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I. I n t r o d u c t i o n .  For  many purposes, arbi t rary  ra t ional  funct ions are more 

useful in approximat ing  to given analyt ic  funct ions of a complex variable than  

are polynomials. For  instance it  is shown by Runge  in his classical paper  on 

approximat ion by polynomials I tha t  a funct ion  f(z) analytic  in a closed region 

of the z-plane bounded by a finite number  of non-intersect ing Jo rd an  curves can 

be u n i f o r m l y  approximated in tha t  region as closely as desired by a ra t ional  

funct ion of z. ~ Such approximat ion by a polynomial may not  be possible. I t  is 

the purpose of the present  paper to show tha t  in the study of two other  phases 

of approximat ion i t  may also be more advantageous to use general  ra t ional  

funct ions than  polynomials, namely I) degree of approximation,  t ha t  is, asymp- 

tot ic  proper t ies  of the measure of approximat ion of the sequence of funct ions 

of best approximation,  and z) overconvergence,  the phenomenon tha t  a sequence 

of funct ions app rox ima t ing  a given funct ion in a given region f requent ly  con- 

verges to tha t  given funct ion (or its analyt ic  extension) not  merely in the given 

region but  also in a larger  region containing the given region in its interior.  

The t e rm overconvergence has recent ly  been used by Ostrowski in a somewhat  

different  connection. 

A ra t ional  funct ion of the form 

x Act~ mathematiea vol. 6 (I885) , pp. 229--244. 
2 For  more detailed results, compare Walsh, Mathematische Annalen vo]. 96 (I926), pp. 

437--450 and Transactions of the American Mathematical Society vol. 31 (I929) , pp. 477--5o2. 
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a oz n -~ a] z n-1 ~- ... -~ an 
b oz" + b l z  n - l +  ' +  b~ 

where the denominator  does not  vanish identically, is said to be of degree ~. 

We shall deal with the entire plane of the complex variable z, closed by 

the adjunct ion of a single point  at infinity. The derivative, or more explicitly 

the f irst  derivative of an arbitrary point  set E is the set E '  composed of the 

limit points of E. The second derivative of E is the first derivative E "  of E ' ,  

and in general the k-th derivative E a) of E is similarly defined as the first 

derivative of the ( k -  I)-St derivative of E. The principal result of the present 

paper  is 

Theorem I. Suppose f ( z )  is an analytic fi~nction of  z whose singularities 

form a set E one of  whose derivatives E (k) is empO. Suppose C is a closed point  

set with no point in common with E. Then a sequence of  rational functions r~ (z) 

o f  respective degrees n o f  best approximation to f ( z )  on C such that the poles of  

r ,  (z) lie in E,  converges to the function f ( z )  orer the entire plane except on the set 

.E. The convergence is uniform on any closed point  set containi~g ~7o point  of E,  

and on any such point set the convergence is better tha~ that of any geometric series. 

The term best approximation deserves some explanation. There are various 

measures of approximat ion of the funct ion r ,  (z) to the given function f ( z )  defined 

in a region C, for instance max I]f(z) - -  r,, (z)], z on C], " t - ] f  (z) - -  rn (z)]~l dz[ 
, ]  

taken over the boundary  of C, or f i l l ( z ) - - r , , ( z ) ]  ~ d S  taken over the area of 
, ]  . ]  

c 
C. Let  us consider a part icular  measure of approximation and a part icular  value 

of n, and call admissible any rat ional  funct ion of degree n whose poles lie in E.  

Then a rat ional  function r~(z) of degree n of best approximation to f ( z )  on C 

such tha t  the poles of r .  (z) lie in E is tha t  admissible funct ion r~ (z) or one of 

those admissible functions whose measure of approximat ion to f ( z )  on C is less 

than the measure of approximation to f ( z )  on C of any other admissible function. 

I t  is not  obvious but can be shown without  great  difficulty tha t  such a funct ion  

of best approximation always exists, for the various measures of approximat ion 

tha t  we shall use, a l though it need not  be unique. ~ 

1 See Walsh, Transactions of the American Mathematical Society vol. 33 (193I) �9 
The existence af a function of best approximation depends essentially on the closure of 

the set E. 
If E contains but a finite number of points, there are for a given n but a finite number of 

possible distributions of the orders of the poles of r n(z) among the points of E. For each such 
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In Theorem I the set C may be z) any closed point set not a single point 

whose complement is simply connected, approximation being measured in the sense of 

Tchebycheff : 2) any closed set not a single point whose complement is simply con- 

nected, approximation being measured by integration over.the circle y : ] w l ~  z when 

the complement of C is mapped onto the exterior of 7; 3) any limited closed set C 

whose boundary is a rectifiable Jordan arc or curve, or more generally any limited 

set C whose boundary C' is of positiue linear measure and whose complement is simply 

connected, approximation being measured by a line integral over C'; 4) any simply 

connected region, approximation being measured by integration on the circle 7 : I w] ~- I 

when C is mapped onto the interior of 7; 5) any region or point set with at least 

one interior point and having positive area, approximation being measured by a double 

integral over C. 1 

By approximation in the sense of Tchebycheff we unders tand  tha t  the measure 

of approximat ion  of r~ (z) to a given funct ion f(z) on a point  set C is 

max [If(z) - -  r~ (Z)[, z on C]. 

In  this measure of approximat ion  it  is a slight general izat ion to insert  a weight  

or norm funct ion n(z) positive and continuous on C and to use as the measure 

of approximat ion 

max [n (z)If(z) - -  r~ (z) l , z on C]. 

This in t roduct ion of a norm funct ion presents  no difficulty, and for  the sake of 

simplicity we do not  make the in t roduct ion  for  the Tchebycheff  measure of 

approximation.  We  do introduce a norm function,  however, for  the in tegra l  

measures of approximat ion 2)--5). 

The measures of approximat ion 1)--5) have recent ly  been used by the 

present  wri ter  in the study of approximat ion to given analyt ic  funct ions by 

polynomials,  ~ and results analogous to Theorem I have been established. I t  is 

to be noticed tha t  in Theorem I the case tha t  f (z)  is an entire funct ion leads 

d i s t r i b u t i o n  the re  is  (loc. cir.) b u t  a s ingle  ra t iona l  func t ion  of bes t  app rox ima t ion ,  and  hence  

i n d e p e n d e n t l y  of t h i s  d i s t r ibu t ion  the re  are b u t  a f ini te n u m b e r  of f unc t i ons  rn(Z ) of bes t  
a p p r o x i m a t i o n .  

i T he  reader  m a y  not ice  f rom the  d i scuss ion  w h i c h  fol lows t h a t  in  all  of t he se  cases  t h e  

r ea son ing  we give  is va l id  or can be modif ied  so as to be  va l id  even  if t h e  c o m p l e m e n t  of C is  

f in i te ly  m u l t i p l y  connected,  p rov ided  t h a t  C con ta ins  no isola ted point .  

T r ansac t i ons  of t he  Amer i can  Ma thema t i ca l  Society,  vol. 32 (I93O) , pp. 794- -816 ,  and  vol. 

33 (I93I),  pp.  370- -388 .  
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precisely to the approximation of f(z) by polynomials, which case has been 

treated with others in the papers just mentioned. 

The results just referred to are perhaps worth stating in detail so that  

they can be compared with Theorem I. Special cases of these results are 

naturally due to various other writers; we shall have occasion later to mention 

the special case due to S. Bernstein. Let C be an arbitrary limited closed point 

set of the z-plane and denote by D the set of all points each of which can be 

joined to the point at infinity by a broken line which does not meet C. We 

suppose D to be simply connected. Let the function w = ~ ( z )  map D onto the 

exterior of [w[~- I so that  the points at infinity correspond to each other and 

denote by Ca the curve I~(z)] = R > I in the z-plane, namely the image of the 

circle I w [ :  R. If  the function f(z) is analytic interior to CR but has a singul- 

arity on CR, the sequence of polynomials z~ (z) of best approximation to f(z) 
on C [measured in any one of the ways 0--5) provided that  in 5) the point set 

C is a closed region], converges to f(z) for z interior to CR, uniformly for z on 

any closed point set interior to CR, and converges uniformly in no region cont- 

aining in its interior a point of CR. I f  R~ < R and if the measure of approx- 

imation tt,, involves the p-th power of I f ( z ) -  ~ (z)[, p > o, then the inequality 

21/ 
~ -  p n p ,  

'~ ~ I ,  2 ,  . . . ,  

is valid, where M depends on /~: but not on n, but this inequality is valid for 

no choice of / t  1 > R. 

A somewhat trivial but nevertheless illuminating illustration of the differ- 

ence between polynomials and more general rational functions when used for the 

approximation of a given function, occurs for a function f(z), approximated in 

the sense of least squares on the unit circle C: I z l -~  I and having a single 

singularity in the plane, namely at the point z ~ a whose modulus is greater 

than unity, The sequence of polynomials of best approximation to f(z) on Cin  

the sense of least squares is the sequence of partial sums of the Taylor devel- 

opment of f(z) at the origin. This sequence {z~(z)} converges in such a way 

that  we have 

f If(z) -- ~v~(z) 12ld,. ~l <= R2,, ,~-~ I, 2 , . . . ,  

6' 

where R is an arbitrary number less than [a[, but this inequality holds for no 
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choice of M when R is greater  than l a] .  The sequence {z~(z)} converges for  

I z ] < ] a I and  diverges for Iz I > [ a I. 
On the other  hand, if we study the best approximat ion to f ( z ) o n  C in the  

sense of least squares by ra t ional  funct ions r~, (z) of respective degrees n whose 

poles lie in the point  z ~ a, the inequali ty 

f M 

c 

~ -  I ,  2~ . . . ,  

is satisfied for  an arbitrary R,  provided tha t  a suitable M (depending natural ly  

on /~) is chosen. This fact  is easily proved for itself by help of the trans- 

format ion  w : ( 1 -  ~ z ) / ( z -  a) and indeed follows f rom Theorem I, as does the 

fact  tha t  the corresponding sequence {r~,(z)} converges to the sum f ( z )  at  every 

point  of the plane other  t han  z : a. Thus the degree of approximat ion  is not  

so great  for  approximation to f ( z )  on C by polynomials as for  approximat ion by 

ra t ional  funct ions with poles in z : a, and in the la t te r  case the region of con- 

vergence is also greater.  

Theorem I is t rue in the trivial case tha t  C is the entire plane, for  in this 

case f ( z ) m u s t  be a constant  and a l l  the approximat ing ra t ional  funct ions r~(z) 

are this same constant .  Approximat ion  on C can be measured by ei ther  of the 

methods  I) or 5). Hence fo r th  this tr ivial  case is excluded. 

2. Degree  of  A p p r o x i m a t i o n .  A prel iminary theorem which we shall 

apply is 

Theo rem II .  Suppose f ( z )  is an analytic function of z whose singularities 

form a set E one of whose derit~atives E (k) is empty. Suppose C is a closed point 

set with no point in co,ninon with E. Then there exists a sequence of rational 

functions r,~ (z) of respective degrees n whose poles lie on E such that for an arbitrary 

R we have 
M 

I f ( z )  - r , , ( z )  l < - -  z on C, 

where M depends on R but not on n. 

We prove Theorem I I  first for  the case tha t  E '  is empty, so tha t  E con- 

sists of a finite number  of points A1, A s , . . . ,  A,. 

The funct ion f ( z )  can b e  expressed as the sum of v functions,  each analytic 

on the ent ire  extended plane except in a point  Ak. In  fact,  let  us assume tha t  
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A~ is the point at infinity; this is no restriction of generality. 

integral 
" I ; .f(t)  dt 

k = l  
7k 

Then Cauchy's 

gives this expression directly, if 7~ is a circle containing A2, A3, . . . ,  A~, and 

7k(k > I) is a circle about the point Ak but containing no other point Aj .  

Equation (2. I) is valid if z lies in the region bounded by these ~ circles, integra- 

tion being taken in the positive sense with respect to this region. The integrals 

in (2. I) are all independent of the particular circles 9'k chosen, provided merely 

that the circle 7~ is sufficiently large and the other circles are sufficiently small; 

each integral defines a function analytic over the entire extended plane except 

at a point Ak. Let us introduce the notation 

2. 2) 
, f f ( t )  d t  

7k 

it being understood that the circle 7~" is so chosen as to separate z and A~, but 

not to separate z and any other point Aj .  The function 2~(z) is thus defined 

and analytic at every point of the extended plane except at Ak. 

The function 3~ (z) can be uniformly approximated in the sense of Tchebycheff 

on the point set C by a sequence of rational functions r~')(z)of respective 

degrees n whose poles lie in Ak and such that we have 

Mk 
(2.3) ]fx. (z) - -  ,'}/:)(z)l ~ _R ~ , z on C, 

k 

where Rk > I is arbitrary and ~][k depends on Rk. In fact, if we transform Ak 

into the point at infinity by a linear transformation of the complex variable, 

the successive convergents of degree n of the Taylor development of the trans- 

formed f k ( z ) a b o u t  the new origin yield by transformation back to the original 

situation a suitable set of functions rl~)(z). The rational function 

k ~ l  

may be considered of degree ~n, so we may write by addition of inequalities (2.3) 



Certain Sequences of Rational Functions of Best Approximation. 417 

M '  
I f ( ~ ) - - r , ~ ( z ) l ~  R ? '  z on C, 

where all the  numbers  /~k are ehosen the same and M '  is the sum of the Mk. 

This inequali ty does not  yet  hoid f o r  ra t ional  funct ions of all degrees, bu t  we 

may write 

(2.4) If(z) - -  r~ (z)] < 3// Z on C, 

where we set R ~ B 1/*, where we set 

rm(z) ~--- r ,n  (e), 

~n being the smallest multiple of �9 not  less t han  m, and where we have 

M = M ' R 1 .  Inequal i ty  (2.4) thus holds for  all m,  where r ~ ( z ) i s  a ra t ional  

funct ion of degree m and where R > I is arbi t rary.  

This completes the proof  of Theorem I I  in the case tha t  E' is empty.  

Le t  us t rea t  next  the case tha t  E" is empty,  so tha t  E' consists of a finite 

number  of points Aa, A ~ , . . . ,  A,;  we assume tha t  A i is the  point  at  infinity. 

Le t  B >  I be given. Le t  Yl be a large circle conta ining A2, As, �9 � 9  A~ in its in ter ior  

and let  7s, 7 8 , . . . ,  7~ be smalI circles about  the points  As, A3 . . . . .  A~ respect- 

ively. Le t  6 denote  half  the maximum diameter  of C. Then  the radius of 71 

is to be chosen larger  than  d R  *+1. The radius of 73 is to be chosen so small 

~hat when As is t rans formed to infinity by a l inear t rans format ion  of the com- 

plex variable the radius of the corresponding circle ( t ransform of 7~) is larger  

t han  the  product  of R *+1 by half  the maximum diameter  of the  t r ans form of C. 

The radii  of 73, 7a . . . .  , 7 ,  are to be chosen correspondingly.  None  of these 

circles Zi shall pass th rough  a s ingulari ty of f(z). 
Cauchy's  in tegra l  

,r 1 ( f ( t )  dt 
7 : - u  on C, 

k = l  7k 

where 7,+1 is an arbi t rary  curve or curves separat ing C from none of the circles 

7a . . . .  ,7 ,  but  separat ing C f rom all the singular  points of f(z) inter ior  to ~q and 

exter ior  to 7s, 78, . . . ,  7*, expresses f(z) as the sum of v + I funct ions which are 

analytic  respectively inter ior  to 7a, exter ior  to 7s, 78, - �9 -, 7*, and exterior  t o  

7,+1. The funct ion  
! ff(t)dt 

2 ~ r i J  t ' z  

53--31104. Acta mathematica. 57, Imprim6 lo 3 septombre 1931. 
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is independent  of the part icular  curve or curves 7,+1 chosen, and the only sing- 

ularities of this function are the points of E not  exterior to 7t or interior to 

7.~, 73, �9 �9  7~" 
]?here exist rat ional  functions r~  (z) of respective degrees n such tha t  we 

have 
[ 1 (f(t) dt ,.~1 [ M(i) 

(~. 5) ~ (Z) ~ R--nO,+i--~, Z OTI ~ ,  i = I ,  2, . . . ,  ";  

7i 

in fact  the rat ional  funct ion r~)(z) may be chosen so as to have all its poles in 

the point Ai, and the funct ion -'(~)(z) may be chosen as the sum of the first 

n + I terms of the Taylor development of the function approximated, about a 

suitable point, when Ai is t ransformed to infinity by a suitable linear trans- 

formation of the complex variable. I t  follows from the particular choice of the 

circles 7~ tha t  the inequali ty (2.5) will be satisfied by these part icular  rafional  

functions. The funct ion 
1 (f(t)_dt 

2z~ i j  t--z 

has as its only singularities in the plane the points of E not  exterior to 71 or 

interior to 7~, 7 ~ , . . - ,  7~, and these singularities of this function are finite in 

number. Then by the part  of Theorem I I  already established (i. e. E '  empty), 

there exist rat ional  functions r~ + '  (z) of respective degrees n such tha t  we have 

I f  we set 

M(,+I) ]2~-iJ[ 1 ff(t)t___zdt ,,~.(.+1) (z) <--R,,(,+1), 
7~,+1 

~+1 
, - ( ,+ , , ,  (~) = ~ r(:)(~), 

S o n  ~ .  

we have a rat ional  function of degree (v + I)n with the property 

M1 
I f ( z )  - -  , '++1/ .  (z)[ < R<.+I~,~, 

We now make the definition 
, '~ (~) = r l + l l .  (~), 

where (v + i )n  is the smallest multiple of v 

M =  M1R ~+1 we have the inequali ty 

z o n  G. 

not  less than  m, so by sett ing 
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M 
I f ( z ) - r ~ ( z ) l = < R ~  , z on C, 

which holds for all values of m, R > I, and Theorem I I  is established in the 

case that  E "  is empty. 

A formal proof of Theorem I I  in the general case that  E (k) is empty follows 

directly the proof just given, by the use of mathematical induction, and the 

details are left to the reader. 

In  the present paper we are primarily concerned with the rational functions 

of degree n of best approximation. By Theorem I [  there exists some sequence 

of rational functions r, (z) of respective degrees n whose poles lie on the set E 

such that  (2.4) is satisfied. I t  follows directly that  the same inequality must 

be valid for the sequence of rational functions r~ (z) of best approximation in the 

sense of Tchebycheff whose poles lie on E. 

3- A T h e o r e m  on  0vereonvergenee. Another preliminary theorem which 

we shall have occasion to use is 

Theorem III .  I f  the sequence of rational functions rn (z) of  respective degrees 

n converges in a region C" (containing no limit point of poles of the r~ (z)) in such 

a way that we have for every R 

M 
(3. I) I f (z )  - -  rn (z) < R ~ ,  z in  C', 

where 3 I  depends on R but not on n, then the sequence {r~(z)} converges and f(z)  

is analytic at every point of the extended plane except the limit points of  poles of 

the functions r~ (z) and except points separated from C' by such limit points. Con- 

vergence is uniform on any closed region C" containing no such limit point, and for 

z on C" an inequality of form (3- I) holds for an arbitrary R provided that M 

(depending on R) is suitably chosen. 

In the proof of Theorem I I I  we need to apply a lemma of which a special 

case was first used by S. Bernstein. The proof of the present lemma is inspired 

directly by the proof of Bernstein's special case given by ~Iareel Riesz in a letter 

to Mittag-Leffler. 1 The entire discussion of the present paper is analogous to 

Bernstein's discussion in which his lemma was proved. His chief result in this 

connection is that  if a function f(z)  is analytic on and within the ellipse with 

foci I and -- I and semi-axes a and b, then there exist polynomials pn (z) of 

i Acta mathematica vol. 40 (I916), pp. 337--347. 



420 J . L .  Walsh. 

respective degrees n such that  we have 

M 
(3.2) I f (e )  - pn (z) l _-< - -  Qn' Q : a + b .  

Reciprocally, if there exist polynomials pn (z) of respective degrees n such that  

(3. e) is satisfied for -- I ~ z ~ + I, for a certain value of Q, then the function 

f ( z )  is analytic interior to the ellipse described. Our Theorem I I  is the analogue 

of the first part of Bernstein's theorem, and our Theorem I I I  is the analogue 

of the second part of that  theorem. 

The following lemma has already been established elsewhere, x although in a 

slightly less general form, but the proof is simple and typical of other proofs 

to be given, and so will be repeated. 

Lemma I. Let F be an arbitrary closed limited point set of the z-pla~e whose 

complement is simply connected, and denote by w ~ q)(z), z = T (w) , a function which 

maps the complement of F onto the exterior of the unit circle 7 in the w-plane so 

that the two points at infinity correspond to each other. Let FR denote the curve 

la~(~)l= R > ~ in the z-plane, the transform of the circle Iwl = R .  Z/~'(~) is a 

rational function of degree n whose poles lie exterior to Fe, O .> I, and i f  we have 

I P (z ) l  ~ L ,  
then we have likewise 

ip(z)l < L[e__R,-- II ", 

z o n  F, 

z on FR~, R 1 < Q. 

In the statement of Lemma I we have, as a matter of convenience, required 

that  F should be limited and that  in the conformal mapping the point at infinity 

in the z-plane should be transformed into the point at infinity in the w-plane. 

The result can naturally be phrased in terms of an arbitrary closed point set F, 

where in the conformal mapping an arbitrary point of the complement of F is 

transformed into the point at infinity in the w-plane. 

The function P[T(w)] has at most n poles for [ w [ ~  I and these all lie 

exterior to [ w [ =  Q. For convenience in exposition we suppose that  there are 

precisely n poles al, a ~ , . . . , a n ,  not necessarily all distinct, and that  none of 

them lies at infinity. I f  there are less than n poles, or if infinity is also a pole, 

1 Walsh, Transactions of the American Mathematical Society, vol 3 ~ (1928) , pp. 838--847; 
p. 842. 
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there are only obvious modifications to be made in the discussion. The function 

(3.3) 
(w - , , ) ( w  - %). . .  (~ - ,~) 

(w) = P [ ~  (~)] (~ _ ~ w) {~ - ~ w) . . .  {i - a,. w) 

is analytic for Iwl> ~. When w ( I w l >  ~) approaches 7, z approehes C, and 

an limiting values of IP[~(w)][ are less than or equal to L; the function 

( w -  ar - - ~ w )  is continuous and has the  modulus unity on ~,, from which 

it fonows that  the limiting values of I~(w)l for w approaching r(Iwl > ~) are 
not greater than L. Then we have 

(3.4) I ~ (w) l ~ L 

for [ w ] >  I, s ince the funct ion  [ ~ ( w ) ]  can have no m a x i m u m  for I w l >  i.  

The  transformation ~ -~  ( w  - -  a~)/(I - -  ~,~w) transforms Iwl  = R1 into 

circle I(r + ~)/(~ + a~ ~ ) 1 =  R~, so w~ have 

the 

= R ~ l a i l - -  I = R l e - -  ' 
for [ w ] = R l < Q .  

Thus we find from (3: 3) and (3.4),. 

IP[~(w)]l< L H I--~iW I []~le--I~ n 

for [ w [ =  R1 < e, and Lemma I is established. 

Lemma I in the  form in which we have considered it, is not expressed 

so as to be invariant under all linear transformations of the complex variable. 

That it to say, a suitable linear transformation yields a new result. One way 

in which we shall apply Lemma I is in proving the following remark: 

I f  the sequence of rational functions ]P~ (z) of respective degrees n satisfy the 
inequality 

I P~ (z) l < ~1 = R~' z in a circular region K, 

for every value of R1, where M1 depends on R1, and i f  the circular region K' 

contains K but contains on or within i t  no limit point of poles of the functions 
t)~(z), then the inequality 
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I P,,  (z) I < M~ K ' .  = B~-' 2" in 

is satisfied for  ecery value of  R2, where .312 depends on R~. 

In  the sense here considered, a circular region is the closed interior  or 

exterior of a circle, or a closed half-plane. The proof of the remark follows 

directly from the lemma, by t ransforming the given circular regions K and K '  

into two regions bounded by concentric circles of respective radii I and Q~ > I. 

This t ransformat ion is natural ly to be a l inear t ransformation of the complex 

variable, and to prove the remark we need merely set 

I __ I (~0! - -  I M 1  = M 2 ,  
/r R~ Q - -  Ql ' 

where the circle concentric with K and K '  of radius Q contains K '  but  contains 

no limit point of poles of the functions P~ (2"). 

Theorem I I I  follows directly from Lemma I and from the remark just  

made. From the inequalities 

M 
I f ( z )  - -  r~-1(2")l  < B ~ - ~ '  z in C', 

M 
If(z) - -  r,~ (z)] < 1~, z in C', 

we derive 
N 

I,' .  (z) - r~ - i  (z) l < R~'  z in  c ' ,  

where 2Y---- M ( I  + R). The funct ion r ,  (z) -- rn--1 (2') is rat ional  of degree 2 n - -  I, 

so if the point set C' is limited, and this si tuation can be reached  by a linear 

t ransformation,  we obtain from the lemma 

I ,~  (2") - r~_l  (2")1 < ~ i e - R ,  I , z on c k ,  R1 < ~, 

for n sufficiently large, where C~ contains on or within i t  no limit point of 

poles of the functions r,(z), and it is to be remembered tha t  R is arbitrary. 

I t  follows tha t  the sequence {rn(z)} converges interior to any curve Cjr which 

contains on or within i t  no limit point of poles of tha t  sequence, and tha t  in 

any such curve CR1 the inequali ty 
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M 
(3.5) I"~ (z) --  ".-1 (z) l ----< R~ 

holds for an arbitrary choice of /t. 

By a method entirely analogous to that  of analytic extension 1 it can now 

be shown f r o m  the remark following Lemma I that this same inequality holds 

in the region C" of Theorem III .  Inequality (3.5), holding in some region CR1, 

holds also in any circular =region containing no limit point of poles of the r~ (z) 

but having a subregion in common with C~,. The process of extending step by 

step the domain of known validity of (3.5) can be stopped only by limit points 

of poles o f  the r~ (z), and any point set such as the C" prescribed in Theorem 

I I I  can be included in this domain by a finite number of steps. The uniform 

convergence on C" of the sequence {r~(z)} follows directly from (3.5), and the 

identity of the limit function with f(z) (or its analytic extension) fonows from 

(3. I) for z in C' and hence for z on C". There is no difficul.ty in deriving 

(3. I) for z on C" from (3-5) for z on C", so the proof of Theorem II1 is 

complete. 

We have now a proof of Theorem I in the case i), that approximation is 

measured in the sense of Tchebycheff. Inequality (3. I) holds for the sequence 

of rational functions of best approximation whose poles lie in E, as we have 

already indicated, and the conclusion of Theorem I follows from Theorem II I .  

4- Approximation measured after Conformal Mapping. We now take up 

the measure 2) of approximation to f(z) on C, that  C is an arbitrary closed set not a 

single point whose complement is simply connected, and approximation is mea- 

sured in the sense of weighted T-th powers (p > o) by integration on the circle 

7 : l w l =  I when the complement of C is mapped onto the exterior of 7. This 

measure of approximation naturally depends on the particular point O' of the 

complement of C chosen to correspond to the point at infinity in the w-plane, 

but the problem of best approximation for a particular choice of O' with a 

particular choice of the norm function n(w) is equivalent to the problem of best 

approximation for an arbitrary choice of 0 '  with a suitable norm function n (w). 

In  the present paper we suppose 0', once determined, to be fixed. A similar 

1 0 s t r o w s k i  has indicated the close analogy between analytic extension and the  s tudy of  

regions of convergence of certain series. See for instance kbhand lungen  a n s  d e m  Mathematisehen 
Seminar der Hamburgischen Universit~t,  Vol. I (1922), pp. 327--35o. 
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remark applies to the norm function and to the particular map chosen for our 

other measures of approximation involving conformal mapping. 

We shall need the following lemma: 

Lemma II. Let C be an arbitrary limited closed point set of the z-plane, not 

a single point, whose complement is simply connected, and denote by w = q)(z), 

z -~ T (w) a function which maps the complement of C onto the exterior of the unit 

circle 7 in the w-plane so that the points at infinity correspond to each other. Let 

C2r denote the curve I q) (z )]= R > I in the z-plane. I f  P(z) is a rational function 

of degree n whose pole; lie exterior to Ce, e > I, and i f  we have 

(4" I) flP(z)l ldwl----< Lv, p > o ,  

then we have lilcewise 

[ Q R 1 -  t~ n 
]P(z) I <= L L ' t  e - -  Rt / ' z on CR,, Rl <Q,  

where L 1 depends on R 1 but not on P (z). 

Properly speaking, the function P[T(w)] is not defined on 7, and therefore 

the use of the integral (4. I) requires some explanation. The function ~F(w)/w is 

analytic and uniformly limited for ] w ] >  I, and therefore by Fatou's theorem 1 

this function and hence the function T (w) approaches a limit almost everywhere 

on 7 when w remains exterior to 7 and approaches 7 along a radius. When w 

approaches 7, the function z = T(w) approaches a boundary point of C and 

hence P [T (w)] approaches a limit. I t  is these values of /~ IT (w)], which there- 

fore exist almost everywhere on 7, that  are intended to be used in the integral 

in (4. I). A similar fact holds for the other measures of approximation that  we 

shall use which depend on conformal mapping. 

The proof of Lemma I I  is quite similar to the proof of Lemma I. The 

function _PIT(w)] has at most n poles for ] w [ ~  I, and these all lie exterior to 

I w] = e. For convenience in exposition we shall suppose that  there are precisely 

n poles al, a s , . . . ,  a~, not necessarily all distinct, and that  none lies at infinity. 

I f  there are less than n poles, or if infinity is also a pole, there are only obvious 

modifications to be made in the discussion. In the latter case, for instance, 

we consider in the right-hand member of (4.2) the function found by taking the 

1 A e t a  m a t h e m a t i c a ,  vol .  3 ~ (19o6) , pp .  3 3 5 - - 4 0 0 .  
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l imit  as one or more of ~he m' become infinite. Similarly let/?l,/~2, �9 �9 -, ~ denote  

the zeros of P IT (w)] exter ior  to 7. The funct ion  

(4. 2) z (w) ~--- P [T(w)] (w = a~)(w 7 %) _'_'_" (w - -  an) (I - -  ~1 W) (I - -  ~ W) ' ' ' ( I  - -  s W) 

is analyt ic  and different  f rom zero for  I w I >  ' ,  and on r:lw I=,  we have for  

the values taken  on by normal  approach to 7, 

I ~ (w) I = I v [~  (w)] I 

The hypothesis  of Lemma I I  is therefore  

f l~(w)Pldwl <= L~, 
7 

p > o ,  

We t r ans form now by the subst i tut ion w ~- I/W'; the  func t ion  ~r (I/w') is 

analyt ic  and different  f rom zero for  [w' I < I, and so also is the funct ion 

[~ (I/W')] p, if  we consider a suitable de terminat ion  of the possibly multiple valued 

funct ion.  Cauchy's  formula  

[~(~/~ , )?  - f / tp~.]p ~ tt I [Tg(I/W )J a w  
,7 7 

2 ~ i  w - - w  

yields the inequali ty 

I~(,/~')P < • f  law''I 
27t; I - -  r '  

? 

f o r  [W'[  ~ r < I ,  

o r  

Lv 
I ~ (I /W')p =< 2 ( I ~ r )  ' : T g  

which is the same as 
LP 

I ~ (~)I p =< - -  

]w' l__< , -<  ,, 

2 ~ ( , - , . ) '  I w l ~ ' - > r  " 

The  funct ion (, - - ~  w)/(w --fli) has a modulus grea ter  t han  uni ty  for  I w [ <  I, 

so this last inequal i ty  implies 

(w - -  al) (w - -  a2)'"(w - -  an) ] <__ L 
v [~(w)] (, _E~( / -a~) : :~( ,  -Ew) -[2 .(~ -,-)l~' 

I t  is readily shown tha t  

54--31104. Acta mathematica. 57. Imprim4 la 3 septembre 1931. 

W{ ~ I ~ - - > I .  
r 
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I I --~iW[ R 1~-  I 
~ ::--~ i < e - -  R 1  ' 

for [ w i = R  I < Q ,  

and from this inequality Lemma I I  follows immediately. 

Lemma I I  is in reality more general than  Lemma I, in the sense tha t  it  

yields an easy proof of Lemma I, but we shall find it nevertheless convenient  

to have Lemma I for reference. 

Let  us now prove Theorem I in case approximation is measured by the 

method 2). By Theorem I [  there exists a sequence of rat ional  functions r~ (z) 

of respective degrees n with their  poles in the set E such tha t  we have for an 

arbi t rary R 

M 
] f ( z ) - - , ' . ( z ) [ ~ ,  z on C, 

where M depends on R but  not  on u. The present measure of approximation 

.of r~ (z) to f (z)  is 

f n (w) I f ( z )  - -  r,, (z)I p ] d w  I, > o, P 

7 

where n (w) is continuous and positive on 7- An inequality of the form 

f (4.3) n (w) I f ( z )  - -  ,', (z)Iv J d w  I < - -  
l~n  P 

7 

is satisfied for the particular rat ional  functions r~(z) jus t  mentioned, and so this 

same inequality holds for the sequence of rat ional  functions r ,  (z)of best approx- 

imation. I f  we have o < n ' <  n (w) for w on 7, inequality (4.3) implies 

f (4.4) I f ( z )  - -  rn (z) [ p [ d w  I = < n'--It '~p" 

7 

We are now in a position to use inequality (4.4) for two successive values of n 

and to apply the general inequalities 

f igL +g,'V dx ~ 2~-l f [zt lP dx + 2v-l f lz,[P dx, p> ,, 
(4. 5) 
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There resul ts  the inequality 

f Ir,:(z) - r~ - i  (z)Ip I d w  I <= R " p '  
"l 

where R is arbitrary and M1 depends on R. Our conclusion follows now from 

Lemma I I  by the method used in connection with Lemma I. 

I t  will be noted tha t  the funct ion F(z) to which the sequence r,~(z) con- 

verges must  coincide with f (z)  on 7, for the inequality 

f 
7 

which is a consequence of (3. S), yields by (4.4) and (4. S) 

f l E ( z ) _ f ( z ) l P l d w  ] < N . ~ n p  

7 

Hence the integral  on the left  is zero and the functions F(~) and f (z)  coincide 

almost everywhere on 7. Thus ~l~'(z) and f(z)  coincide at  an infinity of points of 

C and are identical. 

5. Apl~roximation measured  by a L ine  In t eg ra l .  Le t  us now turn  to 

method 3) as �9 measure of approximation, namely tha t  C is an arbi trary closed 

limited point s e t  whose boundary is u rectifiable Jordan  arc or curve or other 

point set of positive linear measure, and whose complement (i. e. of C) is simply 

connected; approximation is measured in the sense of weighted p-th powers 

(p > o) by a line integral  over C. In  particular C may be a region bounded by 

a rectifiable Jordan  curve - -  in this case the proof of Theorem I is especially 

simple - -  or may be composed of even a suitable infinity of such regions, 

together  with Jo rdan  arcs abut t ing on and exterior to them. This measure of 

approximation (for p ~ 2) has been used by Szeg5 for approximation of given 

functions by polynomials 1 in case C is either u Jordan  curve or arc. 

We  shall need the following lemma: 

Lemm& III .  Let C be an arbitrary closed limited point set whose boundary 

C' has positive linear measure, whose complement is simply connected, and denote by 

w ~ q)(z), z ~ ~ (w) a function which maps the complement of C onto the exterior 

1 See particularly Mathematische Zeitschrift~ vol. 9 (I92I), PP. 218--270" 
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of the unit circle y in the w-plane so that the points at infinity correspond to each 

other. Let CR denote the curve [ �9 (z) ] = R > I in the z-plane. I f  P (z) is a rational 

function of degree n whose poles lie exterior to C~, q > I, and i f  we have 

(5. i) ~ 1  P(z)l~l  dzl---< L, ,  p > O, 
d 
C' 

then we have likewise 

] / ) ( Z ) ]  ~ L L v ( Q 2  ~l I )n  , g on C1r R1 e, 

where L'  depends on Bj but not on P(z). 

The boundary C' is composed of a connected set consisting of a finite or 

infinite number of Jordan curves and ares, and we shall need later to eonsider 

the plane cut along C'. For the truth of Lemma I I I  and of Theorem I in case 

approximation is measured by 3), it is immaterial whether in such an integral as 

(5. I) [or (5.3)] we consider the cut plane or uncut plane; in the cut plane Jordan 

ares belonging to C" not parts of Jordan curves belonging to C' are naturally 

to be counted ~wiee in the integral. However, we shall later use Cauehy's 

integral formula for the region D complementary to C. I f  an integral is ex- 

tended over a curve K in D and if K varies monotonically so that  every point 

of D is exterior to some position of K,  then K approaches as a limiting position 

the point set C', where the plane is cut along C' - -  that  is, where each arc of 

C' not part of the boundary of a region belonging to C is counted doubly. As 

a matter of convenience, then, we shall suppose that  in considering integrals 

over C', each arc of C' not pal4 of the boundary of a region belonging to C is 

counted doubly. The weight function n (z) used below may, if desired, be con- 

sidered to have two distinct values at points of such an arc C', corresponding 

to the double valence. 

The function qo (z) is continuous in the z-plane cut along the point set C'. 

Let the poles and zeros of P(z) on the complement of C be respectively 

at, a s , . . . ,  a,, and fl~, f l ~ , . . . ,  fiN. We may have less than n zeros or poles or 

both, but that  requires only a slight and obvious modification in the reasoning 

now to be used. T h e  function 

~(z) = P(z) ~(z)  - ~(~1) o(z)  - ~ ( ~ )  ... ~(z)  - ~ ( ~ )  
I - -  ~ ( g l ) ( D ( Z )  I - -  (~ (gZ) I~D (Z) 1 - -  (D(gn)tk0 (g) 

(z) - �9 (fl~) �9 (z) - �9 ~ )  �9 (z) - �9 (~) 
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is analytic and different f rom zero on the complement  D of C, and so therefore  

is [~ (z)] p. On C', the two functions ~(z) and P(z) have the same modulus. 

The funct ion [z(z)]P/O(z) is analytic at  infinity and vanishes there, so we 

have 
[z(z)]p I f [ z ( t ) ] p  dt  

(z) - ~ j  a,(t) t - ~ '  z i n D ,  

(5.2)  c' 
L~ 

z o n  

where d is suitably chosen. The integral  over C' is the ordinary integral, in the 

positive direction with respect  to D. 

The funct ion [i - -  O (fl/) q) (z)]/[O (z) - -  �9 (fl~)] has a modulus greater  than 

uni ty for z on CR,, and for z on CR, the funct ion [q) (z) - -  �9 (a~)]/[I - -  ~(ai) �9 (z)] 

has  a m o d u l u s  n o t  less t h a n  ( Q - / ~ I ) / ( Q R I -  I), so Lemma I I I  follows at once.  

The method of application of Lemma I I I  to t h e  proof of Theorem I is 

quite similar to tha t  of Lemm~ II .  By Theorem I I  there  exists some sequence 

of rat ional  functions r~ (z) of respective degrees n with their  poles in the set E 

such tha t  we have for  an arbi trary R 

If(z) - r,~(z) l < ~ ,  z on C. 

Our present measure of approximation is 

f n (z) If(z) - rn (z) I p I dz I, 
C' 

p>O, 

where n (z) is continuous and positive on C'. An inequality of the form 

if " M '  
(5.3) ~ (z)If(~)  - ,-,~ (z)I" I d~ I < 

C' 

is satisfied for this part icular  set of rat ional  functions r~(z) and so the same 

inequali ty holds for the  sequence of rat ional  functions of best approximation. 

I f  we have o < n ' <  n(z) for  z on C', inequali ty (5.3) implies 

f M '  [f(z) - -  r,  (z)[P I dz ] <= n' R ~p' 
C' 
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which, used for two succesive values of n, implies by the use of inequality (4. 5) 

') -- I'n-l(;g')lPldg'[ "~ M1 12~ n p 
c' 

This inequality is of the precise .form for application of Lemma I I I ,  and 

by the methods Mready used yields Theorem 1 for the measure of approximation 

which we have been considering. 

6. Approx ima t ion  in a Region;  Conformal  Mapping. Method 4) of measuring 

approximation is next to be studied, namely tha t  C is an arbi trary simply con- 

nected region and approximation is measured in the sense of weighted p-th powers 

(p > o) by integrat ion over the circle ), : I w I -=-- I when the interior of C is mapped 

conformally onto the interior of 7. This method (without the use of a weight  

function and for p > I) has recently been used by Jul ia  1 in the study of approx- 

imation of harmonic functions by harmonic polynomials. 

I f  we are dealing with either of the measures of approximation 4) or 5), 

lemmas precisely analogous to those already established may be used, but  it  is 

just  as convenient to proceed in a somewhat different way. Le t  us prove s 

Lemma IV. I f  each of the functions P~ (z) is analytic and bounded interior 

to the simply connected region C and i f  we have 

(6. I) fIP (z)lPldw]<=LP, p > o ,  

7 

where the interior of C is mapped onto the interior of 7:[ w l~-~ I, then we have 

IP~(z)l _--< L ' L ,  

for z on an arbitrary closed point set C' interior to C, where L" depends on C" but 

not on P~ (z). 

In  the integral  in (6. I) the vMue of IPn(z)l on 7 is natural ly  to be taken 

in the sense of normal approach to 7; these boundary values are known to exist. 

Le t  the zeros of Pn(z), if any, interior to C be 0~1, a s . . . .  We assume 

P~ (z) not  identically zero, for the lemma is obviously true so far  as concerns 

such functions. Consider the funct ion 

1 Acta Litterarum ac Scientiarum (Szeged), vol. 4 (I929), PP. 217--226. 
Compare Walsh, Transactions of the American Mathematical Society, vol. 33 (I93I), PP. 

37o--388. 
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(6.2) 

I 
(~) ~ ( ~ )  

where w ----- ~0 (z), z = ~p (w) is a function which maps the interior of C conformally 

onto the interior of 7. There may be an infinity of points a~ but  if so the 

in f in i t e 'p roduc t s  here converge, by Blaschke's theorem. We  assume ~ ( a i ) ~  o, 

which involves no loss of generality, for  the following reasoning concerning 

Pn(z) may be applied to the quotient by [~ (z)] k of a given P~(z), where k is the 

order of the zero of the given Pn (z) at the point z = ~p (o). The funct ion F ,  (z) 

is analytic and different from zero interior to C, and has the same modulus as 

P,(z) on C or on 7- The funct ion [F,(z)] ~ is likewise analytic and uniformly 

bounded interior to C and 7, if we consider an arbi trary determinat ion of the 

p-th power at  an arbitrary point interior to C or 7 and is analytic extension, 

so we have Cauchy's  integral  

a t  
!F~ [~ (w)]}, - 2 ~ i  t - w; 

7 

Cauchy's integral  is natural ly valid here, for the boundary values of ~p(w) and 

hence of F~ (z) for normal approach to 7 exist almost everywhere. 

I t  follows now tha t  we have 

Lp 
IF . (z) lp  < ~ I F.(z)  I ~ dw[< 

7 

Each funct ion 

(~) - ~ (~i) 
I 

is of absolute value greater than  uni ty  for z interior to C, so we have from (6 2) 

I P~(~) I ~ =< I F,,(~) I~ __< 
Lp 

2 ~  (i - r ) '  19(z)l<_-r  < I, 

and the proof of the lemma is complete. 
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The 

rational functions 

that we have 

application of Lemma IV is immediate. By Theorem I I I  there exist 

rn (z) of respective degrees n with poles on the set E such 

so the inequality 

M 
If(z) -- ,'. (z) l <= R--;' z on C. 

f M' 

where the weight function n(w) is positive and continuous on 7, is satisfied for 

this particular set of rational functions and hence for the rational functions of 

best approximation. This leads in turn to inequalities of the form 

M'  
If(z) --1". (z)[" ]dw ] <= n' R"P" 

7 

This last inequality yields by Lemma IV 

If(z) - ,',, (z) l ~ M, .B-~, z on C', 

where C" is an arbitrary closed point set interior to C and where R is arbitrary, 

whence Theorem I follows by Theorem I I I  for the measure of approximation 

that we are here considering. 

7. Approximation in a Region; Surface Integrals.  Method 5) of meafiuring 

approximation involves the use of a double integral, 

l l n ( z ) , f ( z ) - - r . ( z ) , P d S ,  p >  o, 
, ]  .2  

c 

and this method has been used by Carleman 1 in considering the approximation 

to an analytic function by polynomials. We shah find it convenient to prove 

Lemma V. I f  each of the functions Pn (z) is analytic interior to an arbitrary 
region C. and i f  we have 

(7. I) f f [ P. (z) ,~ d S ~ Lp p > o ,  
, ]  , ]  

c 

Arkiv f6r Mat~matik, &stronomi oeh Fysik, vol. I7 0922--23) .  
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then we have 

(7.2) } P,~(z) ] --< L ' L  

for z on an arbitrary closed point set C' interior to C, where L'  depe,~ds on C' but 

not o~ t ~  (z). 

The integral  
2z  

f l vn + , e') dO, > o, 
0 

is well known to be a non-decreasing funct ion of r, in an arbitrary circle K 

which together  with its interior lies interior to C. Here (r, 0) are polar coordinates 

with pole at the point z 0. The limit of this integral  as r approaches zero is 

obviously [P~(z0)I ~', from which follows the inequality 

27g 

if ]~.,,(~o)1 ~ =< ~ IP~(~o + ,-e~)]~do. 
0 

We multiply both members of this inequality by r d r  aud integrate from zero 

to 1~, the radius of K. The result ing inequality is 

S-IP~(-%)I~- -< ~ IP,~(~) dS, 
K 

so we may write by virtue of (7. I) 

f f  ' f f  - 
K C 

This inequali ty holds for every point~ z 0 interior to C provided merely tha t  

the distance from z o to the boundary of C is no t  less than It. The inequality 

therefore holds for proper choice of /c for z o on an arbitrary closed point set C' 

interior to C and is equivalent to (7.2) for z on C', so the lemma is completely 

established. 

The application of Lemma V in the proof of Theorem I does not  differ 

materially from tile application of Lemma IV and is left to the reader. Theorem 

I is now completely proved. 

5 5 - - 3 1 1 0 4 .  Acta ~athematica.  57. I m p r i m 4  le 4 s ep t embre  1931. 
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8. Fur the r  Remarks.  There are three problems, distinct from those already 

treated, which are intimately connected with the discussion given. We mention 

merely the Statement of the problems and leave the details to the reader. In each 

of the three cases some new results can be found directly from our previous 

work, while other new results lie but little deeper. 

i. The given function f(z) may be meromorphic instead of analytic on C 

and the approximating rational functions r, (z) of respective degrees n are per- 

mitted to have poles in all the singularities E of f(z), in particular in the poles 

o f f ( z )  belonging to C. Under certain conditions it is still true that the sequence 

of rational functions of best approximation whose poles lie in the singularities 

of f(z), converges to the limit f(z) on the entire plane except at the singularities 

of f (z) . '  

2. The given function f(z) may be analytic or meromorphic on C and the 

given rational functions r n ( z ) m a y  be required or not to satisfy auxiliary con- 

ditions interior to C, those conditions being the prescription of the values of 

r,, (z) with perhaps some of its derivatives at various points interior to C; indeed, 

the functions r~ (z) may be allowed to be meromorphic interior to 6', and have 

their principal parts prescribed at various points interior to C. These auxiliary 

conditions need have no relation to the given function f(z). I f  the auxiliary 

conditions do not depend on n, if the limit function F(z) (which is uniquely 

determined by f(z) and the auxiliary conditions) of the sequence r, (z) has all of 

its singularities in a point set E one of whose derivatives is empty, and if the 

poles of the approximating functions rn (z) are merely restricted to lie on E, then 

under suitable simple restrictions on C, the sequence of rational functions r~ (z) 

of best approximation to f(z) on the boundary of C in the sense of Tchebycheff 

and satisfying the auxiliary conditions, converges to the function F(z) on the 

entire plane except at the singularities of F(z). ~ If  the prescribed auxiliary 

conditions involve merely the coincidence of the values of rn (z) and the given 

function f(z) at certain points interior to C, then under suitable conditions we 

have the conclusion of Theorem I satisfied: the sequence r~(z) approaches the 

function f(z) at every point of the plane not on E, uniformly on any closed 

1 Compare Walsh, Transactions of the American Mathematical Society, vol. 3 ~ (1928), pp. 
838--847. 

Compare Walsh, Transactions of the American Mathematical Society, vol. 32 (I93o), pp. 
335--390. 
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point set containing no point of E, where approximation is measured by any of 

the methods i)--5). 

3. The results of the present paper have application to the study of 

approximation of harmonic functions by harmonic rational functions. If  a suitably 

restricted harmonic function u(x,y) is given, the function 

(8. ~) f(z) = ~(x,y) + iv (x ,y) ,  

where vlx,y ) is  a function conjugate to u(x,y), satisfies the hypothesis of 

Theorem I. Approximation to f(z) by rational functions r, (z)=r'~ (x, y) + ir: (x, y) 
implies approximation to u(x,y) by the harmonic ra t ional  functions r '~(x,y). 

Even if the given function u (x,y) is not so simple that  an equation of form 

(8. ~) is valid, where f(z) satisfies the hypothesis of Theorem I, it may be possible 

to approximate u (x, y) by harmonic rational functions plus harmonic functions 

involving the logarithms of distances. Such methods of approximation have already 

been used to some extent by the present writer. 1 

1 Bulletin of the American Mathematical Society, vol. 35 (I929), PP. 499--544- 


