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The present paper is devoted to the theory of discontinuous Markoff processes, 

that  is processes where the transitions between states take place either by " jumps" 

of some specified kind, or by other means. States are taken as point x in an abstract 

space; phases are points (x, t) in the product state • time space; sets of states are 

denoted by X, sets of phases by S. 

I t  is shown in w 2 that  such a process is specified by two functions: the prob- 

ability Z0(X, t lxo, to) of a transition Xe-->X without "~umps" in the time interval 

[t 0, t), and the probability distribution v 2 (S I x o, to) of the first jump time and the con- 

sequent state, given an initial phase (x 0, Q). The total transition probability Z (X, t I x0, t0) 
is required to satisfy the integral equation 

z(X, t[xo,  to)=~,o(X,t[Xo, to)+ f z ( x , t ] ~ ,  ~)yJ(d~,dvlxo, to). (I.E.) 

The main problem is to study the existence and uniqueness of the solutions of I .E.  

which also satisfy the conditions (stated in w 1) for being transition probabilities of 

a Markoff process. 

Previous work (cf. w 4) on this subject relates to special cases, mainly to pro- 

cesses where transitions occur only by jumps. In  w 5, two auxiliary sets of functions 

are introduced: the distributions ~n (S Ix o, to) of the nth jump time and consequent 

state (which form a Markoff chain), and the transition probabilities gn(X, tlXo, to) 
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involving exactly n jumps. I t  is shown in w 6 that  the probabili ty Xn=~X~ of a 
0 

"regular" transition involving a /inite number  of jumps satisfies I.E.,  and tha t  this 

is properly normalized to uni ty if and only if the cumulative distribution a~ (t Ix 0' to) 

of the t ime of occurrence of a "singular jump" ,  i.e. one involving an infinity of 

"ordinary jumps",  is identically zero. I t  turns out in w 8 tha t  the condition a~r 

is also necessary and sufficient for ;~n to be the unique solution of I .E.  The remainder 

of w 8 is devoted to the s tudy of a class of solutions of I .E.  for unstable processes 

(namely, those for which a~ ~ 0) which is obtained by  applying the foregoing theory 

to the process viewed in terms of the "singular jumps",  with ZR (the transition prob- 

ability involving only "ordinary jumps")  playing the role of S0 and a postulated 

distribution ~p(1) for the first "singular j ump"  t ime and consequent state instead of ~. 

This procedure can be repeated if the process thus viewed is again unstable, the 

numbers of "ordinary jumps"  at  each stage being multiples of the successive powers 

of the first transfinite ordinal. w 9 is devoted to certain properties of those trapping 

phases (Xo, to) at  which there is a probabili ty unity of an instantaneous "singular 

jump":  i.e. ~ ( t lx  0' t0)= 1 for all t > t  o. In  w 10 a tentat ive s tudy is made of pro- 

cesses where the Markoff chain of distributions {~v=} tends to an ergodie limit. A set 

of examples illustrating various features of the theory is given in w 11. 

1. Markoff processes 

The concept of a Markoff process is obtained by  abstraction from physical pro- 

cesses involving systems whose state x changes with the t ime t according to some 

chance law, such tha t  the probabili ty of a transition from a given state x 0 at  t ime 

t o to a state x at  a later t ime t depends only on the state x 0 a t  t 0, and is indepen- 

dent of the states of the system at  times prior to t o . 

The state space ~ is the set of all possible states x of the systems; it is assumed 

tha t  a Borel /ield Bx of subsets of :~ is defined. Let  ff be the time axis, Bt the Borel 

field of subsets T of ff generated by  the intervals of 9.; in order to avoid trivial 

complications it will be assumed tha t  9 .= (0, co). but  the subsequent considerations 

remain valid if 9" is any real interval, finite or infinite. An ordered pair s = (x, t) is 

a phase of the process, the cartesian product space $ = :E • 9. its phase.space; B~ = Bx • Bt 

denotes the minimal Borel field of subsets S of S containing all rectangle sets X •  T 

such tha t  X E Bx and T E Bt. The qualification measurable applied to sets X, T, 

means tha t  respectively X fi B~, T E Bt, S fi B,; it will often be omit ted when this is 

unlikely to cause confusion, as only measurable sets are considered in this paper. 
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The nota t ion  X +, T +, S + will be used for the  complements  of X,  T and  S respectively. 

A measurable ]unction on ~ ,  • or S is a lways a Borel measurable function. There 

will also be occasion to  consider measurable subsets of and measurable functions on 

~ •  defined analogously. A distribution ~ (X) on ]~x is a measure on Bx such 

tha t  ~ (~)~< 1; it is a probability distribution if and  only if it is normalized to  uni ty :  

i.e. in case ~ ( ~ ) = 1 .  A conditional distribution Z ( X I x  ) on B x •  is a distr ibution on 

B~ for fixed x (1) and a measurable funct ion on ~ for fixed X(1); it is a conditional 

probability distribution if and only if Z ( ~ ] x ) ~ l .  Similar definitions avail  for distribu- 

tions on ~t,  B~ and conditional distributions on B t •  ~s • S- 

The instantaneous state of the system in Markoff process is specified by  its in- 

stantaneous distribution Q (X, t): i.e. the probabi l i ty  t ha t  x E X at. t; this is a funct ion 

on B~• which for fixed t is a distr ibution on B~; this specification is incomplete 

unless ~ (~,  t ) ~ l .  The temporal evolution of the process is specified by  its transition 

distribution Z(X,  t [x  o, to): i.e. the probabi l i ty  of a t ransi t ion Xo--->X in [to, t), or in 

other  words, the probabi l i ty  t ha t  x E X a t  t conditional on x o at  t 0, This is a func- 

t ion on B~• 7 •  S satisfying the  following condit ions:  

(1) Z (X, t I Xo, to) is a distribution on B~ /or /ixed t, x o, t 0, a measurable/unction on 

S /or /ixed X, t; hence it is a conditional dis tr ibut ion on B~ • ~ for fixed t, t 0. 

(2) Z satisfies the Chapman-Kolmogoro// equation (briefly C.K. equat ion):  

z (x, fix0, to)= f z ( x ,  tl~, 3) z (d~, ~l~o, to), (t>~>~to). (1.1) 

1 t <~ to. (1.2) if x 0 E X  
(3) Z (X, t / x  o, to) = 5 (X ] x0) = 0 otherwise if 

These will be called the incomplete Marko// process conditions (briefly, I .M.P. condi- 

tions) because the  specification of the process is incomplete unless in addit ion g satisfies: 

(4) z (~r t I x0, to)--- 1, (1.3) 

in which case it will be te rmed a transition probability and will be said to satisfy 

the complete Marko/] process conditions (briefly, C.M.P. conditions). The t ransi t ion 

distr ibution of a process determines the t ransformat ion  with t ime of its ins tantaneous 

distr ibution by the  relation 

(X, t) = f Z (X, t I xo, to) ~ (dxo, to), (t>~ to). (1.4) 

The process wiil be termed time-homogeneous if Z depends only on t - t  0. 

(1) By "fixed x", "fixed X" etc. we shall always mean "each fixed x E ~" ,  "each fixed X E ~x" 
and so on. 
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A few relevant remarks may be added here: 

l) As is evident from (1.1) and (1.4), X specifies the evolution of the process for 

increasing time only, and hence need be defined only for t 1> to; condition (3) is a 

convention introduced to complete the definition of g for all values of t E 7. 

2) Contrary to the usual practice in the literature, the additional continuity 

condition 
~m Z (X, t[ ~o, to) = ~ (X [ ~o) (L5) 
t~te 

will not be imposed in the present paper; instead, the behaviour of Z as t ~ t o will 

be investigated (cf. w 6). 

3) No at tempt  is made to set up a complete "probabilistic" scheme for the pro- 

cesses studied: i.e. to define a probability measure for the space of all "realized 

functions" x(t). This precludes the use of "probability arguments" in proofs, which 

will consequently be purely analytical; however, such arguments or interpretations 

will sometimes be briefly sketched as an aid to intuition. 

2. Discontinuous 

Discontinuous Marlco/] processes are 

o/ Marko// processes where the state o/ the 

the precise definition is given later in 

Markoff  processes 

taken here to be loosely speaking the class 

system can change by sudden chance jumps; 

this section. Previous work (Feller [4, 5], 

Pospi~il [14], Doeblin [2], Doob [3]) was concerned mainly with the more restricted 

class where the state remains unchanged between jumps, and moreover a probability 

rate q(x, t) (probability per unit time) is defined for the jumps. The application of 

the present theory to this sub-class and hence its connection with previous work are 

discussed in w 4. A discontinuous Markoff process is specified by two functions: 

1) The probability So (X, t] %, to) of a transition Xo--->X in [t o, t) with no jumps. 

2) The probability v 2 (Six0, to) tha t  (x, t)E S, where t is the /irst jump time and 

x is the state to which the system is taken by this first jump (the consequent state), 

given the initial phase (%, to). I t  is important  to notice tha t  " jumps" in the above 

may refer to jumps of a specified kind, and hence that  a transition with no jumps 

of this kind, whose probability is given by S0, may occur part ly as a result of jumps 

of some other kind. We write x 0 (t ] Xo, t~) = S0 (~, t [ %, to) for the probability of no 

jumps in [to, t) given (Xo, to) ; ~o (X, t [ %, to) = ~ (X x [to, t) [ %, to) for the probability tha t  

the first jump time lies in [to, t) and the consequent state x E X  given (xo, t0); 

a (t Ix o, to)=~o (~r t Ix0, to) for the cumulative distribution of the flrt jump time given 

(Xo, to). 
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The  two funct ions Xo, ~ are pos tu la ted  to  sat isfy the  go v2-conditions: 

(1) go (X, t I Xo, to) satisfies the I . M . P .  conditions of w 1. 

(2) ~ ( S [ x  o, to) is a conditional distribution on Bsx  $. 

(a) ~p ($ Ix  o, to) = l i m  a (t Ix o, to) = 1 - l im go (t ] xo, to). 

(4) ~ ( x ,  t I x., to) = ~ (x ,  ~1Xo, to) + f ~ ( x ,  t I t ,  ~) z .  (d t,  �9 I xo, to), 

(t>~ ~ >~to). (2.1) 

(5) For fixed xo, to, a (tl x o, to) is continuous to the le# in t and vanishes for t <~ t o. 

L r M M A  2.1 a ( f i x  o, to) = 1 -- ~o (t I x o, to)" (2.2) 

Fo r  t<.to, this  follows immedia te ly  f rom (5) and  I .M.P.  condit ion (3), which implies 

t h a t  uo = 1 for t ~< t 0. I t  follows f rom (4) and  I .M.P.  condit ion ( 2 ) t h a t  

(t I ~o, to) = ~ (T I ~0, to) + f ~ ( t i t ,  ~) z0 (dr, ~lxo,  to) (2.8) 

~0 (t I ~o, to) = f ~o (t l~,  3) Zo (at ,  ~lx0,  to) (2.4) 

for  all t>~>~to. Making t--->oo in bo th  equat ions,  i t  follows f rom (3) t h a t  

1 = a (T I x0, to) + zo (~:1 xo, to)" 

Hence  the  l emma  is also t rue  for t > t 0. This  result  has an  obvious probabi l i ty  inter-  

p re ta t ion :  for  if ~0 is the  probabi l i ty  of no jumps  in [to, t), t hen  a = 1 -  ,~o is the  

probabi l i ty  t h a t  the  f irst  j u m p  t ime  lies in [to, t) (and is also the  probabi l i ty  of one 

or more  jumps  in [to, t)). 

I t  follows immedia te ly  f rom the  Xo~p-conditions and  l emma  2.1 t h a t  (1 ) fo r  f ixed 

xo, to, zo(tlxo, to) is a non-increasing funct ion on ff cont inuous to  the  left ;  (2) y~ is a 

condit ional  probability dis t r ibut ion if and  only if a ( ~  I x0, to)------ 1 ; (3) Iv (X, t I x0, to) is 

a non-decreasing funct ion on ff cont inuous to  the  left  for  X ,  x0, t o fixed, a distr ibu- 

t ion on B,  for t, x o, t o fixed, a measurable  funct ion on $ for X ,  t fixed, and  vanishes 

for  t < t  o. 

A precise definit ion of a discont inuous Markoff  process can now be given:  A dis- 

continuous Markof] process specified by a pair o/ functions go, ~ satisfying the go v2- 

conditions is a process whose transition probability g satisfies the C .M.P.  conditions of 

w 1 and the integral equation. 

z (x ,  tlxo, to)=ZoCX, tl~.o, to)+ f Z(X, t l t ,~)~(d t ,  d~lzo, to). (2.5) 
X x  It,, t)  
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This equat ion (referred to  briefly henceforth as I .E.) is suggested by  the  following 

heuristic "probabi l i ty  a rgument" :  the  probabi l i ty  Z (X, t Ix o, to) of a t ransi t ion Xo--->X 

in [to, t) mus t  be the sum of the  probabilities Z0 (X, t[ %, to) and say Zj (X, t[ x 0, to) 

of such a t ransi t ion with no jumps and at least one jump respectively. The second 

in its tu rn  must  be the sum over  :~ and [to, t) of the product  of y~(d~, d zlxo, to), 

the  probabi l i ty  tha t  the first jump occur in (v, T §  with consequent  s tate  in {d~}, 

and Z (X, t] ~, T), the probabi l i ty  of a t ransi t ion ~-->X in [v, t), and is hence equal to 

the second term in the r ight-hand-side of I .E.  I t  was in t roduced independent ly  by  a 

number  of authors  for various special processes (see e.g. Bar t l e t t  [1], where fur ther  

references will be found);  in part icular  it  was used by  Doob [3] in the case of time- 

homogeneous processes with no change of s tate  between jumps and state  space ~1 

(i.e. the  real line). 

A solution of I .E.  satisfying the  I .M.P. conditions only  m a y  be in terpre ted as a 

transition distribution giving an "incomplete description" o~ a discontinuous process. I t  

remains to be shown tha t  discontinuous processes defined as above exist, to investigate 

their  properties and the  conditions under  which they  are uniquely  and completely 

defined. In  o ther  words, our  problem is: given the functions Y.o, ~, to inquire into 

existence, uniqueness and properties o/ solutions o/ I .E. satis/ying the I .M.P.  or C.M.P. 

conditions. 

3. Singular and regular phases. Compositions. 

The specification of discontinuous Markoff  processes given in w 2 does not  pre- 

clude positive probabilities for ins tantaneous jumps:  i.e. i t  is possible t ha t  for certain 

initial phases (%, to) 

l i m a  (t [ x0, to) = a (t o + 0 ] x0, to) > 0. 
t,to 

A phase (x, t) will be called singular if a (t + 01 x, t) = 1, regular if a (t + 01 x, t) = O. 

~n  = {(x, t) [ a (t + 1 /n  [ x, t) = 1} is a non-increasing sequence of measurable subsets of $ 

(because ~r(t 1 Ix, t) is non-decreasing in tl); clearly the set of all singular phases 

= lim On. Similarly ~n~ = {(x, t)] a (t § 1/n I x, t) < 1/k} is a non-decreasing sequence 

for fixed k, and lim ~n~ is clearly a non-increasing sequence; the set o/ all regular 
n - - > ~  

phases }~ = lim lim ~n~. 
k - ~ - ~  n - - ~  

LEMMA 3.1. O and ~ are measurable subsets o/ S, and ~ c O  +. 

Let  ~ (X ] Xo, to) = ~o (X, t o + 0 [ %, to); ~ (~  [ Xo, to) = 1 if and only if (Xo, to) e Z). 
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LEMMA 3.2. / [  (x 0, to) ED, then 

lo t > ~  t < o  (3.1) v (X, t l Xo, 4) = ~l (X  l xo, to) e (t - to), where 

Since V (X, t lxo, to) is non-decreasing in t, it  is >~7 (X Ix o, to) for t>~to; suppose tha t  

it is > ;  then if (x0, to) ED, t > t  o 

(tl zo, to) = v ( x ,  t l ~o, to) + ~ ( x  § t I xo, to) 

> ~ (X [ x o, to) + ~ (X + ] Xo, to) 

= a ( t o + 0 [ X o ,  to)= 1, 

which is impossible; hence ~p (X, t[ zo, to) =U (X Ix o, to) for t>~to; this proves the lemma. 

I t  is convenient to gather at this stage a few lemmas relative to conditional 

distributions that  will be used repeatedly in the sequel. Since they are more or less 

well known, their proofs are relegated to an Appendix. 

LEVlMA 3.3. Let /~(S[x o, to) be a conditional distribution on B~• $. I[ o~ (x, t) is a 

bounded measurable /unction on $, then [or every S E B, 

y (Xo, to) = f o~ (x, t) ~ (dx, d t l x  o, to) (3.2) 
8 

exists and is a bounded measurable [unction on $. I[ S = X x T ,  where X EBx and 

T e Bt, then 

r(Xo, to)=ff~(x,t)~(dx, dtlxo, to)=ff~(x,t)~(dx, dtlxo, to). (3.3) 
T X  X T  

I[ cr ( S I x  , t) is a conditional distribution on Bsx  $, then [or every S 'E  B, 

y ( S i x  o, to) = ~ ~ (S]x ,  t) ,8 (dx, d t l x  o, to) (3.4) 

exists and is likewise a conditional distribution on ~,•  $. 

Note that  the conclusions of the lemma apart from (3.2)are still true if we 

substitute (:~, ~x) or (•, Bt) for ($, B,). We call y the composition of a and 8- 

L EMMA 3.4. Compositions are associative: let ~ (x, $) be a bounded measurable 

[unction on $, ~ (S [ x, t) and y (S I x, t) conditional distributions on Bs x $; then [or every 

S1 E B~, $2 E B~ 

f { f ~(x2, 4)~(dx2, d4lx,,tD} 7(dx. dh]xo, to) 
S S s 

= { f (dx,,dt, lx.t,)r(d .dtllXO, to)}. (3.a) 
8, S, 
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I t  will be convenient to introduce the symbolic notation 7, = a ~ fl for the par- 

ticular compositions 
t 

~(t, xo, to)= / a ( t ,~ ,~ ) f l (d~ ,dv lxo ,  to)= f f a ( t , ~ , ~ ) f l ( d ~ , d ~ i x o ,  to). 
~• [re, t) te ~; 

t 

The symbol f in such compositions will always be taken to mean integration over 
t, 

t - 0  

[t 0, t); i.e. strict]y f .  
to-O 

LEMMA 3.5. Let a, f l ,~ be as in Lemma 3.4,  and /e~ ~=fl-x-~,. I /  8 ( X ,  tlxo, to) 

and 7 (X, t [ xo, to) vanish /or t <. to, then so does ~ (X, t I xo, to). I t  then follows that 

(a -~ ~) % 7 = a -~ (8 * 7)" (3.6)  
To prove this, note tha t  

t 

r (x, tlzo, to)= / / ~(x, tl~, ~) ~'(d~,d~l~o, to)= f S(X, tl~, ,:)r(d~,d~l~o, to) 
to ~ $ 

because 8 = 0 for ~ >/t and 7 = 0 for ~ ~< Q in the integrand; hence clearly ~ = 0 for 

t ~< Q. Similarly 
t t 

/ / a(~, ~) 8 (d~, d~l ~o, to) = / / ~(~, ~) 8(d~, d~l~o, to); 

(3.6) then follows if we let S 1 = $ and S~ =:~•  [0, t) in (3.5). In  this symbolic nota- 

tion, I .E. becomes 
g ~ (I - ~) = g0 (3.7)  

where I (Six, t)= {10 ifotherwise(X,t) ES 

is the "uni t "  phase-space conditional distribution; note that  

I (X, tlXo, to)=O(Xlxo)e( t - to) ,  

where ~ (X Ix0) was defined in (1.2), e (t) in (3.1). 

L:EMMA 3.6. Let (~n} be a sequence o/ conditonal distributions on B8• $, converging 

to a (S I x, t) /or every S E B~ and (x, t) E $; then a is a conditional distribution on ~s• $. 

Let fl be any conditional distribution on B8• then /or every S E Bs and (x, t)E $ 

lim a .  * 8 = a ~ 8 ,  (3 .8)  

lira fl * an = 8 ~ a .  (3.9)  
n.-~oo 

The notation S(t), S (x) will be used for respectively t- and x-sections of S. 
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Lv.~aMx 3.7. Let f l ( X [ x , t )  be a /unction on Bx• which is a distribution o n B z  

/or fixed x, t and a measurable function on $ /or fixed X;  then fl' ( S i x ,  t )= fl (S (t) lz, t) 

is a conditional distribution on Bs• $, with fl' (X,  t I Xo, to) = fl (X  I Xo, to) e (t - to). Similarly 

let IX (T  Ix , t) be a /unction on Bt • which is a distribution on ~ /or fixed x, t and 

a measurable /unction on $ /or fixed T;  then i x' ( S i x ,  t )=ix (S (x) lx, t) is a conditional 

distribution on Bsx S, with iX' (X,  t lx  o, to) = #  ([to, t)) (~ (X IXo). 

L r M M A  3.8. Let ~ (x , t )  be a bounded measurable function on $, fl and iX as in 

Lemma 3.7; then 

f ~ (x, to) fi (dx I xo, to) = f ~ (x, t) t~' (dx, d t lxo ,  to), (3.10) 
X Xxff 

f ~ (Xo, t)ix (dt lx  o, to) = f ~ (x, t) ix' (dx,  d t l x  o, to). (3.11) 
T ~xT 

These two lemmas (3.7 and 3.8) show that Lemmas 3.3, 3.4, and 3.6 apply to 

compositions like (3.10) and (3.11) involving only one o/ the variables x, t. 

4. Step processes and q-processes  

The  class of discontinuous Markoff  processes where there  is no change of s ta te  

be tween  j umps  is clearly the  class for  which Zo is of the  fo rm 

Xo (X, t I :co, to) = So (tl Xo, to) ~ (X I Xo) (4.1) 

where (~ (X]xo)  was defined in (1.2) and  s o is a funct ion f f •  sat isfying the  s0-con. 

ditlons : 

(1) 0 ~< s o ~< 1; s o (t [ Xo, to) is a measurable /unctions on $ /or /ixed t, is continuous 

to the left in t for fixed Xo, t o and is equal to l for t <~t o . 

(2) uo (t I Xo, to) = So (t [ x o, z) So (7 [ x o, to), (t >/v >~ to). (4.2) 

I t  follows f rom (2) t ha t  s o (tlXo, to) is non-increasing in t when xo, t o are f ixed and  

non-decreasing in t o when Xo, t o are fixed. Any  realizat ion of such a process has  the  

charac te r  of a s tep funct ion;  hence processes of this class (i .e.  wi th  go of the  fo rm 

(4.1)) will be  called step processes. I t  will now be shown t h a t  for  s tep processes 

t 

~p (X, t I xo, to) = f r (X I Xo, 7) a (d~[x  o, to), (4.3) 
t, 

where a (t I xo, to) = 1 - s o (t I Xo, to) , and  is therefore a non-negat ive  non-decreasing, left- 

cont inuous funct ion of t when Xo, t o are fixed, inducing a dis t r ibut ion a (T Ix o, t o) on 

Bt; r is a funct ion on ~ x S, which will be said to sat isfy the  r if: 
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4 (Xlxo,  to) is a probability distribution on Bx [or [ixed x o, t o, a measurable /unc- 

tion on S for fixed X.  

T ~ ~ o ~ E M 4.1. Let Z,o (X, t [ xo, to) be as in (4.1), with ~o (t [ Xo, to) satisfying the 

xo-conditions; let 

yJ (S ] x o, to) = y 4 (S (t) ] x o, t) a (d $ ] %, to) (4.4) 
0 

where S (t) is a t-section o/ S, r satisfies the C-conditions and a = 1 -  uo; then the pair 

Zo, ~ satisfy the Zoy~-conditions of w 2. Conversely, if a pair o/ /unctions Xo, ~P, where 

Zo is o/ the [orm (4.1) satisfy the Zo~p-conditions, then n o satisfies the go-conditions, and 

for every X,  xo, t, t o a measurable non-negative function 4 (X l xo, v) is defined/or almost 

all (a)z e • such that ~p satisfies (4.3); for every fixed x o and almost all (a)t e if, 

r (:~ I x0, t) = 1 and r iX" I ~0, t = ~ r (X. I ~0, t), (4.5) 

for every sequence {Xn} o/ disjoint measurable subsets o/ ~.  

I t  is easily seen tha t  a funct ion Z0 defined as in (4.1) satisfies the  I .M.P.  eondi- 

t ions (1) and (3) if and only if ~0 satisfies the  ~0-conditions (1), apar t  f rom left- 

cont inui ty  in $, which however  is necessary and sufficient for  ~ to  be lef t-continuous;  

fur thermore,  Zo satisfies the C.K. equat ion (I.M.P. condit ion (2)) if and only  if n 0 

satisfies (4.2); hence the ~0-conditions are necessary and sufficient for Z0 and ~ to 

satisfy respectively the Z0v, o-conditions (1) and (5). If  4 satisfies the ~-eonditions and 

and a =  1 -  ~0, then  by  I ~ m m a  3.7 

4 '  (S I Xo, to) = r (S (to) I Xo, to) and a'  (S I Xo, to) = a (S (xo) I Xo, to) 

are condit ional distributions on B~• $. If  now y~ is defined by  (4.4), then  by  lemma 3.8 

~0 (s  I ~o, to)= f 4' (slY, ~) - '  (d~, d~ I ~o, to); 
$ 

hence by  lemma 3.3 v 2 is a condit ional distr ibution on B~• $;  it  is fur ther  obvious 

tha t  ~p (:~, t ] xo, to) = a (t] Xo, to). I t  follows from (4.2) t ha t  

a (t[ Xo, to) = a (v ] x o, t o) + a (t] x o, v) ~o (~] xo, to), (4.6) 

which subst i tu ted in (4.3) shows t ha t  

~. (x ,  t I ~o, to) = ~. (x ,  ~ I Zo, to) + ~ (x ,  t I ~o, ~) no (~ I ~o, to); (4.7) 

this is identical with (2.1) when Zo is of the form (4.1). Hence ~ satisfies the ZoYJ- 

conditions (2), (3) and (4). Thus Zo and lp satisfy the ZoyJ-conditions, and this corn- 
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pletes the proof of the first part  of the theorem. In the converse direction, suppose 

now that  Z0 and y) are two functions satisfying the Z0~o-conditions, Z0 being of the 

form (4.1). I t  has already been shown that  the facts tha t  Z0 satisfies the I.M.P. 

conditions, that  a is left-continuous in t and that  by lemma 2.1 a =  1 -  u0 imply that  

~0 satisfies the uo-conditions. Since for X,  %, Q fixed v2(X, t lxo, to) is absolutely con- 

tinuous with respect to ~ (Tlxo,  to) , it follows by the Radon-Nykodim theorem tha t  

there exists a non-negative measurable function r (X Ix0, v) defined for almost all 

(a) T E 9" such that  (4.3) is true. Let  (Xn} be a sequence of disjoint measurable sub- 

sets of :~, let On be the exceptional subset of 9" where r (Xn Ix o, ~) is not defined, 

n ~ l ,  2 . . . .  ; then a I Xo, t o = 0 ;  hence. i t  is legitimate to write 

t 

tc 

= v ( / . ,  tl  to) 
n ~ l  

n = l  . / 
t, 

t 

t, 

where the last step is justified by Lebesgue's bounded convergence theorem; hence 

for almost all (a) t E 9" 

r  Ixo , t) ~ n ~ _ _ l r  t ) .  

This completes the proof of Theorem 4.1. Note that  though the function ~ in the 

2nd part  of the theorem has the normalization and complete additivity properties 

(4.5) it does not follow that  it satisfies the C-conditions: this is due of course in the 

first place to the possible existence for every X, x 0 of exceptional subsets of 9" where 

~b is not defined, so that  considered as a function of all three variables, r might not 

be defined over any appreciable subset of ~ • $. The theorem shows essentially tha t  

the class of step processes consists of those processes specified by functions Z0, ~o of 

the form (4.1) and (4.3). 

Another important class of discontinuous Markoff processes, which we shall call 

q-processes, consists of those processes for which a ~ump rate 

15-- 573805 Acta mathema~ica. 98. Impr im~ le 12 d~cembre 1957. 
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1 
q (x, t) = lim ~ {1 - n o (t + (~ t [ x, t)} 

at~o 
(4.8) 

is defined. Wi th  certain addit ional  measurabi l i ty  and cont inui ty  restrictions, they  are 

character ized by  the following theorem:  

T ~ o ~ E M  4.2. Let Zo(X, t I Xo, to) be a /unction satisfying the I .M .P .  conditions 

and such that: (i) go is a measurable /unction on f f •  /or fixed X ,  a continuous/unc- 

tion on ff for fixed X ,  Xo, to; ( i f ) /or  fixed xo, to, n o has a continuous derivative no (t I x o, t o) 

/or all t * t o and a right-hand derivative - q (xo, to) at t = to; ( i i i )q (x, t ) i s  non-negative 

and continuous on ff for fixed x. I /  ~ (X Ix, t) is a /unction satisfying the b-conditions 

and continuous on ff for fixed X ,  x, then Zo and the /unction 

o o  

( s  I Xo, to) = f dtj" ~ (s(t)I  x, t) q (x, t) Zo (dx, t l Xo, to) (4.9) 
t~, X 

jointly satisfy the Zo y~-conditions; furthermore, ~o (X, t I Xo, to) is measurable on ff x $ /or 

fixed X and has a continuous derivative 

w, (x, tlXo, to)= l ! ~(XIx'O q(x't) zo(dx'tlxo'to) f~ } 
0 for t < t o 

(4.1o) 

]or fixed X ,  Xo, t o. Conversely, suppose that Zo and v 2 satisfy the Zo v/.conditions; go satisfies 

conditions (i), (if) and (iii) above; ~o (X, t I Xo, to) (a) is a measurable/unction on if• $ / o r  

fixed X ,  (b) /or fixed X ,  xo, t o has a continuous derivative ~o' (X, t[ xo, to) for all t - t o ,  

and (e) ~o' (X, t + 0 I x  , t) exists and is continuous on ff /or fixed X ,  x; then v/  satisfies 

(4.10) and ~fl satisfies (4.9) with 

r ( x / x ,  t) q (x, t) = ~' ( x ,  t + 0 [x, t), (4.11) 

where ~ and q have the properties stated in the first part of the theorem. 

Conditions (i), (if) and (iii) imply t ha t  n '  (t [x 0, t0) is a measurable and non-posit ive 

funct ion on •xS:  for 
t 

no (t [ x o, to) = 1 + f no (01Xo, to)dO {4.1~) 
t~ 

q (x, t) = - no (t + o Ix, t), (4.13) 

and tha t  q is a non-negative measurable function on $. Subst i tut ing (4 .12 ) in  the  

C.K. equat ion for Zo, one finds t ha t  
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-o (t I ~o, to) = f .o (t I ~, 3) Xo (d ~, 31 *o, to) 
t 

= ~o (3 [Xo, to) + f a o f ~o (o I~, "0 Xo (d~, 31too, to) 

t 

=~o(3lXo,  to)+ f ~o(Ol~o, to)aO, (t>~3>~to), 
.r 

(4.14) 

where the change in the order of integration in the 2nd line is justified by Fubini's 

theorem, and the 3rd line is an immediate consequence of (4.12). Hence 

~o (* I Xo, to) = f . o  (tl~,  3) Zo (a~, ~lxo,  to) = - f q (~, t) Xo (a~, t l *o, to) (4.15) 

where the 3rd expression follows by (4.13) on making t-->T in the 2nd. If  ~ satisfies 

the C-conditions, then ~ defined by (4.9) is a conditional distribution on B~• $; the 

proof of this assertion is similar to the proof in theorem 4.1 that  ~ defined by (4.4) 

is such a distribution and will therefore be omitted. I t  follows that  

t 

( x ,  t l *o, to) = f d ,  f r (X I ~, 3) q (~, , )  Xo (d ~, 31 ~o, to) (4.16) 

for t>~to, and vanishes for t<.to; hence by (4.15) 

t 

a (t ] x o, to) = ~p (3r t] x o, to) = f d 3 f  q (x, ~) Zo (d x,  3 ] x o, to) = 1 - ~o (t ] x o, to). 
te 3r 

(4.17) 

Finally, substituting the C.K. equation for Z0 in the right-hand side of (4.16), 

t 

~(x, tlxo, to)=~p(x, ~lxo, h) § f do f ~(x]r O) q(C, O) f xo(dr ol~, 3) zo(a~, ~l~o, to) 

=w (x, 3lxo, to) § f y,(x,t[~, 3) Zo(d~, ~lxo, to), (4.18) 

where the passage to the 2nd line is justified by an argument similar to tha t  used 

in the proof of lemma 3.4. This completes the proof that  Z0 and yJ satisfy the Z0YJ- 

conditions. If ~ (X [ x, t) is continuous on • for X and x fixed, then the existence of 

the continuous derivative (4.10) follows from (4.16). If  conversely ~0 (X, t] x 0, to) satisfies 

conditions (a), (b) and (e) in the second part  of the theorem, then ~' (X, f i x  o, to) is 

a measurable function on ~•  $ for fixed X. Let  (I) (X I x, t) = ~' (X, t I x, t) ; then since 

O" ~ 1 - -  ~ 0 ,  

q) (HI x, t) = a' (t + 01 x, t) = - u0 (t + 0 [ x, t) = q (x, t). (4.19) 
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I t  is then easily seen that  ~ (X] x, t) = ~ (X Ix, t)//q (x, t) satisfies the C-conditions and 

is continuous on ~ / fo r  X, x fixed. I t  follows from (2.1) tha t  

t 

v2(X, tl=o, t o ) - v , ( X ,  7:lxo, to)= f do  f ~o" (x ,  o]~, ~) Zo(~#, ~l=o, to) 

t 

= f ~' (x ,  01 ~o, to) d 0, (t/> ~ >/to), (4.20) 
T 

where the change in the order of integration in the 1st line is justified by Fubini's 

theorem. Hence v 2' satisfies (4.10), because 

w' (x,  tl xo, to)= fr (x,  tl e, v)zo (de, vl x0, to) 
3r 

= f r  ( x l  e, t) ~(~, t) Zo (de, ttz0, to), 
x 

where the last expression follows by (4.11) on making t-+~ in the 2nd. I t  follows that  

~p satisfies (4.9), because ~p (Six0, to) defined by (4.9) is the extention of v 2 (X, t lx o, to) 

to a measure on B~, and such an extension is unique. This completes the proof of 

theorem 4.2. 

Consider now step processes which are also q-processes in the sense of theorem 4.2; 

they are characterized by the following lemma: 

LEMMA 4.3. A [unction n o on ~7x$ satisfies the no-conditions and conditions (ii) 

and (iii) o[ Theorem 4.2 /] and only q it is o[ the [orm 

t 

~o (t I xo, to) = e x  p { -  f q ( x  o, ~) dr}, (t>~to), (4.21) 
t ,  

where q (x, t) is a measurable non-negative [unction on $, continuous on ff [or [ixed x. 

The "if"  part of the lemma is obvious; the "only if" follows from the faet tha t  

(4.21) is the unique solution with the initial condition ~o (to lXo, to)= 1 of 

8 
n o (t [ x o, t o) = q (x o, t) % (t [ Xo, to), (4 .22)  

which in turn is implied by (4.2) and (4.8). 

COROLLARY. A step process speci[ied by a pair o[ [unctions Zo, ~P satis[ying the 

conditions laid down in the [irst parS o[ Theorem 4.1 is also a q-process in the sense of 

Theorem 4.2 i[ and only i[ n o is o[ the [orm (4.21), where q (x t) has the properties 

stated in the Iemma. 
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For a process of this class, yJ (X, t lxo, to) has the continuous derivative 

t 

~o' (x ,  t I ~o, to) = ~ ( x  I ~o, t) q (~o, t) e~p { -  J" q (~o, 3) d3}, 
t ,  

which substituted in I .E. (2.5) gives 

(4.23) 

t 

z (x ,  t I Xo, to) = exp { -  f q (~o, 3) d 3} a (X I ~o) + 
tG 

+ f exp { -  f q(~o, o)~o} q(~o, 3 ) d 3 f  x(x, tl~, 3)4, (a~ I ~,o, ~). 
to t+ o 

(4.24) 

Fix X, t and xo; i t  is evident tha t  Z has the derivative 

0 t 
- -  = f q (Xo, ,) ~ 3} ~ (x  l ~o) + 0 t o Z (X, t I x o, to) q (x o, to) [exp { -  t. 

+ f exp {-  f q(:~., o)dO} q(':o, 3)d3 f x (x ,  tl ~, 3),/, (d~ I xo, 3 ) -  
te to 3C 

- f z (x ,  t I ~, to) r (a ~ l ~o, to)], (4.25) 

which after substitution of (4.24) for the 1st and 2nd terms in the curly brackets of 

the right-hand-side becomes the so-called "backward integro-differential equation" 

~ z (x ,  t I ~o, to) = q (~o, to) {z (x ,  t I ~o, to)-  f x (x ,  t I ~, to) ~ (d~ I ~o, to)}. (4.26) 

Conversely, suppose that  Z satisfies (4.26), where r and q satisfy the conditions stated 

in theorem 4.2. Fix X, x 0 and t; then (4.26) can be written, suppressing the fixed 

variables 

where 

g (to) 
a to q (t~ z (to) = - ~' (to), 

F (to) = q (xo, to)f z (x ,  t l ~, to) r (d~ ] x o, to). 
} (4.27) 

Since q(to) is continuous, the unique solution of the 1st order differential equation 

(4.27) with the boundary condition g (t)=($ (X Ix0) is 

t t v 

g(to) = exp { -  yq(3)dt}~(Xlxo)+ f e x p  { -  fq(O)dO}F(3)d3, (4.28) 
t ,  to te 

which after substitution for F is seen to be identical with (4.24). Hence: 
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L w M ~ A  4.4. In  the case o/ q-step processes with a continuous jump rate, the 

integral equation (2.5) o/ w 2 implies the backward integro-di//erential equation (4 .25)and  

conversely. 

The restr ict ion on the  j u m p  ra te  q (x, t) to  be cont inuous on ~ is quite severe:  

i t  would exclude for instance q (x, t ) =  ( x - t )  -2 in the  case were ~ = ~ 1 .  I t  is apparen t ,  

however ,  t h a t  i t  can be considerably relaxed. Take  t h e  case of q-step processes: let  

q(x,  t) be an  ex tended  non-negat ive  measurable  funct ion on $;  then  it  is easily 

seen t h a t  
t - 0  

go(tlxo, to)=exp{--  f q(x o,~)dl:}, 
t,-O 

where the integral  is t aken  in the ex tended  sense, satisfies the  go-conditions, and  hence 

can be used as in the  corollary of l e m m a  4.3 to  const ruct  a pa i r  go, ~ specifying a 

q-step process;  l emma  4.4 is of course no longer t rue  in this case. The  following re- 

suits are easily proved.  Le t  tj (xo, to) = inf {t ] go (tlXo, to) = 0 andt  > to} if the  set  is non- 

vacuous,  t s (Xo, to) = + co if i t  is. Then  go (t [ x o, to) is 0 for t > tj (x o, to), > 0 for t < t s (x o, to); 

it is absolute ly  cont inuous on [to, a] for every  a <t~ (x o, to), and  it  exhibi ts  a t  mos t  

one saltus, namely ,  a j u m p  down to 0 a t  t = tj (x o, to) if uo (tj (x o, to) [ x o, to) > 0. Also 

~O(t21Xo, t i ) = O  if  t2>tt(Xo, to)>tl; 

hence go (tj (x o, t o) + 0 Ix  o, tj (x o, to) ) = 0 ,  i.e. (x o, tj (x o, to) ) E O ;  

therefore  tj (Xo, to)= t o if and  only if (Xo, to)E/) .  I t  follows t h a t  a phase  (x, t ) i s  ei ther 

regular  or singular:  ~ = O +. 

I n  the  case of general  q-processes, suppose t h a t  Zo(X, t lx  o, t o) is a funct ion 

sat isfying the  I .M.P.  condit ions and  such t h a t  

t 

~o (t l Xo, to) = - f d ~ f q (x, T) go (dx, T lXo, to), (4.29) 

where q (x, t) is a measurable  non-negat ive  funct ion on $:  this is t rue  for example  if 

for every  fixed t, [ 1 - g o ( t + ~ t I x ,  t)J/(St converges as Jr-->0 to  q(x, t) for all x E : ~  

except  possibly a set  X o such t h a t  Zo(Xo, t lxo, to)=0, and  is domina ted  in some 

ne ighbourhood of t independent  of x b y  a funct ion which is integrable  wi th  respect  

to  Xo (X, t I Xo, to). Le t  ~ (X Ix , t) sat isfy the  ~b-conditions. Then  it can be shown t h a t  

Zo and  the  funct ion 
oo 

~p (S l zo, to) = f dt  f r (S (t) l x, t) q (x, t) Zo (dx, t I x o, to) (4.30) 

satisfy jo int ly  the  ~o~-conditions.  
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The special types of discontinuous Markoff processes considered in the present 

section form in fact a very wide class. For example the class of step processes in- 

cludes most  Markoff processes with a countable state space. The theory of general 

q-step processes was given by  Feller in two basic papers [4, 5]; cf also Pospi~il [14]; 

Feller's starting point in his second paper is the "backward equation" (4.26), which 

as shown in Lemma 4.4 is equivalent to I .E  for this particular class of processes. The 

point of view adopted in the present paper is similar to tha t  of Feller's, and the 

results of w167 5 and 6, as well as Lemma 8.3 are generalizations of Feller's [5] results. 

Step processes were also considered by  Doeblin [2] from the "probabilist ie" point of 

view (el. the remarks at  the end of w 1). There is of course a wide literature on 

special processes coming within the purview of the present general theory, in par- 

ticular processes with a countable state space (see Bart le t t  [1], Feller [6] and Doob [3] 

for further references). 

5. The distributions of states, jump-times and jump-numbers 

In  the present section, we introduce the Marko]] chain {y),, {Six ,  t)} of the n-th 

lump time and consequent state distributions. From this chain we construct the transi- 

tion distribution Zn = X0 96 ~Pn, where Zn (X, t [ x o, to) is interpreted as the ~oint distribu- 

tion o[ the number o] ~umps n and the transition Xo--->X in [t 0, t), which is shown to 

satisfy the I.M.P. conditions. The reason for introducing these concepts is that ,  as is 
oo  

shown in w 6, XR = ~. Zn is a solution o[ the integral equation (2.5) which satis]ies the 
0 

I .M.P.  conditions. A necessary and sufficient condition for ZR to satisfy the full C.M.P. 

conditions is given in w 6, and it turns out in w 8 tha t  this is also the necessary and 

sufficient condition for Z~ to be the unique solution of I .E.  

LEMMA 1. Let 

~Pn (S ] x0, to) = f Ipn_l (S ] ~, v) ~p (d ~, d ~ ] x 0, to), (n = 1, 2 . . . .  ), (5.1) 
$ 

where ~Po = I (c]. w 3) and hence ~o 1 = % Each member o] the sequence o] ]unctions de]ined 

by this iteration relation is a conditional distribution on B,•  Let lpn (X, t] x 0, to)= 

~ , , (X•  [t o, t)IZo, to); ~ ( X ,  t l z  o, to)=O i l t < t o .  

C O R O L L A R Y .  

V,n(X, tlxo, to)=f fv, n_l(X, tl~,=)v,(d~,d=lxo, to) (n=1,2 .. . .  ). (5.2) 
to X 
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This is true for n = 1 by  the definition of ~. Suppose it is true for n - 1 ;  then by  

Lemma 3.3 yJ , (SIx ,  t) is a conditional distribution on B~• a n d b y  Lemma 3.5 

~ .  {X, t ] x o, to) = 0 for t ~< t 0. Hence by  induction the lemma is true. The corollary 

follows by  Lemma 3.5. ~n {Six o, to) will be called the n-th ~ump phase space distribu- 

tion; clearly it  must  be interpreted as the distribution of the nth  :jump time and 

consequent state conditional on (xo, to), and 

~ . ( t l x o ,  t o ) = w . ( ~ , t l ~ o ,  to), ( n = o ,  1 . . . .  ) (5~3) 

as the cumulative distribution of the nth  jump time. I t  follows from L e m m a  5.1 tha t  

v2n (X, t lxo, to) has the same properties as v 2 (X, t lx  o, to), as stated in w 2 after the 

Xa ~-conditions. 

L E M M A  5 .2  

y~n=yJk~e~.-k and an=a~- )e~ ,_k ,  ( b = 0 , 1  . . . . .  n;  n = l , 2  . . . .  ). (5.4) 

This follows immedia te ly  from (5.2) using Lemma 3.5. 

Let  now 
z~ = s 0  ~ ~ ,  (n = 0 ,  ], 2 . . . .  ). (5.5) 

Xn (X,  t lx  o, to) must  clearly be interpreted as the joint probabili ty of exactly n jumps 

and a transition Xo-->X in [to, t), and 

u,  (t I ~o, to) = z ,  (:~, t [ ~o, to), (n = o, 1, 2, .:.) (5.6) 

as the probabil i ty distribution of the number  of jumps in [to, t) given z 0, a t  t o. I t  

follows from Lemma 3.3 tha t  for n, X, t fixed X~ (X, t l x  o, to) is a bounded measurable 

function on S; hence by Lemma 5.2, and using Lemma 3.5: 

L E M M A  5 .3  

g , = g j ~ e ~ . _ j  and u n = u ~ - ~ _ j ,  (~=0 , 1  . . . . .  n; n = l ,  2 . . . .  ). (5.7) 

Since ~o = 1 -  a, i t  follows using (5.4) tha t  

~ n = ( 1 - a ) ~ p n = a ~ - a n + l ,  ( n = 0 , 1  . . . .  ), (5.8) 

which has an obvious probabili ty interpretation when we remark tha t  an (t I x0, to) is the 

probabili ty of n or more jumps in [to, t) given x o a t  to. I t  follows by  iterating (5.8) tha t  

a , + l = l -  ~ ~j~< 1, ( n = 0 ,  1 . . . .  ), 
t - 9  

and hence: 
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LEMMA 5.4. The sequence (an) is non-decreasing and converges pointwise to 

oo 

.oo (tl ~0, to) = ~ . n  (t I ~o, to) = ~ - Z ~,  (t I ,~o, to) < 1, 
n--*~  0 

(5.9) 

where a:r (t I Xo, to) is non-decreasing /unction on [1 continuous to the left /or xo, t o tized, 

a measurable ]unction on S /or t /ixed, and vanishes /or t ~ t o. 

The last  pa r t  of the  l e m m a  follows b y  L e m m a  3.6. Thus  a~  ( f i x  0, to) has the  

charac ter  of a cumula t ive  dis t r ibut ion for t condit ional  on (x0, to) , t hough  it  need not  

be normal ized to 1 even if all the  ~.  are;  i t  m a y  be in terpre ted ,  since the  an are 

the  probabil i t ies of n or more  j umps  in [to, t), as the  cumula t ive  dis t r ibut ion of the  

t ime  of occurrence of a " s ingu la r"  j u m p  involving an infinite n u m b e r  of  " o r d i n a r y "  

jumps ,  condit ional on the initial  phase  (Xo, to). A phase  (%, to) will be called stable 

if i t  cannot  be followed b y  such a singular j u m p ;  i.e. if a~  ( t l x  0, t o ) = 0  for  all t, or 

equivalent ly ,  if aoo (c~ [ Xo ' to ) = 0; conversely,  if aoo ( ~  I x~ to) > 0, then  (%, to) is an  

unstable phase.  The  whole process will be t e rmed  stable if a~-~O, unstable otherwise.  

L E M M A  5.5. 

V'n (X, t I Xo, to) = V'n ( x ,  ~ I Xo, to) + 

n 

j f f i l~ t  
( t>~>~to;  n = l ,  2 . . . .  ). (5.10) 

This is t rue  for n = 1 by  the  Z0~fl-condition 4. Suppose t h a t  i t  is t rue  for n. One 

finds then  on subst i tu t ing for  bo th  ~on and  V in V~+I=*P~ ~e v2 t h a t  

~ . ~  (X, t I Xo, to) 

t 

=[fw~(x, tlr162 to)§ f fw.(X, zlc, O)w(dr Zo) 

= f f v , . (x ,  ~1r o)w(dr dOIxo, to)+ 
t,~e 

t 

+ ff~o~(x, tlr o)f~(dr zo) 
X X 

n + l  

= ~n+, (x, ~1~o, to) + Z fw,(x,  t / ~ ,~ ) zn_ ,+ ,  (d~, r l~0,  zo). 
i=l X 
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In the passage from the 2nd to the 3rd line, the changes in the order of integration 

are justified by lemma (3.4); the final result is obtained by using the relations 

Z n - j ~  yJ=Z~-j+I, ~n ~e v2=~On+s. Lemma 5.5 follows by induction. 

The function Zn (X, t lxo, to) may be considered as the transition distribution of 

a Markoff process with states (x, j) at t, where j is the number ol jumps in [0, t), 

the suffix n denoting the increase of j in [to, t): i.e. n =  j - jo>~0.  The state space in 

this case is ~ • }i, where ~ is the set of all non-negative integers. 

T H e O r e M  5.6. The /unction X~ (X, t[Xo, to) is a transition distribution satis/ying 

the I .M.P.  conditions relative to the states (x, j). 

I t  follows from the definition (5.5) of Z, by Lemma 3.3 that  (a)gj-j ,  (X, t [ x  0, to) 

is for fixed j, X, t a measurable function on S • ~ ;  (b) for fixed Jo, t, x o, t o a distribu- 

tion on Bx• Bn (i.e. the Borel field of subsets of :~ • ~),  with a total variation which 

by Lemma 5.4 is 

:r t Zn (:~, t l zo, to) = 5 zn ( I Zo, to) = 1 - at.  ( t lx  o, t o) <~ 1. (5.11) 
n=O n=O 

Hence Z. satisfies I.M.P. condition (1). Write 

z .  Ix ,  t l Xo, to) = f f zo Ix ,  t l r ol ~ Idr d O lxo, tol + 
t 

+ f f g o ( X , t ] ~ , O )  yjn(d~,gOlxo, to). (5.12) 

Substituting for Z0 in the first term in the right-hand side of (5.12) from the Chap- 

man-Kolmogoroff equation (1.1) 

Xo(X, t[ ~, O) = fgo (X, t]~, v) go(d~, ~]~, O) (4.13) 

(which Zo must satisfy since it satisfies the I.M.P. conditions), and from equation 

(5.10) for ~p~ in the second term, one finds after inverting the order of integration 

in both terms, which is again justified by Lemma 3.4, that  

Z , (X ,  tlxo, to)= Y. ]Zk(X ,  t I L  ~)X ,_~(dL TIzo, to ), (t>~-r>~to; n=O, 1 . . . .  ). (5.14) 
b = 0  x 

This is clearly the form that  the I.M.P. condition (2) takes for Zn. For  t<.t o, 

g o ( X , t [ x  o , to)=~(XIxo)  by I.M.P. condition (3), v2n(X, t l x  o,t o ) = 0  for all n, and 

hence, since by definition Z, = Z0 ~ V~, 

z .  ( x ,  t l Xo, to) = ~ ( x  [ xo) on, (t < to), (5.15) 
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where ~ is 1 or 0 according as n = 0  or n > 0 ,  which is the form that  the I.M.P. 

condition (3) takes for Z~. This completes the proof of Theorem 5.6. 

COROLLARY. ~ gn(~,,tlXo, to)=l i t and only i t aoo(tlxo, to)=o; hence Z. is  a 
n=O 

transition probability satis/yin 9 the C.M.P. condition (4) i/ and only i/ the process is 

stable. (i.e. a~--O). This is an immediate consequence of (5.9). 

6. T h e  r e gu lar  s o l u t i o n  o f  I .E .  

T ~ E O R E ~  6.1. The series ~ Z .  converges to a transition distribution 

x~ (x ,  t l ~o, to) = ~ x,= (x ,  t l :~o, to), (6.1) 
n=O 

which is a solution o~ I.E. satis/yin 9 the I.M.P. conditions, with 

~ (t I Xo, to) = ZR (~, t I Xo, to) = 1 -- ao~ (t I Xo, to) ~< 1. (6.2) 

Convergence of the series follows at  once from the fact tha t  it is majored by ~ ;on. 

I t  follows from Theorem 5.6 and Lemma 3.6 that  Za satisfies I.M.P. condition (1). I t  

satisfies I.M.P. condition (2) because 

J" z .  (x,  t I ~, 3) z~ (d ~, ~ I Xo, to) 

i=0  

i = 0  1=0 

n=O k=O 

= ~ Z.(X, tlxo, to) 
n=O 

= Z• (X,  t 1%, to), (t >~ T >1 to). (6.3) 

The 1st and 2nd lines in (6.3) are justified by Lemma 3.6, the rearrangement of terms 

in the 2nd line leading to the 3rd by the fact tha t  this is a convergent double series 

of non-negative terms; the 4th line then follows by Theorem 5.6, equation (5.14). I t  

follows immediately from (5.15) that  ZR satisfies I.M.P. condition (3). Finally, using 

Lemma 3.6 and (5.7) 
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~R"Yv V)= ~n "-~ ~l) : (Zn -~ ~O)= X n + l  = X R - -  ~ 0 ;  
n-O n-O 

(6.4) 

this proves tha t  Zs satisfies I .E.,  and hence completes the proof of Theorem 6.1. An 

immediate eoncequence of (6.2) is: 

C o r o l l A r Y .  ~R(tl~0,to)=x~(~,tl~0,to)=x i/ and onZy q ~( t l~o ,  to)=o; 
hence Zn is a transition probability satis]ying C.M.P. condition (4) i/ and only i/ the 

1~rocess is stable (i.e. a~--O). 

The transition distribution Zn will be called the regular solution of I .E.  Note 

tha t  this solution is meaningful only provided tha t  Zn does not  reductive trivially 

to Xo! I t  is readily seen tha t  ZR--Zo if and only if Zl=Zo~eyJ~--O, and it is important  

therefore to know under what  conditions this can happen. The answer is provided 

by  the following lemma. 

L~. MMA 6.2. Zx (X, t Ix0, to) = 0/or  all X E ~ and t E ff i /and only i/yJ (~)+ I xo, to) = 0; 

hence Xx---~O and Xs~Zo q and only i/ w(D+lx, to)=-o. 

D here is the set of all singular phases defined in w 3, D + = $ - D. I f  ~ (~)+ ] x o, to) = 0, 

then 
t 

~, (t I ~o, to) = f f ~o (t I ~, 3) v, (,z ~, d ~ I ~o, to) 
t j  ~r 

= f ,,o(tl~:,~)V(d~,d~l~o, to)=o, <65) 
D+N~x[Q,g) 

because by  definition ~0 (tl ~, 3) = 1 - a (t [ ~, 3) = 0 if (~, 3) E D and t I> -c; hence 

Zx(X,t]Zo, to)=O for all X E B z ,  tEf f .  Let  

{ (~ Snk= (x,t) < t < ~  and ~o Ic x, t  >~ and ,So= UEn~; (6.6) 
n,/c 

if (x, t) ED +, then (x, t) E ~n,~ for some n, b; hence ~)+ c S 0. I f  conversely Z1 (X, fix o, to) = 0 

for all X E Bx, t E if, then 

t 

~, (t I ~o, to)= f f ~o (tl~, ~) v, (d~, d~l  ~o, to) 

t 

= f fxo( t l~ ,~)~(d~,a~lXo,  to)=o. 
OX 

(6.7) 

Since this is true for all t E ~7, and since ~0~0,  it follows tha t  for every 8n~ 
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f( l) 1 0- -  ~o ~ ~,~ W(dLd~lxo, to)>l~o(Sn,~lXo, to); (6.8) 

hence ~p (Snk [ Xo, to) = 0, and therefore 

(Go I Xo, to) < Y. ~ (s~. k [ Zo, to) = o; (6.0) 
n , k  

hence y)(D+[xo, to)=0.  If XI~0,  then n l ~ 0 ;  it : follows .by induction (since n~+a= 

~ ~ )  tha t  ~n-~0, n = 1, 2 . . . .  ; hence Z ~ X o .  This completes the proof of the lemma. 

Thus the regular solution Xn reduces trivially to Zo only in the degenerate case of a 

process where the variation of ~2 is confined so the singular phases, and the probability 

of a finite number of lumps in any finite time interval is zero; notice that  for such a 

process i t  follows from the fact tha t  u.~----0 for, a l t ~ l  tha t  

a~a~ ,  n = l ,  2, ... and hence a-=a~, 

i.e, either the system makes no jumps at  all, or it  executes a singular transition. 

........ The behaviour  of the regular solution Zn (X, t I x0, to) when t ~ t o will now be con- 

sidered. I t  is clear tha t  we cannot expect the regular solution Zn of every discontinuous 

Markoff process to satisfy the continuity condition (1.5), at  any rate not  for all 

initial phases (x0, to). I t  will however be satisfied for regular initial phases (i.e such 

that  a (t o + 0[%,  to)=0), provided that  it is satisfied by  X0 for such phases. For  

oO 

and hence: 

LEMMA 6.3. I f  (z o, to) is a regular phase and more generally if 

~(to + ol ~o, to) = ~ (to + o [ ~o, to), 

then Zn (x,  t o+o l  x o, to) --Xo (x ,  to + o I ~o, to). 

C 0 R 0 L L A R Y .  I /  (Zo, to) i s  a re~Tular phase, then  

Z~(X, to + 0 [ ~o, to)=~ (X I ~0) 

# a~  onty if Xo(X, to+Ol~o, to)=~(~rlxo). 

7. Existence o f  an "inverse" to  ( I - ~ )  

Let  S t - - S N ~ •  t), where t < c ~ ;  we call St a t.bounded set. The series 

~Pn (St[x o, to) is majored by ~ an (t[ Xo, to), and hence converges i f  and only if the 

latter does. 
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LE~MA 7.1. ~ a n ( t l x 0 ,  to) converges if and only if aoo ( f i x  o, to) = O and ~ xn ( t l xo, to) 
n 

converges; if this is so, then 

oo t 
5an( Ixo, to)= ~ n'~n (t[:~o, to)='~ (t I Xo, to). 
1 0 

(7.1) 

I n  words, for a s table initial phase ~ an is equal  to the  mean  n u m b e r  of j umps  ~. Fo r  

k ~ l  k = l  

I f  ~ < c ~  and a ~ = O ,  then  

1 

=~oUj = n  1 -  uj + ~ j u s = n a n + 1 +  j~. (7.2) 
j 1=0 1=0 

nan+z=n 1 -  = n  ~j<  j~j-->O as n-->oo; (7.3) 
n + l  n + l  

oo oo 

hence nan+l-->0, and  by  (7.2) ~ an = ~. Conversely,  if ~ an < o~, then  obviously  a~  = 0 
1 1 

and by  (7.2) ~ j ~ j = ~ <  c~; hence an=~ and nan+l-->O. 
0 1 

Suppose a~  (t ] x0, to) = O, fi (t I x0, to) < oo, and  wri te  

f2t ( s l  Xo, to) = ~ ~ v,. (s,I ~o, to). (7.4) 

Clearly for f ixed Xo, t o and t < oo n t  is a to ta l ly  finite measure  on Bs and  is non- 

decreasing in t. Hence  

(S J x o, to) = l im ~ t  (SI  Xo, to) (7.5) 
t--a.Oo 

is a measure  on B, finite for every  t -bounded set, bu t  to ta l ly  finite if and  only  if 

l im ~, (t J Xo, to) < oo. 
t-->Oo 

LV.MMA 7.2. I f  a ~  (tJ x o, to) = O, g (t ] x 0, to) < oo for every (x o, to) E $ and every finite 

t E Y, and if ~ (Six0, to) /8 defined by (7.4) and (7.5), then 

( I -  ~o) * ~ = I and  XR = Xo * ~ .  (7.6) 

This is t rue  because obviously  for every  finite t we can replace ~ in 

t t 

f f~IX, tl~,~)n(~,d~l~o, to) and f fxoIX, tl~,~)n(d~,d~l~o, to) (7.7) 
to ~ f:e 
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by  ~t, which is a totally finite measure, and hence can apply Lemma 3.6 to justify 

the inversion of summation and integration in 

(7.8) 

and Z 0 % ~ . =  ~Zo%~V.= ~ .Z .=ZR.  
0 0 0 

Thus ~ is a kind of "right.inverse" of ( l -~v) ,  if one considers the Z's and ~v's as 

elements of an algebra of operators with multiplication identified as composition; in 

this interpretation, ? .  is the "n-th power" of % and ~ = Y, ~v. is analogous to the 

~eum ann  series solution of integral equation theory. I f  furthermore ~(tlx0, to) is 

bounded, say by  N, then it is easily seen tha t  N - ~  (Slxo, to) is a distribution on 

~ •  and it also a "left-inverse" of ( I - ~ ) :  i.e. ~ - x - ( l - ~ ) = l .  

8. General solut ions o f  I .E.  Transit ion distributions o f  unstable processes.  

A function Z(X, t [x  o, t o) will be termed a general solution of I .E.  if for fixed 

X, t it is a bounded measurable function on S satisfying I .E.  I t  is immediately ob- 

vious tha t  : 

L l rM~A 8.1. The class o[ all general solutions o[ I .E.  is the class o[ all ]unctions 

o] the /orm 
Z (X,  t [ x o to) = ZR (X,  t [ Xo, to) + ~ (t, Xo, to) ,  (8 . ! )  

where g• is the regular solution o[ I .E.  and o~ is any function on 7 •  bounded and 

measurable on S /or [ixed t, which satis/ies the homogeneous integral ecluation , (brie/ly 

H.Z.E. ) 
~-(I- yJ)= 0. (8.2) 

THEOREM 8.2. Every solution cr o, to) o/ H.I .E.  vanishes /or a given initial 

phase (x o, to) and all t <a  i] and only i[ am (al Xo, to)= O. 

COROLLARY. The regular solution Z~ is the unique solution o] I .E.  i/ and only 

i[ the process is stable (i.e. a ~ O ) .  The condition of the theorem is necessary because 

a~  (t I x o, to) is a solution of H.I .E.  : for let n--->~ in both sides of the relation (5,4) 

a ,+l  = a,-x-~; then by  lemmas 5.4 and 3.6 a~  = acc-x-~v. Conversely, snppose a (a I x o, to) = 0; 

let ~(t, x o, to) be any measurable solution of H.I .E.  such tha t  for fixed t 

I~(tl~o, to) <~N(t) < ~o; 
by iteration 

= ~r = ~-x-~. = lim ~-x-~p.. (8.3) 
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But  for t ~ a 

t 

If  f ~ ( t l  ~, ~)~n(d~,  d~l~o ,  to)[ <N( t )  an(t]xo, to)<~(t)~n(alXo, to), 
to 

(8.4) 

hence [ ~ (t, x o, to) [ ~< N (t) an (a [ x o, to) for all n, and therefore 

I ~(t  [ x o, to) I < ~v(t) a~  (a I xo, to) = o ;  

hence ~ (t, x o, to)= for all t ~<a. This completes the proof of Theorem 8.2. 

THEOREM 8.3. ZR is the m i n i m a l  non-negative solution o/ I . E .  By this is meant  

tha t  if Z ( X ,  t l x  o, t o) is a non-negative solution of I.E.,  then Z >~ZR. Let  -~, = ~ Zj, 
0 

by hypothesis X = g0 + X~e~ and X ~  >~ 0, hence Z >1 Z0 = '~'0. Suppose Z 1> E ,  ; then 

X~e~>~n-x-yJ=~n+l-Z0;  hence i~>~n§ Thus by  induction X>~.~n for all n, and 

therefore Z >~ lim ~n = ZR. 

Let  us now reconsider the problem formulated at  the end of w 2 in the light of 

the results obtained so far. The regular solution ZR is the unique solution of I .E.  

and satisfies the C.M.P. conditions if and only if a~----0; hence for a stable process 

XR provides a complete answer to the problem. I f  ar162 ~ 0. the solution of I .E.  is not  

unique; every solution satisfying the I.M.P. conditions must  be of the form 

z (x ,  t I Xo, to) = ZR (x ,  t I Xo, to) + z~ (x ,  t [ Zo, to), (8.5) 

where Zs satisfies H.I .E.  for every fixed X (by Lemma 8.1) and is non-negative (since 

by  Lemma 8.3 ZR is the minimal non-negative solution); the imposition of the I.M.P. 

conditions 1-3 on x then implies tha t  

(1) Zs itself satisfies I.M.P. condition 1, with Zs (~, t ] x o, to) <<. a~o (t [ x o, to) ; 

(2 )  Zs satisfies the functional relation 

zs  ( x ,  t I Xo, to) 

= fz~(x, tl ~, ~)zs (d~ ,  �9 IXo, to)+ f z s ( X ,  t l e, T)z~ (dr 31Xo, to)+ 

(3) Z s ( X ,  t l xo ,  to)=O for t<<.t o. 

(t > ~ > t o ) ;  

Finally, Z satisfies the C.M.P. conditions if and only if Zs (~, t Ix o, to)~ a~ (t Ix 0, to). 

The one question still open is therefore tha t  of the existence and properties, in the 

case of an unstable process, of solutions of type (8.5) satisfying the C.M.P. condition. 
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Suppose tha t  such a solution exists. Le t  us call (somewhat loosely for the mo- 

ment) regular a transition involving a finite number  of jumps, singular one tha t  in- 

volves an infinity of jumps. Then ZR and Zs in (8 .5 )mus t  be interpreted as the 

probabilities respectively of a regular and a singular transition xo-+X in [to, t); hence 

we call Zs the singular component of Z. The non-uniqueness of X arises from the fact 

tha t  the basic functions X0, ~ cannot determine the evolution of the process in the 

event of singular transitions; some additional hypothesis is clearly required for this 

purpose. We shall now develop the theory of a general class of solutions of I .E.  

consequent upon what  is perhaps the most  natural  form for such an additional hypo- 

thesis (1). Let  us call the process defined by  X0, ~ and with the regular solution Zu, 

the zero-order or basic process, and its jumps the zero-order jumps. The gist of this 

new hypothesis is to take the singular " jumps"  of the zero-order process to he the 

jumps of a new lst-order process, the lst-order jumps. The probabili ty of a transition 

xo---~X in [to, t) without lst-order jumps is by  definitions ZR(X, t]xo, to). Let  us write 

ZR = X~ 1), ~R = ~01)- The additional postulate required in order to determine the 1st order 

process is the assumption of a lst-order jump time and consequent state distributions 

~p(1)(S]xo, to) satisfying jointly with Z~01~ the Z0~-conditions of w this implies in 

particular tha t  ~(1)(~, t l x0 ' to ) = a(1)(tl z0, to) = 1 - ~0 l~ (t[ ~0, to) = a ~ (tl z0, to). I t  is n o w  

legitimate to apply the theory developed in w167 5 and 6 to this lst-order process; tha t  

is, we form the sequence {~)}  of phase-space distributions defined inductively by  the 

relation ~ ) - -  (1) .)(_..(1) - ~ n - 1  V , the transition distributions g~)=Z(o l )~  (1), and finally the 

regular solution Z~ )=  ~ g~ ) of the I .E.  Z ~ ( I - ~ p  (~)) =g(01). Since g(ol)=ga, we can write 
0 

g ~ ) = Z R + Z ~  ), where g(s 1)= ~ Z~); hence g(a 1) will satisfy the I .E.  Z ~ ( I - v / ) = Z  0 pro- 
1 

vided tha t  g(~ ) satisfies the corresponding H . I .E . ;  i.e. tha t  g ~ ) ~ e ( I - ~ ) = 0 .  I t  will be 

shown below tha t  this is the case if v2 (1) itself satisfies H. I .E .  Furthermore g~ ) satis- 

fies the C.M.P. conditions if and only if a~ )=  lira a~ )~0 .  I f  this is not the case, the 
n - - ~  

whole procedure may  be repeated:  i.e. we can assume a 2nd order process defined 

by  the functions ~0" (2)_-~a~(1) and ~(2), with regular solution g~ ) and so on. 

The first step in developing the theory of this class of solutions is to show tha t  

there are plenty of functions ~(1) satisfying the required conditions. This is accom- 

plished in the following lemma:  

LEMM.~ 8.4. I /  a~ ~ O, there exists an infinite number o] distinct solutions o] 

H.I .E.  which are conditional distributions on Bs • $ ; let ot (Slxo,  to) be such a solution: 

(1) A special case of this class of solutions has been given by DooB (1945). 

16- 573805 Acta mathematica. 98. Imprim6 le 12 d6eembre 1957. 
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then o: (~ ,  t I Xo, to) < a~  (t I Xo, to). 1[ o~ (~ ,  t [ x o, to) = a~ (t [ x o, to), it  wi l l  be called max ima l ;  

there exists an  in / in i t y  o/ such m a x i m a l  solutions. 

Le t  r ( X ] t )  be any  funct ion on Bx• • which is a d is t r ibut ion on Bz for f ixed 

t and  a measurable  funct ion on v for f ixed X.  Then  

oo 

( s l  Xo, to) = f ~ (s  (t) I t) ~ =  (dt l Xo, to) (8.6) 
0 

(a) is by  L e m m a  3.7 a condit ional  dis t r ibut ion on Bs• S ;  

(b) satisfies H . I .E . ,  because a~ does so, for using l emma  3.4 

t 

to 
t t 

= f f {f r ~)} ~(d~, ~lXo, to) 
to ~ To 

t 

to $ 

t 

= f r  to) 
to 

= ~ ( X ,  tl x0, to). 

Note  t h a t  the  converse is not  t rue :  there  are solutions of H . I . E .  which are distr ibu- 

t ions on ]8 ,xS and are not  of the  fo rm (8.6). I f  ~ is a solution of H . I . E .  and  a t  

the  same t ime  a dis tr ibut ion on ~ ,  x $, then  ~ (~,  t [ Xo, to) ~< 1 ; i t  follows as in the  

proof of theorem 8.2 t h a t  o~ (3~, t ,  x o, to) ~ aoo (t [ z o, to). Tha t  there  exist  an  infinite of 

dist inct  solutions where the  equal i ty  holds is seen by  choosing ~ in (8.6) to  be a 

probabi l i ty  distr ibution on ]Sz (i.e. ~ (~ ,  t)----I). This completes  the  proof of L e m m a  8.4. 

Le t  now ~p(1)(Six o, to ) be such a max ima l  solution of H . I .E . ,  and write a~  = o "(1), 

ZR  = X (1), g/~ = ~(01). 

THEOR~.M 8.5. I /  ~o (1) is a m a x i m a l  solution o~ H . I . E . ,  then Z(o 1) and  ~fl(1)satls/y 

~oiutly the Zo y~-conditions. 

For  we know t h a t  Z(o 1) satisfies the I .M.P.  conditions, t h a t  a (~)-- 1 -  u (1), and  t h a t  

for fixed Xo, to, a (1)(t[xo, to) is cont inuous to the  left in t and vanishes for t ~<to; b y  

hypothesis  v2 (1) is a condit ional dis t r ibut ion on ~ • $, and y~(1) (~,  t I x0, to) = a(1) (t [ x o, to). 

Hence there remains  only to prove  t h a t  Z~ 1) and  ~p(1) sat isfy the  ZoyJ-condition (4) 

(equation (2.1)). Since y~(1) satisfies H . I .E . ,  it follows by  i teration,  as in (8.3), t ha t  
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hence, substituting from (5.10) and using Lemma 3.3 

~<i~ (X, t l :Co, to) 

= f f v~l'(x, tlr § 
t 

T 

tl ~ X 

x Z j ( d ~ , ' r l % , t o ) ,  (t >l "r >.~- to ; n = l ,  2 . . . .  ). (8.7) 

Let n-->oo in the right-hand-side of (8.7); then 

v <l,(X, t I So, to> = ~ f f xo~l> Ix ,  t l ~, o) w~ (d~, d 01 So, to) + 
n..-~oo t, 

+ f v ~ , ( x ,  t l e , ~ ) ~ , ( d , , ~ l ~ o , t ~  ( t > ~ > t o ) ;  (8.8) 
3~ 

hence 

0-~I'(t1~o,~o)= ~ f f0-~1'(tlr o ) w ( d r  J 'o~ ' ( t l~ ,~ )~o l ' (~ , ,~ l~o ,  to). (8.9) 

On the other hand, it follows immediately from the fact that o-a)= 1-~<o 1) and that 

~o 1) satisfies the C.K. equation that 

O"(1) (~l :C0' tO) = 0-(1)(~'1 :C0' tO) ~- f 0-(1)(t I ~, ..[) X(01) (d~ ,  ~ I xo, to) ;  (8 .1o )  

hence, subtracting (8.10) from (8.9) and using furthermore the fact that 0-o) = lim 0-cl)~on, 

f f {0-cl>(tlC, O)-0-'(~lr162 to):o. 
n. .*.oo t .  

But  0 • ~o <1~ (X, t I xo, to> - V, r (X, �9 I so, to> ~ 0-<i, (t I xo, to> - 0-,1, (31 ~o, to) for every X fi Bz 
and t ~  ~ i> t o ; hence 

r,n f f {~o"'(X, tlr O)-~o'l'(X, ~lr O)} V,n(d~.,dOl:co, to) 

= lira f f ~o C') (X, t I r 0) ~p. (d •, d O I zo, to) - ~pc,, iX, ~ [ xo, to) = 0. 
n.-.~av, t, 3[ 
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Hence finally, subst i tut ing in (8.8) 

C '  (x ,  t I z0, to) = w(" (x ,  r I ~0, to) + f v,(" (x ,  t I ~, ~) z(o ', (d ~, ~ I ~0, to), (t/> ~ >/to). 

(8.H) 
This completes the proof of Theorem 8.5. 

Thus Z~ 1) and v/1) define joint ly the 1st order process whose " j umps"  are the 

singular transit ions of the zero order  process defined by  Z0 and ~p. Form then  the 

functions ~v~ ), a~ ), Z~ ), ~(~) analogous respectively to v2n, an, Zn and ~ .  By  Lemma  

5.4, a~  ) = lim a~ ). By  Theorem 6.1 Z~ )=  ~ Z~ ) is the "regular  solut ion" of the  inte- 
n.-> oo 0 

gral equat ion 
Z-)e(I-- y(i)) = g(ol), (8.12) 

with u~)(t I xo, to) = Z~ ) (:~, t ] x o, to) = 1 - a~ ) (t [ x o, to). I t  follows from ~p(~) = ~pa)~_~, using 

lemma 3.5, t ha t  

and hence • ( 1 )  __ ~ . ( 1 ) ~ / ~  ( 1 ) ~  ar , for a l l  n ~ > l .  

Hence Z~ ) = ~(1)=. where A,S ~-~bb 

z~  ) = ~ x~ ) = z~  ) -  X'o 1, = x~  ) - x . ,  
1 

and therefore Z~ ) is a solution of type  (8.4). 

T H e O r e M  8.6. Z~ )= ~ Z~ ) is a solution o/ I.E. satis/ying the I .M.P.  conditions, 
0 

with u(~)= 1 -  a~); Z(~ ) satisfies the C.M.P. conditions i/ and only i] o2)--0. 

The class of solutions {Z~ )} is meaningful only provided t ha t  its members  do not. 

all reduce trivially to Zs, i.e. t h a t  not  all Z~)~--ZR. In  accordance with the terminology 

introduced in w the singular phases of the 1st order  process are those phases (x, t) 

for which a (1)(t + 0 Ix ,  t ) =  1; for reasons tha t  will appear  later  they  will be called the 

trapping phases; according to L e m m a  3 .1 ,  the set K of all t rapping phases is measur- 

able. I t  is also obvious tha t  K c ~  and tha t  Z R ( X , t [ x  o , t o )=0  for all Xi lBx ,  t~>to, 

if (xo, to)ilK. According to Lemma 6.2, for any  given maximal  solution ~v (1) of H.I .E . ,  
Z( l )  . ~,{1) the  corresponding regular solution n------ZR if and only if (K § Ix0, t0)--=0. The ques- 

t ion is therefore, under  what  conditions will this be t rue  of the whole class {~fl(~)} of 

maximal  solutions of H.I .E .  ? Call t0 a barrier if every phase (x, to) is singular;  let 

B = {t I K (t) = :~} = {t 1 a~r (t + 01 x, t) = 1 for all x il :K} (8.13) 
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be the set el all barrier times; let ace (T Ix o, to) be the distribution induced on ~t by 

a|  to). Suppose that  aoo(B+lx, t )~O;  then a ~ ( t + O ] x , t ) = O  for all x f i ~  when- 

ever t E B + ; hence K = ~ • B, and consequently 

,~])(1) ( K "  I Xo, to) = ,,])(1) ( ~  x B + [ Xo, to) = 0"00 (B + I Xo, to) = O. 

Conversely, suppose that  every maximal ~0<t)(K + Ix o, t0)~0 ; this must then be true in 

particular of all maximal solutions of H.I .E.  of the form (8.6). Choose r such that  

~o) (K + (t) I t) = 1 whenever t e B + ; then 

co 
0 = ~o r ( g  + I Xo, to) = f r ( K  + (t) [ t) aor (d v [ xo, to) >/r ( B  + [ x o, t o) ; 

0 

hence aoo (B + ] xo, to)~0.  Thus we have proved : 

LEMMA 8.7. ~pa)(K+[xo, to)==-O and hence Z~)----ZR [or the whole class o[ solutions 

{Wr {Zcl,} i[ and only i/ ace (B + Ix0, t 0) = 0 .  

In  other words, the class {Z~ )} is trivial only in the case where the whole varia- 

tion of 600 is confined to the barrier times. Note that  the class {Z~ )} will yield non- 

trivial solutions X~)* Zo in the case of "degenerate" processes where )~-~Zo (cf. lemma 

6.2), provided tha t  a (B  + [x o, t 0 ) , 0  (since for such processes aoo~a).  

If  ~ ) = 0 ,  then Z~ ) satisfies the C.M.P. conditions. Suppose that  this is not so; 

it  is obviously legitimate to apply the results of w 8 to ~1) and Z~ ) instead of ~0 and 

XR; hence there exists an infinite class {~)}  of maximal solutions of the H.I .E.  

~-~0 ~ =~ ,  each of which, together wi th  Zr =Z~ ) defines a 2nd order process with 

"regular" solution X~ ), etc. If  a~)~0,  this procedure can be repeated to define a 3rd 

order process, and so on, leading to sequence of solutions (Z~)}, which may be sMd 

to terminate at  the nth step if Z~+I)~Z~ ). Let  B~ = {t[a~)(t + 0 Ix, t) = 1 for all x E X}. 

TH~.OREM 8.8. (1) There exists a class o[ non-decreasinil sequences o[ solutions 

{Z~ )} of I .E.  satisfying the I .M.P.  conditions constructed inductively by the method 

described above. 

(2) A sequence terminals with a last element Z~ ) satis[ying the C.M.P. conditions 

q and only if a~)~O.  

(3) A sequence terminates necessarily at the n-th step: i.e. because Z~+I)~x~ ) [or 

every r if and only if a~)(B+[zo, to)=0. 

(4) I] a sequence does not terminate, it converges to a solution Z ~  )= lira Zcn ~) el 
n . - ~  o o  

I .E.  satisfying the I .M.P.  conditions, with gcn~) (t ] Xo, to)= 1-a~~176 I xo, to), where a~ ~~ = 

]in a~) ; Z~ ~176 satisfies the C.M.P. conditions if and only i[ a~r 
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The second part  of the theorem follows from the application of Lemma 8.7 to 

Z(~ ). To show that  Z(~ ~) satisfies I.E.,  we merely have to make n-+oo in Z~)~(I  - ~ )=Z0;  

one shows similarly tha t  Z(n ~) satisfies the 2nd I.M.P. condition (i.e. the C.K. equa- 

tion); the rest is easily proved. This completes the proof of Theorem 8.8. Note that  

the jump numbers can be well-ordered so that  if we assign the finite ordinals to the 

0-order jump numbers, then ~(n k) is the probability of o~n 0-order jumps, where co is 

the first transfinite ordinal, and ~(n ~) is the probability of to~n 0-order jumps. 

The class of solutions described in Theorem 8.8. to which we shall refer as class 
A, does nos exhaust all possible solutions of I.E. satisfying the I.M.P. or C.M.P. con- 

ditions. Examples will be given later of a c/ass B of solutions where Zz in (8.5) is 

itself a maximal solution of H.I .E.  (i.e. Zs is a ~a)). A further example will also be 

given of a process which is "pathological" in the sense of Lemma 6.2, i.e. where Zn------Z0, 

and which yet  possesses a "sensible" solution satisfying the C.M.P. conditions; the 

trouble with this class of processes is tha t  their evolution is no longer properly 

specified by the integral equation (2.5). 

9. T r a p p i n /  p h a s e s  

A trapping phase was defined in w 8 as a phase (x, t) such that  a~o (t + 0 [ x, t) = 1; 

the set of all trapping phases was denoted by K. I t  was mentioned in w 8 that  K is 

measurable, K~D,  and that  if (xo, to)fiK, then ~(tlxo, to)=O for all t> t0 ;  hence 

Zs (X,  t ] Xo, to) = [1 - e (t - to) ] 8 ( Z  [ xo) if (Xo, to) e K .  (9.1) 

Some further properties of trapping phases are given below. Let  

with 

it  is obvious that  

,~. ( x  I Xo, to) = f ,7, ( x l  ~, to) , 7 . - , ( ~  I x., to), 

L~MMA 9.1. 

~o(X[xo, to)=~(X[xo) and ~x =~ ;  

(~=0, 1 . . . . .  n ;  n = 0 ,  1, 2 . . . .  ). 

c~. (t l xo, to) = a .  (to + O l xo, to) /or all t > to i t  and only i t 

(9.2) 

v,,, ( x ,  t l ~o, to) = ,7. ( x l  xo. to) e ( t -  to). (9.3) 

COROLLARY. I /  a n ( t 0 + 0 l % , t 0 ) = l ,  then (9.3) /8 true and W,(~lxo, t o )= l ,  and 

conversely. I/  (x o, to)E K then (9.3) i8 true /or aU n. 
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The " i f "  par t  of the lemma is obvious;  the "on ly  i f"  is proved in the same 

way as L e m m a  3.2. The first par t  of the  corollary follows; and from it the  second, 

because owing to the fact t ha t  {an} is a non-increasing sequence, if an(t + 0 I x ,  t ) =  1 

then a j ( t + 0 1 x ,  t ) = l  for all j~<n;  hence if (x,t)  EK,  then  a n ( t + 0 1 x ,  t ) = l  for a l l n .  

An immedia te  consequence is: 

L E M ~ A  9.2. I [  vJ(K § Ixo, to)=O, then /or all X E ~  and  all t > t  o 

t 

~ ( X ,  t lxo ,  to)= f f ~ _ l ( X l ~ , z ) w ( d ~ , d v i x o ,  to), ( n = l ,  2 . . . .  ) (9.4) 

~ (t I Xo, to) = ~ (t I z o, to) = a (t I Zo, to). (9 .5)  

T r t E O R E r r  9.3. (x0, to) is a trapping phase i[ and only i[ ~? ( K  (to) l Xo, to) = l .  If  

~? (K (to) [ %, to) = 1, then  a (t o + 0 ] Xo, to) -- 1; hence (xo, Q) e D and by  L e m m a  9.1 

V ( K+ I Xo, to) = V ( K+ (to) I xo, to) = 0. (9.6) 

Hence by  Lemma  9.2 ar162 (t o + 01Xo, to) = 1, and therefore (x0, to) E K.  Conversely, if 

(x o, to) G K,  nR (t [ Xo, to) = 0 for all t > t o ; bu t  ua-~yJ = h a -  no ; hence 

$ 

0 = nR (t [ x o, to) = ~ f na (t I ~, r) V (d ~, d ~ I xo, to), (t >1 to). (9.7) 
to 

I t  follows as in the proof of L e m m a  6.2, with nR, K subst i tuted respectively for no, 

D, t ha t  
~p (K + [ x o, to) = 0. (9.8) 

Hence  by  Lemma  9.1 ~ (K + (to) ] xo, to) = 0 ; bu t  ~ (• ] xo, to) = a (t o + 01 x o, t o) = 1; hence 

( K  (to) I x  o, to)= 1. This completes the proof of the theorem. I t  follows by  induction 

t ha t :  

COROLLARY. _[ [ ( xo, to) G K , then ~?n ( K ( to) l Xo, to) = l [or all n >~ l .  Thus a t rap-  

ping phase is one from which there  is no re tu rn  to non-trapping phases;  hence its 

name.  

A measurable set of phases Q will be called closed in case ~ (Q (Q Ix, t ) -  1 when- 

ever (x, t) E Q. 

LEM~tX 9.4. Q c K .  

If  (x, t) e Q implies ~ (Q (t) [ x, t) = 1, then  by  induct ion it  implies ~7, (Q (t) ] x, t) = 1 

for all n ; hence an (t + 0 [ x, t) = 1 for all n, and therefore aoo (t + 01 x, t) = 1 whenever  

(x, t )E Q: i.e. Q c K.  Combining this lemma with Theorem 9.3: 
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L EMMA 9.5. K is the union o/ one or more closed sets o/ phases. 

Consider in par t icular  the  "degene ra t e "  process where y~(D+l x, t)=O (cf. L e m m a  

6.2) ; then  ~ (D (t) I x, t) = 1 whenever  (x, t) E D : i.e. D is a closed set, and hence D = K : 

all singular phases arc t r app ing  ones;  this also follows f rom the fact  t h a t  a = a ~ ,  

(cf. (6.10)): i.e. the  first  j u m p  t ime  is the  same as the  first  singular j u m p  t ime.  I n  

o ther  words, a "degenera te"  process of this type  has only singular t ransi t ions,  and  

therefore  ~v and  the I .E .  yield pract ical ly  no informat ion  regarding its evolution.  The  

procedure described in w 8 amoun t s  in this case to specifying the process anew in 

t e rms  of Z0 and  of ~/)(1) instead of yJ: for ZR--:X0 and a(1)~0  ". Hence if ( ~ , ~ ) E K ,  

a(1) (t ] ~, 3) = ~ (t - 3) and  therefore 

~(1) (X, t I ~, 3) = ~ (X I ~, 3) e ( t -  r). 

Since ~v(K + I~o, to)--o, the  H . I . E .  yields 

v,'~)(s I Xo, to)= f v,(1)(s I ~, T)y,(d~, d z [ x  o, to) 
x 

= S v (s(t )  I ~, 3)w(d~,  dv  I ~o, to); (9.9) 

i.e. v2 r is specified entirely b y  ~ (XI~,  3), which is an assumed t ransi t ion probabi l i ty  

consequent  upon  a singular j u m p  into the  t rapp ing  phase (~, 3). 

10. Ergodic phase-space distributions 

I t  is na tu ra l  to t ry  if possible to analyse the  behaviour  of unstable  processes in 

t e rms  of an ergodic phase-space dis t r ibut ion ~o, which is the l imit  in some sense of 

the  sequence of phase-space dis t r ibut ions {Vn}. Unfor tuna te ly  the  existence theorems 

for  ergodic l imits of general  Markoff  chains are hedged in by  m a n y  restrictions, so 

t h a t  i t  does not  appea r  possible a t  present  to consider this problem fully and  in its 

full general i ty.  We  mus t  content  ourselves here with a t en ta t ive  invest igation.  

Suppose t ha t  there exists a condit ional  dis t r ibut ion eo (S ix ,  t) on Bs• S such t h a t  
e 

Vn-+r in some mode  of "e rgod ic"  convergence (denoted by  A> or erg. lim.) as 
B 

n - - > ~ ;  suppose t h a t  this mode  of convergence is such as to ensure t h a t  if Vn--> w, 

then  : 

(1) if zc(x, t) is a bounded  measurable  funct ion on $ then  a-~Vn -~ zr162 

(2) if fl (S) is a dis t r ibut ion on Bs, then  V=~efl -~ ~o~-fl. I t  then  follows by  making  

n-->~r in the  relat ions ~v~+I=V=~eV=~v~V~ t h a t  
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O) = to~ey) = ~p~to = to~e~p n = y)=~to = to~to. (10.1) 

Hence the  ergodic limit to is un ique :  for suppose y). A> to, as well;  then  

m = r = to~-to' and w'  = ~n-~to' = o~-x-to' ; 

therefore to = to'. 

Since ~o~(X, t Ix o, to)~< an (t Ix  o, to) for all n, and since a ,  is a non-increasing sequence 

converging to a~,  we also expect  t h a t :  

(3) to (~ ,  t I Xo, to) < a~  (t I Xo, to). 

to will be called maxima[ if to(~, t fx  o, to)--(~oo(tIXo, to) ; this is the  most  interesting 

case; for the  ease of " < "  m a y  be visualized as arising from singular transit ions 

leading to an  "escape" of the system to  states "outs ide"  the state space ~ ,  so t h a t  

to "no  longer tells the  whole s tory" .  

I t  follows from (10.1) t h a t  

Zo-x- to = Zo~pn-~o~ = Zn-x-to = erg. lim. Zn~eto = 0 (10.2) 

since g~-+0;  and therefore 

O=  ~. Zj~eto = erg. lim. ~ Zj~(-to =ga-x-to. (10.3) 
0 n--~er 0 

t 

Hence f f ~a (t[ ~, T) to (d e, d v [ Xo, to) = 0. (10.4) 
to 

I t  follows f rom (10.4) as in the proof of Theorem 9.3 tha t  

to (K + ] x o, to) = 0 ; (10.5) 

i,e. singular transitions lead to trapping phases only. 

Whenever  (Xo, to) s K, it follows from the corollary of Lemma 9.1 tha t  ~p, (S]xo, to)= 

~ (S (to) [ Xo, to) , and  hence tha t  

eo (S ] Xo, to) = ~ (S (to) [ Xo, to)' 

where :r (X Ix0, to) = erg. lira. ~ (X I Xo, to). (10.6) 

Consequently from the relation co = o9%e) 

o~ (,9 } ~o, to) = f ~ (S (t) t x, t) ~,~ ~d x, ~Z t [ xo, to). (10.7) 
K 
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If o) is a maximal ergodic distribution, it is a maximal solution of H.I .E.  I t  

cannot be substituted directly for y~(1) in the construction of class A solutions (cf. end 

of w 8) because Xn~-eo = 0. However, provided a~r satisfies the conditions of Lemma 8.7, 

there obviously exist an infinity of functions r to), restrictions to :~ •  of 

functions r satisfying the r (el. w 4) such that  

w ~, ( s  [ Xo, to) = .~ r ( s ( t )  [ z,  t) oJ (dx, d t l x  o, to) (lO.8) 
K 

is a maximal solution of H.I .E.  and Zn%yJ(l~0. To each such r which may be 

interpreted as a postulated distribution of "returns" from trapping states, there cor- 

responds a solution Z~ ~, and more generally sequences /~(n~/ of class A solutions. If 

moreover the process is time-homogeneous, then 

z ( x ,  t] x o, to) = ZR (X, t I Zo, to) + o~ (X, t [ Xo, to) (lO.9) 

is a class B solution. For time homogeneity implies tha t  aor (t ] Xo, to) = aoo (x0~ t -  to) ; 

hence if a cc ( t+0 lx ,  t ) = l  for one value of t>to,  it is unity for all t>to,  and con- 

sequently 
K = A x ~ ,  where A=(x lao~(x ,  + 0 ) = 1 } .  

I t  follows that  o~ satisfies conditions (8.6), for: 

1) f Z~(Xl~,t l)O,(d~lxo,  t~)= f z~(Xl~,t~)~o(delxo, t~)=O, (t~>>.O, t2>~O ), (10.10) 
A 

because by (10.5) o~(A+lx, t)--O and ZR(XI~,tl)=O if ~eA; 

2) f o~ ( x  I ~, tl) o~ (d ~ I x0, t~) = f ~ (X I ~, tl) (~ ~ I zo, t~) 
A 

= f~z (x l~)eo(d~lxo ,  t~)=co(x lxo ,  t~) (lO.11) 
A 

because for 

hence (10.7) becomes 
t 

~o(Xlxo, t)= f f ~(Xl~)e)(d~lxo, d~)= f ~(Xl~)~ t ). 
0 A A 

3) Finally from (8.11) 

o~ (X lxo, t) = co ( x  lxo, t,) + f o~ ( x  l ~, tl) zR (de I Xo, t~). 

time-homogeneous processes zt(X I x0) in (10.6) is independent of to, and 

This completes the proof that  (10.9) is a class B solution of I.E. satisfying the C.M.P. 

conditions. 
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11. Examples 

In  the examples below the state space :~ is either a set of integers or a real 

interval. In  the first, second and fourth examples, the process is time-homogeneous 

and it is convenient to introduce Laplace transforms with respect to the time. Let  

)~e (x I x0, t) stand as a generic notation for a cumulative transition probability distribu- 

tion, ~ ( x ,  t) for a jump-number distribution, ~ (xlx0, t) for a cumulative jump-time 

and state distribution, e~(x, t) for a cumulative jump4ime distribution. The Laplace 

transforms are defined as follows: 

oO 

~(XlXo, S)= S e-"tx~(XlXo, t)dt; 
0 

OO 

~ (Xo, s ) = X ~ ( ~  Ix0, s )=  f e - " ~ ( x  o, t)dt; 
0 

oo 

~a(XlXo, S)= f e-St W~(Xlxo, dt); 
0 

o o  

~ ( x  0, s )=  v)~(~ IXo, s )=  fe-Sta~(Xo, dr). 
0 

I t  follows immediately from (5.4), (5.7) and the convolution theorem that  

~7,,(~l~o,S)= f~j(~[~,s)f,,,_j(,t~l~o,S), (~=o ,  1 . . . . .  ,~; n = 1 , 2  . . . .  ); 
--c~o 

Oo 

~,.(~l~o,S)= f~(~l~,~)~,=-~(d~l~o,~), (i=o, 1 . . . . .  n; n = l , 2  . . . .  ). 
- - 0 0  

The integral equation (2.5) is equivalent to 

~(~  I Xo, s) = Yr I ~o, s) + f~(xle,~)~,(delxo,~). 
- - o o  

The relation (6.2), a~ (x, t )=  1 -  ,~R(x, t) is equivalent to 

6~ (x, ~) = 1 - s ~R (z, s). 

Example of  a q-process 

We consider first an example of a q-process (of. w 5) where :~ is the real line, 

~0 possesses a density, denoted by the bold face symbol Xo(x-xo, t), which is homo- 

geneous in x as well as t: writing x - x  o = y, 
y~ 

Zo(y,t)=(2ztt)-~ exp { - ~ t - q t  } 
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where q is a constant; X0 is in fact the unique solution of the diffusion equation 

Xo _ ~ ~ Xo 
a-T- -qx..  

The transition probability ~b given that  a jump has occurred has also a density 

homogeneous in x and independent of t: 

1 
(Y) = ~ e -y'/~ 

V 2 ~  " 

Substituting in (4.10), we find that  ~ has the density 

co 

--O0 
2(t+ 1) qt}. 

Introducing double Laplace-Fourier transforms of Xo and ~ ,  

co  

~o(0, 8)= f e-~dt f Xo(y, t) d Y - ~ ( s W q - ~ - � 8 9  - z  
0 - ~  

(0, 8)= f e-~' dt f e '~ ~(y, t)  dy--=(8+q§189 0e)-X qe -o'~, 
0 - c o  

the integral equation (2.5) becomes 

~(0, 8)El - ~ ( 0 ,  8)] = ~o (0, 8). 

Hence the transform of the regular solution, which in this example is obviously the 

unique solution, is 

(0, s) = ~o (0, s) [I - ~ (0, s)] -1 = Is + 1 0 ~ + q (1 - e~ -1, 

whose inverse in series form is 

(qt)'~ exp { 
X(y , t )=n=0 ~ n ! [ 2 ~ ( n + t ) ]  �89 

Y~ } 
2 ( n §  q t  �9 

E x a m p l e  o f  an  unstable  process 

We give now an example of a time-homogeneous q-step process of the type de- 

scribed at the end of w 4, which is unstable. Here, ~ = [0, ~ ) ,  

x V x o  1, r  ) . . . .  ~O(X,t) =e_tlx; 
q (x) = x" x0 
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where x V x  o = min  (x, x0). For  x o = 0, we t ake  r (x[ 0) = e (x) and  n 0 (0, t) = 1 - ~ (t) ; i.e. 

(0, t) is a t r app ing  phase  for all t. ~ and  i t s  Laplace  t r ans form ~ are 

~p(xlx o, t ) = ( 1 - e  -tin) ; ~ ( x l x o ,  S)=xo(l  § sxo )" 

Hence  by  induct ion 
XV:r a 

1 f [. x o ( l + s ~ ) ]  ~-1 
,~(~1~o,~) (n- 1)!~o(1 +~o) L '~ ~+-/-~03] de. 

0 

The t rans form of the  regular  solution is then  easily seen to  be 

x V  x o x~ s ( x -  Xo) -~ 
~ (x ] ~o, s) 1 + s x o (1 + s ~Co)" 

and hence 
t__ xVxo] 

ZR (x I x0, t) = ~ (x - Xo) + e -t/x'. 
X 0 ~C 0 J 

I n  this example  one sees t h a t  the  Markoff  chain {~.} possesses an ergodic l imit  o~ whose 

t r ans form is 

~) (xlxo, s) = l i m ~ n  (x I xo, s) = &r (xo, s )e  (x); (1 8XO) 2 + 

hence 

i.e. in accordance with  the  conclusions of w 10 the  to ta l  var ia t ion  of 09 is concen- 

t r a t ed  in the  t r app ing  phases, (0, t). I t  is easily verified t h a t  Z =Z~ +co is a class B 

solution. 

I n  order to  construct  a class A solution (cf. w let / t(x) be an a rb i t r a ry  

cumula t ive  dis t r ibut ion funct ion (with # ( ~ )  = 1) represent ing the  probabi l i ty  distribu- 

t ion of " r e t u r n s "  f rom x=O, and let 

~a)  (x I Xo, s) = ~ (x) a ~  (x o, s).  

I t  is easily shown b y  induct ion t h a t  

"~n"~(1)'--t ~ I Xo' 8) =/'~ (X)(~  (XO, 8 ) [ f  ~ (r s) ~ (d~)r -~. 
0 

Hence 

0 0 
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I t  is easily verified t ha t  Z~ ) is normalised to  un i ty :  i.e. t h a t  5~)(xo, s)=O and 

~)(Xo, S)=l/s. If  for example we take  the " r e t u r n "  from x=O to  be to  the  state  

x= 1, i.e. take  la(x)=t(x-1),  then  an explicit  expression for Z~ ) is easily ob ta ined;  

this takes a par t icular ly  simple form for x o = 1, namely,  

z~  ) (xl 1, t) = �89 ~ ( x -  1) (1 + ~-~') + �89 ( ~ v  1) (1 -- e-2t). 

The asymptot ic  distr ibution when t--~ ~ gives a probabi l i ty  �89 t ha t  x = 1 and a prob- 

abi l i ty  �89 t ha t  x is uniformly dis t r ibuted in the interval  [0, 1]. 

Example  o f  a process wi th  barriers 

Consider now a q-step process where ~ is the  real line, q(t) is independent  of x 
to 

and r (x [ Xo) is independent  of t. Le t  Q (t, to) = f q (~) d 
to 

ZO ( x, t l z  O, t o ) = e-~  ~ (X- -  Zo) ; 

~(z,  t)[Xo, to)=[1 - e-~(t'~')] ~ (x I Xo). 

If  Q < ~ for all t, t o, then  it is easily proved by  induct ion tha t  

Q (t, t ,) 

1 f u~_le_Udur V~(x't[x~176 ( n -  l) ! 
O 

where q[~ is defined induct ively by  
OO 

Hence Zn (x, t I Xo, to) Qn (t, to) e- o (t.t.) ~ (x ] Xo) ; 
n!  

0 

un (t ] Xo, to) = e -~ ~ Q" (t, t o) 
0 n! 1. 

Suppose now tha t  there  exists a countable set of t imes B = {t~} such tha t  

< c~ if B ['1 [to, t] = 0  (the emp ty  set), 

Q (t, to) ( = c~ otherwise ; 

take e.g. q(t)=sec 2 (z~t/2) : then t~ = 2 n  + l,  n= 1, 2 . . . . .  Suppose fur thermore  tha t  the 

cumulat ive probabil i ty  distr ibution 
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n - ~ 0 0  

exists. Then it is easily seen tha t  

~.~(tlxo,,o)={ ~ if Bl ' l[t0,  t ]=0 ,  
otherwise ; 

i.e. every t n E B  is a barrier, and aoo(B + Ix o, to)-----0. Hence according to Lemrna 8.7 

there is no non-trivial solution Z~); every Z~)-----Zn. On the other hand, 

(o (~, t I ~o, to) = lira r .  (~, t{ ~0, to) = a** (t} x o, to) n (z { x0) 
TI--~ c o  

and it is easily verified as in (10.9) that  

z (~, t l ~o, to) = Zn (z, t l xo, to) + co (z, t l xo, to) 

is a class B solution of I.E. satisfying the C.M.P. conditions. 

A "patho log i ea l"  process  

This example (due to Kolmogoroff, 1951) may be ob~ined by making N--~oo 

in the following stable q-step process with N +  I states 0, 1 . . . . .  N:  let n, k denote 

positive integers 

1 
q ( 0 ) = N ;  q ( ~ ) = q ~ > 0 ;  ~ ( 0 ] n ) = l ;  ~ ( k l n ) = 0  ; ~ (010)=0  ; .~(k{0)= ~ .  

1 
w(0ln, t ) - -1-e-~  W ( k l 0 , 0 = ~ ( l - e - ~ ' ) ;  w(kln, 0 = w ( o l 0 , 0 = 0 .  

The Laplace transform of the regular solution is easily shown to be 

~, (k I o, ~) = ~ (~) . z~ (ol n, ~) = q~ ~ !9 .  
qk + s ' q,~ + s ' 

i [0.~ qn ~(s)]. 

Make N--~oo; if y . q ; l <  o~ then 2n converges to the Laplace transform of a transi- 

tion probability satisfying the C.M.P. conditions. The latter, though obtained as the 

limit of the unique "regular" solution of stable process, is not a regular solution, nor 

does it belong to the classes of solutions studied in w 8. W is not properly defined in the 

limiting process because W (k [ 0, t) = 0 for all k ; this can be remedied by adjoining an 
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ideal state oo to the state space such that  x0(oo, t ) = 0  and W(co]0, t)=W(0[oo,t)---1 

for all t > 0. I t  then appears tha t  the limiting process is degenerate in the sense of 

Lemma 6.2, with the whole variation of ~ confined to the trapping phases (0, t) and 

(oo, t). A much deeper insight into the structure of this example has been obtained 

by  Kendall and Rcuter  [8] using semi-group theory. Further  examples of solutions 

which do not  fall within the ambit of the classes studied in w are given by  Ken- 

dall [9]; see also L6vy [11] and ]12]. 

Appendix 

Proo/ o/ Lemma 3.3. I t  is sufficient to prove the first part  of the lemma for 

~ 0 .  Since ~ is measurable, it  is the pointwise limit of a non-decreasing sequence 

of non-negative simple functions o~ (s, t)~ ~ a} n) I (~n)]s ,  t), where the a~ n) are real 
| 

numbers and the collection {~n)} is a finite partition of $, and 

y (s0, to) = ~ n  ~ ~n' p (~n) N 81 s0, to). 
n - ~ o o  i 

(A.1) 

Each finite sum in the right hand side of (A.1) is a measurable function on $ ;  hence 

7 is a measurable on $ and is obviously bounded by  sup ~ (since fl ~ 1). Equation 

(3.2) then follows by Fubini's theorem. I t  follows that  in the 2nd part  of the lemma 

y is a bounded measurable function on $ for fixed ~q, and is obvious that  7 ~ 0 .  

Let  {Sn} be any sequence of disjoint measurable subsets of $, •=  U ~n; then 
n 

7(US~]so, t)= f ~(US~[s,t)[$(dz, dt[so, to) 

= f ~o~(8nlz, t)P(dz, dtlso, to) 
8o n 

= ~ f ~(Snls,  t)/~(dz, dtlso, to) 

= ~ 7 (8, Is  0, to), (A.2) 
n 

where the inversion in the order of summation and integration in 3rd expression i s  

justified by  Lebesgue's monotone convergence theorem. Finally 

7 ($ Ix0, to) = f o~ ($ [ x, t) p (dz, dt ] s 0, to) ~ p (E'[ s 0, to) ~ 1. (A.3) 
8" 

This completes the proof of the lemma. 
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Proof of Lemma 3.4. I t  is sufficient to  prove the lemma for a >t0. Express  0t as 

the  pointwise limit of a non-decreasing sequence of non-negative simple functions,  

using the  same nota t ion  as in the proof of L e m m a  3.3; then  

f { f  ac(x2, t~)~(dx2, dt21xl, tl)} ~(dx~,dt ,  lxo, to) 
8~ 82 

= f { U m  a t'~ t II 21 1, tl)}e(dXl, dtllxo, to) 
SI n..-~ oO 

n--.~,oo i ~t 

= fo~(x2, t , ) { f~ (dx~ ,d te [x ,  t l ) r (dx ,  dtl[xo, to) }, (A.4) 

where the passage from the 2nd to the 3rd line is justified by  Lebesgue's monotone  

convergence theorem. This proves the ]emma. 

Proof of Lemma 3.6. Under  the conditions of the lemma, for f ixed S ~ (S[x, t) 
is a measurable funct ion on $, and for f ixed (x, t) a distr ibution on ~s (el. Munroe 

[13], p. 106); hence ~ is a conditional distr ibution on Bs• $. (3.8) follows by  Lebesgue's  

bounded convergence theorem, (3.9) by  the generalization of the Hel ly -Bray  theorem 

for sequences of Lebesgue-Stielt jes integrals to sequences of integrals with respect  to  

general measures (Munroe, loe. tit . ,  p. 173). 

Proof o[ Lemma 3.7. F ix  x and t ;  then  fl' (Six,  t) is a distr ibution on Bs. For  

if SeB~, then  S(t) eBx (ef. Halmos [7], p. 141). Clearly f l ' (SIx,  t)>~O. Let  {S,} be 

any  sequence of disjoint sets e B~, S = LI Sn ; then  S (t) = I.J Sn (t). Hence since fl (X I x, t) 

is a distr ibution on Bx, fl' (S [ x, t) = fl (S (t) [ x, t) = ~ f l ( S n ( t )  lx,  t) = Y f l ' ( S n l x ,  t). 
n n 

Finally, since $ (t) = ~ ,  fl' ($ I x, t) = fl (~  I x, t) ~< 1; this completes the proof of the as- 

sertion. Le t  now :~/ be the class of all measurable sets S such tha t  /~' (S[x, t) is a 

measurable funct ion on $. ~1 includes all measurable rectangle sets X •  X E Bx, 
T e Bt, because for each such rectangle 

fl' (x•  t)=fl(xlx,  t) e(TIt) 

is the product  of a measurable funct ion by  the characteristic funct ion of the  se t  

• T. 7/1 is a monotone class: for let {S~} be any  monotone sequence of sets in 

and let S = lira S~ ; then  S e B~, and hence ~' (Six ,  t) = lim ~' (S= Ix, t) is the limit of 
7/---> Or n - - * o o  

a convergent  sequence of measurable functions, and is therefore measurable ;  hence 

S E 7/1. But  the minimal monotone class containing all measurable rectangle sets is Bs, 
therefore 771D B~ ; bu t  by  hypothesis  T/I c B8 ; therefore :/?I~B~. This completes the 

17 - 573805. Acta raathematica. 98. I m p r i m 6  le 27 d6cembre  1957. 
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proof of the first part of the lemma; the proof of the second part  is analogous and 

will be omitted. 

Proof o/ Lemm~t 3.8. By Lemma 3.7, the right-hand-sides of (3.10) and (3.11) 

exists; using Fubini's theorem, they are seen to be equal to the left-hand sides. 
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