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Introduetion.
Let us denote
(1) M, 2, ., aD
n distinet points in the interval — 1 =<z =< + 1 and let f(x) be a function

defined in the same interval. We investigate in this note the convergence pro-
blems of the Lagrange and Hermite interpolation polynomials of the function
S{x) corresponding to the “fundamental points” (1). The »*™ Lagrange inter-
polation polynomial of f(x) is the unique polynomial of degree » — 1 at most,
assuming the values f(z{"), f(x™), ..., f(x™) at the abscissas z{", =, ...,
x™ respectively. This polynomial is given by the formula

@ Llfi = 3 £ Gl 1 @)

and the polynomial w(x) defined by
(4) o (@) = (x— M) (@—2) . . . (@ —2™).

The »™ Hermite interpolation polynomial of f(x) is the unique polynomial of

degree at most 2»— 1 which for the values z{", ™ ..., 2! assumes, re-
spectively, the values f(x{™), f(x™), ..., f(«{™) and whose derivative correspond-
ingly assumes the given values d{", d{¥, ..., d™. The explicite form of this

polynomial is given by the formula
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) Ei () ) + 3 )

here -
©) W () = o) () {1 (@)},

wy (=)
) @) =1 — (2 = )
(®) B (@) = (@ — o) {1 (@)} *

and w,(z), {{" (z) have the same meaning as before.

There exist many investigations for the behavior of the sequence Ly [f]

(n=1,2,...). We mention here the following negativ results only. For an
arbitrarily given

xty

2, 22
(9)

), e, ..

system of fundamental points there exists a function f(z) continuous in the in-
terval —1 =2 = + 1 for which the sequence L.[f] (=1, 2, ...) is not uni-
formly convergent in —1 =<2 = + 1' and there exists a continuous function
f(x) also for which the sequence L,[f] is divergent.? Even in the most regular
case of the Tchebycheff fundamental points (i. e.

(10) M = cos (2k — 1);% (k=1,2,...,n;, n=1,2,...);
" (k=1,2,...,n) are the roots of the »' Tchebycheff polynomial 7, (x)==

= cos (n arc cos x)) there exists a function f(x) continuous in the interval
— 1=z =+ 1 for which the sequence L,[f] is divergent everywhere in

! 8. BERNSTEIN, Quelques remarques sur l'interpolation, Comm. Soc. Math. Charkow, 14 (1914).
G. FaBER, Uber die interpolatorische Darstellung stetiger Funktionen, Jahresbericht d. D. Math.
Vereinigung, 23 (1914), p. 102—210. A very simple proof is given in L. FEJER, Die Abschitzung
eines Polynoms ..., Math. Zeitschrift, 32 (1930) p. 426—457.

* 8. BERNSTEIN, Sur la limitation des valeurs d’un polynome etc., Bull. de U Acad. des Science
de 'U. R. 8.8, (1931), p. 1025—1050.
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—1Z=z2= + 1.} For the uniform convergence of the sequence L,[f] further
suppositions on the function f(x) are necessary. E.g. in the Tchebycheff case
these suppositions are analogous with the conditions for which the Fourier series
of f(x) is convergent.

If we look for a sequence of interpolation polynomials, which is convergent
for all continuous functions, then we can select only from those for which the

degree of the n'* polynomial — which thus assumes for the values z{®, z{,

., ™ respectively the values f(z{™), f(z{"), ..., f(2z™) — is higher than
n—1. It is here a very natural requirement to investigate interpolation poly-
nomials with simple form and not too high degree.? In the case of the aequi-
distant fundamental points (i. e. the fundamental points are the points dividing
the interval — 1 =2 < + 1 in » equal parts) this problem was solved by DE ra
Varnke Poussiy and S. Berwstern.® L. Frskr investigated the Hermite inter-
polation polynomials.* We have seen that these classical interpolation poly-
nomials are of simple character and the degree of the »* polynomial is 2n—1.
The degree is higher by » than that of the »* Lagrange polynomial.® There is a very
important difference between the Lagrange and Hermite interpolation polynomials.
All the functions I (x) (k=1, 2, ..., ») have exactly » — 1 changes of sign if

x runs over all real values; and this is true by arbitrary choice of the funda-
mental points. On the other hand as the formulas (6), (7), (8) show, the functions

! G. GROUNWALD, Uber Divergenzerscheinungen der Lagrangeschen Interpolationspolynome
stetiger Funktionen, Annals of Mathematics, 37 (1936), p. 908—918. See also G. GRUNWALD,
T'ber Divergenzerscheinungen der Lagrangeschen Interpolationspolynome, Acla Szeged, 7 (1935),
p. 207—211; J. MARCINKIEWICZ, Sur la divergence des polynomes d'interpolation, Acla Szeged, 8
(1937), p. 131—135.

! If the n!® interpolation polynomial can have any arbitrary degree, then for an arbitrary
everywhere dense pointsystem we can find a sequence of interpolation polynomials which is con-
vergent uniformly for all continuous functions. G. GRUNWALD, On Interpolation, Bull. of Am.
Math. Soc., 47 (1941), p. 257 —260.

* pE LA VALLEE PoussiN, Sur la convergence des formules d'interpolation entre coordonées
equidistantes, Bulletin de U Académie Belgique, 1908. S. BERNSTEIN, Sur une formule d'Inter-
polation de M. de la Vallée Poussin, Comm. Soc. Math. Charkow, (4) 5. (1932), p. 61—64. The degree
of DE LA VALLEE PoOUSSINS interpolation polynomials is 6 #; that of BERNSTEINS i8 < 3n.

* FEJERS first note on Hermite interpolation: L. FEJER, Uber Interpolation, Nachrichten d. K.
Gesellschaft zu Gittingen (1916), p. 66—91. For the further investigation see the papers of FEJER
cited later.

® In the Tchebycheff case the degree of the mth interpolation polynomial must be n—I1+cn
(¢ > o) at least, if we desire convergence for all continuous functions. G. GRUNWALD, On a
theorem of S, Bernstein, Acfta Szeged, in the Press. It is very likely that this is true in the
general case, too.
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h{"(x), B (x) of the Hermite interpolation change their signs only once at most.
The function H{™ (x) changes its sign at the point (™. The function A{™ (x) changes

its sign at most once: at the root of the linear function

wl’ (x(n))
M () — 1 — (p— i) Pk 7
(11) Uy @=1—(z Ty )w;‘ (w(lzl))
If the roots of v™(x) (=1, 2, ..., n) are outside of —1=x= +1,

then the functions h{"(x) are all positive. In the Tchebycheff case v{"(x) > o
(k=1,2,...,m;, m=1, 2,...) and just with the aid of this fact L. Frstr
proved the uniform convergence of the Hermite interpolation polynomials of an
arbitrary continuous function if the numbers |d{"] are uniformly bounded.! The

further investigations showed that where the proof of the convergence of the
Hermite interpolation polynomials was simple, the condition v (x) > o was

satisfied. The systems of fundamental points for which this latter condition is
holding shows also in the theory of Lagrange interpolation and other investiga-
tions a regular behavior.? Because of this, L. Fesir called these systems of
fundamental points normal point systems. The scope of this note is the in-
vestigation of Lagrange and Hermite interpolation polynomials corresponding to
normal pointsystems. The results show that this condition in itself — thus with-
out further specification of the pointsystem — is sufficient to prove very general
convergence theorems for the Hermite and Lagrange interpolation polynomials.®

This note contains three parts. In the first we investigate the consequences
of the conditions v"(z) = ¢>o0 and v{(z)>o0 (k=1,2, ..., n; =1, 2,...)
—1=a = + 1 for the convergence of the Hermite interpola,tibn polynomials of
a continuous function. In the second part under the same conditions we investigate
the convergence of the Lagrange interpolation polynomials of a function satis-
fying a certain Lipschitz condition. In the last part we investigate the behavior

n

of the sum X {/{"(z)}* if the condition v{" (z) Z 0 (k=1, 2, ..., n; n=1,2,..)

k=1
is satisfied.

! See the note of L. FEJER cited in mote I, p. 220.

? See e. g. L. FEJER, Lagrangesche Interpolation und die zugehorigen konjugierten Punkte,
Mathematische Annalen, 106 (1932), p. 1—55. L. FEJER, On the characterisation of some remark-
able systems of points of interpolation by means of conjugate points, American Math. Monthly,
41 (1934), p. 1—14. P. ErDOs-P. TURAN, On Interpolation II, Annals of Mathematics, 39 (1938),
P. 703—724.

* We note that the results are — with few exceptions — the best possibles.
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I. The Convergence of the Hermite Interpolation Polynomials of a
Continuous Function Corresponding to Normal and Strongly
Normal Pointsystems.

1 § Definitions and Notations and Elementary Properties of the Interpola-
tion Polynomials.

The numbers 2/, 2, ..., «®

n

(1) —1=al<a <. <= + 1,
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are called the %™ fundamental points of the interpolation.” The set of numbers

(1)

xl
3 (2)
a, 2
(2)
) gl (
a2,

is a fundamental pointsystem of the interpolation or shortly a poinisystem if for
all » (1) is satisfied. In the following for the sake of simplicity, we do not use
in our formulas the upper index n. This does not lead to a misunderstanding.
The #™ Lagrange interpolation polynomial of a function f(x) corresponding to

the fundamental points (1) is given by the formula

n

(3) L[ f1= D flaw) b (),
where B
(2 AT p—1
w’ (wox) (@ — )
and
(5) w(@)=(x—ax) (@ —z) .. (2—x).
The polynomials
(6) L), L), ..., Lix

which are all exaetly of degree n — 1 will be called fundamental polynomials of
the Lagrange interpolation. U.(x) assumes at z; the value 1 and at z,, z,, ...,
Zy—1, Lk+1, - - .. Xn the value 0. So it is clear that L, [ f] assumes at z,, z,, ... x4
the values fl(a), f(2s), ..., flan), respectively. Since the polynomial L,[f] of
degree at most n — 1 is determined by the values assumed at » distinct points,
(3) is the unique polynomial of degree at most » — 1 which at =, a5, ..., &,
assumes the same values as f(x). Furthermore from the unicity it follows, that

for an arbitrary polynomial P(x) of degree at most # — 1

n
(7) L., [P =Plz)="> Pla):(x).
k=1
! The notations used are introduced — with few exceptions — by L. FEJER. The results

of this §. are due to L. FEJER.
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If P(x)=1 (7) gives the fundamental identity

The sequence L,[f]n =1, 2, ... will be called the sequence of the Lagrange
interpolation polynomials of the function f(z)corresponding to the pointsystem (2).

Let d,,d,, ..., d, be n arbitrary numbers, then the »* Hermite interpola-
tion polynomial of the function f(z) corresponding to the fundamental points (1)
is given by the formula

(9) Half; d= 3\ flod he(2) + D) dibe(),

k=1 k=1
where
(10) P () = v () B (x) k=1,2,...,n,
(11) vk(x)=1_(x—mk)‘i;',—'gg k=1,2,.. .,
(12) be () = (x — =) B () k=1,2,...,n

and (), lx(x) have the same meaning as before. It follows from (10), (11) and
(12) that

(13} he(oe) =1, le(ms) =0k +1), k=1,2,...,n;

(14) belzi)=0,k=1,2,...,n;, 1=1,2,..., 5.

That is, the polynomial (g) assumes the values f(x,), f(x,), ..., flxs) at x;, 2, . .., Ta,
respectively. On the other hand the formula

(15) brlx)= G{x) + 2 (x — @) e (=) i ()
shows that
(16) bilw) =1, Bi(w) =0 +k), k=1,2,...,n
and the formulas
(17) hi ) = 2 ) e (o) e ) — (%) I ),
oy Lo (@)
(18) Ik (@) = 2 o (o)
show that
(19) b () = o t=1,2,..,0, k=1,2,...,n.

The formulas (13), (14) and (16), (19) give that the polynomial (0) at 2, 2, .. ., 2
assumes the values f(x,), f(x,), . . ., f(xs), respectively and the derivative of this

15%
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polynomial at x,, @,, ..., x, assumes the values d,, d,, . .., d., respectively. The
polynomial (9) of degree at most 2% — 1 is uniquely determined by these con-
ditions.

The polynomials
(20) hi(x), hy(z), ..., bn(2)
will be called fundamental polyrnomials of the first kind, and the polynomials
(21) by (@), By (@), .. ., Ba(w)

Jundamental polynomzals of the second kind of the Hermite interpolation.
From the unicity of the interpolation formula it follows that for a polynomial
P(x) of degree at most 2n — 1

n

Pxy) hye () + Z P2 b () .

1 k=1

I
VB

(22) H,[P; P| = P(x)

k

il

If P(x)=1, (22) gives the fundamental identity
(23) hy(x) + hy(x) + - + halz)=1.

If P(x)=x, (22) gives, with the aid of (23)

n n

(24) Z br () = D) (oo — ) ha(ax) .

k=1 k=1
Let the pointsystem (2) be such, that for all »

(25) vk(x)=1—(ac—xk)%(%%)gg>o k=1,2,..,n —1Sx=+1.
k,

Then the pointsystem will be called strongly normal. If we will emphasize the
number ¢ in the condition (25) we use the expression g-normal, too. For the
number ¢ we have ¢ < 1, because vi(x;) = 1. Let the pointsystem (2) be such,
that for all »

(26) uld)=0 Ek=1,2,...,m; —1=x =+ 1,

then the pointsystem will be called normal.

E. g. ¢-normal pointsystems are the roots of certain Jacobi polynomials.! The
n'® Jacobi polynomial ), (e, 8, ) has n distinct roots in the interval —1 < < + 1
if ezo,8=0. If o<a<le, 0=<F<<'2 then the roots give a ¢-normal

pointsystem, where e=min (1 —2 @, 1—2p). In the case a=8="1/2, §a ("2, }/2,2) = nt®

! See FEIJERS first paper cited in note 2, p. 222.
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Legendre polynomial, and the condition (25) is not satisfied for any positive g;
but the weaker condition (26) is satisfied and so the pointsystem is normal.

From the definition of the ¢-normal pointsystem and from the identity (23)
follows the important inequality

IA
|

—I=rxrs+1.

(27) 2 (x)

N =

k=1

For normal pointsystems, as an elementary geometrical consideration shows, every-
where in the interval — 1+ e<ax=<1—¢ (¢ > 0)

(28) vk(x)ég

and so

(29) ZIi(x)éf —1t+e<z<1-—e¢.
k=1

2 § A Convergence Theorem for the Hermite Interpolation Polynomials of a
Function with Continuous Derivative.

We prove the following theorem. Theorem 1. Let f(x) be a function with
continuous derivative tn the interval — 1 =x =< + 1. Then we have for strongly
normal potntsystems

G0 lim B/ f]=lim (Z,f o) (e + ) f ) (x)) — /)

Tt=—s 0

and the convergence is uniform tn the interval — 1 <2z < + 1.
From (27) there follows the inequality

(31) Z,I[)L |<~ —1=2x<+1.

An easy consequence of the approximation theorem of Weierstrass is that for a
given ¢ > o there exists a polynomial P{x) for which we have

(32) |fle) —P@)|<e, |f/l@)—Px)|<e —1=r=<+41.

If » is sufficiently large, the identity (22) gives that

P (xr) he () +

1 k

(33) Px)=

15

P (xx) e ) .

DM <
P

k 1

Il
if



228 G. Griinwald.

So by (32)

| H.1f; f1—fla)|=|H.[f— P, f'—P) + Pla) — f(2)|
=|anﬁpf—PH+8§

IA

(34)
<

) e (2 |“Z|f x) — P ()| [De ()] + 6 =

II/\

3 1t
é (@) |+azm

Thus it follows from w:(x) = ¢ > o, (23) and (31) that

(35) |H1L[f;f']—f(x)|<.s+ge-e-{—e:ze(l+%’)),

which was to be proved.
For normal pointsystems instead of (31) we have

n
2
N 72 < .
(36) Zlk(x)ée —1+e=z=1—¢
k=1
and so we have convergence in — 1 <z < + 1 only; and uniform convergence

mn —1+eZx=1—¢{e>0).

3 8. A Sufficient Condition for the Convergence of the Hermite Interpolation
Polynomials of a Continuous Function Corresponding to Normal and Strongly
Normal Pointsystems.

In § 2 we have seen that for strongly normal pointsystems the sum of the
absolute values of the fundamental functions of the second kind is bounded (formula
(31)). We will show that the behavior of this sum is decisive in the question
of the convergence:of Hermite interpolation polynomials corresponding to strongly
normal pointsystems. In this § we make the first step in this direction. We
prove the theorem: Theorem 2. Let a pointsystem be normal and let us suppose, that

(37) lim Z | i (a

N— o

and the convergence zs uniform in — 1 =x = + 1. Then we have for an arbitrary

Junction f(z) continuous in — 1 =z < + 1

(38) lim H,[f; d] = lim (ﬁ‘, Sl h () + 2 dr B (2 ) = f{x)

N> © n—r x

k=1 k=1
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and the convergence is wumiform in the interval —1=x = + 1. The numbers
[P =1d,| are arbitrary but uniformly bounded: |d,| < A, where 4> o0 s in-
dependent from k and n. If the condition (37) is satisfied on the pointset S, then
(38) 45 holding on 8.

For the proof let P(x) be a polynomial for which

(39) iﬂ@—ﬂMég

where & > 0 is a given number (the existence of P(x) is assured by the theorem

—1=x=s 41,

of Weierstrass), and let us denote

M= Max |P (z)}.

—lsz2=+1

From (37) follows that for sufficiently large %

n

3P () e )

k=1

(40) 3

<M |hel)] <
k=1

Thus for sufficiently large =

- éj’(xk) i (x) — P(z) + P(x) — f(x)

k=1

S fla hele) — £ @)

k=1

n

= é (flay — Py Y he () — Z P (xp) he(x) + Plor) — f(x)

k=1 k=1

IA

(41)
= D @) — Plaglblx) + M 3 | he(@)] + 1 f (@) — Pla)| =

& &
égéhk(mw =
So we have
(42) lin 3 S =)  —1Ses -+
k==1
and the convergence is uniform in the interval — 1 <z < + 1. Since |dil< 4
and .
(43) Lim gl Ihel{z)] =0

our statement follows from (42).
We can svidently prove the second part of the theorem in the same manner.
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4 § The Convergence of the Hermite Interpolation Polynomials of a
Continuons Function.

We prove the theorems.

Theorem 3. Let f(x) be a continuous function in the interval —1 S x < + 1
and let dy=d{" be arbitrarily given numbers for which |diy] < A (4 is independent
Jrom k and n). Furthermore let the pointsystem

xl
), @)
(44)
n, gL )

be strongly normal in the interval — 1 = x = + 1, that s

(45) nEX=ze>0 k=1,2,...,0n=1,2,...;, —1=xr=<+1
Then

6 lim H, =1

R AT g(g Fla) zdkb, ) £

and the convergence is uniform in the interval —1 S x = + 1.
Theorem 4. Let the pointsystem (44) be normal, that is

(47) wnlx)=o0 k=1,2,....,n,m=1,2,..; —1=x= +1
If the other conditions of theorem 3. are satisfied then
(48) lim H,[f; d] =f(x) —1<r<+1

F——
and the convergence is uniform in the interval — 1 + ¢ <x <1 — &, where ¢ >0
ts an arbitrary givem number.

It follows from theorem 2. that it is sufficient to prove in the strongly
normal case that

{49) lim élbk(x)lzo —I1=Zz=< +1
P p—1

and the convergeuce is uniform in the interval — 1 < « < + 1, furthermore that
‘in the normal case
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o lim —Ir<xex<+1
(50) n_mz | B ()
and the convergence is uniform in the interval — 1 + e =<2 =<1 — ¢ where ¢>0
is an arbitrary given number.
Let a be any number of the interval [— 1, 0] and

(s1) Hyg; ¢loma= D 9(xe)bela) + 2 ¢ (x:) br(a
k=1 k=1
Let g(z) be defined by
(52) @ { o} f —1=zx=a
2 x) =
5 g @—al?if a=a=+1.

We shall first consider in (51) only such values of » for which a does not occur
in the nth row of (44); we shall call them regular n-values. They depend of

course on a. We have for regular #-values.

Halg; 9lema = Zn g (e} ve (@) Ik () + Zn g (an) (@ — ) B (a) =
53 =2 m—anl Z (s — @)~ (a — @) Tk (a) =
= 2 (ar — a)e? I (a) ('vk (a) — g) .

It is important to note, that the terms in the last sum of (53) are positive, since

ve(a) — g 0 — g = g > 0. We shall prove that there exists a number 7, = n, (),

2
that for regular n-values greater than »,, and for —1<a=o0

| Ha(g, 9')e=a] <e.

For the proof we define the functions v=1, 2, ...

IA
]
IA
2

if —1=

)

o
) = a4 2y (x—a)e2tT if

K
fiA
8
IA
«
+
- ot

(54) g ()

+
€ |-
IA
8
IA
+

‘ (x — a)er if a

gv (@) is differentiable and its derivative is continuous in the interval —1 <2 =< + 1.
This is a consequence of an easy calculation. We prove that

(55) @@ > glx) if v o
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and the convergence is uniform in the interval — 1 <2 =< + 1and —1 Za=o0.
Let ¢ > 0 be a given number and » so large that

)
(56) 4(;{)" <,
then we have
(57) fg, (@) —gla)f <e —1=Z2x=+1,

. . 1 . .
since in — 1 =2 =a and a+;§m§1 g»(x) —g(x)=0 and in the interval

1
a§x§a+;

lg: (@) — g @] =|—»"(— a)t®*? + 29(x — a)t?* — (z — a)?| <

e/2+2 o241 el 0/2
é"!(i) +2 (3) +(3) =4(§) <e.
v v

It follows from the theorem 1. that for a fixed »

(58)

(59) lim H,lg,; 9.} = g» (@)

and the convergence is uniform in the interval — 1 =<z =< 4+ 1. As the proof
of theorem 1. shows, the convergence is also uniform for — 1 =e¢ =o.
Let now & >0 be a given number and » so large, that

(60) |yw(x)—g(x)|<§ lSrE 4

(the existence of such a » follows from (55)) and

6f1\e2 ¢
: (-
(61) o 3

-Let us fix this » and let », be so large that for » > n,

(62) |Halgs; 9llea— g2 (@] = | Halgs g7)emal <3

(this is possible as it follows from (59}}). (60), (61), (62) give for regular n-values
greater than ;.

[ Halg; 0')e=a — g(@)] = | Halg; 9'le=a] =
(63) =|Hulg—9v; 9 — @le—a + Hulgs; gle—al =

’ ’ &
< |Halg— 9s; g*g.]x=al+37
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|HH [g — v, g'_" g;]mzal =

(64 =| 3 (9@ — go@)vnla) @) + 3 (¢ @i — gilan) (@ — w k(o) | =
k=1 k=1
= Jul@i@ + 31 @) —gw)lle- wlila),
k=1 k=1

o 1
furthermore, sincein — 1=z =<acand a+ - =z = + 1 ¢ (1) = gs (2s)
v

D @) —gi@l la—alii@ = 3 19 @) — g @] |la— x| lhila) =

k=1 a<zp<a 42
v

- 3

1
a<xk<a+;

la—a]li(@) = >, 1(%(£)9/2_1+v2(%+2)(i)MHJr”(%H)(i)m).

(l<(1'k<(l+ -
L4

(65)

2w <S 1% 1\t §<1)<’/’ e
Vlk(a)<k§1(4+ze)(y) lk(a)<(4+2e)(y) e els) <3

(63), (64) and (63) give for regular n-values greater than n, and for —1 =<=a=<o0
(66) | H. lg; gl]x=ﬂ| = Z (2 — a)* 11 (a) (vk (@) — g) =

a<ack
and this was to be proved. Since for non-regular n-values each term of the

sum in (66) vanishes and vi(a) — g = g— > 0, (66) gives uniformly for —1=a=o0

(67) lim 2 (xx — a)e? l% (a)=o.
azay

For o=a =1 we obtain (67) with a suitable modification of the definition of
g»(x), in the same manner, with the aid of the function

(68) G (@) Fa-@m e Cf
x ==
' o) if a=x=+1
we can prove
(69) Jim, (@ — @ li(a)=o.

TrEa
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1t follows from (67), (6¢) that

(70) lim Z la — |2 i (@) =o0.

n—w =1
Let 0 > o be fixed, then we have

(71) lim li(@)=o
n—qwla—xk|>d‘
thus if ¢ > 0 is a given number

n

Zla—xkllf.(a)= ) la — x|l (@) + ) la — x|l (a) <

(72) ] la—zp] seo la—zpl >0
<e()Zl;2,-(a)+2 2 li(a)<eg-l+2 p li(a)—e.
k=1 |a—zp] >ep |a—ap] =ep
That is
(73) lim Zla—xklli(a)zo.

R ®
k=1

Since @ is an arbitrary point in —1 =z =< + 1 we have for strongly normal

pointsystems
n

(74) lim Y |be(w)[=o0 —1=z=< +1.

n—®

k=1
(74) is uniformly holding in — 1 =< x = + 1 since our estimates were independent
of a.
So the proof of theorem 3. is completed. The proof of (50) with the aid
of (28) and (29) runs analogously and so the theorem 4. is established, too.

5§. The Convergence of the Hermite Interpolation Polynomials of a Continuous
Function if the Derivatives of the Polynomials are not Bounded.

In this and the following § we shall generalize the theorem 3. L. Frsér

proved that in the case of the Tchebycheff pointsystem the Hermite interpolation

polynomials of an arbitrary continuous function f(x) are convergent when the

numbers d{® are bounded if » ~ . Even if

(n) — gln)
(75) dim = &l Tog
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where & - o0 when % - o, then

(76) lim H,[f; d]=lim (Zf wx) by () + Z"‘, dkf)k(w)) = f ()

n—s N B

and the convergence is uniform in the interval —1 <z = + 1.1
We prove for g-normal pointsystems the theorem:
Theorem 5. Let f(x) be an arbitrary continuous function in the interval

—1=ax<+1andlet di=dy" be given numbers for which
(77) Idgc")|<n9_‘ k=1,2,...,m n=1,2,...,

if n—> o and £ >0 s an arbitrarily given number. Furthermore let the point-
system be g-normal, that is for all »

(78) w@)Zze>0 k=1,2,..,n —1=x=+1.
Then
(79) EﬂHn[f; d) = f(x)

and the convergence is uniform in the inferval —1 <x < + 1.
The fundament of the proof is the following approximation theorem: Let
1>¢ >0 and

(80) g(x) = {

0 if —1=x=a
(@ —a)e" if asxr <+ 1,
then there exists a polynomial P(x) of degree # so that in —1 == + 1
(81) lglx) — Pla)]<clogn n?, |og{x)—(x~—-a)P (z)]<clogn-n?,
where ¢ denotes a positive absolute constant. We shall prove this theorem in
the next §.

Let ¢ =9 — g, where ¢ > 0 arbitrary but <. It follows from (81) that
for sufficiently large =

lg (@) — Pla)| < enete

) lo’ g(@) — (x— a) P (x)] < cnete —1Z=x=s 4.

If xx == a we have (see (53))
(83) Halg; g'la=a Z, ax — a)t' Ik (a) (ve (@) —¢)

! Bee FEJERS first paper cited in note 2, p. 222.
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and for sufficiently large »

(84) P(a)= 3, P(xr) ke (a) + 3, P’ (wx)bi(a).
k=1 k=1
1t follows from (82), (84) and (27)
| H.9; 9'la=a—P(a)| = é (g @ — Pxp) hi(a Z " — P ap)h@] =

(85)

¢
Sen™ 9*"2 he(a +cn“9+‘Zlk ) < en—ete + En*9+f<cn—9+5.
k=1

Since | P(a)] < en—¢*¢ (this follows from (82) and from ¢ (a) = o)

(86) | Hu (g5 0)oma| < cnete,

(83), (86) and w(a) — ¢’ ég > 0 give

(87) Z (.Cl,‘k — a)Q' Zf (a) Z < en° ‘+e
rza

that is

(#8) 2 (%“—“)gzz (a) < one'+e,
Tp=a

zr — a\¢ ,— , . —
(%2) > xkz 2 since o =p— g <1 and %ﬂé 1 so it follows from (88)

(89) Z (2x — a) li (@) < cn—e+e.

=0

An analogous argumentation, with the aid of the function

I(a—x)Q' f —1=x=a
o G(x) =
(ool @) Lo if a=x =+ 1
gives
{o1) Z (@ — x) i (a) < en—e+e
a’kéa
and so

(92) 2 [ ela |—2|a~—m|lk a) < cmete,
k=1
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Thus

(93) lim ne2 3 | fi(a)] = o.
k=1

Jp—— B

It is clear that (93) holds uniformly in a so we have proved that for an arbitrary
& > o uniformly in the interval ~1 =< + 1

(94) lim ne—* 2" [9e(x)]=o.

fl—s 20
k=1

Theorem 5. follows from (77), (94) and

(05) tim S o) (@) = £ (a).

o

6§ An Approximation Theorem.

We prove the approximation theorem enunciated in § 5. The function
0 g(x) satisfies in the interval — 1 =<2 = + 1 a Lipschitz condition with the
exponent ¢’ ie.

(96) le'g@)—e gl < el —2"|¢ —~1=2,2'= +1

where ¢ is an absolute constant. The existence of a polynomial @(x) of degree
n for which
(97) leg@—Q@)|<en® —1=52=+1

follows from a wellknown theorem.!

In the interval —1 2 =<a + ;21—3

(98) [Q@)| < en,

since in the same interval

(99) le'g@)| < en.

Thus

(100) o' g(@) —(Qu)— Q)| < en? —1=Zx= 41,

! We mention the investigations of DE LA VALLEE PoUSSIN, LEBESGUE, 8. BERNSTEIN, D.
JACKSON.
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It follows from the theorem of Markoff that

(101) | @' (z}] < en® —1=x=+1,
gince |[Q(@)|Zcin — 1=z + 1.

In the interval —1 <2 < g+ —;—3 also

sz(”)_Q—(“)dx

r—a

IA

(102) 7—(2 T d + fo—~a dx

“"7

nd @
dx + f entdr <cenlogn+ cn ! <en ¢ logun.

e

. . 1
Thus we have in the interval —1 =z <=a + —
n

(103)
x T T
fw———g g(x)dx—f—Q(x)—%—)dm ac)—f—-—Q(x)_Q—(l)dx <cn—¢logn.
z—a x—a x—a
o —1 -1
On the other hand it follows from (100) if a + % Tr=+1
Q) — Q) o >
(104) f p—— dx| < en¢ _adx<cn ¢ log n
a+"8 a+i

and so in the same interval by (102) and (104)

et [ ez,

=|g(x)— f Q a0 fQ T dx || £ en = logn

a+'—
s

(105)
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Collecting the results we have

(106) ‘ g(:c)—fg%__—fﬂdx <en?logn —1=x=<+1

and this proves the approximation theorem with

(107) P(:c)=f Q(xx)—:fﬂdx.

II. The Convergence of the Lagrange Interpolation Polynomials of a
Function Corresponding to Normal and Strongly Normal Pointsystems.

1§ The Results of L. Fejér.

It is known that if a function f(z) satisfies a Lipschitz condition with an
exponent greater than ;, then the sequence of the Lagrange interpolation polyno-

mials of f(x) corresponding to strongly normal pointsystems converges uniformly
to f(x).'! We shall improve this result. The problem is to find an upper
bound for

(108) Zn |2 ()]

Indeed if we know e. g.

n
(100) i@ <eny, —1=2x=1, o<e<r,
k=1

where ¢ > 0 is an absolute constant, it follows from a wellknown argumentation

that the Lagrange polynomials of a function satisfying a Lipschitz condition with

an exponent greater than « are uniformly convergent.? Our tool is the inequality

for the fundamental functions of the second kind of Hermite interpolation, proved
n

in § 5 of Part I. There exists namely a connection between (108) and M| b ().
k=1

! See FEJERsS first paper cited in note 2, p. 222.
? The idea of the proof due to LEBESGUE, HAAR, FABER. See FEJERS first cited paper in
note 2, p. 222,
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Indeed the inequality of Cauchy gives for x =+ x

-
(110) zazk @l= ) zlx_mzm

28§ A Convergence Theorem of the Lagrange Interpolation Polynomials of
a Function Satisfying a Certain Lipschitz Condition.
Let ¢>o0 be a fixed number and « an arbitrary point in —1 +d <z =1—4.
Then we have for g-normal pointsystems

-1

(r11) S= Zx—xk i

X,
k=1 k=i+2 k

< cnlogn TiE X ELiv1

Brdés-Turdn proved!, that for a g-normal pointsystem

[
(112) ¢9y._1—0y>7—z v=2,...,,n—1,n,

where 2, = cos 8,. (111) is an easy consequence of (112).
From (27) follows

2

(113) V@) + s (= |<%

and so

‘“Ilk(w)I<V35+ S k@) <

k=1 ES
ki, 141

szm

< V + Vcn log n D\ | bi(z)].

k=1

(114) <v_+

Thus (92) gives for an arbitrary but fixed ¢ > o and sufficiently large »

e,

{113) )} <c-n* —1+dsSz=1—4.

,,
1

! See the paper of. P. ERDOs-P. TURAN cited in note 2, p. 222.
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So from the theorem mentioned in § 1 follows the theorem 6. Let f(x) be a

Sunction defined in —1=x = + 1 which satisfies a Lipschitz condition with an
exponent greater than L0 that ds
(116) @) — fle) < el — 2" | —Iécc',x"§+l,a>lzg'

Furthermore let the pointsystem of the fundamental points of the Lagrange inter-
polation be g-normal:

(117) n(x)=9>o0 k=12, ..., 0=1,2 ..., —1=2x=+1.

y = =

Then the sequence of the Lagrange interpolation polynomials of the function f(x) is
convergent tn the interval — 1 <x < + 1 and the convergence 1s uniform in the

wnterval — 1+ 02z =1— 0, where d > 0 is an arbitrary but fixed number.

III. On the Sum Z L().

k=1
1 § Preliminaries.

We have seen that the sum
(118) )+ B+ + L)

is important in the investigation of the interpolation polynomials. L. Fzsgr
investigated this sum for Jacobi pointsystems. In the Tchebycheff case he
proved!, that

. Iz if X = —1
(119) lim 2l2(7)= I if —1<a< +1
T gy .
lz if r= -+ 1.

In the case of the pointsystem corresponding to the roots of the %'t Jacobi

polynomial with the parameter values «, 8

! L. FEJER, Bestimmung derjenigen Abscissen eines Intervalles, fiir welche die Quadratsumme
der Grundfunktionen der Lagrangeschen Interpolation im Intervalle ein moglichst kleines Maximum
besitzt, Annali della R. Scuola Normale Superiore di Pisa (1932), p. 3—16.
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I
f =1
Y i x
- 1
{(120) lim Zli(x): I if —1<a<+1 o= -
R 0 2
k=1
it =4 osg="
I—2a 2
We shall prove that for normal pointsystems
k3
(121) lim Zlﬂ(x)zl —1<z< 41
P k=1

and the convergence is wniform in the interval —1 + s a2 =1-—¢, where ¢ >0

arbztrary fixed number.

2 §. Proof of the Convergence of 212 {z) if » - o for Normal Pointsystems.
k=1

Let 1>12>0 be a fixed number then for such indizes % for which

— 1+ A=x2r=1— 1 we have

o (xy) I
(122) l ol | <2
and
(123) vel) = 1 +§-
o” () " (2)

Indeed either (1 — x;)— — or {(— 1 —uxz) ?@—) is positive thus it follows
k

w'(xk)
from v (+ 1)= o0, vi(—1)=0

X I 1
<< [N U —
(124) _max(ll /;I ll Ll)_—]-

since 1 —mp =4, 1+ = 2.

Furthermore

(125) vk(x)=1—(x——xk)%(;f)—§1+ | & — o]
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‘We need the relation

(126) lim  » l(x)=o —1<zx<+1,d>0,
nﬁwlx—;rk|>z)‘

which is an easy consequence of (50).
Let f(x) be a function defined by

o if ——Iéxé—l-’-&
2
PN St T S |
A A 2
(127) Fla)=1r1 if —1+isz=1—12
2 2—4 A
pu— 3 — < <7 pE——
loc+ 7 if I—A=x=1
. A
0 if 1—5§x§+1

flx) is continuous in —1 =2 = + 1. It follows from the last remark in § 2
Part 1. that

(128) lim H,[f; o] =lim foL ) b (2) = £ () —1<aE< 41

n— n— ®

and the convergence is uniform in an inner interval of —1 =2z = + 1. Let
%o be an arbitrary but fixed number in the interval — 1 + A <x <1 — 4. There
exists a 0 >0 so that f(x)=1in )~ 0= =z, + 0.

Let

(129) X = fok Vhalwg) = ¥ flad halor)) + DY flacw) b (o) = Z +22,

|ao—~xk|(d’ leg—ag| >0

In Z: only such % occur for which f(xx) = 1, thus

7

(130) Z D mla) b= lle) — > (o — ) c—;;(i:)) li ().

X,
Jxo—ay} =4 |zg—zp | =4 | g~ =6 (

Since here — 1 + 4 =< 23 = 1 — A the inequality (124) holds and so

(131) Z lxo_‘xkl‘ S g~ @ | 1 (20) -

fro—zpd=d
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Because of

(132) lim 2 [ Bx (o) | =0
(131) and {(130) give

(133) 21 ——'—%%Ii(xo) + &,

where ¢,— o0 if » > 0.

~
>~

On the other hand if 1 =< —~1+-or 1—==; <1 flae) =0 s0

LS
(]

in Z, only such z; occurs for which — 1 + , =@ =1—_. That is (123) holds

with g instead of 4

(134) wle) =1+ 7

Thus

(135) 22: D Sl b)) < (I +%) > bl
lag—ay| >d e B

From (126) and (135) follows that > —o0 if » > o. (129), (133) and the last
2

remark give

(136) = lim Zf xx) by () = lim Z L x,) = lim Zl’“ o)

n ® o n ®
- 70— ’zn~1klsd‘ —

which is our theorem.

3 § A Convergence Theorem for Certain Interpolation Polynomials.

An interesting consequence of the theorem proved in the preceeding § is
the following: If f(x) is a continuous function in the interval —1 <z < + 1,
then we have for strongly normal pointsystems

(137) hmemlk = f(x) —1<z<+1

93— 0&

and the convergence is uniform in — 1 + A=z <1 — i, where 1> o,
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The proof is very simple. Let x be a fixed point in the interval — 1 < << + 1
and let ¢ > 0 be given. Then |f(z) — f(xr)] <& when o —zx| < d. Also

Zf ) li (@ Z Jan — f@) i (x) + f (@) 2 Ik () =

(138) " =
=3 (flap—f@) & (@) + > flaw — f@) li 2 I (x Zl+ 22+23.
|x—ap] =d |a—axp| >4

It follows from (136) that

(139) S, - £la)

and from (126) that

(140) Z <2M D (o
Je—zpl>d

where M = Max |f(z)]

—lgz=+1
For 21 we have

(141) 21<82li(x)§§,‘

=1

16



