o t  x 0 = -  "414, C-----40"0. 

Comparison 
Computed ~ Synthesis Computed �9 Synthesis 

a 0 5"476 5"49 ~ a s 11"o27 11"o21 

a 2 6 '184 5"i8o a 9 9"1o4 9"1o5 

a s 7"069 7"o88 at0 6"7oo 6"596 

a4 8 '356 8"327 at~ 3 "8ol 3"793 

a 6 11"463 11"438 

~o = 8 " 0  51 . 
Aeta mathematiea. 21. Imprtm6 le 12 septembre 1897. 29 
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F a m i l y  A o f  p l a n e t s  c o n t i n u e d .  

The harmonic series represents �9 well. The determinant gives ( 1 )  
Asin 2 rc~/O 0 ----- "9o96, e = 2"8o6,22r ~ c m  i = x 4 5 ~  ', 

n T - - 2 r r ( I c - - ' )  = 9* '3 ' ,  2 r r ( ,  

The orbit is stable. 

+ n T  6~ 27'" 
I 

= 39"5 x o - - - - - ~  " 4 2 4 o .  

The periodic orbit is found by interpolation between x 0 = - - ' 4 2 6  and 
x0 = - - " 4 ,  by the formula "92228 Ix 0 = - - "426 ]  + "07772 [x 0 = - - ' 4 ] .  

The following are the two computations: 

2~ 
s ~ y ~ r 0 

V 

o 'o  ~ "4260 ~ "oooo ~ + o ~ o'  "4260 ~ + o ~ o '  I '862  

"x I57 993 Ix ~ 5 e' e75 x3 ~ e6" "874 

�9 2 "385 x "x943 23 ~ 49'  3 t 4  z6 ~ 46'  "9o5 

"3 354 "28o9 3 5 ~  x' 374 39057 , "959 

"4 "2686 "355 ~ 480 x8' 45 x 520 53' 2"~ 

"5 "187i '4127 6 I ~  ' 53 x 65037 , " I I I  

"6 - - ' o 9 4 7  5 ox 74 ~ 45'  600 ~ +  780 8' "I89 

"7 + ' o o 4 I  644 ~ +  88052 '  644 - - 8 9 0 3  ~  "242 

"8 "Io32 538 - - 7 6 0 3 5  , 654 77 ~  "256 

"9 965 I85 62~ 5' 6z 4 6 4 ~  o' "22I 

I'O "2783 "3614 480 6' 560 5 z ~  "x43 

�9 x "3443 "2866 34059  ' 48x 3 9 ~  ' "052 

�9 2 924 "I99X 22 ~ 48'  399 26~ 54' 1"962 

"3 "4218 037 1 I ~  343 I 3 ~  ' "9 ~  

I"4 + ' 4 3 2 4  - - ' 1 o 4 4  - -  0043 ' "4324 - -  ~ 1 7 6  x '878 

I"4o44 + "4324 "0000 - -  o ~ 15 ' 

nT = 165 ~ o'. 



8 

"o - - ' 4 0 0 0  

"I "3899 

"2 599 
"3 1 I i  

"4 "2455 
"5 "1654 
"6 - - ' 0 7 4 2  

"7 + "o24I 

"8 "I234 

"9 "2167 
1"o 970 

"1 '3598 

"2 "4035 
"3 278 

1"4 + '4334 

1"4o75 + ' 4 3 3 1  

Periodic Orbita~ Appendix. 

F a m i l y  A of p lane ts  con t inued .  

y 9, r 0 

--'oooo ~+ o ~ o' "4ooo ~+ o ~ o' 

993 11~ 39' 024 14 ~ 17' 
"1945 23 ~ 20 '  091  28 ~ 23' 

"2817 35 ~ 7' 197 420 9' 

"3570 47 ~ 8' 333 55 ~ 29' 
"4165 59 ~ 39' 481 68 ~ 2o' 

568 72057 , 627 ~r+ 8o~ ' 

74 ~ ~" + 87 ~ I9 '  746 --  87 ~ 6' 

655 -- 77 ~ zo'  8!7  75 ~ 9' 
304 6I ~ 22' 819 63 ~ 16' 

"3712 460 7' 754 51~ 20' 

"2937 320 15' 644 39 ~ 13' 
04 ~ 19 ~ 5 I '  522 26~ 49' 

'1o72 -- 8~ 41o 14 ~ 4' 

- - ' o o 7 5  + 2 ~  "4335 - -  I ~ o' 

"oooo + 2 ~ 58, 

nT----- 167 ~ 31'. 

Tile interpolated coordinates for the periodic 

z y 

~'424o --'oooo 

137 993 
"3831 "1943 

335 "281o 
�9 2668 "3552 

"1854 "413o 

- - ' o 9 3 1  506 

+ "0057 651 

"1048 547 

981 194 
"2798 "3622 

"3455 "2872 

933 "1995 
"4223 o4o 

+ "4325 - - ' o o 4 6  

orbit are,  

n T =  i65 ~ 12'. 

227  

2~ 

V 
I '686 

"701 

"748 
"825 
"934 

2'o67 
"218 

"354 
"448 

"444 
"348 
"204 

"o63 

1"95o 
1"887 
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F a m i l y  .4 o f  p l a n e t s  c o n t i n u e d .  

Stabili ty o f  x o ----- - - " 4 2 6 ,  C = 39'5.  

Tile orbit x 0 = - -  "426 was treated for stability in place of the inter- 
polated orbit x o = - - ' 4 2 4 .  

Comparison 
Computed (P Synthesis Computed r Synthesis 

ao 5"73 5"73 a 8 x i ' 9 4  1 I"94 
a2 6"54 6"54 a9 9"42 9"42 

a3 7"59 7"59 %0 6"57 6"57 
a 4 9"I4 9"x4 al2 3"25 3"25 
a s x2"7I X2"TX 

The harmonic 

~o = 8"565" 

series represents ~ perfectly. The determinant gives (i ) :o 
Asin2Izr~/~)02- ----- " 9 7 6  , C --- 2 " 9 O I , 2 7 t  ] C - - I  ~ I 6  I 5 '  , 

( ' )  ( ;  ) ~C ~ I ~  2 ' �9 nT--2~r c--x ~ 2  ~ I - -~T 5 

The orbit is stable, but approaches very near to instability. 
The results would have been somewhat modified if we had operated 

on the true periodic orbit x o = - - ' 4 2 4 .  

C----- 3 9 ' 0  X0 - -  - - "  434 �9 

(Computed with 8-figured logarithms and to tenths of degree). 

s z y ~, r O + n t  

o - - ' 4 3 4  - - ' o o o  l r +  o ~ o'  "434 , ' r +  o ~ o'  

"1 24 99 xx ~ i8 '  36 x8 ~ 36'  

�9 2 395 I95 22036 '  42 37 ~  
"3 - - ' 3 4 8  - - . 2 8 2  ~"[" 34 ~  "449 zr-F 55036 '  
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F a m i l y  A of  p l a n e t s  continued.  

s a~ y ~0 r 

"4 - - ' 2 8 4  - - ' 3 5 9  ; r +  460 o' "457 
"5 04 "420 580 24' 67 

'6 I I 4  63 7 I~ 3 ~  78 
"7 - -  "oi6 83 zt + 85 ~ 24' 84 
"8 + "083 78 - -  80 ~ o'  85 

"9 "I79 49 65 ~ 24' 83 
I"o "264 "396 5 I~ I2 '  76 

�9 I "334 25 3 80 I2 '  67 

�9 z 87 "24I 26 ~ 6' 56 

"3 "422 I48 x5 ~ 6' 47 

"4 "440 - - ' o 4 8  - -  4 ~ 48' 43 
1"45 + ' 4 4 a  + ' o o I  + o ~  "44 z 

I"446 "ooo + o ~ 6' 

n T =  I77 ~ o'. 

O -b nt 

7 t + 7 4  ~ 6' 

87 ~ 24' 
680 54' 
520 24' 

3 x ~  o' 
- -  i 2  ~ 4 2 ,  

+ 5 ~ 54' 
24 ~ z 4' 
420 42' 

6I  ~ 6' 

+ 79 ~ 36' 
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S t a b i l i t y  o f  x o ~ - - " 4 3 4 ,  C ~ 39"0. 

Comparison 
Computed ~ Synthesis Computed ~0 Synthesis 

a0 5"489 5"434 as I3"595 I3"6~ 
a~ 6"507 6"527 a 9 xo'271 Io ' 247  

a 3 7"442 7"529 %0 6"507 6"527 
a,  9"72I 9"637 a,~ 2"627 2"638 
% x4"87 o 14"828 

g~o = 9"I5 6. 

The harmonic  expansion represents ~0 well. 
i 

The de te rminant  A is positive and A sin 2 ~ rc ~/~0 o is I ' o 2 7 ,  and 

c =  3 I .  

The modulus  of instabil i ty is 2 ' I .  
The orbit  is unstable, with uneven instability, bu t  the instabil i ty is 

slight. 
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F a m i l y  A of  p l a n e t s  c o n t i n u e d .  

C = 3 8 ' 5  x0 = - -  "4 440. 

2 ~  
s z Y ~ r a V 

�9 oo - - ' 4 4 4 0  - - ' o o o o  ~ +  o ~ o' "444 o + o ~ o' 1"916 

�9 08 380 797 8 ~  ' 452 1 ~ 1 7 6  ' 925 

"16 203 "1576 17 ~ 8' 489 20033 ' 955 

"24 "3911 "2320 25 ~ 47' 547 3 ~ 4 I '  2"004 

"32 509 "3Oll 34034  ' 624 40038 '  o71 

"4o 0o6 632 4 3 ~  ' 714 50023 ' 157 

8 "241o "4164 52~  ' 811 59~  ' 258 

�9 56 "1733 589 62048 '  9o6 69 ~ 19 ' 368 

"64 "o993 889 73~  ' 989 78031 '  474 

"72 - - ' o 2 1 o  "5045 ~ + 84 ~ 22' "5049 ~ + 87~  ' 560 

"8o 589 o43 - - 8 3 o 5 8 '  o77 - - 8 3  ~  6o5 

8 '137o "4877 720 5' 066 7 4 ~  ' 592 

"96 "2IOi 555 6 o ~  o16 65 ~ 14' 523 

1"o4 755 o95 49 ~  "4935 560 4' 413 

"12 "331Z "3523 39014 ' 835 4 6 ~  ' 286 

"20 765 "2864 2 9 ~  ' 730 37 ~ 16' I63 

8 "41o 9 143 2 I ~  ' 634 27~  ' 058 

"36 345 "1379 13 ~ I3 '  559 17 ~ 37' 1"98~ 

"44 475 - - ' ~  - -  5 ~  514 - -  7 ~  935 

1"52 - - ' 4 5 0 2  + "0208 + I~ 49' '4507 + 2~  ' t ' 927  

1"4992 "oooo m 0 ~ 6' 

• T  = I 9  I~  2I'. 

S t a b i l i t y  of  x 0 = - -  " 4 4 4 o ,  C = 3 8 " 5 .  

After the computation of the stability had been completed ~ small 
mistake in the calculation of the orbit was detected in consequence of 
which the seml-arc of the periodic orbit was taken to be I'4987 (instead 
of 1"4992 as above); it was not however thought to be worth while to 
recompute the stability. 
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F a m i l y  A o f  p l a n e t s  c o n t i n u e d .  

Comparison 
Computed ~) Synthesis Computed ~) Synthesis 

ao 5"o84 5 '~ as ~ 5"319 15"346 
a, 6"174 6"155 a~ I o ' 5 I  7 xo'516 

a s 7"695 7"724 as0 6"157 6"121 
O. 4 10"18 3 10"16o a~2 2"O~ 9 1"952 

a~ 17"4o2 17"418 

Oo = 9" 786.  

The harmonic series represents # well. 

x ~ / ~ o  - "  I 'O78  , and The determinant A is positive and A s i n ~  

e = 3 + "I76 ~/ - -  I . 
The modulus is I '25 . The orbit is unstable, with uneven instability, 

but  the instability is not great. 

C = 38"0 Xo = - - " 4 5 5  �9 

2 ~  
s z y ~ ~ 0 

V 
"oo - - ' 4 5 5  ~ - - ' o o o o  ~ +  o ~ o' "455 ~ ~ +  o ~ o' 1"954 

�9 o8 494 "0797 80 4' 563 IO~ 4' 1"964 
"16 326 .1579 16 ~  6o6 2oO 3' 2"ooo 

"24 o5o "2329 24 ~ 19' 672 29o54 ' "o56 

"32 "3669 "3032 32035 , 760 39~ ' "133 
"40 19~ "3672 41~ 4' 864 49 ~ 1' "234 

8 "262I "4233 4905 ~ 978 58014 , "354 

�9 56 "197o "4697 59014 ' "5092 67014 ' "496 
"64 251 "5044 69 ~ 18' 193 760 4' "631 

"72 - - ' 0 4 8 0  "5255 ~ + 80015 , 282 ~ + 84047 ' "770 
"80 + ' o 3 1 6  "531o - - 8 7 0 5 8 ,  31o ~ 8 6 ~  ' "825 

"88 "11o 7 "5197 75~ 316 77~ ' "841 

"96 856 "4921 63 ~ 47' 259 69 ~  "753 
1"o4 + ' 2 5 3 5  - - ' 4 4 9 8  - - 5 2 ~  "5164 ~ 6 o  ~  2"61I 
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F a m i l y  A o f  p l a n e t s  c o n t i n u e d .  

s z y ~ r 

1.12 "3122 "3957 - - 4 2 0  15' "5042 

1.2o 6 I I  "3324 33 ~ 7' "49 ~  

8 "3996 "2624 24 ~ 43'  73 ~ 

"36 "4280 "1877 1 6 ~  673 

"44 464 "Io99 9039  ' 597 

"52 55 ~ - - ' o 3 o 4  - -  2 ~  561 

1"6o + ' 4 5 4  ~ + ' 0 4 9 5  + 4 ~ 6' "4567 

i"55o5 "oooo - -  o ~ 8' 

n T =  2 0 7  ~ 9'- 

0 

- -  51~ 44'  
420 38'  

33 ~ 17' 
2304 ( 

13 ~ 5 ~ 

- -  4 ~ o'  

+ 6 ~ 14' 

29g 

V 
2"445 

"28I 

"14o 

"o31 

i ' 9 5 8  

-92 i  

I"929 

S t a b i l i t y  of  x o ---- - -  "4 5 5 ,  C = 3 8"o .  

Comparison 
Computed ~ Synthesis Computed q) Synthesis 

a o 4"722 4"886 a s x7"o52 I7"17o 

a~ 5"941 5"927 a, 9 io"6o2 lO"491 

a s 7"767 7"82I ato 5"618 5"649 

a 4 lO'991 lO '898 axs 0"952 0"990 

a 6 21.495 21"5o8 

~o=Io'666. 

The representation of r by the harmonic series is good. 

I~r~/r 0 is I'o95 The determinant A is positive, and A s in~  

The orbit is unstable and the instability is of the uneven type. 
The modulus of instability is 1"14,and c-----I + " I 9 3 ~ / - - I .  
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F A M I L Y  a OF O S O I L L A T I N G  S A T E L L I T E S .  

= 40"0  % = " 7 0 5 .  

99 

- -  0 0 0 t 

3 ~ 12' 
60 43 '  

I I 0 3' 

* 7 ~ 3 o' 

22o 44' 

3 I~ 8' 

4 ~ 55' 

57032 '  

-- 7 I~ 59'  
7C "it" 8 8  ~ 27' 

69 ~ 30'  

54 ~ 9' 
44 ~ 29 ' 

37 ~ 8' 

31~ 59' 
280 7' 

220 43'  

18~ 55' 

*3 ~ 17' 

1 o ~ 9' 

7~  ' 
6 ~ I o'  

4 ~ 43'  
3 ~ 27' 
2 ~ 20' 

I ~ 1 8 '  

z r +  o ~ 18' 

s z V 

�9 oo + 7050 + ' o o o o  

i 053 IOO 

2 o61 200 

3 077 298 
4 IOI 395 

5 118 442 

45 141 487 

525 155 507 

55 ~ 174 524 

5625 185 529 

575 ~ 197 531 

5 8 7 5  2 1 0  529 
6000 220 523 

6 1 2 5  2 3 0  5 1 4  

6250 238 505 

6375 245 495 
6500 251 484 

675 262 461 

700 271 438 

75 285 390 

80 295 341 

85 303 292 

9 ~ 309 242 

95 313 192 
�9 IOO 317 142 

05 319 093 

lO 321 + 043 

" I I  5 + "7322 --'0007 

"11427 "oooo ~ +  

n T ~  I 3 8 ~  ' 
Aela ~nathemMiea. 21. Imprim6 le 17 septembre 1897. 

0 0 271 

2 n. 

V 

14"622 

�9 867 

I5"674 

I7"354 
20"872 

24"319 

31"o98 

37"3I 

47"I4 

54"71 

55"66 

54"34 
47"14 
4I"87 

37"5 ~ 

33"98 
30"28 

26-92 

24"14 

20"59 

18"47 

16"99 

" 0 2 7  

*5"335 
14"81o 

-516 

"329 
I4"276 

80 
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F a m i l y  a of  o s c i l l a t i n g  s a t e l l i t e s  c o n t i n u e d .  

Stability of x o = "705, C---- 40"o. 

The thirteen equidistant values of ~ show great irregularity. The 
values numbered o , i ,  ~ , 3 , 4  and 8 , 9 , I o ,  x x , I 2  are all negative and 
lie between - -2"6  and - - 3 " o ;  the values numbered 5 and 7 are about 
-I-8,  and the value numbered 6 is about -I-8oo. 

The harmonic analysis led to results which showed that the repre- 
sentation of r by the series would be  so bad that tit would not be worth 
while to continue the calculation. 

The orbit is obviously very unstable. 

C --- 39"0 X 0 ----- "6871. 

The coordinates for the periodic orbit were derived from the following 
bv interpolation, as explained below. 

2~ 

�9 oo + "6870 + ' o o o o  - -  o ~ o' 5"773 

4 89o 399 5 ~ 44'  6"008 

8 954 794 x 2 ~  "893 
�9 io  "7007 987 18o 4' 7"834 

I 0 4 0  " I 0 8 I  21  ~ 29' 8"570 

2 080 172 25 ~ 58' 9"634 

3 x29 26o 320 3 x' xx'293 

35 I57 3ox 37 ~  I2"5xx 

40 x9~ 339 43 ~ 46' I4"x74 

45 227 37 z 53 ~ 38' x6"688 

475 248 386 60 ~ 4 ~ I8"I2 

500 27I 396 69 ~ 4 I '  i9"72 

525 295 4o3 - - 8 I  ~ 8' 2 I ' 26  

55 ~ 32o 4o4 ~ 85o19 ' "96 

575 344 399 71019 , "6z 

�9 x6oo "7367 "I388 ~ +  58o 48' 20"36 
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Family a of osci l lating satell ites 

s ~ y 

"1625 + ' 7 3 8 7  + "1373 

650 404 355 
675 420 336 

7 ~ 433 315 
75 456 z7o 
80 474 224  

85 488 176 

9 ~ 50I 127 

"ZO 519 OZ 9 

t 533 "0930 
2 542 830 

4 553 631 
6 556 431 

8 555 231 

"3 ~ 549 + o31 
"32 + "7538 - - ' o 1 6 9  

"3o31 "oooo 

continued.  

2 / t  

+ 480 46' 18'66 

41~ 4' 17"04 

35 ~ 6' 15"64 
3 ~ 25 ' 14"45 

23 ~ 37' 12"58 
18~ 59' 11"243 
15 ~ 26' lO"235 

I2~ 47' 9"467 

9 ~ I '  8"350 
6 ~ 22'  7"584 

4 ~ 25 ' "027 

I~ 54' 6"294 
r e +  o ~  ' 5"875 

re - -  I ~ 7' "653 
2 ~ 18' "585 

- -  3 ~ 37' 5'656 

- -  2 ~ 2 3' 

n T = I 4  6o 3 6 ' .  

T h e  f o l l o w i n g  a re  c o o r d i n a t e s  i n t e r p o l a t e d  b e t w e e n  the  p r e c e d i n g  and  

the  loop  o f  the  f igure -o f -8  x o = I ' O 9 4 I , i n  s u c h  a w a y  as to  g ive  a p e -  

riodie o r b i t : - -  
s �9 Y 

�9 oo + ' 6 8 7 1  + ' o o o o  

4 892 400 

8 956 795 
" I O  " 7 0 1 0  987 

1 045 "1o81 

2 085 172 

3 135 259 
35 164 300 
4 196 337 
475 252 381 

55 320 399 
6 368 386 

"165 + ' 7 4 o 7  + ' 1 3 5 5  
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F a m i l y  a o f  o s c i l l a t i n g  s a t e l l i t e s  c o n t i n u e d .  

s x y 

"17 + "7437 + " I316  

75 4 6 I  273 

8 48 I  227 

85 497 18o 

9 5 1 ~  142 

�9 2o 534 027 

I 549 "0929 

4 573 645 

6 583 446 

8 587 246 

"30 + ' 7 5 8 8  + ' o o 4 7  

n T =  t 4 5  ~  

Stab i l i t y  of x 0 = "6870 , C ~ 39"0. 

In o rde r  to t r y  the de t e rminan t a l  process on one o rb i t  which  is ob- 

v ious ly  very  uns table ,  I t r ea ted  the first  of the  above  as t h o u g h  it were  

per iodic  wi th  the fo l lowing  results :  - -  

Comparison 
Computed r Synthes is  Computed  r Synthes is  

a o - -  2" 7 + 38"6 % + I8 ' 2  .. . . . .  

a I - -  2"7 ... . . .  % - -  2"2 + 87"0 

a~ - -  2"9 - -  3 .2 (*9 - -  3"3 + 34"7 

as - -  2"9 + 38"3 a lo ---  3"3 + 2"6 

a4 - -  2"4 "3 t- 82"9 a l l  - -  3"3 ...... 

% + 3"7 ... . . .  a,~ - -  3"3 + 35 .8 

% + 498"9 + 379"5 

(/)0 = 4 I ' 2 '  

The  funct ion  4~ is obvious ly  one which  would  requi re  a very  large  

n u m b e r  of  t e rms  of an ha rmon ic  series for adequa te  representa t ion ,  and  
the  above is ve ry  bad. 

i 
H o w e v e r  wi th  17 rows I find A sin 2 ~. '-:~/~0 ---- - -  148"4 ; c = 2"0 ~/--  I ,  

m o d u l u s  ---- "I I .  

I th ink  it is cer ta in  tha t  the ins tabi l i ty  is of  the  even type ,  and is 
ve ry  great .  
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F a m i l y  a of  o s c i l l a t i n g  sa te l l i t e s  c o n t i n u e d .  

C =  38"5 Xo ~ .6814" 
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Two orbits were computed, namely x 0 ----"6817, giving the final value 
of F equal to ~ +  5 ~  ' and n T =  i 47~  6', and "58IO, giving final 
9 ~ = z c - - 6 ~  ' and n T - ~  151053 ' . The arcs in the latter orbit  were 
shorter than in the former throughout  a portion of the curve. Inter- 
polation between these two by the formula "446 (x 0 = ' 6 8 1  o) + ' 5 5 4  (x0 ----'6817) 
gives the following results: - -  

2~ 
s z y ~- 

�9 oo + ' 6 8 1 4  + ' o o o o  4"85 

4 831 4oo "98 

8 884 796 5"44 
�9 12 982 " t i 8 3  6"53 

4 "7055 369 7"62 

6 153 543 9"7 ~ 
7 217 620 I1"63 

8 295 675 14"46 

9 39 ~ 699 17"44 
�9 2o 482 662 15"27 

I 543 581 11"69 

2 584 491 9'61 

3 615 396 8"28 

4 637 299 7"36 
6 666 lO2 6"22 

8 682 "o9o 3 "5 o 

�9 3 ~ 691 7o3 5"o7 

2 695 504 4"79 
4 698 304 "61 

6 6 9 8  + lO 5 .52 

�9 38 + "7698 - - ' 0 0 9 4  4"52 

"37o54 "7698 "oooo 

n T  = 1 4 9  ~ 3 6 ' .  

The orbit is obviously unstable, and the instabili ty is of the even type. 
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Family a of osci l lating satell ites continued.  

C =  38"0 Xo ~ .676.  

This orbit was exceedingly troublesome, and the coordinates were 

found by several interpolations amongst the same orbits as those 

used in finding the figure-oi:8 orbit  x 0 -----I 'I3o 5 . Two sets of curves 
were traced; in the first set I started from one side of the oval, and ill 

the second from the other side. Tile two curves were so selected that they 
might  join one another as nearly as may be. The period of this orbit 
was not determined. 

(arc increasing) (arc diminishing) 

x y , y 

+ "676 + "ooo + .778 - - ' 0 0 9  

77 4o 78 + "o i i  

82 80 79 3 I 

9 ~ "*19 79 5 I 

"7o4 56 79 7 x 

�9 3 74 78 "1II  

r 9 8z 77 3 I 

26 9 ~ + "774 + "151 

34 95 

43 98 

53 96 
6o 89 

65 8o 

68 7I 

71 6t  

73 5* 

+ "774 + ".4 r 

n T undetermined. 
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FAMILY b OF OSCILLATING S A TELLI TES .  

C = 38"5 X 0 = I " 2 9 I  9 .  

T h e  f o l l o w i n g  w a s  c o m p u t e d ,  - -  

2~ 
s z - - x  y ~ - V  

"oo + ' 2 9 2 1 5  + ' o o o o  - -  o ~ o' 8"52 

4 932 400 2~ 54' 9 .00 

8 971 797 9 ~ 14' l ~  

�9 IO "3o14 993 16 ~ IO' 13"o2 

1 046 "1o87 21 ~ 56' 14"7 ~ 

2 o91 177 3 l~  49' 17"19 

25 12o 217 39 ~ 5' 19'54 

3 ~ 155 254 480 21' 20"60 

35 195 283 59 ~ 56' 22"21 

40 241 303 73 ~ 40' 23"21 

45 290 311 - - 8 7 0 3 8 '  'oo 

50 340 3o7 ~ + 7 9 ~  21"83 

55 388 293 69 ~ O' 20"27 

60 433 272 6oO 5 I '  I8"70 

65 475 245 54 ~ 15' I7"32 

7 ~ 514 214 480 59' I 6 ' 2 I  

8 584 143 4 ~ 54' 14"4~ 

9 645 o64 34 ~ 51' 13"o9 

�9 2o 699 "o98o 3 ~ 5' 12"15 

2 787 8Ol 22 ~ 20' IO'89 

4 853 612 16022 , "I2 

6 9oo 418 I I  ~ 13' 9"63 

8 931 220 6028 ' "36 

"3 ~ + "3945 + "0021 ~ + I0 55' 9"25 

"30209 "0000 ~ +  1027 ' 

n T =  2 1 3  ~ 5 2 ' .  
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F a m i l y  b of  o s c i l l a t i n g  s a t e l l i t e s  c o n t i n u e d .  

The above, not  being exactly periodic, was corrected by extrapola- 

t ion f rom the orbit  x 0 = 1"295 , which gave ~r + 7 ~ 58' as the final value 

of ~.  The corrected coordinates are, 

8 ~ - -  I 

"00 + "29I 9 + "0000 

4 929 4 ~  

8 968 797 

"~o "3oo9 993 
I o41 "1o88 

2 085 178 

25 113 219 

3 147 256 

35 187 286 

4 233 306 

45 282 314 

5 332 311 

55 380 297 

6 425 275 

7 505 216 

8 575 145 

9 635 O65 

"20 687 "0979 

2 772 799 

4 835 609 

6 879 413 

8 905 214 

"3 ~ + ' 3 9 1 5  + "oo14 
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Family b of oscillating satellites continued. 

X o ~ 1 ' 2 5 9 4 5 .  C = 38"o 

The following orbit was computed, 
2 ~  

'oo + ' 2 6 o o  + ' o o o o  - -  o ~ o' 5'399 

607 800 I~ 4' 6"03 ~ 

"12 625 "1199 4~ 7"152 

6 693 592 16~ 33' 9"480 
8 772 776 29 ~ 45' 11"822 

9 829 858 4o~ ' 13"133 

"2o 9o3 925 55 ~ 9' 14"339 
I 992 97 ~ 72~ ' '822 

2 "309 ~ 986 89 ~ 9' "3 ~ 

3 19o 974 ff + 77 ~ IO' 13"153 

4 284 943 66~ 53' 11"932 

5 373 897 59 ~ 2' lO"935 
7 532 778 480 3' 9"423 
9 67x 634 4 ~ 12' 8"41o 

"33 892 309 28 ~ 46' 7"231 

7 "'4056 "0945 20~ 15' 6"567 
"41 17I 563  13 ~ 15' "202 

"45 + ' 4 2 4 I  + ' 0 1 6 9  ~ +  6~ 6"005 

"4670 + "4258 "000o g + 4 0 2 7  ' 

n T =  214 ~ 4 o'. 
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8 X - -  I y 

"oo "2595 "oooo 

8 600 800 

"I2 616 "1199 

6 681 593 

8 757 778 
9 812 861 

�9 20 884 929 

"2I "2973 "1975 
Aota mathr 21. Imprim~ le 13 septembre 1897. 31 

Interpolation between the above and a neighbouring orbit gave the 
following coordinates for the periodic orbit, 
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Family b of oscil lating satellites continued. 

$ ~ - -  I y 

"22 "3o7i "x992 

3 I7~ 980 

4 264 948 

5 352  9 ~  

7 5 ~ 777 
9 642 63o 

"33 852 299 

7 "4 ~ 1 7 6  "~ 

"4I 095 546 

"45 "4x39 "~ 

"4656 "4149 'oooo 

n T ~  208  ~ . 










