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1. Introduetion. For many purposes, arbitrary rational functions are more
useful in approximating to gi\}en analytic functions of a complex variable than
are polynomials. For instance it is shown by Runge in his classical paper on
approximation by polynomials® that a function f(2) analytic in a closed region
of the z-plane bounded by a finite number of non-intersecting Jordan curves can
be uniformly approximated in that region as closely as desired by a rational
function of 2> Such approximation by a polynomial may not be possible. It is
the purpose of the present paper to show that in the study of two other phases
of approximation it may also be more advantageous to use general rational
functions than polynomials, namely 1) degree of approximation, that is, asymp-
totic properties of the measure of approximation of the sequence of functions
of best approximation, and 2) overconvergence, the phenomenon that a sequence
of functions approximating a given function in a given region frequently con-
verges to that given function (or its analytic extension) not merely in the given
region but also in a larger region containing the given region in its interior.
The term overconvergence has recently been used by Ostrowski in a somewhat
different connection.

A rational function of the form

! Acta mathematiea vol. 6 (1885), pp. 229—244.
? For more detailed results, compare Walsh, Mathematische Annalen vol. g6 (1926), pp.
437—450 and Transactions of the American Mathematical Society vol. 31 (1929), pp. 477—502.



412 J. L. Walsh.

a 2" + a2 4+ an
by e" + bye™ 4+ + by

where the denominator does not vanish identically, is said to be of degree =.

We shall deal with the entire plane of the complex variable z, closed by
the adjunction of a single point at infinity. The derivative, or more explicitly
the first derivative of an arbitrary point set F is the set B’ composed of the
limit points of E. The second derivative of F is the first derivative E” of E’,
and in general the £-th derivative E® of FE is similarly defined as the first
derivative of the (k — 1)-st derivative of K. The principal result of the present
paper is

Theorem I. Suppose f(2) is an analytic function of z whose singularities
form a set E one of whose derivatives E® zs empty. Suppose C is a closed point
set with no point in common with E. Then a sequence of rational functions r(2)
of respective degrees n of best approximation to f(z) on C such that the poles of
ra(2) lie in E, converges to the function f(z) over the entire plane except on the set
E. The convergence is uniform on any closed point set containing wo pornt of E,
and on any such point set the convergence s better than that of any geometric series.

The term best approximation deserves some explanation. There are various

measures of approximation of the function 7, (2) to the given function f(z) defined

in a region C, for instance max||f(2) —(e)], z on O], .| | (&) — . (2)F| dz]|

taken over the boundary of C, or f f [/(2) — ra(2)|?dS taken over the area of
p
C. Let us consider a particular measure of approximation and a particular value
of n, and call admissiblé any rational function of degree » whose poles lie in F.
Then a rational function 1, (z) of degree n of best approximation to f(z) on C
such that the poles of 1, (2) lie in £ is that admissible function 7,(z) or one of
those admissible functions whose measure of approximation to f(2) on C is less
than the measure of approximation to f(2) on C of any other admissible function.
It is not obvious but can be shown without great difﬁculty that such a function
of best approximation always exists, for the various measures of approximation

that we shall use, although it need not be unique.!

! See Walsh, Transactions of the American Mathematical Society vol. 33 {1931).

The existence af a funetion of best approximation depends essentially on the closure of
the set &.

If E contains but a finite number of points, there are for a given n but a finite number of
possible distributions of the orders of the poles of r,{z) among the points of E. For each such
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In Theorem I the set C may be 1) any closed point set not a single point
whose complement us simply connected, approximation being measured in the sense of
Tchebycheff: 2) any closed set not a single point whose complement is simply con-
nected, approximation being measured by integration over the civcle y :|w)| = 1 when
the complement of C s mapped onto the exterior of v; 3) any limated closed set C
whose boundary is a rectifiable Jordan are or curve, or more generally any limited
set C whose boundary C s of positive linear measure and whose complement is simply
connected, approximation being measured by a line integral over C'; 4) any simply
connected region, approximation being measured by integration on the circle y :\w| =1
when C is mapped onto the interior of y; 5) any region or point set with at least
one wntertor point and having positive area, approximation being measured by a double
integral over C.*

By approximation in the sense of Tchebychef we understand that the measure
of approximation of r,(2) to a given function f(z) on a point set C is

max {| /() — ra(2)], 2 on C1.

In this measure of approximation it is a slight generalization to insert a weight
or norm function #(z) positive and continuous on C and to use as the measure
of approximation

max [n (&) | f(2) — ra(2)], 2 on C].

This introduction of a norm function presents no difficulty, and for the sake of
simplicity we do not make the introduction for the Tchebycheff measure of
approximation. We do introduce a norm function, however, for the integral
measures of approximation 2)—s).

The measures of approximation 1)—35) have recently been used by the
present writer in the study of approximation to given analytic functions by
polynomials,? and results analogous to Theorem I have been established. Tt is
to be noticed that in Theorem I the case that f(z) is an entire function leads

distribution there is (loc. cit.) but a single rational function of best approximation, and hence
independently of this distribution there are but a finite number of functions r, (2) of hest
approximation.

! The reader may notice from the discussion which follows that in all of these cases the
reasoning we give is valid or can be modified so as to be valid even if the complement of C is
finitely multiply connected, provided that C contains no isolated point.

* Transactions of the American Mathematical Society, vol. 32 (1930), pp. 794—816, and vol.
33 (1931), pp. 370—388.
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precisely to the approximation of f(z) by polynomials, which ecase has been
treated with others in the papers just mentioned.

The results just referred to are perhaps worth stating in detail so that
they can be compared with Theorem I. Special cases of these results are
naturally due - to various other writers; we shall have occasion later to mention
the special case due to S. Bernstein. ILet C be an arbitrary limited closed point
set of the z-plane and denote by D the set of all points each of which can be
joined to the point at infinity by a broken line which does not meet . We
suppose D to be simply connected. Let the function w = ¢ (z) map D onto the
exterior of |w|=1 so that the points at infinity correspond to each other and
denote by Cg the curve |@(s)]= R > 1 in the z-plane, namely the image of the
circle |ew| = R. If the function f(z) is analytic interior to Cr but has a singul-
arity on Ok, the sequence of polynomials 7z, (z) of best approximation to f(z)
on C [measured in any one of the ways 1)—35) provided that in 5) the point set
C is a closed region], converges to f(z) for z interior to Cg, uniformly for z on
any closed point set interior to Cr, and converges uniformly in no region cont-
aining in its interior a point of Cr. If K, < R and if the measure of approx-
imation g, involves the p-th power of |f(z) — ma(2)], p > 0, then the inequality

M
n = D p ,
R

n=1,2, ...,
is valid, where J depends on R, but not on #», but this inequality is valid for
no choice of R, > R.

A somewhat trivial but nevertheless illuminating illustration of the differ-
ence between polynomials and more general rational functions when used for the
approximation of a given function, occurs for a function f(z), approximated in
the sense of least squares on the unit circle C: |z| =1 and having a single
singularity in the plane, namely at the point z =a whose modulus is greater
than unity. The sequence of polynomials of best approximation to f(2) on Cin
the sense of least squares is the sequence of partial sums of the Taylor devel-
opment of f(z) at the origin. This sequence {m,(z)} converges in such a way
that we have

M
flf(z)__'ﬂ"(z)FIdZIéRﬂ, n=1,2,...,
&

where R is an arbitrary number less than |a|, but this inequality holds for no
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choice of M when R is greater than |a|. The sequence {m.{z)} converges for
|z] <|al and diverges for |z|>|al.

On the other hand, if we study the best approximation to f(z) on C in the
sense of least squares by rational functions r,(z) of respective degrees » whose
poles lie in the point 2z = @, the inequality

Jlre—neraz g, oe=na
C

is satisfied for an arbitrary R, provided that a suitable M (depending naturally
on R) is chosen. This fact is easily proved for itself by help of the trans-
formation w = (1 — @2)/(z — a) and indeed follows from Theorem I, as does the
fact that the corresponding sequence {r.(z)} converges to the sum f(z) at every
point of the plane other than z= a. Thus the degree of approximation is not
so great for approximation to f(z) on C by polynomials as for approximation by
rational functions with poles in z == a, and in the latter case the region of con-
vergence is also greater.

_Theorem I is true in the trivial case that C is the entire plane, for in this
case f(z) must be a constant and all the approximating rational functions ()
are this same constant. Approximation on C can be measured by either of the
methods 1) or 5). Henceforth this trivial case is excluded.

2. Degree of Approximation. A preliminary theorem which we shall
apply is

Theorem II. Suppose f(2) 4s an analytic function of z whose singularities
Jorm a set E one of whose derivatives E® 4s empty. Suppose C is a closed point
set with mo point in common with E. Then there exists a sequence of rational
SJunctions 4(2) of respective degrees n whose poles lie on E such that for an arbitrary
R we have

/=) S 5, zon C,

where M depends on R but not on n.

We prove Theorem II first for the case that E’ is empty, so that E con-
sists of a finite number of points A,, 4., .. ., 4,.

The function f(z) can be expressed as the sum of » functions, each analytic
on the entire extended plane except in a point A;. In fact, let us assume that
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A, is the point at infinity; this is no restriction of gemerality. Then Cauchy’s

integral
. _ N L [ flBat
(2‘ I) f(")—z 271:2‘ t"‘Z
k=1 Tk
gives this expression directly, if 7, is a circle containing 4,, 4, ..., 4,, and

yr(k> 1) is a circle about the point A; but containing no other point 4;.
- Equation (2.1) is valid if z lies in the region bounded by these » circles, integra-
tion being taken in the positive sense with respect to this region. The integrals
in (2.1) are all independent of the particular circles y; chosen, provided merely
that the circle y, is sufficiently large and the other circles are sufficiently small;
each integral defines a function analytic over the entire extended plane except
at a point Ax. Let us introduce the notation

I () dt
(2.2) filz) = ol | 12

Tk

it being understood that the circle y: is so chosen as to separate z and Ai, but
not to separate z and any other point A;. The function f;(z) is thus defined
and analytic at every point of the extended plane except at A:.

The function f;(z) can be uniformly approximated in the sense of Tchebycheff

on the point set C by a sequence of rational functions ¥ (z) of respective

degrees # whose poles lie in A; and such that we have
(2.3) Lile) =0 = 2, 2 on €,

where Ry > 1 is arbitrary and M; depends on R;. In fact, if we transform Ay
into the point at infinity by a linear transformation of the complex variable,
the successive convergents of degree n of the Taylor development of the trans-
formed f;(z) about the new origin yield by transformation back to the original
situation a suitable set of functions »* (). The rational function

roal(2) = ¥ (2)
k=1

may be considered of degree v»n, so we may write by addition of inequalities (2. 3)
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14

@) =@l ST 2 on €,

where all the numbers R; are chosen the same and M’ is the sum of the M.
This inequality does not yet hold for rational functions of all degrees, but we
may write

M
(2.4) A0 —ra()| = 2%, 2 on C.
where we set R = RY* where we set
rm (2) = 70n(2),

vn being the smallest multiple of » not less than m, and where we have
M= M R,. Inequality (2.4) thus holds for all m, where »5(z) is a rational
function of degree m and where R > 1 is arbitrary.

This completes the proof of Theorem II in the case that E' is empty.
Let us treat next the case that E” is empty, so that E’ consists of a finite
number of points A4,, A,, ..., 4,; we assume that A, is the point at infinity.
Let R>1 be given. Let y, be a large circle containing 4,, 4,, . . ., 4, in its interior
and let y,,9,,...,7 be small circles about the points A4, 4,, ..., 4, respect-
ively. Let J denote half the maximum diameter of C. Then the radius of 1
is to be chosen larger than d R**!. The radius of y, is to be chosen so small
that when 4, is transformed to infinity by a linear transformation of the com-
plex variable the radius of the corresponding circle (transform of y,) is larger
than the product of R**! by half the maximum diameter of the transform of C.
The radii of %, ¥4, ..., 7» are to be chosen correspondingly. None of these
circles y; shall pass through a singularity of f(z).

Cauchy’s integral

S [ f@)at
fa=2 0] 5= 220
k=1 T

where y,41 is an arbitrary curve or curves separating C from none of the circles
Yi» - - -, 7» but separating C from all the singular points of f(z) interior to y, and

exterior t0 ¥,, 73, . - ., ¥», expresses f(z) as the sum of » + 1 functions which are
analytic respectively interior to y,, exterior to %, ¥s, - . -, 7», and exterior to
y»+1. The function
I Sl dt
2t | t—z
Tv+1

53—31104. Acta mathematica. 57. TImprimé le 3 septembre 1931.
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is independent of the particular curve or curves y,.1 chosen, and the only sing-
ularities of this function are the points of E not exterior to y, or interior to
72) }’?n NS 7"‘

There exist rational functions 7@ (z) of respective degrees » such that we
have

(2- 5) —1— -M —_— 7.(5) (Z) < M(f)

2wt | t—ez n = Retr+1
7

zon C, 1=1,2,...,7;

in fact the rational function () may be chosen so as to have all its poles in
the point A;, and the function r'(z) may be chosen as the sum of the first

n+ 1 terms of the Taylor development of the function approximated, about a
suitable point, when A; is transformed to infinity by a suitable linear trans-
formation of the complex variable. It follows from the particular choice of the
circles y; that the inequality (2. 5) will be satisfied by these particular rational
functions. The function

1 f(t) dt

27t t—z
Tv+1

has as its only singularities in the plane the points of E not exterior to y, or
interior to #,, 7, ..., 7s, and these singularities of this function are finite in

number. Then by the part of Theorem II already established (i.e. E' empty),
there exist rational functions +{'*V(z) of respective degrees » such that we have

1 (f@Odt M+
;E_i 7;7—1'$l+1)(2’) §W, z on C.
Tv+1
If we set
v+1
Yoty (2) = 2,”7(;” (2),
k=1

we have a rational function of degree (v + 1)n with the property

M.
If(z) — Tr+i)n (Z)I = W, z on C.

We now make the definition
rm (8) = rp+1)a (2),

where (v + 1)n is the smallest multiple of » not less than m, so by setting
M = M, R"*' we have the inequality
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1A

1£€)— ra()| = e, 2 on C,

which holds for all values of m, B> 1, and Theorem II is established in the
case that E” is empty.

A formal proof of Theorem IT in the general case that E® is empty follows
directly the proof just given, by the use of mathematical induction, and the
details are left to the reader.

In the present paper we are primarily concerned with the rational functions
of degree n of best approximation. By Theorem 1[ there exists some sequence
of rational functions r,(z) of respecti;re degrees n whose poles lie on the set E
such that (2.4) is satisfied. It follows directly that the same inequaﬁty must
be valid for the sequence of rational functions r.(z) of best approximation in the
sense of Tchebycheff whose poles lie on E.

3. A Theorem on Overconvergence. Another preliminary theorem which
we shall have occasion to use is

Theorem III. If the sequence of rational functions rs(2) of respective degrees
n converges in a rvegion C (containing no limit point of poles of the rn(2) in such
a way that we have for every R

(3. 1) )=l = o 2in C,

where M depends on B but not on n, then the sequence {rn(2)} converges and f(2)
is analytic at every point of the extended plane except the limit points of poles of
the functions rn(2) and except points separated from C by such limit points. Con-
vergence s uniform on any closed region C' containing no such limit point, and for
z om O an inequality of form (3.1) holds for an arbitrary R provided that M
(depending on R) is suitably thosen.

In the proof of Theorem IIT we need to apply a lemma of which a special
case was first used by 8. Bernstein. The proof of the present lemma is inspired
directly by the proof of Bernstein's special case given by Marcel Riesz in a letter
to Mittag-Leffler.’ The entire discussion of the present paper is analogous to
Bernstein’s discussion in which his lemma was proved. His chief result in this
connection is that if a function f(z) is analytic on and within the ellipse with
foei 1 and — 1 and semiaxes @ and b, then there exist polynomials p,(z) of

! Acta mathematica vol. 40 (1916), pp. 337—347.
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respective degrees » such that we have
M
(3-2) lf(2) = pn ()| = =

o —1=z=+1, e=a+ b

Reciprocally, if there exist polynomials p,(2) of respective degrees » such that
(3.2) is satisfied for — 1 <2< + 1, for a certain value of ¢, then the function
S(2) is analytic interior to the ellipse described. Our Theorem IT is the analogue
of the first part of Bernstein’s theorem, and our Theorem III is the analogue
of the second part of that theorem.

The following lemma has already been established elsewhere,! although in a
slightly less general form, but the proof is simple and typical of other proofs
to be given, and so will be repeated.

Lemma I. Let I' be an arbitrary closed limited point set of the z-plane whose
complement is simply connected, and denote by w == @ (2), z = ¥ (w), a function which
maps the complement of I onto the exterior of the unat circle y wn the w-plane so
that the two points at infinity correspond to each other. Let I'r denote the curve
| @) =R > 1 in the z-plane, the transform of the circle |w|=R. If P(z) is a
rational function of degree n whose poles lie exterior to T,, ¢ > 1, and if we have

|P(e)]=L, zon I,
then we have ltkewzrse
oR, —1

(PEI=L(4

), zon I'p, R <o

In the statement of Lemma I we have, as a matter of convenience, required
that I" should be limited and that in the conformal mapping the point at infinity
in the z-plane should be transformed into the point at infinity in the w-plane.
The result can naturally be phrased in terms of an arbitrary closed point set I,
where in the conformal mapping an arbitrary point of the complement of I' is
transformed into the point at infinity in the w-plane.

The function P[¥ (w)] has at most » poles for |w|= 1 and these all lie
exterior to |w|=¢. For convenience in exposition we suppose that there are
precisely % poles «,, a,, ..., an, not necessarily all distinet, and that none of
them lies at infinity. If there are less than # poles, or if infinity is also a pole,

! Walsh, Transactions of the American Mathematical Society, vol 30 (1928), pp. 838—847;
p- 842.
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there are only obvious modifications to be made in the discussion. The function

(“’—‘7‘1)(7/”—“2)"'(7/”—0{11)
(1t —ea,w) (1 —ayw) (1 — anw)

(3-3) e (w) = P[¥ (w))

is analytic for |w|>1. When w(|w|> 1) approaches y, z approches C, and
all limiting values of |P[® (w)]| are less than or equal to L; the function
(w — @;)/(1 — a;w) is continuous and has the modulus unity on y, from which
it follows that the limiting values of |z (w)| for w approaching y(|w|> 1) are
not greater than L. Then we have

(3.4) |w(w)]= L

for Jw| > 1, since the function |z (w)| can have no maximum for |w|> 1.
The transformation §=(w — @})/(1 — @;w) transforms |w|= R, into the
circle | (£ + a)/(1 + a:{)| = R,, so we have

HE |a:| — R, ~ e— R,
T Bila|l—17 Bie—1

for |w|= R, <.

Thus we find from (3.3) and (3. 4),

éL(R———‘Q_ ‘)n

for |w|= R, < ¢, and Lemma I is established.

Lemma I in the form in which we have considered it, is not expressed
so as to be invariant under all linear transformations of the complex variable.
That it to say, a suitable linear transformation yields a new result. Omne way
in which we shall apply Lemma I is in proving the following remark:

If the sequence of rational functions P,(z) of respective degrees n satisfy the
inequality

| Pule)] = %{%, z in a circular region K,
1

SJor every walue of R;, where M, depends on R,, and if the circular region K’
contarns K but contarns on or within ot no limit point of poles of the fumnctions
P, (2), then the inequality
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IPn(z)Ié%[f, z in K'.
2

is satisfied for every value of Ry, where M, depends on R,.

In the sense here considered, a circular region is the closed interior or
exterior of a circle, or a closed half-plane. The proof of the remark follows
directly from the lemma, by transforming the given circular regions K and K’
into two regions bounded by concentric circles of respective radii 1 and ¢, > 1.
This transformation is naturally to be a linear transformation of the complex
variable, and to prove the remark we need merely set

I 1o —1
— =" M, =M,,
B, R, o—o ! :

where the circle concentric with K and K’ of radius ¢ contains K’ but contains
no limit point of poles of the functions P (z).

Theorem III follows directly from Lemma I and from the remark just
made. From the inequalities

| F(2) —rp—1(2) =g ? in C,

we derive

|70 (2) — rea (2)] = 7 2 in (7,

where N= M (1 + R). The function #n(z) — rn—1(2) is rational of degree 27 — 1,
so if the point set C’ is limited, and this situation can be reached by a linear
transformation, we obtain from the lemma

|7 (2) — 1o (&) ] < %(%)R—‘_:I_{TI)M 1, z on Cg, R, <o,
for » sufficiently large, where C, contains on or within it no limit point of
poles of the functions r,(z), and it is to be remembered that R is arbitrary.
It follows that the sequence {r,(z)} converges interior to any curve Cg, which
contains on or within it no limit point of poles of that sequence, and that in
any such curve Cf, the inequality
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(3.5) |7 (&) — r1 ()| = E{%
holds for an arbitrary choice of R.

By a method entirely analogous to that of analytic extension® it can now
be shown from the remark following Lemma I that this same inequality holds
in the region C” of Theorem I1II. Inequality (3.35), holding in some region Cg,,
holds also in any circular region containing no limit point of poles of the 7, (2)
but having a subregion in common with Cf,. The process of extending step by
step the domain of known validity of (3.5) can be stopped only by limit points
of poles of the r,(¢), and any point set such as the C” prescribed in Theorem
IIT can be included in this domain by a finite number of steps. The uniform
convergence on (" of the sequencé {rn(2)} follows directly from (3.5), and the
identity of the limit function with f(z) (or its analytic extension) follows from
(3.1) for 2z in C' and hence for z on C”. There is no difficulty in deriving
(3.1) for 2 on O” from (3.5} for 2 on C”, so the proof of Theorem III is
complete.

We have now a proof of Theorem I in the case 1), that approximation is
measured in the sense of Tchebycheff. Inequality (3.1) holds for the sequence
of rational functions of best approximation whose poles lie in F, as we have
already indicated, and the conclusion of Theorem I follows from Theorem III.

4. Approximation measured after Conformal Mapping. We now take up
the measure 2) of approximation to f(2) on C, that C is an arbitrary closed set not a
single point whose complement is simply connected, and approximation is mea-
sured in the sense of weighted p-th powers (p > 0) by integration on the circle
7:]lwl=1 when the complement of C' is mapped onto the exterior of y. This
measure of approximation naturally depends on the particular point O of the
complement of C chosen to correspond to the point at infinity in the w-plane,
but the problem of best approximation for a particular choice of 0 with a
pai'tiéula,r choice of the norm function %(w) is equivalent to the problem of best
approximation for an arbitrary choice of 0’ with a suitable norm function = (w).

In the present paper we suppose O, once determined, to be fixed. A similar

! Ostrowski has indicated the close analogy between analytic extension and the study of
regions of convergence of certain series. See for instance Abhandlungen aus dem Mathematischen
Seminar der Hamburgischen Universitit, Vol. 1 (1922), pp. 327—350.
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remark applies to the norm function and to the particular map chosen for our
other measures of approximation involving conformal mapping.
We shall need the following lemma:

Lemma II. Let C be an arbitrary limited closed point set of the z-plane, not
a single point, whose complement s simply connected, and denote by w = @ (2),
2= (w) a function which maps the complement of C onto the exterior of the unit
circle y in the w-plane so that the points at enfinity correspond to each other. Let
Cr denote the curve |®@(z)| =R > 1 in the z-plane. If P(e) ¢s a rational function
of degree m whose poles lie exterior to C,, ¢ > 1, and if we have

(4.1) flP(z)I”ldegLP, p>o,
Y

then we have likewise

9—&——1) , zon Cg, R, <o,
R,

|P(Z)I§LL'( py

where L, depends on R, but not on P (z).

Properly speaking, the function P[¥(w) is not defined on y, and therefore
the use of the integral (4.1) requires some explanation. The function ¥(w)/w is
analytic and uniformly limited for |w|> 1, and therefore by Fatou's theorem®
this function and hence the function ¥ (w) approaches a limit almost everywhere
on y when w remains exterior to y and approaches y along a radius. When w
approaches y, the function z= ¥(w) approaches a boundary point of C and
hence P[¥(w)] approaches a limit. It is these values of P [¥ (w)], which there-
fore exist almost everywhere on y, that are intended to be used in the integral
in (4.1). A similar fact holds for the other measures of approximation that we
shall use which depend on conformal mapping.

The proof of Lemma II is quite similar to the proof of Lemma I. The
function P[¥ (w)] has at most » poles for [w| = 1, and these all lie exterior to
|w|=¢. For convenience in exposition we shall suppose that there are precisely
n poles a;, as, . . ., @, not necessarily all distinct, and that none lies at infinity.
If there are less than = poles, or if infinity is also a pole, there are only obvious
modifications to be made in the discussion. In the latter case, for instance,
we consider in the right-hand member of (4.2) the function found by taking the

! Acta mathematica, vol. 30 (1906), pp. 335—400.
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limit as one or more of the «; become infinite. Similarly let 8, 85, . . ., Sn denote
the zeros of P[¥ (w)] exterior to y. The function

) zlw) = P& ("/”‘“1)(7/”““2)"'(7")_‘“")(1—{él’w)(l“Ezw)"'(l_gnw)
4-2) mle) [M%“%Mﬁ—%MWU—%MW*MW—M“W*&)

is analytic and different from zero for |w|> 1, and on y:|w|=1 we have for

the values taken on by normal approach to y,
| 7¢ ()| = P [ ()|

The hypothesis of Lemma IT is therefore

fln(w)lp|dw|§L7’, p>o0.
1

We transform now by the substitution % = 1/w’; the function n(1/#') is
analytic and different from zero for |w'|< 1, and so also is the function
[z (1/w')p, if we consider a suitable determination of the possibly multiple valued
function. Cauchy’s formula

[ (1w )fp = f e (1/u")p du”

27t w —w

yields the inequality
, 1 iy, | A’ | ,

P p 1227 1 <y <1

| 72 (1/")] 2nfln:(l/w” — for |w'|<r <,

or
Lr
In(I/w'HpémI‘:;), |w'|=r <1,
which is the same as
L 1
P =2
| 7 (w) | =2a(i—1) |w|=7,>1'

The function (1 — 8;w)/(w — ) has a modulus greater than unity for |w] < 1,
so this last inequality implies

(w —a;) (w0 — @) (w — @) L
P[’P(w)](I —a;w) (1 —agw) (1 — anw)

In

b lwlzs>a
27 (1 —r)f?
It is readily shown that

54—31104. Acta mathematica. 57. Imprimé le 3 septembre 1931.
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~BRie—1

= - for |w|=R, <o,
Q_Rl l I 1

I—Eiw
w — o;

and from this inequality Lemma IT follows immediately.

Lemma IT is in reality more general than Lemma I, in the sense that it
yields an easy proof of Lemma I, but we shall find it nevertheless convenient
to have Lemma I for reference.

Let us now prove Theorem I in case approximation is measured by the
method 2). By Theorem II there exists a sequénce of rational functions 7, (2)
of respective degrees n with their poles in the set F such that we have for an
arbitrary R

&S

, zon C,

I£(2) — (&) | =

where M depends on R but not on ». The present measure of approximation
of r(2) to f(e) is

[rwra=replael,  p>o
¥
where 7 (w) is continuous and positive on y. An inequality of the form

(4.3) JECICER IR w

Y

is satisfied for the particular rational functions 7, (2) just mentioned, and so this
same inequality holds for the sequence of rational functions 7, (2) of best approx-
imation. If we have o <%’ < n(w) for w on y, inequality (4.3) implies

(4.4 [1rer=repiael= s
e

We are now in a position to use inequality (4.4) for two successive values of n
and to apply the general inequalities

flxﬁle”dxé?”‘lflxllpder2””1f|x2|”dx, P>,
(4.3)
f|x1+x2|1’dx§f|xllpdx+ flxglpdx, o< p=1.
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There results the inequality

M
[ =rs@blan) = i,
v

where ‘R is arbitrary and M, depends on R. Our conclusion follows now from
Lemma II by the method used in connection with Lemma I.

It will be noted that the function F(z) to which the sequence r,(z) con-
verges must coincide with f(z) on y, for the inequality

M
[1r@—r@kian = g,
Y

which is a consequence of (3.3), yields by (4.4) and (4.5)

[1r@—r@plan = 5

Hence the integral on the left is zero and the functions F'(¢) and f(z) coincide
almost everywhere on y. Thus F(z) and f(2) coincide at an infinity of points of
C and are identical.

5. Approximation measured by a Line Integral. Let us now turn to
method 3) as a measure of approximation, namely that C is an arbitrary closed
limited point set whose boundary is a rectifiable Jordan arc or curve or other
point set of positive linear measure, and whose complement (i. e. of O) is simply
connected; approximation is measured in the sense of weighted p-th powers
(p > o) by a line integral over C. In particular C may be a region bounded by
a rectifiable Jordan curve — in this case the proof of Theorem I is especially
simple — or may be composed of even a suitable infinity of such regions,
together with Jordan arcs abutting on and exterior to them. This measure of
approximation (for p=2) has been used by Szeg6 for approximation of given
functions by polynomials® in case C is either a Jordan curve or arc.

We shall need the following lemma:

Lemma III. Let C be an arbitrary closed limited point set whose boundary
C' has positive linear measure, whose complement is simply connected, and denote by
w=@(2), 2=%w) a function which maps the complement of C onto the exterior

! See particularly Mathematische Zeitschrift, vol. g (1921), pp. 218—270.
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of the wumit circle y in the w-plane so that the points at infinity correspond to each
other. Let Cg denote the curve | @ ()| = R > 1 in the z-plane. If P(z) is a rational
Junction of degree n whose poles lie exterior to Cy, 0 > 1, and if we have

(5. 1) ‘ﬁP®PMd§LK p>o,

i
then we have likewise

1P@I=2r (L5, s e Ri<e
1

where L’ depends on R, but not on P(z).

The boundary (’ is composed of a connected set consisting of a finite or
infinite number of Jordan curves and arcs, and we shall need later to consider
the plane cut along €. For the truth of Lemma III and of Theorem I in case
approximation is measured by 3), it is immaterial whether in such an integral as
(5. 1) [or (5.3)] we consider the cut plane or uncut plane; in the cut plane Jordan
arcs belonging to ( not parts of Jordan curves belonging to C’ are naturally
to be counted twice in the integral. However, we shall later use Cauchy's
integral formula for the region D complementary to C. If an integral is ex-
tended over a curve K in D and if K varies monotonically so that every point
of D is exterior to some position of K, then K approaches as a limiting position
the point set (', where the plane is cut along C' — that is, where each arc of
C’ not part of the boundary of a region belonging to C is counted doubly. As
a matter of ‘conver‘lience, then, we shall suppose that in considering integrals
over (', each arc of ' not part of the boundary of a region belonging to C is
counted doubly. The weight function #(z) used below may, if desired, be con-
sidered to have two distinct values at points of such an are (', corresponding
to the double valence.

The function @ (z) is continuous in the z-plane cut along the point set C'.
Let the poles and zeros of P(z) on the complement of C be respectively
@y, @,y ..., an and B, B85, ..., 08,. We may have less than % zeros or poles or
both, but that requires only a slight and obvious modification in the reasoning
now to be used. The function

2le) = P(2) D) — D) Ple) —Play) @) — Dfen)
I — D) D)1 — D) P(e) 1
1—0B)PE)1— D)D) 1 — BB D)

A —o0B) e —0B) @) —0@)
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is analytic and different from zero on the complement D of C, and so therefore
is [m(2)]?. On (', the two functions 7(z) and P(z) have the same modulus.
The function [z (¢)]P/@ () is analytic at infinity and vanishes there, so we

have ) e (8]

7 (2)|? 1 (O dt .

o (2) :2nif o i—» ‘D
5 [ )] ’

7 {2)}P Lr

D (2) ézn&’ z on Cg,

where d is suitably chosen. The integral over ( is the ordinary integral, in the
positive direction with respect to D.

The function [1 — @ (8) @ (e)l/[@ () — @ (8;)] has a modulus greater than
unity for z on Cg,, and for z on Cg, the function (@ (¢) — @ (@)/[1 — @ (a) D (2)]
has a modulus not less than (¢ — R,)/(¢ R, — 1), so Lemma III follows at once.

The method of application of Lemma IIT to the proof of Theorem I is
quite similar to that of Lemma II. By Theorem IT fhere exists some sequence
of rational functions r,(2) of respective degrees » with their poles in the set E
such that we have for an arbitrary R

If(z)—?n(z)lé%g, z on C.

Our present measure of approximation is
[renr@—r@lazl o,
&

where % (2) is continuous and positive on C’. An inequality of the form

’

(5.3 JECICECIEIES

&
is satisfied for this particular set of rational functions r,(2) and so the same
inequality holds for the sequence of rational functions of best approximation.
If we have o <#' < n(e) for 2 on (', inequality (5.3) implies

M’

sl
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which, used for two succesive values of », implies by the use of inequality (4. 5)

M
[ra(e) — rma ()P de} = jg;f;'
&
This inequality is of the precise .form for application of Lemma I1I, and
by the methods already used yields Theorem 1 for the measure of approximation

which we have been considering.

6. Approximation in a Region; Conformal Mapping. Method 4) of measuring
approximation is next to be studied, namely that C is an arbitrary simply con-
nected region and approximation is measured in the sense of weighted p-th powers

(p>0) by integration over the circle y : [w|= 1 when the interior of C'is mapped
conformally onto the interior of y. This method (without the use of a weight
function and for p > 1) has recently been used by Julia' in the study of approx-
imation of barmonic functions by harmonic polynomials.

If we are dealing with either of the measures of approximation 4) or 3),
lemmas precisely analogous to those already established may be used, but it is
just as convenient to proceed in a somewhat different way. Let us prove®

Lemma IV. If each of the functions Py(z) is analytic and bounded interior
to the simply connected region C and if we have

(6. 1) f]Pn(Z)IPIdwléL”, p>o,
7

where the interior of C is mapped onto the interior of y:|w|= 1, then we have
IP"(Z)IéL’L7

Jor z on an arbitrary closed point set C' interior to C, where L' depends on C' but
not on Py (2).
In the integral in (6. 1) the value of | Pn(2z)]| on y is naturally to be taken
in the sense of normal approach to y; these boundary values are known to exist.
Let the zeros of P,(2), if any, interior to C be ¢, a,,... We assume
Pr(z) not identically zero, for the lemma is obviously true so far as concerns
such functions. Consider the function

' Acta Litterarum ac Scientiarum (Szeged), vol. 4 (1929), pp. 217—226.
? Compare Walsh, Transactions of the American Mathematical Society, vol. 33 (1931I), pp.
370—388.
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Pale) 1T ged)]

(6.2 Pale) = ,
it (I )

7Y e

where w =@ (2), z =1 (w) is a function which maps the interior of C conformally
onto the interior of y. There may be an infinity of points e; but if so the
infinite “ products here converge, by Blaschke's theorem. We assume ¢ (e;) > o,
which involves no loss of generality, for the following reasoning concerning
P, (z) may be applied to the quotient by [p(2)]* of a given P.(z), where £ is the
order of the zero of the given P,(z) at the point z=1p(0). The function F,(2)
is analytic and different from zero interior to C, and has the same modulus as
Pa.(2) on C or on y. The function [F,(2)]? is likewise analytic and uniformly
bounded interior to C and ¢, if we consider an arbitrary determination of the
p-th power at an arbitrary point interior to C or y and is analytic extension,
so we have Cauchy's integral

(Pl )]}p = - - f (A

Cauchy's integral is naturally valid here, for the boundary values of ¥ (w) and
hence of F,(z) for normal approach to y exist almost everywhere.
It follows now that we have

1Bl =, i f|F Aldnl= ;- lp@l=r<t.
Each function
[ (@)l
@ (&) — @ ()
I
¢(Z)—¢(0!i)

is of absolute value greater than unity for z interior to C, so we have from (6 2)

e
| () |? < | Fule |§m‘m(1—1~)’ lpE=r<1

and the proof of the lemma is complete.
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The application of Lemma IV is immediate. By Theorem III there exist
rational functions 7,(2) of respective degrees n with poles on the set £ such
that we have

M
1f&) =)=z 2 on C,
so the inequality

MI
[ rese —r@plael= 4,
7
where the weight function #(w) is positive and continuous on y, is satisfied for
this particular set of rational functions and hence for the rational functions of
best approximation. This leads in turn to inequalities of the form

4

flf(Z)—rn(Z)'lpldwlg%ﬁ,
s

This last inequality yields by Lemma IV

e —m@l=he zon 0,

where (" is an arbitrary closed point set interior to C and where R is arbitrary,
whence Theorem I follows by Theorem IIT for the measure of approximation
that we are here considering.

7. Approximation-in a Region; Surface Integrals. Method ;) of measuring
approximation involves the use of a double integral,

f f 1) =l PdS,  p>o,

and this method has been used by Carleman® in considering the approximation
to an analytic function by polynomials. We shall find it convenient to prove

Lemma V. If each of the functions Py (2) is analytic interior to an arbitrary
region C, and if we have

(7. 1) ffan(z)P’dSéLl’ p>o,

! Arkiv for Matematik, Astronomi och Fysik, vol. 17 (1922—23).
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then we have

(7.2) |P.(2)|= L' L

for z on an arbitrary closed point set C' interior to C, where L' depends on C but
not on Py (2).
The integral

27
= [1es renpas, p=o,
0

is well known to be a non-decreasing function of 7, in an arbitrary circle K
which together with its interior lies interior to C. Here (r, 8) are polar coordinates
with pole at the point z,. The limit of this integral as » approaches zero is
obviously | Px(z,)|?, from which follows the inequality

27
Bl = 3 [ Paleo + e lpas.
0

We multiply both members of this inequality by »ds» and integrate from zero
to k, the radius of K. The resulting inequality is

Elrelr= L [1P.@Pas
2 TPV = o " &2
K

so we may write by virtue of (7.1)

I 1 Lr
el = [ [1n@as= [ [1paras= T
K c .

This inequality holds for every point z, interior to C provided merely that
the distance from ¢, to the boundary of C is not less than k2. The inequality
therefore holds for proper choice of % for z, on an arbitrary closed point set C’
interior to C and is equivalent to (7.2) for z on (', so the lemma is completely
established.

The application of Lemma V in the proof of Theorem I does not differ
materially from the application of Lemma IV and is left to the reader. Theorem
I is now completely proved.

55—31104. Adcta mathematica. 57. Imprimé le 4 septembre 1931.
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8. Further Remarks, There are three problems, distinct from those already
treated, which are intimately connected with the discussion given. We mention
merely the statement of the problems and leave the details to the reader. In each
of the three cases some new results can be found directly from our previous
work, while other new results lie but little deeper.

1. The given function f(z) may be meromorphic instead of analytic on C
and the approximating rational functions 7,(z) of respective degrees » are per-
mitted to have poles in all the singularities E of f(z), in particular in the poles
of f(2) belonging to C. Under certain conditions it is still true that the sequence
of rational functions of best approximation whose poles lie in the singularities
of f(z), converges to the limit f(z) on the entire plane except at the singularities
of fle).!

2. The given function f(2) may be analytic or meromorphic on C and the
given rational functions 7,(z) may be required or not to satisfy auxiliary con-
ditions interior to C, those conditions being the prescription of the values of
7. (2) with perhaps some of its derivatives at various points interior to C; indeed,
the functions r,(¢z) may be allowed to be meromorphic interior to C, and have
their principal parts prescribed at various points interior to C. These auxiliary
conditions need have no relation to the given function f(z). If the auxiliary
conditions do not depend on », if the limit function F(z) (which is uniquely
determined by f(z) and the auxiliary conditions) of the sequence ry(z) has all of
its singularities in a point set E one of whose derivatives is empty, and if the
poles of the approximating functions r.(z} are merely restricted to lie on E, then
under suitable simple restrictions on (), the sequence of rational functions s, (2)
of best approximation to f(z) on the boundary of C in the sense of Tchebycheff
and satisfying the auxiliary conditions, converges to the function F(z) on the
entire plane except at the singularities of F(¢).2 If the prescribed auxiliary
conditions involve merely the coincidence of the values of 7, (z) and the given
function f(z) at certain points interior to C, then under suitable conditions we
have the conclusion of Theorem I satisfied: the sequence 7 (z) approaches the
function f(z) at every point of the plane not on E, uniformly on any closed

' Compare Walsh, Transactions of the American Mathematical Society, vol. 30 (1928), pp.
838-—847.

* Compare Walsh, Transactions of the American Mathematical Society, vol. 32 (1930), pPp.
335—390.
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point set containing no point of E, where approximation is measured by any of
the methods 1)—s3).

3. The results of the present paper have application to the study of
approximation of harmonic functions by harmonic rational functions. If a suitably
restricted harmonic function u(z,y) is given, the function

(8.1) &) =ulz,y) + iv(z,y),

where v(x,y) is a function conjugate to wu(x,y), satisfies the hypothesis of
Theorem I. Approximation to f(z) by rational functions r,(2)=2"s(x, y)+ <7, (x,y)

implies approximation to w#(x,y) by the harmonic ‘rational functions ', (x,¥).
Even if the given function u(x,y) is not so simple that an equation of form
(8.1) is valid, where f(z) satisfies the hypothesis of Theorem I, it may be possible
to approximate wu(xz,y) by harmonic rational functions plus harmonic functions
involving the logarithms of distances. Such methods of approximation have already
been used to some extent by the present writer.!

! Bulletin of the American Mathematical Society, vol. 35 (1929), pp. 499—544.




