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Summary

The present paper is devoted to the theory of discontinuous Markoff processes,
that is processes where the transitions between states take place either by “jumps”
of some specified kind, or by other means. States are taken as point x in an abstract
space; phases are points (z,#) in the product state x time space; sets of states are
denoted by X, sets of phases by S.

It is shown in § 2 that such a process is specified by two functions: the prob-
ability %, (X, t|x0, t) of a transition z,—~X without “jumps” in the time interval
[ty t), and the probability distribution (8|2, t,) of the first jump time and the con-
sequent state, given an initial phase (%, {,). The total transition probability ¥ (X, t|,, t,)
is required to satisfy the integral equation

XX, t] 2y t) =Xo (X, t| g, to) + [ X (X, ] &, D) 9 (dE, d |y, 1) (LE.)

The main problem is to study the existence and uniqueness of the solutions of I.E.
which also satisfy the conditions (stated in § 1) for being transition probabilities of
a Markoff process.

Previous work (cf. § 4) on this subject relates to special cases, mainly to pro-
cesses where transitions occur only by jumps. In § 5, two auxiliary sets of functions
are introduced: the distributions , (S|z,,¢,) of the nth jump time and consequent
state (which form a Markoff chain), and the transition probabilities X, (X,¢|,, £,)
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involving exactly » jumps. It is shown in § 6 that the probability Xz=> X, of a
0

“regular”’ transition involving a finite number of jumps satisfies I.E., and that this
is properly normalized to unity if and only if the cumulative distribution o, (|, t,)
of the time of occurrence of a ‘singular jump’, i.e. one involving an infinity of
“ordinary jumps’’, is identically zero. It turns out in § 8 that the condition ¢,=0
is also necessary and sufficient for X, to be the unigue solution of I.E. The remainder
of §8 is devoted to the study of a class of solutions of I.E. for unstable processes
(namely, those for which o, =0) which is obtained by applying the foregoing theory
to the process viewed in terms of the “singular jumps”, with Xz (the transition prob-
ability involving only “ordinary jumps”) playing the role of X, and a postulated
distribution 9™ for the first “‘singular jump” time and consequent state instead of .
This procedure can be repeated if the process thus viewed is again unstable, the
numbers of “ordinary jumps” at each stage being multiples of the successive powers
of the first transfinite ordinal. §9 is devoted to certain properties of those trapping
phases (x,, t,) at which there is a probability unity of an instantaneous ‘“‘singular
jump’: ie. oy (t| %y t)=1 for all ¢>t, In §10 a tentative study is made of pro-
cesses where the Markoff chain of distributions {y,} tends to an ergodic limit. A set

of examples illustrating various features of the theory is given in §11.

1. Markoff processes

The concept of a Markoff process is obtained by abstraction from physical pro-
cesses involving systems whose state x changes with the time ¢ according to some
chance law, such that the probability of a transition from a given state z, at time
t, to a state x at a later time ¢ depends only on the state z, at t, and is indepen-
dent of the states of the system at times prior to f,.

The state space X is the set of all possible states z of the systems; it is assumed
that a Borel field B, of subsets of X is defined. Let J be the time axis, B; the Borel
field of subsets T of J generated by the intervals of J; in order to avoid trivial
complications it will be assumed that J=(0, o). but the subsequent considerations
remain valid if J is any real interval, finite or infinite. An ordered pair s=(x,t) is
a phase of the process, the cartesian product space § =X x T its phase-space; B;=B,x B,
denotes the minimal Borel field of subsets § of § containing all rectangle sets X x T
such that X €B, and T €B,. The qualification measurable applied to sets X, T, 8
means that respectively X €B,, T €B,;, S€B,; it will often be omitted when this is

unlikely to cause confusion, as only measurable sets are considered in this paper.
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The notation X*, 7%, S* will be used for the complements of X, T' and 8 respectively.
A measurable function on X, J or § is always a Borel measurable function. There
will also be occasion to consider measurable subsets of and measurable functions on
XxJ?, defined analogously. A distribution o¢(X) on B, is a measure on B, such
that o (X)<1; it is a probability distribution if and only if it is normalized to unity:
ie. in case p (X)=1. A conditional distribution X (X |») on B,xX is a distribution on
B, for fixed z(}) and a measurable function on X for fixed X (}); it is a conditional
probability distribution if and only if X (¥|z)=1. Similar definitions avail for distribu-
tions on B;, B, and conditional distributions on B,xJ, B,X§.

The instantaneous state of the system in Markoff process is specified by its in-
stantaneous distribution p (X, t): ie. the probability that € X at ¢; this is a function
on B,xJ which for fixed ¢t is a distribution on B,; this specification is incomplete
unless g (X, t)=1. The femporal evolution of the process is specified by its éransition
distribution % (X, t|x,, £,): le. the probability of a transition z,—>X iIn [f,t), or in
other words, the probability that x € X at ¢ conditional on z, at #,. This is a func-
tion on B,xJTx§ satisfying the following conditions:

L x (X,t]xo, to) s a distribution on B, for fixed t, x4, t,, @ measurable function on

S for fized X, t; hence it is a conditional distribution on B;x X for fixed ¢, {,.

(2) X satisfies the Chapman-Kolmogoroff equation (briefly C.K. equation):

XX |2 to) = [ X (X, t|& ) X (AE v]mg, t),  (E=TZ4). (1.1)
x
(3) XX, t] 2, tg) =0 (X | 20) = !(1) ft;fgrewie if t<t,. (1.2)

These will be called the incomplete Markoff process conditions (briefly, I.M.P. condi-

tions) because the specification of the process is incomplete unless in addition y satisfies:

(4) X (X, ]z, tg)=1, (1.3)

in which case it will be termed a transition probability and will be said to satisfy
the complete Markoff process conditions (briefly, C.M.P. conditions). The transition
distribution of a process determines the transformation with time of its instantaneous

distribution by the relation
o (X, 8)=[1(X, t|zp, t) 0 Ay, ty),  (E21,). (1.4)
%

The process will be termed time-homogeneous if X depends only on ¢—t,.

(1) By “fixed «”, “fixed X otc. we shall always mean “‘each fixed « € X, “‘each fixed X € B,”
and so on.
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A few relevant remarks may be added here:

1) As is evident from (1.1) and (1.4), X specifies the evolution of the process for
increasing time only, and hence need be defined only for t>4¢,; condition (3) is a
convention introduced to complete the definition of X for all values of t€J.

2} Contrary to the usual practice in the literature, the additional continuity

condition
gltn XX, t| 2, ty) =6 (X | ) (1.5)

will not be imposed in the present paper; instead, the bebaviour of ¥ as t| ¢, will
be investigated (cf. § 6).

3) No attempt is made to set up a complete ‘‘probabilistic’’ scheme for the pro-
cesses studied: ie. to define a probability measure for the space of all “realized
functions” « (). This precludes the use of “probability arguments” in proofs, which
will consequently be purely analytical; however, such arguments or interpretations

will sometimes be briefly sketched as an aid to intuition.

2. Discontinuous Markoff processes

Discontinuous Markoff processes are taken here to be loosely speaking the class
of Markoff processes where the state of the system can change by sudden chance jumps;
the precise definition is given later in this section. Previous work (Feller [4, 5],
Pospisil [14], Doeblin [2], Doob [3]) was concerned mainly with the more restricted
class where the state remains unchanged between jumps, and moreover a probability
rate q(z,t) (probability per unit time) is defined for the jumps. The application of
the present theory to this sub-class and hence its connection with previous work are
discussed in §4. A discontinuous Markoff process is specified by two functions:

1) The probability ¥, (X, t|z, %) of a transition 2p—>X in [f,, ¢) with no jumps.

2) The probability p (S|, ty) that (z,t) €S, where ¢ is the first jump time and
x is the state to which the system is taken by this first jump (the consequent state),
given the initial phase (z,,1,). It is important to notice that “jumps” in the above
may refer to jumps of a specified kind, and hence that a transition with no jumps
of this kind, whose probability is given by X, may occur partly as a result of jumps
of some other kind. We write xy(t]| %y, t) = Xo (X, |2y, ) for the probability of no
jumps in [, 8) given (zg, £,); v (X, t| o, ty) =9 (X X[£,, ) | 2y, £,) for the probability that
the first jump time lies in [¢,,¢t) and the consequent state x€X given (z,,%);
o (¢| %o, tg) = (X, t| 2o, ty) for the cumulative distribution of the firt jump time given

(70, tp)-
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The two functions X, p are postulated to satisfy the X,-conditions:
(1) %o (X, t]| g, 8) satisfies the I.M.P. conditions of §1.

(2) v (S|xy, t) t8 a conditional distribution on B,xS.

(3) P (S| %y, o) =3i1:1° o (t] Zgs tg)=1— 3_1:1; 2o (]| 2o Lo)-

(4) w(X’t[xO’ t0)=w(Xi T'xo: t0)+J’1P(X’t|§, ) %o (dfs 1[“’0, to),
x

t=T=ty). (2.1)

(5) For fized xy, 1y, o(t|,, 1) is continuous to the left in t and vanishes for t<t,.

LeMMa 21 o (t] g, 1) =1 — 2, (] g, £5)- (2.2)

For t<t,, this follows immediately from (5) and I.M.P. condition (3), which implies
that »,=1 for ¢<t, It follows from (4) and ILM.P. condition (2) that

0 (¢] %, to) =0 (z| 7o, tg) + f" (] & 1) %o (A€, 7| 2y, 1) (2.3)
X
o (] @ to) = [ 20 (£ &, 7) 2 (BE, T| g, t) (2.4)

for all t>t>1t, Making t—>occ in both equations, it follows from (3) that
1= (7| @y, tg) + %4 (T | %o L)

Hence the lemma is also true for ¢>{#, This result has an obvious probability inter-
pretation: for if x, is the probability of no jumps in [f,?), then ¢=1—1, is the
probability that the first jump time lies in [¢,¢) (and is also the probability of one
or more jumps in [t t)).

It follows immediately from the X,y-conditions and lemma 2.1 that (1) for fixed
Ty, bgy %o (8] 245 &) 18 & mon-increasing function on J continuous to the left; (2) v isa
conditional probability distribution if and only if o (oo|xy, t)=1; (3) (X, t|,, ) is
a non-decreasing function on J continuous to the left for X, x,¢, fixed, a distribu-
tion on B, for ¢, x,, 1, fixed, a measurable function on § for X, t fixed, and vanishes
for t<t,.

A precise definition of a discontinuous Markoff process can now be given: A dis-
continuous Markoff process specified by a pair of functions y, v satisfying the X,vy-
conditions is a process whose transition probability X satisfies the C.M.P. conditions of
§1 and the infegral equation.

XXtz tg) =2 (X, |z t)+ [ X (X, t|E 1) p(dE dT|ag ty). (2.5)

xx(t,l)
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This equation (referred to briefly henceforth as I.E.) is suggested by the following
heuristic “probability argument”: the probability X (X, ¢|z,,%,) of a transition zy;—>X
in [f,, t) must be the sum of the probabilities X, (X, t|x, %) and say X; (X, t]=,, t,)
of such a transition with no jumps and af least one jump respectively. The second
in its turn must be the sum over X and [t, ) of the product of p (d§, drlxo, to)s
the probability that the first jump occur in (v, T+d71) with consequent state in {d &},
and X (X, t|§, 7), the probability of a transition £—X in [7,?), and is hence equal to
the second term in the right-hand-side of I.E. It was introduced independently by a
number of authors for various special processes (see e.g. Bartlett [1], where further
references will be found); in particular it was used by Doob [3] in the case of time-
homogeneous processes with no change of state between jumps and state space R,
(i.e. the real line).

A solution of LE. satisfying the I.M.P. conditions only may be interpreted as a
transition distribution giving an “incomplete description” of a discontinuous process. It
remains to be shown that discontinuous processes defined as above exist, to investigate
their properties and the conditions under which they are uniquely and completely
defined. In other words, our problem is: given the functions X,, v, to inguire into
existence, uniqueness and properties of solutions of I.E. satisfying the I.M.P. or C.M.P.

conditions.

3. Singular and regular phases. Compositions.

The specification of discontinuous Markoff processes given in § 2 does not pre-
clude positive probabilities for instantaneous jumps: i.e. it is possible that for certain
initial phases (x, ¢,)

ltiﬁla(tlxo, t) =0 (tg+ 0]z, ) >O0.
(]

A phase (z,t) will be called singular if o(¢+0|x,t)=1, regular if o(t+0|z,t)=0.
D,={(,t)|o(t+1/n|x,t)=1} is a non-increasing sequence of measurable subsets of §
(because o (f;|x,t) is non-decreasing in t,); clearly the set of all singular phases
D=1imD,. Similarly R,,={(z,t)|o(t+1/n|2,t)<1/k} is a non-decreasing sequence

n—>»00

for fixed k, and lim R, is clearly a non-increasing sequence; the set of all regular

n-»00

phases R=lim lim R,,.

k->c0 N0

LEMMA 3.1. D and R are measurable subsets of S, and R<D*.
Let 7 (X | g, ty) =9 (X, 2+ 0] g, £5); 7 (X |20 t,) =1 if and only if (x,, ¢) €D.
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LeMMaA 3.2. If (zg, ty) €D, then
1if £>0,

0if t<0. ®-1)

P (X, t| 2, 8) =77 (X | 2y, to) & (E—1t,), Where e(t)={
Since y (X, t| %, t,) is non-decreasing in ¢, it is =7 (X |z, t,) for ¢>1,; suppose that
it is >; then if (xy,1,) €D, t>14,

0 (t]2g, te) = (X, £y, t) + 1 (XF, 8| 2, o)
>0 (X | 2, bg) + 7 (X T | 24, 1)
=0 (tg+ 0|z, ) =1,

which is impossible; hence (X, t|x,, f,) =7 (X |2, t,) for ¢ >1,; this proves the lemma.
It is convenient to gather at this stage a few lemmas relative to conditional
distributions that will be used repeatedly in the sequel. Since they are more or less

well known, their proofs are relegated to an Appendix.

LemMma 3.3. Let B(S|xyty) be a conditional distribution on ByxS. If o(x,t)isa

bounded measurable function on §, then for every S € B,
P (o, to) = [ o (2, ) B (A, dt|zy, ) (3.2)
8
exists and is o bounded measurable function on §. If S=XxT, where X €B, and
TGB,, then
7 @ to)=[ [ (@, t) B (da, dt| 2y, tg) = [ [ a(x, t) B (A, dt| g, 1) (3.3)
TX XT

If a(S]|x,t) is a conditional distribution on Byx S, then for every & €B,

7 (8] mg, to)= [ & (8], 1) B (da, dt|z,, ) (34)
4

exists and is likewise a conditional distribution on B,xS.

Note that the conclusions of the lemma apart from (3.2) are still true if we
substitute (X, B;) or (7, B,) for (S, B;). We call y the composition of a and f.

Lemma 3.4, Compositions are associative: let o (x,t) be a bounded measurable
function on S, B(S|=,t) and y (S|=,t) conditional distributions on B;x S; then for every
S, €B,, S, €B,

SJ‘ ‘:j o (%3, ) B (dzy, dity | 2y, t1)} Y (@, dt | 2y, t)

=Sfoc(x2, ty) {Jﬁ(dzz, dty| 2y, t,) ¥ Ay, Aty | 2, to)}. (3.5)
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It will be convenient to introduce the symbolic notation y=a % § for the par-

ticular compositions
t

Yt rgt)= [ a(t &) BdE dr|zgt)= [ [alt &) dE dr|aty).
x

Xx[ty,8) te

t
The symbol J in such compositions will always be taken to mean integration over
L,
¢-0

[Z t); i.e. strictly f
£,=0

LeMmma 3.5. Let «, B, y be as in Lemma 3.4., and let L =B %y. If B (X, t]| 2, t,)
and y (X, t| 2y, t,) vanish for t<t, then so does { (X, t|x,,t,). It then follows that

(@ f) *x y=0% (8 %7y) (3.6)
To prove this, note that

C(X’tle’t0)=j fﬂ(X,tlE, T) }’(dfydflxo, to)=J.ﬂ(X,tIE,T)'}’(df,dTlxo:to)
ty X s

because =0 for 7>t and y=0 for v<{, in the integrand; hence clearly {=0 for
t<t,. Similarly

t t
ffoc(é‘,z)ﬁ(d&,drlxo,to)=£foc(E,r)ﬁ(df,dﬂxo, to);

[

(3.6) then follows if we let 8;=§ and 8,=Xx[0,?) in (3.5). In this symbolic nota-
tion, I.LE. becomes

1% =) =10 3.1
1 if (z,2)€S
where I(s I z, t)= {0 otl(lerw)'ise

is the ‘“‘unit” phase-space conditional distribution; note that
I(X, 8| 2, t)) =06 (X | x) e (£ —1,),
where 8 (X |z,) was defined in (1.2), & () in (3.1).
LeMMaA 3.6. Let {x,} be a sequence of conditonal distributions on B,x S, converging

to a(S|x,¢) for every SEB, and (x,1)ES; then o is a conditional distribution on B,x .
Let B be any conditional distribution on ByxS; then for every S€B, and (2,8)€S

lim «, % f=a %, (3.8)
lim 8% a,=f % a. (3.9)

The notation S(t), 8(x) will be used for respectively ¢- and z-sections of 8.
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Lemma 3.7. Let B(X|x,t) be a function on B,xS, which is a distribution on B,
for fized x,t and a measurable function on S for fixed X; then B’ (S|, t)=p (S (t)|=,t)
is a conditional distribution on Byx S, with B (X, t| x,, t,) =B (X | 2y, ty) € (¢ —1,). Similarly
let u(T|=z,t) be a function on B;xS, which is a distribution on T for fized x, t and
a measurable function on § for fixzed T; then u' (S|x,t)=pu (8 (x)|=,t) is a conditional
distribution on B,x S, with p' (X, t| 2y t) = p ([ty, t)) 6 (X | ).

Levma 3.8. Let o(x,t) be a bounded measurable function on S, f and y as in
Lemma 3.7; then

[o(@,t) pldz|zg t) = [ a(x,t)p (dx, dt]|zyty), (3.10)
X Xxg .

[ @ty p(dt| 2o te) = [ o(x,t) w' (da, dt |y, ). (3.11)
T xxT

These two lemmas (3.7 and 3.8) show that Lemmas 3.3, 3.4, and 3.6 apply to
compositions like (3.10) and (3.11) snvolving only one of the variables zx, t.

4. Step processes and g-processes
The class of discontinuous Markoff processes where there is no change of state
between jumps is clearly the class for which %, is of the form
Xo (X, t| @, tg) = 265 (] g £5) 0 (X | ) 4.1)
where 6 (X |z,) was defined in (1.2) and », is a function Jx§ satisfying the sx,-con-
ditions:
(1) 0<ay<1; 24 (] 2o, o) ¢s @ measurable functions on $ for fized t, is continuous
to the left in t for fized x,, t, and is equal to 1 for <t
(2) %o (8] g, tg) = 20 (8] Zg, T) g (T 7o, £),  (E=T2E). (4.2)
It follows from (2) that x,(f|,,f,) is non-increasing in ¢ when w,, f, are fixed and
non-decreasing in f#, when z,, ¢, are fixed. Any realization of such a process has the

character of a step function; hence processes of this class (i.e. with X, of the form

(4.1)) will be called step processes. It will now be shown that for step processes
¢
P (X, ¢z t) = [ ¢ (X | 24, 7) 0 (d7| 20, L) (4.3)
to

where o (8] 2y, £,) =1 — %, (t| %y, £,), and is therefore a non-negative non-decreasing, left-
continuous function of ¢ when 1, are fixed, inducing a distribution o (7|, t,) on

B:; qS is a function on Xx§, which will be said to satisfy the ¢-conditions if:
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& (X | %y ;) is a probability distribution on B, for fized w,,t, a measurable func-
tion on § for fixed X.

TaeorEM 4.1. Let X, (X, t| 2,1t be as in (4.1), with x,(¢|z,, t,) satisfying the

xq-conditions; let

P (8| 20, b)) = [ (S @) | 20, £) 0 (dt | 2y, t) 4.4)
0

where S (t) is a t-section of 8, ¢ satisfies the ¢-conditions and o=1—1x,; then the pair
Zo» @ satisfy the X,y-conditions of §2. Conversely, if a pair of functions X,, v, where
X 18 of the form (4.1) satisfy the X,w-conditions, then x, satisfies the x,-conditions, and
for every X, m,, t, t, a measurable mon-negative function ¢ (X |y, 7) is defined for almost
all (6)T €T such that vy satisfies (4.3); for every fized z, and almost oll (c)1€JT,

¢ (X |20 t)=1 and ¢ (nngn | ,, t) = 3;(}5 (Xa| 24 1), (4.5)

for every sequence {X,} of disjoint measurable subsets of X.

It is easily seen that a function X, defined as in (4.1) satisfies the I.M.P. condi-
tions (1) and (3) if and only if x, satisfies the x,-conditions (1), apart from left-
continuity in #, which however is necessary and sufficient for ¢ to be left-continuous;
furthermore, ¥, satisfies the C.K. equation (I.M.P. condition (2)) if and only if #,
satisfies (4.2); hence the ,-conditions are necessary and sufficient for %, and o to
satisfy respectively the X,v-conditions (1) and (5). If ¢ satisfies the ¢-conditions and
and ¢=1-—1%, then by Lemma 3.7

&' (8| %o te) = (S (to) | 2oy £e) and @’ (8| zy, 1) =0 (S () | %y, o)
are conditional distributions on B;xS. If now p is defined by (4.4), then by lemma 3.8
(S| 2, t0)=sf¢’ (8|&1) o (A&, dr|xy, ty);
hence by lemma 3.3 y is a conditional distribution on B,x§; it is further obvious
that 9 (X, t| 2o, t) =0 (¢] 7y, ty). It follows from (4.2) that
0 (L] 20, to) = 0 (7] g, o) + 0 (E] g, T) 2, (v | 7, ), (4.6)
which substituted in (4.3) shows that
W(X, t] 2, tg) =9 (X, 7| %y, o) + 9 (X, E] 2, T) 20 (7] g, £0) 5 (4.7)

this is identical with (2.1) when X, is of the form (4.1). Hence y satisfies the X,-
conditions (2), (3) and (4). Thus X, and y satisfy the X,y-conditions, and this com-
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pletes the proof of the first part of the theorem. In the converse direction, suppose
now that X, and y are two functions satisfying the %,y-conditions, X, being of the
form (4.1). It has already been shown that the facts that ¥, satisfies the I.M.P.
conditions, that ¢ is left-continuous in ¢ and that by lemma 2.1 ¢=1— %, imply that
%, satisfies the sx,-conditions. Since for X, z,, ¢, fixed (X, ¢|z,,¢,) is absolutely con-
tinuous with respect to o (T'|x,, &), it follows by the Radon-Nykodim theorem that
there exists a non-negative measurable function ¢ (X|x,, 7) defined for almost all
(6) T€J such that (4.3) is true. Let {X,} be a sequence of disjoint measurable sub-
sets of X, let O, be the exceptional subset of J where ¢ (X, |, ) is not defined,

o0 .
n=1,2,...; then 0'( U 0, |, to) =0; hence .it is legitimate to write
n=1

t
Y (nl;j1X"’ t] 2, to) = qu( L=JIX,, | %05 1,') o (d7 ]|z, ty)
te

I
its

p (X, tl %y, by)

1

& (X, | 29, T) 0 (AT | 24, 1)

I i
—_—— i[\/m
YL Fo—

1¢> (X | 4, 7) 0 (BT ]| 24, £y),

&y
where the last step is justified by Lebesgue’s bounded convergence theorem; hence
for almost all (o) t€T

$(6 X120 0) = 3 g Xl

This completes the proof of Theorem 4.1. Note that though the function ¢ in the
2nd part of the theorem has the normalization and complete additivity properties
(4.5) it does mot follow that it satisfies the ¢-conditions: this is due of course in the
first place to the possible existence for every X, x, of exceptional subsets of J where
¢ is not defined, so that considered as a function of all three variables, ¢ might not
be defined over any appreciable subset of Xx§. The theorem shows essentially that
the class of step processes consists of those processes specified by functions X,, v of
the form (4.1) and (4.3).

Another important class of discontinuous Markoff processes, which we shall cail
g-processes, consists of those processes for which a jump rate

15— 573805 Acta mathematica. 98. Imprimé le 12 décembre 1957.
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.1
gz, t)=lim — {1 —s,(t+dt|=,¢)} (4.8)
3t40 08

is defined. With certain additional measurability and continuity restrictions, they are

characterized by the following theorem:

TrHEOREM 4.2. Let X, (X,t| %y t,) be a function satisfying the I.M.P. conditions
and such that: (i) X, is a measurable function on TXS§ for fixed X, a continuous func-
tion on J for fiwed X, xy, 8, (ii) for fized wy, 8y, %, has a continuous derivative xo (t | x,, to)
for all t=t, and a right-hand derivative —q (xy,t,) at t=ty; (iii) g (z, t) is non-negative
and continuous on J for fized x. If ¢ (X |z, t) is a function satisfying the ¢-conditions
and continuous on J for fixed X, x, then %, and the function

Y (8| 2o to)= [dt [ (S ()|, t) g (2, 8) X (A, t| o, ) (4.9)
ty X

jointly satisfy the X,vp-conditions; furthermore, v (X, t|zy, ty) is measurable on Tx$ for
fized X and has a continuous derivative

[ (X |z, t) q(@,t) Xy (de, t| 4, t,) for t>1,
Y (X, |z ty) = | * (4.10)
0 for t<t,

for fixed X, x,,t,. Conversely, suppose that X, and vy satisfy the X,y-conditions; X, satisfies
conditions (i), (ii) and (iii) above; y (X,t|zyt,) (a) is @ measurable function on Tx $ for
fized X, (b) for fized X, z,,t, has a continuous derivative y' (X, t| 2y, t,) for all t=+1,
and (c) y' (X,t+0|x,t) exists and is continuous on T for fized X, x; then Y’ salisfies
(4.10) and vy satisfies (4.9) with

(X |z, t) gz, t) =9 (X,t+0]|z,t), (4.11)

where ¢ and q have the properties stated in the first part of the theorem.
Conditions (i), (ii} and (iii) imply that x (£|z,, f,) is a measurable and non-positive
function on Ix§: for

¢

#o (t| 2 o) =1+ [ 26 (0| 2y, 8) 46 (4.12)
ty

gz, )= —n(t+0]x,t), (4.13)

and that ¢ is a non-negative measurable function on §. Substituting (4.12) in the
C.K. equation for %,, one finds that
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%o (£] @g, to) = J"‘o & 1) 2% @&, 7| %5, £o)
x

t
=2t (7| %o, to) + [ 40 [ 50 (8], 7) 2o (AE, 7| %o, 8)
T x
t
= (v | %g tg) + [ %0 (0| 2, t) 46,  (t=7>1,), (4.14)

where the change in the order of integration in the 2nd line is justified by Fubini’s

theorem, and the 3rd line is an immediate consequence of (4.12). Hence

20 (] %gr to) = [ 20 (£] &, 7) X%y (B, T @ t) = — [ @ (&, 0) %y (AE, 7 tg)  (4.15)
x X

where the 3rd expression follows by (4.13) on making {—7 in the 2nd. If ¢ satisfies
the ¢-conditions, then g defined by (4.9) is a conditional distribution on B;xS§; the
proof of this assertion is similar to the proof in theorem 4.1 that ¢ defined by (4.4)

is such a distribution and will therefore be omitted. It follows that
t
P (X, t]| 2y, to)= [dv [ $(X|&7) g (&, 7) %o (AE, v |20, ) (4.16)
t x
for t>1¢, and vanishes for {<{,; hence by (4.15)
t
o (] 2, t) =9 (X, t| 2, to) = [ AT [ q (2, 7) Ao (A, T|wgr te) = 1 — 20 (| Zps B).  (4.17)
iy x

Finally, substituting the C.K. equation for X, in the right-hand side of (4.16),

i

w(X’tle’ tﬂ)=w(X’TIx0’t0)+fd0J‘¢(X|C7 G)Q(C) B)Ixo(dé-’ 0[6, T) X()(dgstlxo: to)
x

T X

=9 (X, 7| %0 t) + [ 9 (X, 2] &, 7) %o (A&, 7| %, To), (4.18)
X

where the passage to the 2nd line is justified by an argument similar to that used
in the proof of lemma 3.4. This completes the proof that X, and yp satisfy the x,v-
conditions. If ¢ (X |x,¢) is continuous on J for X and x fixed, then the existence of
the continuous derivative (4.10) follows from (4.16). If conversely v (X, ¢ |z, t,) satisfies
conditions (a), (b) and (c) in the second part of the theorem, then v’ (X, t]x,,£,) is
a measurable function on Jx§ for fixed X. Let @ (X|x,¢) =9y (X, t|z, t); then since
o=1—1,,

Q (X|x, t)=0' (t+0]|z,8)= —x (t+ 0|2, t) =q (2,8). (4.19)
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It is then easily seen that ¢ (X|z,t)=® (X |x,¢)/q(x, ) satisfies the ¢-conditions and
is continuous on J for X, x fixed. It follows from (2.1) that

t
w(X,iIa:o, to)_'lIJ(X: T'xo»to)=fd0f¢'(x’ 9[5&)%@5, Tlxo; to)
T x

t
= [9 (X, 0|2 t) 20, (t>T>1,), (4.20)

where the change in the order of integration in the lst line is justified by Fubini’s
theorem. Hence y’ satisfies (4.10), because

¥ (X, ¢l 2o )= [ ¢ (X, ] 0) 2 (@&, 7| %o, 1)
X

= [$(X|& ) (& 1) Xy (BE, 8] 7, to),

where the last expression follows by (4.11) on making {—7 in the 2nd. It follows that
y satisfies (4.9), because y (S| z,, f,) defined by (4.9) is the extention of y (X, |z, t,)
to a measure on B;, and such an extension is unique. This completes the proof of
theorem 4.2.

Consider now step processes which are also g-processes in the sense of theorem 4.2;

they are characterized by the following lemma:

Levma 43, A function x, on Tx$§ satisfies the ny-conditions and conditions (ii)
and (iii) of Theorem 4.2 if and only if it is of the form

t
#o (t| T to) =exp [~ [ g (%0, TV T}, (E>1), (4.21)

where g (z,t) i a measurable non-negative function on §, continuous on J for fized w.
The “if”” part of the lemma is obvious; the ‘“only if” follows from the fact that
(4.21) is the unique solution with the initial condition x, (%, ], ) =1 of
a
37 %0 (¢ 7o 1) = 4 (@0, 1) 0 (¢] 20 o), (4.22)
which in turn is implied by (4.2) and (4.8).

CoROLLARY. A4 step process specified by a pair of functions x,, p satisfying the
conditions laid down in the first part of Theorem 4.1 is also a g¢-process in the sense of
Theorem 4.2 if and only if x, is of the form (4.21), where q(x t) has the properties
stated in the lemma,
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For a process of this class, 1p(X,t|:co, t,) has the continuous derivative

t
¥ (X, t] 2y, t) = ¢ (X | 2y, 1) ¢ (o, ) exp { — tj q (x, 7) d 7, (4.23)

which substituted in LE. (2.5) gives

t
2(X, t] 7y, ty) =exp {— fq(xo, r)dt} 3 (X |z +
tq

t T
+ [exp |~ [q (@ 0)d0) q (@, V) dv [ g (X, t| £, 7) $(dE| 7y 7). (4.29)
£y x

Fix X, ¢ and z,; it is evident that X has the derivative

Py t

Y x(X’tlxo’ to) = q (%, £) [exp {_ J'Q(xo, ) dT} 6(X|xo)+
(1] ty

t k3
+jexp{—tfq(x0, 0)d0}q(x0,r)d1fx(X,tl§, 1) (dE| 2y T) —
ty ) x
— [ (X, t] & 1) $(dE|y 80)], (4.25)

which after substitution of (4.24) for the 1st and 2nd terms in the eurly brackets of
the right-hand-side becomes the so-called “‘backward integro-differential equation”

9

a1 X (Kot %0 1) = 4 (2 1) (1 (X, |70, t0) — [ 2 (X, 116, 1) 6 (26|20, 1)) (4.26)
0 X

Conversely, suppose that X satisfies (4.26), where ¢ and ¢ satisfy the conditions stated
in theorem 4.2. Fix X, x, and f; then (4.26) can be written, suppressing the fixed

variables

2G) e 2=~ F b,
o (4.27)
where F (o) =q (2, o) [ £ (X, | £, 20) b (B 20, 2,).

Since ¢(#,) is continuous, the unique solution of the 1st order differential equation
(4.27) with the boundary condition % () =6 (X |z,) is

t t T
X (tg) = exp {—tfq(r)dt} a(x|xo)+tj exp {—!q(ﬁ)d@} F(v)dr, (4.28)

which after substitution for F is seen to be identical with (4.24). Hence:
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Lemma 44. In the case of g-step processes with a continuous jump rate, the
integral equation (2.5) of §2 implies the backward integro-differential equation (4.25) and

conversely.

The restriction on the jump rate q(x,t) to be continuous on J is quite severe:
it would exclude for instance ¢ (,t)=(z—t)"? in the case were X =R,. It is apparent,
however, that it can be considerably relaxed. Take the case of g-step processes: let
g(z,t) be an extended non-negative measurable function on §; then it is easily

seen that
t-0

o (t| 2o, t) = exp { "‘t qu (o, 7) dT} ’

where the integral is taken in the extended sense, satisfies the x,-conditions, and hence
can be used as in the corollary of lemma 4.3 to construct a pair X, y specifying a
g-step process; lemma 4.4 is of course no longer true in this case. The following re-
sults are easily proved. Let ¢ (,, t,) = inf {t]2, (¢|%,, t,) =0 andt > ¢} if the set is non-
Vacuous, t; (x,, t,) = -+ oo if it is. Then x, (8] o, &) is O for >4, (2, &), >0 for & <i;(xy, to);
it is absolutely continuous on [¢,, a] for every a <i;(x,, &), and it exhibits at most

one saltus, namely, a jump down to O at t=t;(x,, t,) if %, (¢ (Zg, L) | Zo» tg) > 0. Also
2 (by | To, 1) =0 if 8, >, (2, 1) > b3
hence %o (8 (s tg) + 0| @y, 8 (%0, ) =0, Le. (%o, b (%o: 8)) €D
therefore t;(x,, t,) =t, if and only if (z,,¢,) €D. It follows that a phase (x,?) is either
regular or singular: R=D".
In the case of general g-processes, suppose that X, (X,t|zy &) is a function

satisfying the I.M.P. conditions and such that
¢
%o (t| > to) = — [ A7 [ g (@, 7) Xo (A, v | 2y, 8), (4.29)
o X

where ¢ (x,t) is a measurable non-negative function on §: this is true for example if
for every fixed ¢, [1—x,(t+6¢|=,t)]/5t converges as 6t—>0 to g (x,t) for all x€X
except possibly a set X, such that X,(X,, t|z, %) =0, and is dominated in some
neighbourhood of ¢ independent of x by a function which is integrable with respect
to Yo (X, t|xy t,). Let ¢ (X |x,t) satisfy the ¢p-conditions. Then it can be shown that

Xp and the function

P (8| 2o te) = [dt[ (S (®) ]2, 8) g (2, ) %o (d2, £ | 2, ) (4.30)
ty x

satisfy jointly the X,w-conditions.
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The special types of discontinuous Markoff processes considered in the present
section form in fact a very wide class. For example the class of step processes in-
cludes most Markoff processes with a countable state space. The theory of general
g-step processes was given by Feller in two basic papers [4, 5]; cf also Pospisil [14];
Feller’s starting point in his second paper is the ‘‘backward equation” (4.26), which
as shown in Lemma 4.4 is equivalent to I.E for this particular class of processes. The
point of view adopted in the present paper is similar to that of Feller’s, and the
results of §§5 and 6, as well as Lemma 8.3 are generalizations of Feller’s [5] results.
Step processes were also considered by Doeblin [2] from the ‘“probabilistic’” point of
view (cf. the remarks at the end of § 1). There is of course a wide literature on
special processes coming within the purview of the present general theory, in par-
ticular processes with a countable state space (see Bartlett [1], Feller [6] and Doob [3]

for further references).

5. The distributions of states, jump-times and jump-numbers

In the present section, we introduce the Markoff chain {y, (S|, )} of the n-th
jump time and consequent state distributions. From this chain we construct the transi-
tion distribution X,=2, % y,, where X, (X, t|z,, t,) is interpreted as the joint distribu-
tion of the number of jumps n and the transition xq—X in [y, t), which is shown to

satisfy the I.M.P. conditions. The reason for introducing these concepts is that, as is
shown in §6, Xg=D> X, is a solution of the inlegral equation (2.5) which satisfies the
0

I.M.P. conditions. A necessary and sufficient condition for Xy to satisfy the full C.M.P.
conditions is given in §6, and it turns out in §8 that this is also the necessary and

sufficient condition for X to be the unique solution of I.E.
Lemma 1. Let

Ya (8%, to) = [n1 (8] & 1) p (@&, dr|2pnty), (n=1,2,...), (5.1)

where wy=1 (cf. §3) and hence vy, =vy. Each member of the sequence of functions defined
by this iteration relation is a conditional distribution on ByxS. Let y, (X, t] 2o, by) =
W (X X [Eo, 8) | %) 8) 5 9 (X, E] g, £5) =0 if £,

COROLLARY.

t
Yo (X, 2, t) = [ [wnt (X, t]E D) p(dE, dT| 20 ty) (n=1,2,...). (5.2)
te X
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This is true for n=1 by the definition of p. Suppose it is true for n—1; then by
Lemma 3.3 w,(S|%,f) is a conditional distribution on B,x S, and by Lemma 3.5
Yo (X, t| 2, 8) =0 for £<t, Hence by induction the lemma is true. The corollary
follows by Lemma 3.5. y, (S|, %) will be called the n-th jump phase space distribu-
tion; clearly it must be interpreted as the distribution of the nth jump time and

consequent state conditional on (z,, £,), and
Oy (8| % to) =y (X, t| 2, 8), (n=0,1,...) (5.3)

as the cumulative distribution of the nth jump time. It follows from Lemma 5.1 that
Wn (X,t|xo,to) has the same properties as qp(X,t|x0, %), as stated in § 2 after the
Xg w-conditions.

LEMMma 52
Yu=Pr % Pu-zx and G, =0 % Pn_g, (£=0,1,....,7; n=12,..). (5.4)

This follows immediately. from (5.2) using Lemma 3.5.

Let now
Xn=Xo¥vn, (=012 ..) (5.5)

Xn (X, t]| %y, t) must clearly be interpreted as the joint probability of exactly n jumps

and a transition z,—>X in [, f), and
2y (8| 2oy to) =Xn (X, t]2p, £y), (n=0,1,2,..) (5.6)

as the probability distribution of the number of jumps in [f,, t) given z, at f,. It
follows from Lemma 3.3 that for #», X, ¢ fixed %, (X,t{xo, %,) is a bounded measurable

function on §; hence by Lemma 5.2, and using Lemma 3.5:

LeMMa 53
Xn=X%yay; and s,=2%pny, (j=0,1,...,m; n=12,..). 6.7)
Since x#,=1—0, it follows using (5.4) that
#y=(1—0) % Pp=0p—0n41, (=0,1,..)), (5.8)
which has an obvious probability interpretation when we remark that o, (£ | 2y, £,) is the

probability of n or more jumps in [£,, t) given z, at t,. It follows by iterating (5.8) that

n
Ons1=1 —lon,< 1, (»=0,1,..),

and hence:
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LemMaA 5.4. The sequence {0,} is non-decreasing and converges pointwise to
0o (E] 2o, tp) = lim o, (t|xp £5) =1— %x, (] 2o, ) <1, (5.9)

where 0, (| g, 1) s non-decreasing function on T continuous to the left for z,, iy fized,
a measurable function on § for t fixed, and vanishes for t<t,.

The last part of the lemma follows by Lemma 3.6. Thus o, (¢|2, f,) has the
character of a cumulative distribution for ¢ conditional on (x,,#,), though it need not
be normalized to 1 even if all the o, are; it may be interpreted, since the o, are
the probabilities of » or more jumps in [t ¢), as the cumnulative distribution of the
time of occurrence of a ‘‘singular” jump involving an infinite number of “ordinary”
jumps, conditional on the initial phase (z,,#,). A phase (z,,¢,) will be called stable
if it cannot be followed by such a singular jump; i.e. if gy, (¢],, t,)=0 for all ¢, or
equivalently, if o, (00| x,,¢,)=0; conversely, if o, (OOIxo, to) >0, then (%, t,) is an
unstable phase. The whole process will be termed stable if ¢,,=0, unstable otherwise.

LEvmMma 5.5.
'Pn (X’ t | xo, to) ="/’n (X» T I xoa to) +

n
+ 3 (9 (Xt 60) X @E, |2 b)), (27305 n=1,2,..). (5.10)

j=1lx

This is true for n=1 by the X,y-condition 4. Suppose that it is true for ». One
finds then on substituting for both g, and 9 in y..; =y, % v that

Pni1 (X, tl Zg, t)

T t
=tHwn(X,tIc,B)w(dc,delxo,tmfJ«pn(x,tlc,e)wp(dz;,delx.,,to)
" X T X

= [ 9 X. 712 09 @C 6]z 19+

+ 3 U 60 10 @8 712, 0) p@L, 40|70, 1) +
1=li X X

t
+ [ [0 (X812, 0) [ 9 (L, dO|&, 1) Ao (BE, T| g, bo)
T X x

n41
= 1/)”"*1 (‘X’ 7!%3 to) + Z V] (Xa t!&: 7) Zn-]+1 (d& T}xos to)'

i=1
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In the passage from the 2nd to the 3rd line, the changes in the order of integration
are justified by lemma (3.4); the final result is obtained by using the relations
Xn—i % P=2Xn—js1, Pn ¥ Y=1Pu 1. Lemma 5.5 follows by induction.

The function X, (X,t|y ) may be considered as the transition distribution of
a Markoff process with states (z,4) at t, where § is the number of jumps in [0, ),
the suffix n denoting the increase of § in [, ¢): ie. #=7—j,=0. The state space in

this case is Xx M, where N is the set of all non-negative integers.

THEOREM 5.6. The function X,(X, t|xy ) is a transition distribution satisfying
the 1.M.P. conditions relative to the states (x,j).

It follows from the definition (5.5) of X, by Lemma 3.3 that (a) X;_;, (X, t| 2, %)
is for fizxed §, X, { a measurable function on $SxH; (b) for fixed j,, ¢, %4, ¢, a distribu-
tion on B,xB, (i.e. the Borel field of subsets of X x M), with a total variation which
by Lemma 5.4 is

,onn (X, t| o, &) =:O%n (¢ | %o, to) =1 — 0o (¢ | g, £o) < 1. (5.11)
Hence 2, satisfies IL.M.P. condition (1). Write
X (X, ] %o, t")zjxfx" (X,t|L, 0) v, (AL, A6 2y, t) +
+jxf%o (X,t]Z, 0) v, (A, 48] 20, t).  (5.12)

Substituting for ¥, in the first term in the right-hand side of (5.12) from the Chap-

man-Kolmogoroff equation (1.1)

Xo (X, t|2,0)= [ 2, (X, t] £, 7) %o (@&, 7|, 0) (4.13)
x

(which %, must satisfy since it satisfies the I.M.P. conditions), and from equation
(5.10) for y, in the second term, one finds after inverting the order of integration
in both terms, which is again justified by Lemma 3.4, that

n
Xn(XKotlag ty)= 3 [ 2u(X. |86 7) Xnok (BE, 7|20 tg), (E=T285 n=0,1,..). (5.14)
k=0 x

This is clearly the form that the I.M.P. condition (2) takes for %,. For t<{,,
Xo (X, t|2g, to) =0 (X |x) by LM.P. condition (3), w,(X,t|xy f)=0 for all n, and

hence, since by definition X, =X, % ¢y,

Xo (X, t| 70, 19) =0 (X | 20) &, (£<Ey), (5.15)
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where §, is 1 or 0 according as n=0 or n>0, which is the form that the L.M.P.
condition (3) takes for X,. This completes the proof of Theorem 5.6.
o0
COROLLARY. 2 X, (X, t]|xy t)=1 if and only if 0o (t| %y t,)=0; hence X, is a
n=0

transition probability satisfying the C.M.P. condition (4) if and only if the process is
stable. (i.e. 6,=0). This is an immediate consequence of (5.9).

6. The regunlar solution of LE.

THEOREM 6.1. The series T ¥, converges to a transition distribution
1p (X, I Xy, by) = nZOXn (X, tl %o, t), (6.1)
which is a solution of I.E. satisfying the I.M.P. conditions, with

%, (] %o, to) = Xn (X, €] 2o, tg) = 1 — 0 (¢] 2o, 8) <1 (6.2)

Convergence of the series follows at once from the fact that it is majored by X x,.
It follows from Theorem 5.6 and Lemma 3.6 that X, satisfies I.M.P. condition (1). It
satisfies I.M.P. condition (2) because

JlxR (X, t‘&; T) ZR (dé’ Tlx()’ tO)
*

iMs

[2(X, t]& 0 2 (@& 7] 20, 1)
x

%

JENGR
Ins

= J (X, t1& %) 2 (@& ]2, 1)
X

7

-,

M
Ms

J 26 (X, 8] & 7) Zak (BE, 7|20, 1)
X

n=0 k=0

Xn (X7 t I Lo to)

iMs

n

=2 (X, t| 20, b)), (E=T>1,). (6.3)

The lst and 2nd lines in (6.3) are justified by Lemma 3.6, the rearrangement of terms
in the 2nd line leading to the 3rd by the fact that this is a convergent double series
of non-negative terms; the 4th line then follows by Theorem 5.6, equation (5.14). It
follows immediately from (5.15) that X satisfies I.M.P. condition (3). Finally, using
Lemma 3.6 and (5.7)
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Ae¥yp= ( Zoxn) *Xyp= Zo(x,. *y)= Zoxm =2z~ Xo; (6.4)
n= n= N

this proves that X, satisfies I.E., and hence completes the proof of Theorem 6.1. An

immediate concequence of (6.2) is:

COROLLARY. xg(t| %y, ty) = Xp (X, t| 20, t) =1 if and only if o (t]2g &) =0;
hence Xgp is a transition probability satisfying C.M.P. condition (4) if and only if the
process is stable (i.e. 0,=0).

The transition distribution xp will be called the regular solution of I.E. Note
that this solution is meaningful only provided that X does not reductive trivially
to Xo! It is readily seen that Xz=2, if and only if X; =X, % =0, and it is important
therefore to know under what conditions this can happen. The answer is provided
by the following lemma.

LEMMA 6.2. X, (X, |2y, t) =0 for all X € B, and t €T if and only if (D™ | z,, {) =0;
hence X,=0 and Xp=2X, if and only if v (D*|x, ty)=0.

D here is the set of all singular phases defined in § 3, D* =$§—D. If (D" ],, ) =0,
then
t
#y (| 2o to) = [ [0 (£] & 7) 9 (AE, dT| 0, )

ty X

= [ @& 1) p(dE dr|zy,t)=0, (6.5)

pYnxxitet)

because by definition x,(¢|&,7)=1—0(¢|& 1) =0 if (§,7)€D and ¢ > 7; hence
21 (X, t] 2o, £,) =0 for all X€B,, t€T. Let

n—1 n

Lt n
E Tk

k

Spi= {(x, t) and x, (

k

z, t) > 1} and Sy= U S, (6.6)
n,k

if (z,£) €D*, then (,t) €8, for some n, k; hence D* = 8,. If conversely X, (X, t] 2y, f,) =0
for all X€B,, t€TJ, then

¢
%, (t] 2o, t.,)=‘”x.,(t|§, 7) p (A&, d |24, ty)

i
= [ [#(t] & 7) p (@& d| e, te) =0. (6.7)
0 x

Since this is true for all t€J, and since »,>0, it follows that for every S,
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0=fxo(;—:

Spk

&, T) p(dé§, dr l Zg, ty) 2710'V’ (Snklxo, to)s (6.8)

hence i (8, | 2o, &) =0, and therefore
¥ (Sol @0 t0) < 3 9 (Sn.il 70, t0) = 0; (6.9)

hence vy (D*|xy, t)=0. If %,=0, then x,=0; it follows by induction (since x,,; =
%, % ) that 2,=0, n=1,2,...; hence Xz=2%, This completes the proof of the lemma.
Thus the regular solution Xy reduces trivially to X, only in the degenerate case of a
process where the variation of vy is confined so the singular phases, and the probability
of a finite number of jumps in any finite time interval is zero; notice that for such a
process it follows from the fact that ,==0 for all n.>1 that

=0y, n=1,2,... and hence o=0,,

i.e. either the system makes no jumps at all, or it executes a singular transition.
The behaviour-of the regular solution Xz (X, |, ¢,) when ¢ ¢, will now be con-
sidered. It is clear that we cannot expect the regular solution Xy of every discontinuous
Markoff process to satisfy the continuity condition (1.5), at any rate not for all
initial phases (xy,%). It will however be satisfied for regular initial phases (i.e such
that o (ty+ 0|, &) =0), provided that it is satisfied by ¥, for such phases. For

~V18

In< ?"n =00
and hence:
LeMMa 6.3. If (24 8,) is a regular phase and more generally if
0 (b + 0| Ty, tg) = 0o (£y + 0] 24, 1),
then Xz (X, 8+ 0] 2y, 1) = 2o (X, o+ 0| zy, £)-
CororLLARY. If (%8, is a regular phase, then
X2 (X, 8+ 0|z, tg) =8 (X | z,)
if and only if Lo (X, &+ 0]z, ) =6 (X | ).

7. Existence of an “inverse” to (I—1)

Let 8;,=8MNXx(0,¢), where t<oo; we call S, a t-bounded sef. The series
2 9n (8¢ 2y, ty) is majored by 3 o, (|, t,), and hence converges if and only if the
latter does.
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LeMMA T.1. 3 0, (¢] 2o, £,) converges if and only if 0o, (¢] 2o, t5) =0 and >, 2, (£| %y, )

converges; if this is so, then
oo o _
Zl o (] %, £g) = % 0 2, (8] 20, o) =70 (8] 2, £5)- (7.1)

In words, for a stable initial phase > o, is equal to the mean number of jumps #%. For
1

n n k-1 n n n
S ge= S [1— S x,]='n[1— Zx,]+ S iuy—nonat S . (1.2)
=0 =0 j=0
If i<eo and ¢,=0, then

n (-] -]
nan+1=n[1 - Zx,] =n 2 < D ju—>0 as n—>oco; (7.3)
0 n+l

n+l
hence no,.1—0, and by (7.2) ?o‘n =4#. Conversely, if ‘?a,, < oo, then obviously ¢, =0
and by (7.2) 2jn,=ﬁ,< oo; hence °§:Zan=17, and nop.1—0.

Suppose ., (t] 2, ty) =0, 7 (¢ | 24, &) < 0, and write

Q. (8| 2o, tg) = ?'/’n (CAEEA) (7.4)

Clearly for fixed =, %, and t<oco €, is a totally finite measure on B, and is non-

decreasing in {. Hence

Q (8| 2, t) = tlilg Q. (8 | g, tg) (7.5)

is a measure on B, finite for every f-bounded set, but totally finite if and only if

Lim 7 (¢] 2, £,) < oo.
t—->00

LEMMA 7.2, If 05 (£ %, t) =0, 7 (t| 2y, ) < oo for every (zo, t,) € § and every finite
t€J, and if Q(8|zy, t) is defined by (1.4) and (1.5), then

I—p)*Q=I and Xz=1X,% Q. (7.6)

This is true because obviously for every finite ¢ we can replace Q in

t ¢
[Jo X t|6,2)Q@dE dr|zety) and [ [4(X,t|& 1) Q@E dT]agty)  (1.7)
ty X te X
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by Q;, which is a totally finite measure, and hence can apply Lemma 3.6 to justify

the inversion of summation and integration in

(I—p)* g Yn= ; (I — )%y, =1
and Xo*k % Y= % XoXWn= % Xn=2Xg-

Thus Q is a kind of “right-inverse” of (I —w), if one considers the X’s and y’s as
elements of an algebra of operators with multiplication identified as composition; in
this interpretation, 1, is the “n-th power” of p, and Q =Xy, is analogous to the
Neumann series solution of integral equation theory. If furthermore 7 (¢|z,,,) is
bounded, say by N, then it is easily seen that N 2Q (S|, ¢,) is a distribution on
B, xS, and it also a “left-inverse” of (I—y): ie. Qx(I—y)=1.

8. General solutions of I.E. Transition distributions of unstable processes.

A function X(X,t|zy, %) will be termed a general solution of L.E. if for fixed
X,t it is a bounded measurable function on § satisfying I.E. It is immediately ob-

vious that:

Lemma 8.1. The class of all general solutions of I.E. is the class of all functions
of the form
x (X: tl Xy to) =Xz (X, ¢ I Lo, to) +a(l, zy, to)r (8.1)
where Xp s the regular solution of I.E. and « is any function on Tx$§ bounded and
measurable on S for fized t, which satisfies the homogeneous integral equation, (briefly
H.I.E.)
% (I —p)=0. (8.2)
THEOREM 8.2. Every solution «(t, z,,t,) of H.I.E. vanishes for a given initial
phase (x4, t,) and all t<a if and only if o, (a]z,, t,)=0.

CoRrROLLARY. The regular solution X5 is the unigque solution of I.E. if and only
if the process is stable (i.e. 0,,=0). The condition of the theorem is necessary because
Co (t]| g, ty) is & solution of H.IE.: for let n—co in both sides of the relation (5.4)
On+1=0p%y; then by lemmas 5.4 and 3.6 o, = 0., %y. Conversely, suppose a (a |, f,) =0;
let o(t, 24, §,) be any measurable solution of H.I.E. such that for fixed ¢

lex (] o, t0) <NV (8) < o0

by iteration
o= 0% Y = aXP, = lim oxyp,. (8.3)
Nep0
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But for i<ea

¢
If foc(t| & T)Ya(d, dT| 2, by) l SN (8) 0, (| 7y, tg) <N (8) 0 (2] 2, £y), (8.4)
i %

hence |a (¢, g, o) | < N (t) 0, (a | 2y, ty) for all n, and therefore
ot (8| g £} | S N (8) 0co (@ | 2, 1) =0
hence « (t, %y, t,) = for all ¢<a. This completes the proof of Theorem 8.2,

THEOREM 8.3. Xg is the minimal non-negaiive solution of I.E. By this is meant

that if x(X, tlxo, t,) is a non-negative solution of I.E., then 2> z. Let E,= > X;;
0

by hypothesis X =x,+ X%y and X¥y=>0, hence X>¥,=E,. Suppose X>%,; then
X¥p=E, %xp=En1—Xy; hence ¥>E,,;. Thus by induction ¥>E, for all n, and
therefore X > lim E, = X5.

Let us now reconsider the problem formulated at the end of §2 in the light of
the results obtained so far. The regular solution Xz is the unique solution of I.E.
and satisfies the C.M.P. conditions if and only if ¢,=0; hence for a stable process
Xr provides a complete answer to the problem. If o, 30. the solution of I.E. is not

unique; every solution satisfying the I.M.P. conditions must be of the form
Z (-Xs 17 | xo’ to) =xR (X’ 14 l xo; to) + Xs (Xa ¢ l xo’ to)’ (8‘5)

where X satisfies H.IE. for every fixed X (by Lemma 8.1) and is non-negative (since
by Lemma 8.3 Xz is the minimal non-negative solution); the imposition of the I.M.P.

conditions 1-3 on z then implies that

(1) Xs itself satisfies I.M.P. condition 1, with Xs(X, t],, t) < 0e (t] %o to) 5

“(2) xs satisfies the functional relation
XS (X, t I xo, to)
= [2e(X, t|& ) Xs(dE, T| Zg, o) + [ Xs(X, ] £ 0) Xn (&, 7| 2os t) +
x *

+ [ %s(X, )& D s (dE, T 7oty (E>T>H);
X
() Xs(X,t|xq, ty) =0 for t<t,.

Finally, X satisfies the C.M.P. conditions if and only if Xs(X, t],, t5) =0 (t| 7y, b)-
The one question still open is therefore that of the existence and properties, in the

case of an unstable process, of solutions of type (8.5) satisfying the C.M.P. condition.
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Suppose that such a solution exists. Let us call (somewhat loosely for the mo-
ment) regular a transition involving a finite number of jumps, singular one that in-
volves an infinity of jumps. Then %z and X5 in (8.5) must be interpreted as the
probabilities respectively of a regular and a singular transition z,—X in [4,, t); hence
we call Xs the singular component of X. The non-uniqueness of X arises from the fact
that the basic functions y,, y cannot determine the evolution of the process in the
event of singular transitions; some additional hypothesis is clearly required for this
purpose. We shall now develop the theory of a general class of solutions of I.E.
consequent upon what is perhaps the most natural form for such an additional hypo-
thesis (1). Let us call the process defined by X, v and with the regular solution Xg,
the zero-order or basic process, and its jumps the zero-order jumps. The gist of this
new hypothesis is to take the singular “‘jumps” of the zero-order process to be the
jumps of a new lst-order process, the lst-order jumps. The probability of a transition
xe—>X in [t t) without lst-order jumps is by definitions X5 (X, t|z,, ¢,). Let us write
I=XP, #p=125". The additional postulate required in order to determine the 1st order
process is the assumption of a lst-order jump time and consequent state distributions
v (8| 2y, 8,) satisfying jointly with x§° the x,y-conditions of §2; this implies in
particular that o™ (X, t|xy, t,) =0 (t] g, £,) =1 — 2" (| g, £g) = 0 o0 (t| 2o, &). It is mow
legitimate to apply the theory developed in §§5 and 6 to this 1st-order process; that

is, we form the sequence {y3’} of phase-space distributions defined inductively by the

relation y%’ =yi2;%y®, the transition distributions %3’ =x{’*y", and finally the

oo

regular solution x%= > xP of the LE. (I —y?®)=x". Since X’ = x5, we can write
gu. 2 L4

1R =Xz + 2P, where xP= > 1P; hence x% will satisfy the LE. xx(I—y)=2x, pro-
1

vided that X% satisfies the corresponding H.L.E.; i.e. that X% (I —4)=0. It will be
shown below that this is the case if w‘l) itself satisfies H.I.E. Furthermore %%’ satis-
fies the C.M.P. conditions if and only if ¢¥ = lim oP=0. If this is not the case, the

Nn—o0

whole procedure may be repeated: i.e. we can assume a 2nd order process defined
by the functions > =x% and y®, with regular solution ¥& and so on.

The first step in developing the theory of this class of solutions is to show that
there are plenty of functions y® satisfying the required conditions. This is accom-

plished in the following lemma :

Lemma 84. If 6,%0, there exists an infinile number of distinct solutions of

H.I.E. which are conditional distributions on B, x §; let o (S|, t,) be such a solution:

(1) A special case of this class of solutions has been given by DooB (1945).
16 - 573805 Acta mathematica. 98. Imprimé le 12 décembre 1957.
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then o (X, t] gy ty) < oo (] gy £)- If (X, t| 2o, ty) = G0 (| 2o, £y), 18 will be called maximal;

there exists an infintty of such maximal solutions.

Let ¢(X|t) be any function on B.xJ which is a distribution on B, for fixed

t and a measurable function on t for fixed X. Then
(8] 2 tg) = [ (S ) ]|2) 0o (dt| 2y, ) (8.6)
0

(a) is by Lemma 3.7 a conditional distribution on B,x§;

(b) satisfies H.I.LE., because o, does so, for using lemma 3.4
¢
[ [a(X, t]& 1) p(de d|ag ty)
fo %

t t
= [[{[¢X|0)ou@b|& )| v@s dr|a, t)

to X T

t
= [$(X10) ([ 0(@6] & 1) p(@&, d| 2 4))
to s

t
= [ $(X|6) 00 (d0 |y t)
&

= a(X, t|xo, to)-

Note that the converse is not true: there are solutions of H.I.LE. which are distribu-
tions on B,x$§ and are not of the form (8.6). If « is a solution of H.I.LE. and at
the same time a distribution on B,xS$, then (X, t|=,, ) <1; it follows as in the
proof of theorem 8.2 that o (X, ¢,z t0)<am(t[xo, t,). That there exist an infinite of
distinet solutions where the equality holds is seen by choosing ¢ in (8.6) to be a
probability distribution on B, (i.e. ¢ (X, ¢)=1). This completes the proof of Lemma 8.4.

Let now (8], #,) be such a maximal solution of H.L.E., and write o,, =o®,

— (L ¢ §
XR“XO)> %n—%3)~

TurorREM 8.5. If v is a maximal solution of H.I.E., then X§° and v satisfy
jointly the X,vw-conditions.

For we know that x5 satisfies the I.M.P. conditions, that ¢V =1 — %, and that
for fixed =, t,, o (t|xy t,) is continuous to the left in ¢ and vanishes for ¢<ty; by
hypothesis »® is a conditional distribution on B,x §, and ™ (X, t|xy, t,) =0 (| 7y &)
Hence there remains only to prove that x{¥ and ™ satisfy the X,y-condition (4)
(equation (2.1)). Since ¢ satisfies H.I.E., it follows by iteration, as in (8.3), that
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(

1 1 : 1 N
PO =9Pxy, = lim ¢Pxy,;
R—>00

hence, substituting from (5.10) and using Lemma 3.3

'I’(l) (X, t ‘ T, k)

= J f:p“’(X,tIC, 0) wo (A2, 40| xy, tg) +
te X% .

i izo f me (X, £18, 0) yay(dl, dB] s, “)= 2(@& Tz, ty)
X T

= f J.rp(”(X,tM, 0) wa(dZ, 48] mg ty) + % ftp“’(X,tlE, )%
=0

t, X%

XL (@E T| 2 ty), (E=T=; n=1,2, ...). (8.7)

Let n—>oc0 in the right-hand-side of (8.7); then

YO(X, 20, 8)= lim [ [P (X, ¢]L, 0) pu(dl, dO|zy tg) +
n—ro0 g. x
+f"/’m(X,‘IE,T)xf)l)(df’flzo’to)’ t=T>t); (8.8)
x

hence

o® (t| 2y, to) = Him [ [P (t]L, 0) wa(dl, 20| te) + [ 6P (]85 1) 2P (@5 |7 ty).  (8.9)
N=>00 te % x

On the other hand, it follows immediately from the fact that ¢ =1—2x{" and that
" satisfies the C.K. equation that

a® (t] 2y, tg) =0V (t] 7, t) + [0V (] & D) AP (A& 7| 700 o) 5 (8.10)
x

hence, subtracting (8.10) from (8.9) and using furthermore the fact that ¢® = lim ¢ %y,

lim [ [{e® @], 0)—o®(z|L, 0)} paldl, A0y, to) =0.
n-»oo t. x

But 0<ypP (X, t]| 2, ty) — 9™ (X, T| 2, ty) <P (2] 2, ty) — 0 (7| %4, £,) for every X €B,
and t>7>14,; hence

lim | [{p®(X,t|, 0)— (X, 7|L, 0)) a(dC, 40| 2 1)
NR—p0 t. X

=3im f J-tp(l)(X,tIC, 0) o (dZ, d O] 7y, tg) — PV (X, 7| %y, £g) =0.
- 00 t. X
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Hence finally, substituting in (8.8)

YO (X, t] 2y, t) =9 (X, T| 2, tp) + fw(l’ (X, b6 1) 267 (AE, |2, ty), (E=T2Hy).
) (8.11)
This completes the proof of Theorem 8.5.
Thus 2° and ¢ define jointly the st order process whose ‘“‘jumps” are the
singular transitions of the zero order process defined by %, and . Form then the

functions ¢°, of, 1%°, »%’ analogous respectively to y,, 0, X, and x,. By Lemma

54, ¢)=lim ¢P. By Theorem 6.1 y%= > ¥ is the “regular solution” of the inte-
o

gral equation
(I~ D)= 28", (8.12)

with % (¢ 7, t) =A% (X, t] 2, tg) =1 — 0% (t| 2y, £,). It follows from P =g¢® %y, using

lemma 3.5, that

1
¥ =9l yp® =9l % (PP %y) = Py,

and hence AP =A% (P xy) = Pxyp for all n>1.

Hence X’ =x$ %y, where

19= 3101 - 1P = 1% - 2
and therefore X% is a solution of type (8.4).

THEOREM 8.6. Y%= > xP is a solution of I.E. satisfying the 1.M.P. conditions,
0
with »%=1—0%; X% satisfies the C.M.P. conditions if and only if o=0.

The class of solutions {¥%} is meaningful only provided that its members do not
all reduce trivially to Xz, i.e. that not all ¥ =x. In accordance with the terminology
introduced in §3, the singular phases of the 1st order process are those phases (x, ¢)
for which ¢® (t+0|x,t)=1; for reasons that will appear later they will be called the
trapping phases; according to Lemma 3.1., the set K of all trapping phases is measur-
able. It is also obvious that K <D and that Xz(X, t|x, t,) =0 for all X €B,, t>t,
if (x,, t,) € K. According to Lemma 6.2, for any given maximal solution * of H.LLE.,
the corresponding regular solution ¥%=yxz if and only if y® (K* |, t,)=0. The ques-
tion is therefore, under what conditions will this be true of the whole class {y™} of

maximal solutions of H.I.E.? Call t, a barrier if every phase (z,t,) is singular; let

B={t|K(t)=X}={t| 0 (t+0]z, t)=1 for all z€ X} (8.13)



DISCONTINUOUS MARKOFF PROCESSES 251

be the set of all barrier times; let 6o (T | %y, t,) be the distribution induced on B; by
0 (t] 2o, £y). Suppose that oo, (B*|x,t)=0; then o (t+0]|x,£)=0 for all z € X when-
ever t€ B*; hence K=XxB, and consequently

'I’(l) (K~ Ixo» ) Z‘/’(l) (X x B* Ix‘o, to) = 0o (B l o, 1) = 0.

Conversely, suppose that every maximal 9 (K" |x,, %)=0; this must then be true in
particular of all maximal solutions of H.LE. of the form (8.6). Choose ¢™ such that
SV (K* (£)|t)=1 whenever t€B"; then

0=y (K" |z, t,) = j SV (K™ (8) | £) 0o (AT | 2o £9) = 0o (B | 2, £) 3
[}]

hence ., (B' |z, t,)=0. Thus we have proved:

LeMMa 87. (KT |z, t,)=0 and hence XP =%z for the whole class of solutions
{p®}, (AR} if and only if oo (B |z, t)=0.

In other words, the class {¥%} is trivial only in the case where the whole varia-
tion of ¢, is confined to the barrier times. Note that the class {¥®} will yield non-
trivial solutions Y%’ =%, in the case of “degenerate’ processes where Xz=1, (cf. lemma
6.2), provided that ¢ (B* |z, £)=0 (since for such processes 0o,=0).

If 6{0=0, then %% satisfies the C.M.P. conditions. Suppose that this is not so;
it is obviously legitimate to apply the results of §8 to ¢ and % instead of y and
Xr; hence there exists an infinite class {yp®} of maximal solutions of the H.LE.
axy®P=a, each of which, together with x{=x% defines a 2nd order process with
“regular” solution X%, etc. If ¢@ %0, this procedure can be repeated to define a 3rd
order process, and so on, leading to sequence of solutions {Y%’}, which may be said
to terminate at the nth step if X% *V=x% . Let B,={t|o’(t+ 0|z, t)=1 for all 2 € X}.

THEOREM 8.8. (1) There exists a class of non-decreasing sequences of solutions
{XP} of L.E. satisfying the I.M.P. conditions constructed inductively by the method
described above.

(2) A sequence ferminates with a last element X3 satisfying the C.M.P. conditions
if and only if 6P=0.

(8) A sequence terminates mecessarily at the m-th step: i.e. because YF+V=xR% for
every v"*P, if and only if ¢ (Bs |y, ) =0.

(4) If a sequence does mot terminale, it converges to a solution Y$’= lim X¥’ of

-y

LE. satisfying the I.M.P. conditions, with x5 (t|z,, tg) =1 — 057 (¢ | xo, &), where 6337 =
lim ¢’; 25> satisfies the C.M.P. conditions if and only if ¢’=0.

N-»e0
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The second part of the theorem follows from the application of Lemma 8.7 to
1% . To show that x5 satisfies I.E., we merely have to make n—co in X%’%(I —y) =2,;
one shows similarly that %% satisfies the 2nd I.M.P. condition (i.e. the C.K. equa-
tion); the rest is easily proved. This completes the proof of Theorem 8.8. Note that
the jump numbers can be well-ordered so that if we assign the finite ordinals to the
0-order jump numbers, then % is the probability of w*n O-order jumps, where o is
the first transfinite ordinal, and =7 is the probability of w®n O-order jumps.

The class of solutions described in Theorem 8.8. to which we shall refer as class
A, does nos exhaust all possible solutions of L.E. satisfying the LM.P. or C.M.P. con-
ditions. Examples will be given later of a class B of solutions where Xg in (8.5) is
itself a maximal solution of H.I.E. (ie. X5 is a ®). A further example will also be
given of a process which is “pathological” in the sense of Lemma 6.2, i.e. where Xz=12,,
and which yet possesses a ‘“‘sensible” solution satisfying the C.M.P. conditions; the
trouble with this class of processes is that their evolution is no longer properly

specified by the integral equation (2.5).

9. Trappin:- phases

A trapping phase was defined in §8 as a phase (x, t) such that o, (t+0]|z,8)=1;
the set of all trapping phases was denoted by K. It was mentioned in §8 that K is
measurable, K <D, and that if (x,, ;) € K, then xzp (t|xo, to) =0 for all £>1¢,; hence

X (X, t] 2, t) =[1— e (E— 1)1 8(X | 70) it (2, 8) €K. (9.1)
Some further properties of trapping phases are given below. Let
N (X | @, £g) = Wa (X, &+ 0|z, &),
with 7o (X | g, tg) =0(X |zy) and 73,=9;
it is obvious that

N (X | %0 to) = [ 13X | @, o) ny (B | s )y (5=0, 1, ..., m5 =0,1,2,...). (9.2)
x
LeMMA 9.1, 6, (]| zy, t)) =0n (ty + 0| 2o, &) for all £>¢, if and only if

Y (X, t] g, t) =0 (X | 2, &) & (6 — Ep). (9.3)

COROLLARY. If 0,(ty+0|%g t,) =1, then (9.3) is true and 7, (X |, t) =1, and
conversely. If (xy, t)) €K then (9.3) is true for all n.
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The “if” part of the lemma is obvious; the “only if”’ is proved in the same
way as Lemma 3.2. The first part of the corollary follows; and from it the second,
because owing to the fact that {o,} is a non-increasing sequence, if o,(t+0|z,f)=1
then g;(t+ 0|z, t)=1 for all j<n; hence if (z,t) €K, then o,(t+0]{z,¢)=1 for all n.

An immediate consequence is:

Lemma 9.2. If (K" |, t)=0, then for all X €B, and all t>t,
t
Pul Xt 2t = | [ (X1 & 0)pde drlag ), (R=1,2,...) (9.4)
ty X

Too (8] Tgs to) = 0 (2] @, £) = 6 (£ ] 2, £5)- (9.5)

THEOREM 9.3. (%),%,) is a trapping phase if and only if 5 (K (t,)]| 2y to)=1. If
(K (t) | % tg) =1, then o (t,+0|w,, t) =1; hence (x,,1,) €D and by Lemma 9.1

p(K* lxo: to) =n (K" (t,) Ixo’ t) =0. (9.6)

Hence by Lemma 9.2 0. (f,+ 0|y tp) =1, and therefore {@g, ) € K. Conversely, if
(0, to) €K, xa(t|zy, tg) =0 for all t>1;; but xgxyp =23z —%,; hence

t
0= 25 (t| 2o, to)=tjJ'xg(t|5,r)y;(d§,dr|xo, t), (E=1,). (9.7)

It follows as in the proof of Lemma 6.2, with x5, K substituted respectively for sx,,

D, that
w(K* | 2g, £5) =0. (9.8)

Hence by Lemma 9.1 9 (K¥ ()], t) =0; but (X |, t;) =0 (f, + 0] 24 ) = 1; hence
7 (K (f) | 2 ty) =1. This completes the proof of the theorem. It follows by induction
that:

CorOLLARY. If (%, 1) €K, then 1,(K (t,) |z, t) =1 for all n>1. Thus a trap-
ping phase is one from which there is no return to non-trapping phases; hence its
name.

A measurable set of phases @ will be called closed in case #(Q(f)|zx,t) =1 when-
ever (x,1) €Q.

LEMMma 94, QK.

If (z,t)€Q implies 7 (Q(t)|x,t)=1, then by induction it implies #,(Q(¢)|=, t)=1
for all n; hence g,(t+0|z,¢)=1 for all #, and therefore g, (t+0]x,t)=1 whenever
(#,t) €Q: i.e. Q=K. Combining this lemma with Theorem 9.3:
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LeMMaA 9.5. K is the union of one or more closed sets of phases.

Consider in particular the “degenerate” process where y (D" |z, t)=0 (cf. Lemma
6.2); then 5(D(t)|x, t)=1 whenever (z,t)€D: i.e. D is a closed set, and hence D=K:
all singular phases are trapping ones; this also follows from the fact that o=o0.,
(cf. (6.10)): i.e. the first jump time is the same as the first singular jump time. In
other words, a ‘“degenerate” process of this type has only singular transitions, and
therefore v and the LE. yield practically no information regarding its evolution. The
procedure described in §8 amounts in this case to specifying the process anew in
terms of X, and of @ instead of y: for Yz=X, and ¢P=0¢. Hence if (£, 7)€EK,
oP(t]|& 1) =¢(t— 1) and therefore

Y(X, g ) =nX|& D) eE—7).

Since (K" |x,, t,)=0, the H.LE. yields

PP (S| 2y, t) = fzp‘l) (8|& 7)p(dE dr|ay ty)
= [nS®) & 1) p[ds dr|zy, t); (9.9)

ie. p® is specified entirely by 7 (X |¢& 7), which is an assumed transition probability

consequent upon a singular jump into the trapping phase (&, 7).

10. Ergodic phase-space distributions

It is natural to try if possible to analyse the behaviour of unstable processes in
terms of an ergodic phase-space distribution w, which is the limit in some sense of
the sequence of phase-space distributions {y,}. Unfortunately the existence theorems
for ergodic limits of general Markoff chains are hedged in by many restrictions, so
that it does not appear possible at present to consider this problem fully and in its
full generality. We must content ourselves here with a tentative investigation.

Suppose that there exists a conditional distribution w (S|z,¢) on By;x§ such that
wn—e>w in some mode of ‘‘ergodic” convergence (denoted by 5 or erg. lim.) as
n—>oo; suppose that this mode of convergence is such as to ensure that if 1pn—5>w,
then:

(1) if ec(z,t) is a bounded measurable function on § then axy, 5 axw;
(2) if S(S) is a distribution on B,, then y, % 5 w*f. It then follows by making
n-—>oo in the relations y,.; =w,%y=yxyp, that
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W= WXYP =YP*W = QX YPp = Pp % 0 = WX . (10.1)
Hence the ergodic limit o is unique: for suppose vy, 5 @' as well; then
O=¥P,=0%0 and o =y,x0 =o*e’;
therefore o=

Since y, (X, t| 2y, &) <oy (t| 24, ) for all n, and since o, is a non-increasing sequence

converging to 0., we also expect that:
(3) w(X,t I Xy by) SO (¢ | Zgs by)-

o will be called maximal if w(X,t]xy, t)=0(t]2,, ¢,); this is the most interesting

23

case; for the case of “<” may be visualized as arising from singular transitions

leading to an “escape” of the system to states ‘“outside” the state space X, so that
® “no longer tells the whole story”.
It follows from (10.1) that
Aok =XoX¥ P, %= Yp¥Xw= erg. lim. X,%xw=0 (10.2)
n—00

since X,—0; and therefore

0= > Xj%w= erg. lim. D X*w=Yp¥*w. (10.3)
0 n—>co 0
¢
Hence [ [#e(t]& v o (d& dv| =z, ty) =0. (10.4)
te %

It follows from (10.4) as in the proof of Theorem 9.3 that
o (K" | 24, ) =0; (10.5)

ie. singular tramsitions lead to trapping phases only.
Whenever (z,, #)) € K, it follows from the corollary of Lemma 9.1 that v, (S|z,, t,) =
N (8 (&) | %4, £,), and hence that

w (S l %o, bg) =7 (S (ty) I Zg, o),

where 7 (X | g, by) = erg. lim. 5, (X | x,, to). J (106)

Consequently from the relation w=wx*w

o (8 2g ty) = [ (SW) |2, ) o (da, di|ay, 1) (10.7)
K
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If w is a maximal ergodic distribution, it is a maximal solution of H.L.E. It
cannot be substituted directly for 4™ in the construction of class A solutions (cf. end
of §8) because Xpx*w=0. However, provided o, satisfies the conditions of Lemma 8.7,
there obviously exist an infinity of functions ¢® (X |z, £,), restrictions to XxK of
functions ¢ satisfying the ¢-conditions (cf. §4) such that

Y (8| 20, t) = [P (S (¥) | 2, t) 0 (A, dt | 2y, 1) (10.8)

K
is a maximal solution of H.LE. and Yp%y®=0. To each such ¢®, which may be
interpreted as a postulated distribution of “returns” from trapping states, there cor-
responds a solution %%, and more generally sequences {¥%’} of class 4 solutions. If

moreover the process is time-homogeneous, then
(X, t| g, tg) = Xr (X, t] g, o) + @ (X, | 24, &) (10.9)

is a class B solution. For time homogeneity implies that o, (¢|z,, t,) = 0w (%, £ — &) ;
hence if 0, (t+0|2,¢)=1 for one value of t>t¢, it is unity for all £>¢, and con-

sequently
K=AxJ, where 4={x|0.,(x, +0)=1}.

It follows that  satisfies conditions (8.6), for:

) [2X|&t) 0@ vty = [1=(X |6 t) @]z, t) =0, (6,>0,£,>0), (10.10)
X A

because by (10.5) w(A*|x,{)=0 and Xz (X |, ¢t,)=0 if ¢€4;

2) "w(le, t1)w(d§|xo» t)= fw(X|§, tl) (dflxo’ tz)

%

A
= [n(X|&) w(d&] 2 ts) = (X | 24, 1) (10.11)
A

because for time-homogeneous processes (X |#,) in (10.6) is independent of £, and

hence (10.7) becomes

-

o (X |2 t)= [ [2(X|&) w(@dE| 2y d7) = [7(X|8) 0 (@d&] 2y 1).
0 4 A
3) Finally from (8.11)

0 (X |24, 8) =0 (X | %, t5) + fw(X|5, t) Xr (A €| 2, t,)-
x

This completes the proof that (10.9) is a class B solution of I.E. satisfying the C.M.P.
conditions.
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11. Examples

In the examples below the state space X is either a set of integers or a real
interval. In the first, second and fourth examples, the process is time-homogeneous
and it is convenient to introduce Laplace transforms with respect to the time. Let
X« (x| 2y t) stand as a generic notation for a cumulative transition probability distribu-
tion, #,(, f) for a jump-number distribution, v, (x|x,, t) for a cumulative jump-time
and state distribution, ¢,(x,?) for a cumulative jump-time distribution. The Laplace

transforms are defined as follows:

Kol | 20, 8) = fe'“xa (@ | 2y, t) At
T (g, 8) = X (00 | 254, 8) = fe‘”xa (g £) Bt
0
Pa (2|2 8) = Ze—st Ya (2| 2, db) 5
G (Tgs 8) =Po (0 | 2, 8) = fe’“ O (2, A t).
0

It follows immediately from (5.4), (5.7) and the convolution theorem that

Fn(@| 2 8)= [F(@|&8) Pus(@E|2p8), (1=0,1,...,m; n=1,2,..);

J_{n(:leo, 8) = J‘}j(xls, 8) Pr-j(d&|2p8), (G=0,1,...,n; n=1,2,..).
—o0
The integral equation (2.5) is equivalent to
(@ 8) =Ko (x| 20 )+ [ (x|E, 9) P (dE] 20, 9).

The relation (6.2), o (x,£)=1—xg(x, ¢) is equivalent to
O (2, 8)=1—s8%p(x, ).
Example of a g-process

We consider first an example of a g-process (cf. §5) where X is the real line,
X, possesses a density, denoted by the bold face symbol ¥, (x— 2, t), which is homo-

geneous in x as well as ¢: writing z—x,=1y,

y2
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where ¢ is a constant; ¥, is in fact the unique solution of the diffusion equation

0o _ 3 P % _
at _% ayz qxo'

The transition probability ¢ given that a jump has occurred has also a density
homogeneous in z and independent of #:

1
=———=e V",
P (y) Vo
Substituting in (4.10), we find that iy has the density
- _ - -% N
Yy, t)=¢ f¢(y 2) Xo(z ) dz=[2m (t+1)] qexp{ 5+ t}

Introducing double Laplace-Fourier transforms of ¥, and ¢,

Xo (0, 8) = Je—“dt fewy Xo (¥, Hdy=(s+qg+36%7"
0 -0

G0, 9)=[etdt [ Yy, t)dy=(s+q+} 0% qe P,
0 — 0

the integral equation (2.5) becomes
X6, 8) [1 =P (6, )1 =%, (0; 5).

Hence the transform of the regular solution, which in this example is obviously the
unique solution, is

X (0, 8) =% (0, ) [L—P (0, 8)] 7 =[s5+3 6%+ ¢ (1— )7,

whose inverse in series form is

_ 3 (g)" S
X(y’t)'zon![zn(nw)]ffeXP{ 2(n+i) qt}

Example of an unstable process

We give now an example of a time-homogeneous g-step process of the type de-
scribed at the end of §4, which is unstable. Here, X =[0, o),

1 , xVuz,
1@)="5 pir|r) =T

0

s (x, t) =77
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where zVz,=min (z, z,). For z,=0, we take ¢ (x|0)=¢(x) and %,(0,t)=1—¢(¢); i.e.

(0,t) is a trapping phase for all {. y and its Laplace transform ¢ are

— b, xvxo_ - =__xvi_.
P (x| 1) =(1— ™) z, ;P 9) o (1 + s2)
Hence by induction
zVz,
) ~ 1 2o (1+8£)]""
'Pn(xl.wo’3)_(n—1)!w0(1+szo)! [10g5(1+sx0)] a

The transform of the regular solution is then easily seen to be

7 S WV AL

Zn (|2, 9) 1+smog(x x°)+(1+sxo)2
\'

and hence Xr (x| 20, ) = [s (x—xo)+—t— ‘f__“:'g] ot
Ty To

In this example one sees that the Markoff chain {y,} possesses an ergodic limit & whose
transform is

-~ T 16 I .
w(x|x0, 8)—- 31_1)1‘130'/)71(:”'“:0’ S)_(1+Sxo)2_a°° (xo: S)E(x),
hence o (x| zy, t) = [1 - (1 +xi) e‘“"] e(x);
o

ie. in accordance with the conclusions of §10 the total variation of w is concen-

trated in the trapping phases, (0,7). It is easily verified that X=X+ w is a class B
solution.

In order to construct a class A4 solution (cf. §8), let u(x) be an arbitrary
cumulative distribution function (with g (co0)=1) representing the probability distribu-
tion of “returns” from =0, and let

y_"(l) (x I .’170, 8) = 3“ (x) 600 (xos S)'

It is easily shown by induction that
P (@ | Tor 8) = 1. (2) Goo (s 8) [[ Goo (&, 8) (@ )]
[
Hence

-1

AP (&) %, 8) = Xp (2| %gy 8) + oo (20, 8) [ X (2] 5 8) 1 (d8) [1 — [ Goc (s 8) u(d8)]
0 0



260 J. E. MOYAL

It is easily verified that X% is normalised to unity: i.e. that 6% (z,, s)=0 and
7% (%, 8)=1/s. If for example we take the ‘“‘return” from z=0 to be to the state
x=1, ie. take u(xr)=¢(x—1), then an explicit expression for X%’ is easily obtained;
this takes a particularly simple form for z,=1, namely,

1R (xl Li)=3e@x—-1)(1 —l—e_zt)_i_% (V1) (1 —9‘2‘).

The asymptotic distribution when f{—oco gives a probability 4 that z=1 and a prob-
ability § that x is uniformly distributed in the interval [0, 1].

Example of a process with barriers

Consider now a g¢-step process where X is the real line, ¢(¢) is independent of x

fo
and ¢(z|w,) is independent of t. Let Q(t, fy) = f g(z)dz

to
Xo (@, t| 24, tg) =™ W g (x— )
yp(z, 1) | Zg, £y) ={1— e 9 t')] ¢ (= I Zy)-

If Q< oo for all ¢, £, then it is easily proved by induction that

Qe ty)
1

v (, t| 2, to)=m
0

w* et dud, (x| x,),
where ¢, is defined inductively by

$u(@| )= [ Pn-1(2|8) $(dE|y).

" (L) _
Hence o 2 | 2, 1) = L1 -0, (] )

Q" (¢, t)
n!

¢n(xlxo)§

-]
xR (x, t I Xy, tO) — Wt g
- Z Q" (¢ k)
xg (| @y tg) = "W > _'_0 L
o n!

Suppose now that there exists a countable set of times B=/{t,} such that

Qe 1) { < oo if B[, {1=0 {the empty set),

= oo otherwise;

take e.g. q(t)=sec® (x¢t/2): then £,=2n+1, n=1, 2, .... Suppose furthermore that the

cumulative probability distribution
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n (2| 2y) = im Q, (x| z,)
n-»00
exists. Then it is easily seen that

0if BAI,,t]=0,

w (] gy Tg) =
7 (l v o) {1 otherwise ;

ie. every 1,EB is a barrier, and 6, (B*|x,, {)=0. Hence according to Lemma 8.7
there is no non-trivial solution % ; every x®=2,. On the other hand,
o (%, t] 2y, ) = 32120% (=, t] g, ty) = Gop (8| 2y, £) 78 (2| %)
and it is easily verified as in (10.9) that
X (x, t| g, t) = Xa () t]| 2y, £) + 0 (2, £ | g, )
is a class B solution of L.E, satisfying the C.M.P. conditions.

A “pathological” process

This example (due to Kolmogoroff, 1951) may be obtained by making N—>co
in the following stable g-step process with N +1 states 0,1, ..., N: let =, k denote
positive integers

1
g(0)=N; ¢(n)=¢,>0; $0|n)=1; ¢(k|n)=0; ¢(0|0)=0; ¢(k|0)=ﬁ'
v(0|n, f)=1—¢ % y)(klO,t)=llv(1—e’m); w(k|n,t)=9(0]0,¢=0.

The Laplace transform of the regular solution is easily shown to be

_ N -1
xn(0|0,8)=[8(1+2 L )] =u(s);

1 9nt 8

uis)

o =9nﬂ(3),
Qx‘*‘é" xR(OIn:s)

guts’

__1 @ (8)] |
a k| s)_qk+S[6”"+ Qn"l's]

Zn(k}0, 5)=

Make N—»oo; if X gs'< oo then 7, converges to the Laplace transform of a transi-
tion probability satisfying the C.M.P. conditions. The latter, though obtained as the
limit of the unique ‘“regular’ solution of stable process, is not a regular solution, nor
does it belong to the classes of solutions studied in § 8. y is not properly defined in the
limiting process because y(k|0,t)=0 for all k; this can be remedied by adjoining an
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ideal state oo to the state space such that x,(c0,?)=0 and y(c0|0,8)=yp(0]co,#)=1
for all £>0. It then appears that the limiting process is degenerate in the sense of
Lemma 6.2, with the whole variation of ¢y confined to the trapping phases (0, ) and
(oo,?). A much deeper insight into the structure of this example has been obtained
by Kendall and Reuter [8] using semi-group theory. Further examples of solutions
which do not fall within the ambit of the classes studied in §8 are given by Ken-
dall [9]; see also Lévy [11] and ]12].

Appendix

Proof of Lemma 3.3. It is sufficient to prove the first part of the lemma for
a>0. Since « is measurable, it is the pointwise limit of a non-decreasing sequence

of non-negative simple functions a,(z,t)= D, af® I (S{™ |z, t), where the a{® are real
i

numbers and the collection {S{™} is a finite partition of §, and
Y (xoa to) = nlim Z agn) ﬂ (Sgn)ns | Zo, to)- (A1)

Each finite sum in the right hand side of (A.1) is a measurable function on §; hence
y is a measurable on § and is obviously bounded by sup a (since §<1). Equation
(3.2) then follows by Fubini’s theorem. It follows that in the 2nd part of the lemma
y is a bounded measurable function on § for fixed 8, and is obvious that y>0.
Let {S,} be any sequence of disjoint measurable subsets of §, S= lﬁj S,; then

(U8, |2, 1) = [a(ys,|x,t)ﬂ(dz,dtm,zo)
= [ S a(S.|x, ) pldz, dt|z,, t,)

S n
= fac(S,,|a:, t) B (dx, dt|x,, t;)

n S

= ; ¥ (x| Zo» o) (A.2)

where the inversion in the order of summation and integration in 3rd expression is

justified by Lebesgue’s monotone convergenee theorem. Finally

y(S|zo ty) = [a (S|, t) f(dz, dt|xy, 1)) <P (8|2 to) <1. (A.3)
S

This completes the proof of the lemma.
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Proof of Lemma 3.4. It is sufficient to prove the lemma for a>>0. Express o as
the pointwise limit of a non-decreasing sequence of non-negative simple functions,

using the same notation as in the proof of Lemma 3.3; then
sj { Sf o (%3, ) B (BTg, Aty | 2y, 1)) 7 (dty, Ay | 2y, )
= é{ {nlirg g a™ B (SO NS, | 2y, 1)) ¥ @y, dty | 74, 1)
= lim 5 of sj B(S™M N8, | 2y, £) ¥ (d 2y, dity | %4, 1)
= SJ' o (2, 1) {Sj B(dxy, dty| 2y, 1))y (day, dby |7, £)),  (A4)

where the passage from the 2nd to the 3rd line is justified by Lebesgue’s monotone

convergence theorem. This proves the lemma.

Proof of Lemma 3.6. Under the conditions of the lemma, for fixed S «(S|z,f)
is a measurable function on §, and for fixed (z,t) a distribution on B, (cf. Munroe
[13], p. 106); hence « is a conditional distribution on B,x §. (3.8) follows by Lebesgue’s
bounded convergence theorem, (3.9) by the generalization of the Helly-Bray theorem
for sequences of Lebesgue-Stieltjes integrals to sequences of integrals with respect to

general measures (Munroe, loc. cit., p. 173).

Proof of Lemma 3.7. Fix x and ¢; then B’ (S|x,t) is a distribution on B,. For
it SEB;, then S(t)€B, (cf. Halmos [7], p. 141). Clearly 8’ (S|z,¢)>0. Let {S,} be
any sequence of disjoint sets ¢B,, 8= U 8,; then S ()= U 8, (t). Hence since §(X|z, f)

n n
is a distribution on B, B (S|, )= |z, )= > B(Snt)|x,t) = D B (Sa]|x, ).
Finally, since S(t)=X, B’ (S|x,t)=8(X|x,t)<1; this completes the proof of the as-
sertion. Let now M be the class of all measurable sets S such that g’ (S|=z,¢) is a

measurable function on §. M includes all measurable rectangle sets Xx T, X €B,,

T € B;, because for each such rectangle
B (XXT |z 0)=B(X |z t)e(T|t)

is the product of a measurable function by the characteristic function of the set
XxT. M is a monotone class: for let {S,} be any monotone sequence of sets in M
and let §= lim §,; then S€B,, and hence ' (S|z,t)= lim ' (S,|2,t) is the limit of

n—->oc

a convergent sequence of measurable functions, and is therefore measurable; hence
S €M. But the minimal monotone class containing all measurable rectangle sets is B;,

therefore M >B,; but by hypothesis M <B,; therefore M=B,. This completes the
17— 573805. Acta mathematica. 98. Imprimé le 27 décembre 1957,
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proof of the first part of the lemma; the proof of the second part is analogous and
will be omitted.

Proof of Lemma 3.8. By Lemma 3.7, the right-hand-sides of (3.10) and (3.11)
exists; using Fubini’s theorem, they are seen to be equal to the left-hand sides.
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