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1.
The fractional part of »*6.

1.0— Introduction.

1.00. Let us denote by [z] and (z) the integral and fractional parts of z,
so that

(2)=2—[z], o<(z)<r1.

Let 6 be an irrational number, and o any number such that o<a<Tx.
Then it is well known that it is possible to find a sequence of positive integers
Ny, Ny, Ny, - such that

(x.001) (1, 60) =«

as r—ow.

It is necessary to insert a few words of explanation as to the meaning
to be attributed to relations such as (x.oo01), here and elsewhere in the paper,
in the particular case in which @ =o0. The formula (z.oor), when ¢ > o0, asserts
that, given any positive number &, we can find r, so that

—el(n0)—a<e (r>r,).

The points (n,8) may lie on either side of «. But (n,6) is never negative, and
50, in the particular case in which o = o, the formula, if interpreted in the obvious
manner, asserts more than this, viz. that

o<(n6)<e (r>r).
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The obvious interpretation therefore gives rise to a distinction between the value
«=o0 and other values of o which would be exceedingly inconvenient in our
subsequent analysis.

These difficulties may be avoided by agreeing that, when & = o, the formula
(x.o001) is to be interpreted as meaning ‘the set of points (n,80) has, as its sole
limiting point or points, one or both of the points 1 and 0, that is to say as imp-
ying that, for any r greater than r,, one or other of the inequalities

o<(n.N<g 1—e< (N 0)<1

is satisfied. In the particular case alluded to above, this question of interpreta-
tion happens to be of no importance: our assertion is true on either inter-
pretation. But in some of our later theorems the distinction is of vital im-
portance.

Now let f(n) denote a positive increasing function of n, integral when n is
integral, such as

n, ns’n?”...zﬂ’s”,...’n!, zﬂz’...zin’...
The result stated at the beginning suggests the following question, which seems
to be of considerable interest: — For what forms of f(n) is it true that, for any

trrational 6, and any value of ¢ such that o <a <1, a sequence (n,) can be found
such that

(1.o002) (f(n,)0)—~a?

It is easy to see that when the increase of f(n) is sufficiently rapid the
result suggested will not always be true. Thus if f(n)=2" and 6 is a number
which, expressed in the binary scale, shows at least k o’s following upon every 1,
it is plain that

(2" 0) <§ + A,

when iz is a number which can be made as small as we please by increasing %
sufficiently. There is thus an sexcluded interval» of values of «, the length of
which can be made as near to 3 as we please. Iff(n)= 3" we can obtain an ex-
cluded interval whose length is as near to  as we please, and so on; while if
f(n)=mn! it is (as is well known) possible to choose 8 so that (n!0) tends to a
unique limit. Thus (n'e)—o.

At the end of the paper we shall return to the general problem. The im-
mediate object with which this paper was begun, however, was to determine whe-
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ther the relation (1.o00z) always holds (if ¢ is irrational) when f(n) is a power of

n, and we shall be for the most part concerned with this special form of f(n).
1.01. The following generalisation of the theorem expressed by (1.o001) was

first proved by KRONECKER.! ’

Theorem 1.01. If 6,,0,,- -0, arelinearly independent irrationals (3. e. if no
relation of the type

a0, +a,0, 4+ -+ ambm + aGm41=0,

where a,,0,, - -Gms1 are integers, not all zero, holds between 0,,0,, --0m), and «,
0y, -+ @ are numbers such that o <, < 1, then a sequence (n,) can be found such that

(nral)—’au (nraz)—’azy oy (B O) =

asr— . Further, in the special case when all the o’s are zero, it 1s unnecessary to
make any restrictive hypothesis concerning the &’s, or even to suppose them irrational.
This theorem at once suggests that the solution of the problem stated at
the end of 1.00 may be generalised as follows.
Theorem 1.011. If 6,,0,,-- 0 are linearly independent irrationals, and
the o’s are any numbers such that o<a <1, then a sequence (n,) can be found
such that

(nrox) — 0y (nyoz)—raw, e, (nram) - im}
(I OII) (nial)_’a'“’ (nﬁ 02)—’0‘22, Tty (1’[:07",) - Olom ;

l (nl,fax)—’akls (nfan)_’am, ) (n’rcam)—’akm-

1 KrONECRER, Berliner Sitzungsberichie, 11 Dec. 1884; Werke, vol. 3, p. 49.

A pumber of special cases of the theorem were known before. That in which all the
«’s are zero was given by Diricuier (Berliner Sitzungsberichte, 14 April 1842, Werke, vol. 1,
p. 635). Who first stated explicitly the special theorems in which m = 1 we have been unable
to discover. DiricHLET (1. c.)refers to the simplest as »ldngst bekannt»: it is of course an immediate
consequence of the elementary theory of simple continued fractions. See also MiNKOWSKI,
» Diophantische Approximation», pp. 2, 7. KroNeckrr's general theorem has been rediscovered
independently by several writers. See ¢. g. Borer, Lecons sur les séries divergentes, p. 1385; F. Rigsz,
Comptes Rendus, 29 Aug. 1904. Some of the ideas of which we make most use are very similar
to those of the latter paper. It should be added that DiricELET'S and KRrONECKER'S theorems
are presented by them merely as particular cases of more general theorems, which however
represent extensions of the theory in a direction different from that with which we are con-
cerned.

A pumber of very beautiful applications of Kronecker's theorem to the theory of the
Rigmaxn ¢-function have been made by H. Boxur.
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Further, if the o’s are all zero, it 18 unnecessary to suppose the 6’s restricted in
any way.

1.02. This theorem is the principal result of the paper: it is proved in
section 1.2. The remainder of the paper falls into three parts. The first of
these (section 1.1) consists of a discussion and proof of KRONECKER’S theorem.
We have thought it worth while to devote some space to this for two reasons.
In the first place our proof of theorem 1.011 proceeds by induction from k to
k + 1, and it seems desirable for the sake of completeness to give some account
of the methods by which the theorem is established in the case k= 1. In the
second place the theorem for this case possesses an interest and importance suffic-
ient to justify any attempt to throw new light upon it; and the ideas involved
in the various proofs which we shall discuss are such as are important in the
further developments of the theory. We believe, moreover, that the proof we
give is considerably simpler than any hitherto published.

The second of the remaining parts of the paper (section 1. 3) is devoted to
the question of the rapidity with which the numbers (n*0,) in the scheme (1.o011)
tend to their respective limits. Our discussion of the problems of this section is
very tentative, and the results very incomplete;! and something of the same
kind may be felt about the paper as a whole. We have not solved the problems
which we attack in this paper with anything like the definiteness with which
we solve those to which our second paper is devoted. The fact is, however, that
the first paper deals with questions which, in spite of their more elementary
appearance, are in reality far more difficult than those of the second. Finally,
the last section (1.4) contains some results the investigation of which was sug-
gested to us by an interesting theorem proved by F. BErNsTEIN.! The disting-
uishing features of these results are that they are concerned with a single irrat-
ional 6 and with sequences which are not of the form (n*6), and that they
hold for almost all values of 6, 1. e. for all values except those which belong to
an exceptional and unspecified set of measure zero.

1.1 — Kronecker’s Theorem.

1.10. KRONECKER'S theorem falls naturally into two cases, according as to
whether or not all the o’'s are zero. We begin by considering the simpler case,

! Some of the results that we do obtain, however, are important from the point of view
of applications to the theory of the series X en*§i and that of the Riemany ¢-function. It was
in part the possibility of these applications that led us to the researches whose results are given
in the present paper. The applications themselves will, we hope, be given in a later paper.

* Math. Annalen, vol. 71, p. 421.
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when all the o’s are zero. Unlike most of the theorems with which we are con-
cerned, this is not proved by induction, and there is practically no difference
between the cases of one and of several variables. The proof given is DiricH-
LET’S.

Let z denote the number which differs from z by an integer and which is
such that —3} <z <%}. Then the theorem to be proved is equivalent to the theo-
rem that, given any integers ¢ and N, we can find an n not less than N and
-such that

Iﬁllﬁl/q’ l”’_HZlS_I/q’ T lﬁm IﬁI/Q-

Let us first suppose that N=1. Let R be the region in m-dimensional space
for which each coordinate ranges from o to 1. Let the range of each coordinate
be divided into ¢ equal parts: R is then divided into ¢™ parts. Consider now
the g™ + 1 points

(/‘/61)’ (702)) "ty (’Vam): (/‘/=0’ I, 2, "'qm)'

There must be one part of R 'which contains two points; let the corresponding
values of v be », and »,. Then oclearly

(v, —w,) 0,1<1/q, vy — )0, 1<1/q, "'sl("’l—"’z)OM|5-I/q’

and |y, —»,|>1.
We have therefor only to take n=|v,—»,|. We observe that we have also
L/

a result to which we shall have occasion to return in section 1.3.

If N>1 we have only to consider the points (v N4,), (v N8,),--- instead of
the points (#6,), (»8,), --.

1.11. We turn now to the case when the ¢’s are not all necessarily zero.
In this case the necessity of the hypothesis that the ¢'s are linearly independent
is obvious, for the existence of a linear relation between the #’s would plainly
involve that of a corresponding relation between the «’s; naturally, also, the added
restriction makes the theorem much more difficult than the one just proved.

Our proof proceeds by induction from m to m + 1; it is therefore important
to discuss the case m=1. The result for this case may be proved in a variety
of ways, of which we select four which seem to us to be worthy of separate dis-
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cussion. These proofs are all simple, and each has special advantages of its own.
It is important for us to consider very carefully the ideas involved in them with
a view to selecting those which lend themselves most readily to generalisation.
For example, it is essential that our proof should make no appeal to the theory
of continued fractions.

(@). The first proof is due to KroNECKER. It follows from the result of
I.10, with m =1, or from the theory of continued fractions, that we can find
an arbitrarily large ¢ such that

0=1—) + %:
q9 q
and so
(r.11x) q0—p=4d/q.
where
|dl<1.

It is possible to express any integer, and in particular the integer {g«}
nearest to g «, in the form

qn, + pn

where n and n, are integers, and |n|<g/2. From the two equations

g0—p=d/g, gn,+ pn={qo}

we obtain
q(n0+n1)='—;—6+qa+gél, ARG #
and so
—1<qn8 +n,—a)<1,
or

[(n6) —ea|<1/q.
If we write » =n + ¢ and use (1.111), we see that

| (v 0)— | < 2/q, g/z < v < 3q/2;

so that
|(#60) —ea|<3/¥
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for some value of » between ¢/z and 3¢g/2. This evidently establishes the truth of
the theorem.

If we attempt to extend this proof to the case of several variables we find
nothing to correspond to the equation

{ge}=gmn, + pn.

But KroNECKER’S proof has, as against the proofs we shall now discuss, the very
important advantage of furnishing a definite result as to the order of the ap-
proximation, a point to which we shall return in 1.3.

(b). Let ¢ be an arbitrary positive constant. By the result of 1. 10, We
can find an » such that 0<#,<e or 1—e<6,<1, where §, = (n8). Since ¢ is
irrational, 6, is not zero. Let us suppose that o< #, <e¢; the argument is sub-
stantially the same in the other case. We can find an m such that

mb, <e<(m+ 1)6;,

|m6, —ea|<6,;
and so
l(rm8) —a|<e,

which proves the theorem.

(c).t Let 8 denote the set of points (n8). &, its first derived set, is closed.
It is moreover plain that, if o is not a point of §', then neither is (¢ + »8) nor
(a—n0),

The theorem to be proved is clearly equivalent to the theorem that §' con-
sists of the continuum (o,1). Suppose that this last theorem is false. Then
there is a point o which is not a point of §', and therefore an interval con-
tajining ¢ and containing? no point of §'. Consider I, the greatest possible
such interval containing «.® The interval obtained by translating I through a
distance §, any number of times in either direction,* must, by what was said
above, also contain no point of §'. But the interval thus obtained cannot over-
lap with I, for then I would not be the »greatest possible» interval of its kind.

! This proof was discovered independently by F. Rimsz, but, so far as we know, has
not been published.
*? In its interior, in the strict sense. ‘
® The existence of such a »greatest possible» interval is easily established by the classical
“argument of DEDEKIND.
4 Taking the congruent interval in (0,1). This interval may possibly consist of two separ-
ate portions (0, §;), and (§,, 1).

Acta mathematica. 37. Imprimé le 25 tévrier 1814. 21
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Hence, if we consider a series of [1/d] translations, where d is the length of I,
it is clear that two of the corresponding [1/d] + 1 intervals must coincide.
Clearly this can only happen if @ is rational, which is contrary to our hypothesis.

(d). We argue as before that, if the theorem is false, there is an interval
I, of length 2¢ and middle point «, containing no point of §'. By the result
of 1.10 we can find n so that, if 6, =(n0), then 0 < ¥, <eor 1—e<8,<1.

By the reasoning used in (c) it appears that the interval obtained by trans-
lating I through a distance 6,, any number of times in either direction, must
contain no point of 8'. But since each new interval overlaps with the preceding
one it is clear that after a certain number of translations we shall have covered
the whole interval o to 1 by intervals containing no point of §', and shall thus
have arrived at a contradiction.

1.12. Let us compare the three last proofs. It is clear that (b) is consid-
erably the simplest, and that (d) appears to contain the essential idea of (b)
together with added difficulties of its own. It appears also that, in point of
simplicity, there is not very much to choose between (¢) and (d), and that (c) has
a theoretical advantage over (d) in that it dispenses the assumption of the
theorem for the case @ =0, an assumption which is made not only in (b) and (d),
but also in (¢). When, however, we consider the theorem for several variables,
it seems that (b) does not lend itself to direct extension at all, that the com-
plexity of the region corresponding to I in (¢) leads to serious difficulties, and
that (d) provides the simplest line of argument. It is accordingly this line of
argument which we shall follow in our discussion of the general case of KRON-
ECKER’s theorem.

1.13. We pass now to the general case of KRONECGKER’s theorem. We shall
give a proof by induction. For the sake of simplicity of exposition we shall
deduce the theorems for three independent irrationals @, ¢, ¥, from that for
two. It will be obvious that the same proof gives the general induction from n to
n + 1 irrationals.

We wish to show that if we form the set § of points within the cube
ofx<1,0<y<1,0<2<1, which are congruent with

@, ¢, ), (26, 29, 29), ---- - (n6, nep, ny), ---

then every point of the cube is a point of the first derived set §'. It is plain
that, if (¢, #, y) is not a point of 8, then neither is ((a + n8), (8 + n@), (¥ + nY))
nor ((e¢—=nd), (8 —ne), (y—ny)). If now our theorem is not true, there must exist
a sphere, of centre (¢, 8, 7) and radius ¢, which contains! no point of 8. By

! Within or upon the boundary.
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the result of r.zxo, there is an m such that the distance d of ((nd), (ng), (n¥))

or (6,, ®,, ¥,) from one of the vertices of the cube is less than ¢/V2. Let us sup-
pose, for example, that the vertex in question is the point (o, 0, 0). Consider
the straight line

(x. 131) v—a Yy—F_z2—7,
0, P Y,

and the infinite cylinder of radius J with this line as axis. It is clear that the
finite cylinder ¢ obtained by taking a length d on either side of (e, g8, y) is en-
tirely contained in the sphere and therefore contains no point of §'. Hence the
cylinder obtained by translating C' through (6,, ¢,, ¥,), any number of times in
either direction, also contains no point of §', so that, since each new position of
C overlaps with the preceding, the whole of the infinite cylinder, or rather of
the congruent portions of the cube, is free from points of S'.

Let us now consider the intersections of the totality of straight lines in
the cube, which are congruent with portions of the axis of the cylinder, with
an arbitrary plane z—=x,. We shall show that they are everywhere dense in
the square in which the plane cuts the cube, whence clearly follows that no
point of the cube is a point of &', and so a contradiction which establishes the
theorem.

The intersections (y,z) are congruent with the intersections of the axis
(x.131) with

r=2x,+ v, (V="'t_2»-"1)0, I,Z,"'),

and so they are the points congruent with

(x,—a)p, P, (ry—)Y, 7Y, .
Bt =g+ 71t +

But, under our hypothesis, ¢, /0, and ¥, /6, are linearly independent irrationals,
and so, by the theorem for two irrationals, this set of points is everywhere
dense in the square. The proof is thus completed.

1.14. We add two further remarks on the subject of KRONECKER'S theo-
rem, in which, for the sake of simplicity of statement, we confine ourselves to
the case of two linearly independent irrationals 6, ¢.

(a) Suppose that o<a <1, 0<g8<1. KRONECKER's theorem asserts the exis-
tence of a sequence (m,) such that (#,6) —ea, (n,9) —8. Let us choose & se-
quence of points

(ous Bu)y (u=1,2,3, ),
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such that
ap>a, fu>B, au—a, fu—4.

There is, for any value of u, a sequence (n,,) such that

(15, 0) — 0y (Mgp @) — B,

as s— . From this it is easy to deduce the existence of a sequence (n,) for
which (n,.0) and (n,¢) tend to the limits ¢ and § and are always greater than
those limits, so that the direction of approach to the limit is in each case from
the right hand side.! Similarly, of course, we can establish the existence of a
sequence giving, for either § or ¢, either a right-handed or a left-banded ap-
proach to the limit.

If we apply similar reasoning to the case in which « or 8 or both are zero
we see that, when 6 and ¢ are linearly independent irrationals, we may abandon
the convention with respect to the particular value o which was adopted in 1 . oo,
and assert that there is a sequence for which () —o and (n@p)— g, ¢ and g8
having any values between o and 1, both values included, and the formulae
having the ordinary interpretation. This result is to be carefully distinguished
from that of 1.10. The latter is, the former is not, true without restriction on
the 0’s, as may be seen at once by considering the case in which ¢ =—é.

(b). It is easy to deduce from KRONECKER’s theorem a further theorem,
which may be stated as follows:?® if we take any portion y of the square o<z <1,
0<y<1, bounded by a finite number of regular curves, and of area 8; and if we
denote by N, (n) the number of the points

((70)) (”¢))’ (v=1,2,---n),
which fall inside y; then

N,(n)codn
as n~—co,

This result, when compared with the various theorems of this paper, sug-
gests a whole series of further theorems. The proofs of these appear likely to be
very difficult, and we have, up to the present, considered only the case of a
single irrational 8. We have proved that, if N, (n) denotes the number of the

points
(»*6), (v=1, 2,---n),

! The reasoning by which this is established is essentially the same as that of 1. 20.

* This is a known theorem. For a proof and references see the tract ‘The Riemann
Zeta-function and the Theory of Prime Numbers', by H. Borr and J. E. Lrrrrewoon, shortly to
be published in the Cambridge Tracts in Mathematics and Mathematical Physics.
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which fall inside a segment y of (o, 1), of length 4, then N, (r) codn. This re-
sult may be compared with that of Theorem 1.483 at the end of the paper.
But results of this character will find a more natural place among our later
investigations than among those of which we are now giving an account.

1.2. — The generalisation of Kronecker’s theorem.

1.20. We proceed now to the proof of theorem 1.011, Our argument is
based on the following general principle, which results from the work of Prings-
BEIM and LoNDoX on double sequences and series.!

1.20. If
lim lm .- im fp(r, r, - 1) =4p, (p=1,2,---m),
¥i— 0 ¥y — D rr —>0

then we can find a sequence of sets (in, Yon, ¥in) Such that, as n— o,

Tgn—®, (q=1’ 29""‘);
and

fp(»rln’ Tany * rkn)—-’Ap, (p=1, 2, - -m).

We shall show that, if this principle is true for all values of m and a part-
icular k, then it is true for £+ 1. As it is plainly true for k=1, we shall
thus have proved it generally.

We shall abbreviate ‘lim lim ---lim’ into ‘lim’ , or, when there is
Ty =0 7,—0 Tk —0 N R
no danger of confusion, into ‘lim’.
Let

lim fo(rys 72y -« Thaa) = fp (Praa)-
Ty Ty Tk

Then by hypothesis
fp (”'k-l-l) - Ap

as rx41— . Let us choose an integer 74414, greater than 27, for which
1o (rha1,n) — Ap] <271, (p=1, 2,---m).

By the principle for k variables, we can find 7y,, 72, - 7in, all greater than
27, and such that

! PeiwesuemM, Miinchener Sitzungsberichie, vol. 27, p. 101, and Math. Annalen, vol. 53, p. 289;
Loxooxn, Math. Annalen, vol. 53, p. 822.
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Vo (rins 720y Thns Phat,n) — fo (Thgr,w) | <2771, (P =1, 2,--- m).
We thus obtain a sequence of sets (ris, r2n, - 7k+1,s), such that every member
of the n® set is greater than 27 and
”p(rlm 2n, - fk+l,n) - Apl <27, (P =1, 2, " m)

This sequence evidently gives us what we want.

An importaunt special case of the principle is the following:

1.201. If for all values of t we can find a sequence nys, Nge,- -, Nyg, -+ SUCh
that

,p(nrt)"‘Aph (p=‘1’ 21"'m)!
as r—o, and i}

Apt_'Aﬂs (2’ =1, 2, - m)v
as t— o, then there is a sequence (n,) such that

fo(ny) = A4y, (p=1,2,---m),

as s— o,

This is in reality merely a case of the principle that a limiting-point of
limiting-points is a limiting-point.

1.21. We consider first the case in which all the o’s are zero, and the 6’s
are unrestricted. In this case the proof is comparatively simple.

Theorem 1.21. There i3 a sequence (n,) such that, as r—

(n20p)—o0, (x=1,2,--k; p=1,2,---m).

We prove this theorem by induction from k£ to k£ + 1: we have seen that it
is true when k=1. We suppose then that there is a sequence (u,) such that

(x.211) (u*0p)—o0, (x=1,2,-k; p=1,2, - m).
The sequence
(1k+10)), (uE+10,), .- (uk+10,), (8=1,2, ),

has at least one limiting point ¢,, @,, - - ¢m; hence, by restricting ourselves to a
subsequence selected from the sequence (u,), we can obtain a sequence (v,) such
that, as ¢ — =,

(v05) — o0, (x<k); (#*+10,) —@p; (p=1, 2,---m).
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We then have, for <k + 1,

A
lim l((’Vs,‘ + Vs, + -t 1’”)” 01;) == 2 lim ('qu 0p) + zolim ('V:‘: 'Vg A 7’:‘}%0‘?),

31, 82, -8 =1

where the (’s are constants, %, + %, +---+x;=x, and %, <k. In virtue of
(x.211) we can evaluate at once every repeated limit on the right hand side, and
it is clear that we obtain ¢, or o according as x=%k + 1 or x<k. It follows
from the general principle 1.20 that we can find a sequence (n,;), (r=1, 2,---),
such that, as r— o,

(n%,6)— o, (x < k)3 (WE10,) —Agp; (p=1, 2, m).
But, by theorem 1.01, we can find a sequence (4,) such that

(1, (pp)“"O, (p= 1, 2,---m);

and we have only to apply the principle 1.201 to obtain the theorem for k + 1.

1.22. We pass now to the general case when the o’s are not all zero. We
have to prove that f 6,,0,, --0m are linearly independent irrationals, there is
a sequence (n,) such that, as r—o,

(n;‘ep)—-’aup, (x:I, 2’-.. k; pﬂ I, 2,...m).

We shall prove this -by an induction from % to % + 1 which proceeds by two
steps. ‘

(i). We assume the existence, for a particular &, any number m of s,
and any corresponding system of o’s, of a sequence giving the scheme of limits

01 02 e o e+ 0m
NGy Gz . . . . Oy
nEy oy Oy . . . . 2y
n" Cr1 Q2 . « « « Okm M

and we prove the existence, for any number m of 6's, and any corresponding
system of o's, of a sequence giving the scheme
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6, 6, .... Om
n au Oyg « « « « CQim
nt lay, o .. . . C2m
nk Qx1 Ok - « . - Okm
w*l| o o . ... o.

It will be understood that neither m, nor the 6’s, nor the «’s are necessarily
the same in these two schemes, all of them being arbitrary.
(ii). We then show that we can pass from the last written scheme of limits
to the general scheme in which the elements of the last row also are arbitrary.
1.23. Proof of the first step. To fix our ideas we shall show that we can
pass from a sequence (n,) giving?

nfo_’au Nep— By, NeY—7,, ne x— 0, Ny —7, an—’Cp
N0 —ay, NPP— By, MY —7,, WX —0;, NO—1,, 77—,
to a sequence (m,) giving

Ml —a, mep— B,
mpl—a,, mep—f,,
m}@—o, mip—o.
It will be clear that the argument is in reality of a perfectly general type.
Suppose we are given |, o, 8, 8';, and that 6, @, &', o',, £, 8, are line-

arly independent irrationals. Then by hypothesis we can find a sequence giving
the scheme

n.0—do,, n,p—g,, nea,—o, n.8,—o0, n.a;—o0, n.8,—o,
n0—d,, njg—pg,, nid,—o, n;f;—o.

Further, the set of points (n}@, n}¢) has at least one limiting-point (2, ¢), and,
by restricting ourselves to a subsequence of (n,), we may suppose that we have
also

NG —24, nip—pu.

1 In what follows we shall omit the brackets in (80,-..; it is of course to be under-
stood that integers are to be ignored.
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We express all this by saying that we can find a sequence (n,) giving the scheme

0!’1, 13,1’ 0, 0, 0, O,
1.221 oy, B3, 0, 0,
( )

Ay u.

The sequence (k,), where k,=2n,, gives us the scheme

!
2dy, 28, 0, 0, 0, 0,
! !
(1.222) 40y, 4:321 0, O,
84, 8u.

By the general principle 1.20, we can find a sequence (I,) giving the scheme

bm (ny, + 7, + -+ 0y) 0, lim (e, + Wy + -+ ) @, .. ..
lim(nfl+nr2+"'+nrs)20’ Ce e s e
Lim (ng, + ne, + -+ 1y )3 80, s

where ‘lim’ stands for lim
1, 72, 18

Consider the repeated limit

im (%, + By, + -+ Nyy)? 6,

TH 12,0 78

which is easily evaluated with the aid of the table (1 .221). The limit of a term
ns;0 is : that of a ‘cross-term’

n‘,’infjnﬁkﬁ (e+b+c=3;a,b,¢<3;i<5<k)

is zero, since nka tends to an o or a g', and nfj o and nfj g’ tend to zero. Thus

we obtain the repeated limit 81. In all the other repeated limits the cross-terms
give zero in the same way, and we see that the sequence (/,) gives the scheme

Sarl: 85,17 0,0,0,0,
8d,, 88, 0,0,
82 , 8u.

Consider now the repeated limits
Aeta mathematica. 37. Imprimé le 27 février 1914. 22
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]im ‘lT + IC,-I + kr,'*‘ e + krm)x x

1L Ty,

where
f ! .
x=0,9, 0,8, d,,8, x=1,2,3.

All the cross-terms contribute zero as before, and we obtain the scheme

(8+2m)a'17 (8+2m)ﬂ'1’ 0, 0, 0,0,
(8 + 4m)ey, (8 +4m)p", 0,0,

(8+8m)A , (8 + 8m)u,
or
6a'l+ (m+ I)Za’l, 6ﬂ'1 +(m+ I)Zﬂ’lr O, O’ O, O,

4oy + (m + 1) 40, 485+ (M +1)48,5, 0,0,
(m+1)84 , (m+ 1) 8u.
It is possible, then, to find a sequence giving this scheme. But now, since it is
possible to find a sequence of m’s such that
m+1)Yy—o, (Y=2d, Zﬁ’u 4d'y, 413’2: 84, 8u),
it follows (in virtue of the principle 1.20) that we can find a sequence giving
the scheme
6a,,68,, 0,0,0, o0,
403,485, 0,0,
0, O

This gives us what we want (and something more) provided it is possible to
choose

I I I I
a'I =5a1, 19’1 =8181’ 0"3 =;az, .3’2=;ﬂ2-

This is the case provided 6, ¢, «,, 8, «,, 8, are linearly independent irrationals:
it remains only to show that this restriction on «,, 8,, ¢,, 8, may be removed.
It is obvious, in virtue of the principle 1.20, that this may be done provided
we can find a sequence (in, Bin, @20, f2) such that, for each n, 0, @, o1, f14,
024, 825 are linearly independent irrationals, and such that

Oip =0y Agln—’ﬁp Gap — 0y, .32"—’132-

Now it is easy to see that there must be points (e1s, f1n, @24, 82,) interior to
the ‘cube’ with (¢, 3,, as, ;) as centre and of side 2—", and exterior to that
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with the same centre and of side 2——!, and such that 0, @, a1a, Bin, @20, S2n
are linearly independent irrationals. By selecting one such point corresponding
to each value of » we obtain a sequence of the kind desired.!

1.24. Proof of the second step. Here also we shall consider a special case
for simplicity: the argument is really general. We shall show that we can pass
from a sequence giving the scheme

0 o Y g

nle B ¥ 0
nla, B, 7, 0

nlo o
to one giving
0 o
nla f
n®l o, £,
ndl ay B;.

As in 1.23, we may suppose, without real loss of generality, that 6, ¢,
o, 3, are linearly independent irrationals. Let (n.) be a sequence giving

0 P o 8.

I I
n 50‘1 5(31 238 8,

2
3.33

! This argument depends ostensibly on ZerMeLo's ‘Auswahlsprinzip’ (or WHITEEEAD and
RusseLy’s ‘Multiplicative Axiom’). This difficulty can however be surmounted with a little trouble.
It should perhaps be observed that we have ignored several similar points early in the paper:
in all of these the difficulty is comparatively trivial, and we have only called attention to it
in the present instance because it occurs in a more serious form than is usual in constructive
mathematics.

An alternative line of argument from that in the text proceeds as follows. It is easy
to show that if at most a finite number of primes are omitted, any four of the sequence
log 2, log 3, log 5, log 7, log 11,..., together with ¢ and ¢, form a set of six linearly independent
irrationals. Moreover it can be deduced from known results concerning the distribution of the
primes that we can find a sequence (log pn, log gn, log 74, log sn), where pn, gn, #n, and sn are
primes, such that

(log pn) — oy, (log gn) — 1, (log rn) ~ a3, (log sn) — Bs.
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Then

lim(n, + n,) 0 = lim (2 ¢, + n, 0) = a,

7, &

lim (n, + n,)* 0 = lim (n, ¢, + 7n)0)=a,,
lim (n, + n4)%0 = lim (g nla, +n36) = ay;

with similar results for ¢. It follows by the principle 1.20 that there is a se-
quence giving the desired scheme, and the proof of the induction, and therefore
that of the theorem, is completed.

1.3. — The order of the approximation.

1.30. We have proved that under certain conditions we can find a sequence
(ny) such that

{1.301) (n*lp) — 0ty (x=1,2, - k; p=1,2, - m).

There are a number of interesting questions which may be asked with regard to
the rapidity with which the scheme of limits is approached.

The relations (1.301) assert that, if we are given A, there is a function
O (k,m; 0,,0,, - 0p; a5, 0, - akm; A)! such that

l(nxop)_“axp ' < I/ZI

for some n <@®. It is hardly necessary to observe, after the explanations of 1 . oo,
that this inequality requires a modification when a., = o, which may be express-
ed roughly by saying that ., is then to be regarded as a two-valued symbol
capable of assuming indifferently the values o and 1.

(i) Does @ necessarily depend on the s and o’s: can we for example, find
a @ independent of the o’s? It will be seen that this last question is answered in
the affirmative.

(ii) Can we assert anything concerning the order of @ gqua function of A,
the variables 6 and o being supposed fixed? The same question may be asked
concerning any @ which is independent of the «’s; it should be observed, more-
over, that the best answer to the latter question does not necessarily give the
best answer to the former.

! For shortness we shall write this @ (k,m,0,a,).
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Our attempts to answer these questions have not been successful, and such
results as we have been able to obtain are of a negative character. The ques-
tion then arises as to whether we can obtain more definite results by imposing
restrictions on the &’s or the o’s, by supposing for example that all the ¢'s are
zero, or that the 6’s belong to some special class of irrationals.

(iii) The relations (x.3o0r) imply the truth of the following assertion: there
is a function ¢ (k,m,0,a,n) which tends to infinity with =, and is such that

| (n* Op) — aup| < T/

for an infinity of values of n. A series of questions may then be asked concern-
ing ¢ similar to those which we have stated with reference to @.

1.31. We shall begin by proving two theorems which are connected with
the questions (i). The first of them deals with the case in which all the a’s
are zero, and it will be convenient to use in its statement, as in 1.10, not the
function (z), but the allied function z.

Theorem 1.31. There is a function @ (k,m,1), depending only on k, m, and
A, such that

ln"ﬂ,,l(l/l, (‘K= I,Z,~--k; p_—_I,Z,...m)’

for some n< @.
For suppose that this theorem is false. Then to every r corresponds a set
of 0’s, say ,0,, 0,, - Hm, such that the inequalities

(r.311) | n*,0,) < 1/4

are not all true unless n>r. The set of points (,0,,,0,, - m) has at least
one limiting point (0,,6,, --- @,,), and by restricting ourselves to a subsequence
of s we can make

Wp—0Op, (P=1,2,---m).

From this it follows that we can choose a number 7, which tends to infinity
with r but so slowly that

(x.312) nkl 0y —0Op| < 1/24, (p=1,2, - m).

Clearly we may suppose that n,.<r, and so we have, for an infinity of values
of r, n,<r and

(1.313) n*|,0p —Op|<1/2h, (N<Ny; x=1,2,---k; p=1,2, - m).



174 G. H. Hardy and J. E. Littlewood.

From (1.311) and (1.313) it follows that the inequalities
|n*6,| < 1/24

cannot all be true unless n >n,, and so, since n,— o, cannot be true for any
value of n. This contradicts Theorem 1.011.

In the case k=1 it is possible to assert much more than this. It is known,
and is proved in 1.10, that in this case we may take

(x.314) O=([A]+1)"

This problem, in fact, may be regarded as completely solved. When k> 1, how-
ever, the case is very different. We have not even succeeded in finding a defin-
ite function @ (i), the same for all #’s, such that

[n?d|<1/d

for n<®. It would be not unnatural to suppose that the »best possible»
function! @ is less than K1, where K is an absolute constant. But we have been
unable to prove this or indeed any definite result as to its order in Ai.

1.32. Theorem 1.32. If the &s are linearly independent irrationals, it is
possible to find a function @ (k, m,0,1), independent of the o’s, such that

[ (n%0p) — eup| < 1/A, (#=1,2,---k; p=1,2,---m)

for some n<®.

That this theorem is true for the special case k= 1, m = 1, follows from the
argument (@) in 1.11. It is easily proved in the most general case by an argu-
ment resembling, but simpler than, that of r.3r.

If the theorem is untrue, it is possible to find a sequence of sets (,a.p)
(r=1,2,---) for which the inequalities of the theorem do not all hold unless n > r.
The sequence of sets has at least one limiting set (a,,): let us choose r so that

|y —ap | < 1/24, (=1,2,---k; p=1,2,---m).
Then clearly the inequalities
| (1% 0p) — up | < 1/2

cannot all be true unless n>r, and so, since r is arbitrarily large, cannot all
be true for any n. This contradicts Theorem 1.011.

! That is, the function which has, for each value of A, the least possible value. For the
existence of this function it is necessary that the sign < above should not be replaced by <.
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1.33. Let us consider more particularly the case in which £ =1.
The equation (r.314) suggests that it may in this case be possible to choose
for @ a function of the form

(m,0,c)im.

This we believe to be improbable, but we have not succeeded, even when m = 1,
in obtaining a definite proof. What is certain is that no corresponding result is
true of the @ of Theorem 1.32. It is impossible to choose a function 2 (m, 6)
independent of 4, and a function ¥ (m, 1) independent of the #’s, in such a way
that the @ of this theorem may be taken to be of the form

D= (m,0)Y{m,1).

This is shown by the following theorem.

Theorem 1.33. Let y (A) be an arbitrary funciion of A which tends steadily to
infinity with A. Then it is possible to find irrational numbers 0 for which the asser-
tion ’there is a function

O, 1) =20)yv(4)
such that, when 1 is chosen, the inequality
|(n6) —al< 1/

18 satisfied, for every «, by some n less than @ is false.
Suppose that the assertion in question is true. Taking o= 1/i, we gee that

(1.331) 0< {n) <2/
for some 7n less then @,

Let p,/q, be the »-th convergent to the simple continued fraction

I I
_I_+_+_.|_...
a a, ay

which represents 68, so that p, =1, ¢, =a,; and let us consider the system of
‘intermediate convergents’

Pan,r — Pon+ Tp2n+l,
Qenr  Gon+ T 92n41

(0<r<agn+2),

! In proving a result of this negative character we may evidently confine ourselves to the
special case in which m =1,
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intercalated between pon/gan and Pagi2/¢2n+2. These fractions are all less than
0 and increase with r. Also

!
__Panr_ G2pny2— 1

. 2 y
(I 33 ) QPn,yr G2nr q'2n+2

where a's, 42 i8 the complete quotient corresponding to az, 42, and
+

! f
Q2n+2=Q2n+2 Q2041 T G2n.

Let

o — _2Gm+2 |

(x.333) Taner—s

where s is a particular value of r which we shall fix in a moment. We shall
suppose d:.4+2 large, and s also large, but small in comparison with az,+.. In
these circumstances 4, will be approximately equal to 2 gsn4s.

We shall now prove that if

(1.334) 0<(Q0)<2/in
then
(I 335) Q>q2n,c-

From (1 .334) it follows that there is a fraction P/Q such that

P 2
(1.336) 0<0—'6<1"—Q"
On the other hand
(x.337) o—Dome 2

Q2n,s An q2n,s

If P/Q actually gave a better approximation by defect to 8 than ps, s/qaa,s, it
would follow at once that @ > gs,,. We may therefore suppose the contrary;
and then it follows from (1.336) and (1.337) that

Pons P 2
<= <
© 92n,s Q  i.Q

Hence

0 < P2n,s Q""qin,:P < 2921&,:/1"-
But
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r
I A2n+2 Qnt+1+ Gon
~hn == - 7 >qQn+1>
2 Aon42—8

and

Gams = Qan T $QLr+1<(8+ I)q2n +1.
Hence p2n,:Q — q2a,s P is less than s 4 1, and so
(r.338) PensQ@— qens P =0 (0 <0 <s)
On the other hand

Pen,s92n,s—0 — 42n,s P2n,s—0 = 0;

and so
P2en,s (@ — Q2n,s—@) = {2n.s (P— p2ﬂ,8—o)~

Hence either Q@ =gsn5—g, Or @ —gans—, is divisible by ¢3%s; and the latter hypo-
thesis plainly involves that @ > gan .
On the other hand, if @ = qon,s—,, then P =gy ,..,, and

P donya—s+o 2
o—1 — ste, ,
Q Q2n,s—o §2n+2 An 92n,s—0

(Q0) > 2/,

which contradicts (1.337). Hence in any case @ > gan,s-

It is now easy to complete the proof of the theorem. We have a fortior:
Q>s. Also, if gz, 42 is large, and s large, but small in comparison with ags+3,
i, will clearly be less than 4¢2,+:1. We may suppose for definiteness that
s=[Vazn42].

We choose a value of @ such that the inequality
Azn+2>{P (4 g2n+1)}*
is satisfied for an infinity of values of ». Then
s> :’2[,{'10 (492"+1)}2-

But if @, and a fortiori s, is less than @, we must have
S (4gen ey <RO)Y (k) <2O) Y (492041);

and this is obviously impossible when n is sufficiently large. This completes the

proof of the theorem.
Acte mathematica. 87. Tmprimé le 27 février 1014, 28
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It should be observed that the success of our argument depends entirely on
our initial choice of a« in such a way that (n6) is small. It would not be enough
that n 0 should be small, that is to say that (n6) should be nearly equal to
either o or 1: this can of course be secured by choice of an »n less than @, @
being indeed independent of 6.

1.34. We turn now for a moment to the questions concerning ¢. If we have
found a function @ (1) which is continuous and monotonic, the inverse function is
plainly a ¢. The converse, however, is not true, and we cannot, from the existence of
a ¢ of given form, draw any conclusion as to the order of @ for all values of i.
This is clear from the fact that, to put it roughly, the existence of ¢ asserts
an inequality which need only hold very occasionally, and which therefore gives
us information as to the behaviour of @ only for occasional values of 4. Thus
the existence of a @ asserts much more than that of the corresponding ¢. Since
moreover it will appear (in the third paper of the series) that in applications of
the present theory it is always the properties of @, and not those of ¢, which
are relevant, we are justified in regarding theorems concerning ¢ as of rather
minor importance. There are, however, one or two results which are worth noticing,
and which are not deductions from the corresponding results concerning @. It
should be observed that whereas we wish @ to increase as slowly as possible, we
wish ¢ to increase as rapidly as possible.

Theorem 1.340. It is possible to choose the o’s so that p(m,0, a,n) increases
with arbitrary rapidity. Moreover the o’s may be chosen in an arbitrarily small neigh-
bourhood of any set (¢;,a,, - tm).

We omit the proof of this theorem, which is easy.

Theorem 1.341. If k=1 and m =1, then, provided only that 0 i8 irrational,
we may take

7 ()= n

{(a function independent of both 6 and «).
This follows at once from the argument (a) of 1.11. It is natural to sup-
pose that, when m >1, we may take

9 (n) = w(m) Vn,

where w(m) depends only on m. But this we have not been able to prove.

A comparison of Theorems 1.33 and 1.341 shows very clearly the differ-
ence between theorems involving @ and those involving ¢, and the greater depth
and difficulty of the former.
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1.35. Theorem 1.83 shows that it is hopeless to expect any such simple
result concerning @ as is asserted concerning ¢ in Theorem 1.341. It is however
possible to obtain theorems which involve @ and correspond to Theorem 1. 341,
if we suppose that certain classes of irrationals (as well as the rationals) are
excluded from the range of variation of #. In the two theorems which follow it
is supposed that m =1 and k=1.

Theorem 1.350. Let 6 be confined to the class of irrationals whose partial
quotients are limited, a set which is everywhere dense. Then we may take

D =12(0).

Theorem 1.351. Let 0 be confined to the class of irrationals whose partial
quotients a, salisfy, from a certain value of n onwards, the tnequality

Gn <n1+9 (0 > 0).
Then we may take,
@ = ) (log A1+ Q2(0)
where &' 13 any number greater than 4.

The interest of the last theorem lies in the fact that the set in question is
of measure 1,! so that we may take @ to be of the form i (logi)!+:0(#),?
where ¢ is an arbitrarily small positive number, for almost all values of 6.

The proofs of these theorems are simple and depend merely on an adapt-
ation of KRONECKER’s argument reproduced in x1.11. Suppose first that the par-

tial quotients of # are limited. We can choose H so that, when 1 is assigned,
there is always a denominator ¢,, of a convergent to § such that

(x.350) 2ALgm<H1
We take g =g¢,,. It follows from KRONECKER’s argument that there is for any «
a number » such that

|(v0)—e|<z/g, g2<v<39q/z,

and so
|(v0)—a] < 1/d

for some » less than a constant multiple of A.

! By a theorem of BoreL and Berwstein. See BoreL, Rendiconti di Palermo, vol. 27, p. 247,
and Math. Ann., vol. 72, p. 578; BernsteiN, Math. Ann., vol. 71, p. 417.

® It is not difficult to replace A(log )+s by A log 4 (loglog A)1+¢, or by the eorrespond-
ing but more complicated functions of the logarithmic scale.
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The proof of Theorem 1.351 is very similar. We suppose that

gm —1 <24< Gm,
and so

Gm/mr+P< 24 < gy,
There is a constant ¢ such that g,, > e?™; and from these facts it follows easily that
gm < A(log A1 +¢

for sufficiently large values of i. The proof may now be completed in the same
manner as that of Theorem 1.350.

It is natural to suppose that these theorems have analogues when m > 1. But
our arguments, depending as they do on the theory of continued fractions, do
not appear to be capable of extension.

1.4. — The general sequence (f(n)6) and the particular sequence (a®6)

1.40. We return now to the general sequence (f (n)6): it will be convenient
to write 4, for f (n). We suppose then that (4,) is an arbitrary increasing sequence
of numbers whose limit is infinity.!

It would be natural to attempt to prove that, if § is irrational and « is any
number such that o <« <1, a sequence (n,) can be found such that

(An, 0) — a;

but we saw in 1.00 that this statement is certainly false, for example when
Ap == 2" OF Ap=n!

The result which is in fact true was suggested to us by a theorem of BERN-
STEIN,® which runs as follows:

If A, ts always an integer, then the set of values of 6 for which

(1,0)— o0
18 of measure zero.

This result, when considered in conjunction with what we have already
proved, at once suggests the following theorem.

! In the introductory remarks of 1.00 we stated our main problem subject to the restrict-
ion that An is an integer. No such restriction, however, is required in what follows.
! F. BervstrIN, loc. cit.
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Theorem 1.40. The set of values of 0, for which the set of points (A, 0) is
not everywhere dense in the interval (o, 1), 18 of measure zero.

In other words, the main question asked in 1.00 may be answered affirm-
atively if we make exception of a set of measure zero.

1.41. The proof will be based upon the following lemma.

Lemma 1.41. Suppose that a finite number of intervals are excluded from the
continuum (0,1), and that the length of the remainder S is l. Let a be any number
betwen o and 1, and consider the set T of [A] intervals of length J/2 (6 < 1) whose
centres are at the points
atr . etlM—zx,

g —

i )

>R

Then the length of the common part of S and T s
0l +e,
where &, —o0 a8 A—o0.

The truth of the lemma is almost obvious. A formal proof may be given
as follows. Let the lengths of the intervals excluded from S be l,,l,,...,1, If
now we extend each of these intervals a distance 1/2 1 at each end,® we obtain
a system of p intervals of length

l’s———ls+%- (s=1,2,- p).

We denote what is left of (o, 1) by §'.

If (@ +r)/A falls in &', the whole of the corresponding interval of T falls in
S. Hence the part of § inside 7' has a length not less than p.d/i, where p. is the
number of points (e+7)/A in 8. If »,,,..., v, are the numbers of these
points which fall in the intervals excluded from §', we have

wA+ZSve=[4), (vs—1)/A <U;
and so

g=[A—3v, >A—1—p—2Ai3l,
=l—p—1~12(ls+§)

=ll—2z2p—1,

t 1t is of course to be understood that an interval, or a part of an interval, which falls
outside (0, 1), is to be replaced by the congruent interval inside.

* We suppose A large enough to ensure that this extension does not cause any overlap-
ping. If any part of an extended interval should fall outside (0, 1), as will happen if an inter-
val contains 0 or 1, we of course replace this part by the congruent part of (o, 1).
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since 31, =1 —1I. Hence the length in question is greater than

_(2p+1)d

dl 7

A similar argument, which we may leave to the reader, furnishes a corre-
sponding upper limit for the length; and the lemma follows. It is plain that
&= 0 (x/4).

1.42. We can now prove the following theorem, which is a generalisation
of BERNSTEIN’s, but is itself contained in Theorem 1.40.

Theorem 1.42. If 1 is any interval contained in (o, 1), the set @ of points
0 such that no one of the points (A, 0) falls inside 1, is of measure zero.

Let a be the centre of I and J its length; and let 7,, be the set T of the
lemma, with A =24,. If, for any value of m, @ falls in T,,, then (im0) falls in
I, and so 6 belongs to the set complementary to .

Let

Sp=T, + Tyt +Th,

and let I, be the length of S,. Finally let l,—1 as n—o. We have to show
that I = 1.

We now apply the lemma, taking S to be the set S, complementary to S,,
and T to be T,,. If m is large enough, the length of the common part (S, T'm)
of 8, and T,, is greater than

d(1—1,) —e.

Any point which belongs either to this set or to S, itself belongs to some S,.
Hence
I>l,+0(a—1n)—¢;
and so
I>l4+6(x—0)—e:
which is impossible unless I =1.

1.43. We can now complete the proof of Theorem 1.40. Let E, be the
set of values of 8 such that some one of the intervals

o o 52

contains no point (i,6). Then E, is of measure zero, and so
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E=E +E,+E,+......

is of measure zero.
If now the set (A, 0) is not everywhere dense in (o, 1), there is an interval

r+1)

i which contains no (i»60). We can choose n so that some interval (%,

falls inside ¢. Then 6 belongs to E, and so to E. Thus the theorem is estab-
lished.

1.44. Perhaps the most interesting special sequence falling under the gen-
eral type (f(n)6@) is that in which f(n)==a”, where a is a positive integer. When
6 is expressed as a decimal in the scale of a, the effect of multiplication by a
is merely to dispiace the digits. To study the properties of the sequence (a™6)
is therefore equivalent to studying the distribution of the digits in the expression
of @ in the scale of a: it is to this fact that this_form of f(n) owes its peculiar
interest.

Let b be one of the possible digits o, 1, 2, ..., @ — 1, and let p(n, m) denote
the number of decimals of » figures whose digits include exactly m &’s. Then

n!

(1. 441) P(":m)=m)—!(a—1)""”.
We write
n
(1. 442) u=m—_;

so that u is the excess of the number of b’s above the average.

We shall base our investigation on a series of lemmas.

Lemma 1.441. Given any positive number J, we can find a positive number
& such that

(1. 443) p(n, m)< _ 8+ a—ovmgn
Vam(a —1)n
where
aB
o‘=z(a——1)’

for |u]|<en and all sufficiently large values of n.

We omit the proof of this lemma, which depends merely on a straightfor-
ward application of StirLING’S Theorem.

Lemma 1.442. Given any positive number ¢, we can find a positive number
& such that
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p(n,m)<are—¢"

for Jul>en and all sufficiently large values of n.

Suppose, e. g¢., ‘u>§sn. Then

I
a—1—=-ae¢
p(n,m+1}_ n—m 2

p(n,m)  (a—1)(m+ 1)<

<1I;
(a—I)(I+15ae)

and from this it is easy to deduce the truth of the lemma when ¢ >en. A sim-
ilar proof applies when u < —en.

Lemma 1.443. Let ¢ be a positive constant. Then

(1.4431) fi?na"”Zp(n,m)<1,
n -— o0 —
lef<cVn
(1. 4432) im a=» Y pn, m<r,
n — 0 —
#>—cyn
(1.4433) lim a=" X p(n, m)<1.
n— 0
I‘<6V;L

Of these three inequalities the first is plainly a consequence of either the
second or third. It will be enough to prove the second.

We have
an (@ — 1) nja
a—"zp(n,m) =a—"2 + a‘”z =8 +8,,
g>—cVn —¢Vn en
say. By Lemma 1,442,
(a—1)n

8, < ——e~i"—o.
a
And by Lemma 1.441,

&°m .
S, < ia____ 2 e (a—0)uin
Vamla—1)n Ve
—crn
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=]
a+d
4 —(a—0wing
Vzm(a—x)’n{2 fe uy
-_—Ccrn

The term of order 1/Vn may be ignored. The remainder is less than

a0 7
———————— e“(“"‘")fzd N
V2w (a — 1) ¢

—C

which is less than 1. Thus the lemmajis proved. In a similar manner we can
prove

Lemma 1.444. If v i3 a function of n such that v/Vn— oo, then

a""zp(n, m) < K{K@ e—(a—0a)in a—”},
Iel<» 4
where K depends only on a.
1.45. We are now in a position to prove our main theorems. We observe
first that all irrational! numbers 6 between o and 1, whose decimals have just m b’s
in their first n figures, may be included in a set of intervals whose total length is

a="p(n,m).

For let 6,,0,,...,0,, where g =a", denote the terminating decimals of = fig-
ures. The set of intervals (6,, 6, + a—") just fills up the whole interval (o. 1).
Among the numbers 0, there are p(n,m) which have just m b’s, which we may
call &,,&,, ..., &,; and the set of intervals (§,, & + a—7) fulfils our requirements.

Theorem 1.45. Let d be any positive number. Then the set of numbers 6

for which N
fm ]/5 +6
n—wo Vnlog n o

18 of measure 1.

Let 8 denote the complementary set. Any number belonging to S satisfies

w> (-I/§+ 6’)anog n =,

for an infinity of values of n, 0’ being any positive number less than d.

1 The end points of the intervals will be rational numbers satisfying the condition. In
what follows we may confine ourselves to irrational values of @, since the rational values form
in any case a set of measure zero.

Acta mathematica. 37. Imprimé le 27 février 1914. o4
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All ¢'s for which this inequality is true for a particular » may be enclosed
in a set of intervals whose total length is

(1. 451) a=* X p(n, m).
frel<v,
We can choose a positive number 6" such that

1] [ S
2¢' V:x——a——Z(sf; >o,
L] Va

and then choose n, so that the expression (1.451) is less than

K{ﬁee-m—w:./n + a—n}
Vn
for n>n,. To prove the theorem it is enough to show that the result of sum-
ming this expression for n=mn,,n, +1,...... can be made as small as we please
by choice of n,; and it is obvious that this conclusion cannot be affected by the
presence of the term a—”. But

Al;,"l’ e~ (a—d")v:./n < e"'(a—d”)(l}a-i- d')zlogn
n
= n—l—d""
where
3" > (@ —d") (5 + Ei’) —1
¢ Va
- il IJH
=26'Va——————26_ >o0;
a Va
and plainly
0
2n~l—6’"
m

can be made as small as we please by choice of n,. Thus the theorem is proved.
Theorem 1.45 includes as a particular case
Theorem 1.451. If ny is the number of b's in the first n figures of the ex-
pression of 6 as a decimal in the scale of a, then

np o Nja

for almost all values of 6.
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1.46. Theorem 1.45 shows that the deviation, from the average n/a, of
the number of occurrences of a particular figure b in the first n places, is not
in general of an order materially greater than Vn.! If we were to suppose that
there was a steady deviation from the average (instead of a merely occasional
deviation), we would naturally obtain a more precise result. Thus reasoning
analagous to, but simpler than, that which led to theorem 1 .45, leads also to

Theorem 1.46. If @(n)—o with n, then the set of @s for which

fe(@) Ve (n)—w

1s of measure zero.

This theorem, however, is included in a much more interesting and general
theorem which we shall now proceed to prove, which, to put it roughly, assigns
a lower limit for the deviation in either direction.

1.47. Theorem 1.47. If ¢ is any positive constant, the set of @’s for which

Al't(n) >——CV"—33

and the set for which u(n)<cVn, are of measure zero.
Let

g X
Co=2¢C H (I + ;'—n) .
m=1
By Lemma 1.443, there is a positive number d., such that

liEa""Zp(n, m)=1—J,.

PO u > —6Vn
And if ¢<c¢, <¢,, it is clear that

lima=» ¥ p(n, m)=1—6,,,
"R > —oVa

where
68 _>_ 661 _>__ 600 .

Let E, be the set of the theorem. We can enclose E. in a set of intervals
of total length

! It follows from the elements of the theory of errors that the 'most probable error' is of
order Vn.
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a—n:Zp(n,, m) < 1—§6c.
u>—cVn,

Consider now any one of the
N=Zp(n,m)

intervals of this set, each of which is of length a—™; and let £ = (a™m8). As 6
ranges in the interval in question, £ ranges in the whole interval (o, 1).
If 6 belongs to E,, the corresponding & has the property that

w(n')>—cVa, +'
for all values of n'; and so, if »' is large enough compared with n,,

u@m)>—cVn',
where

c=c(x+2-m"1).

We may now enclose the &s in a set of intervals whose total length is
less than

b
1—56.,';

and therefore we may enclose the ’s which lie in the particular interval under
consideration in a set of intervals whose total length is less than a—"™(1 —2 dc).

If we do this for each of the N intervals, we have enclosed the &’s in a set of
intervals of length less than

Repeating this argument, it is clear that we can enclose the 6’s in a set of
intervals of total length less than

(I—idc) (1-_256,) (I——idw)---(x—gtic(,,),

where

e =c(x+27m=Y)(x+2"™m"1) .. (1 +2-™)),
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the indices n, being integers which tend to infinity with », as rapidly as we
please. Plainly ¢ < ¢, and so

I I
d‘¢;(4’) ._>_ 660’ I ﬁ; 6c(v)£ I— 5 600 s

(I’—gd‘c) (I‘—E(Sc,)..-(j[—zd‘c(v))s(]f '—2(500)"""1.

As this tends to zero as »— o, our theorem is proved.

From Theorem 1.47 we can at once deduce

Theorem 1.471. The set of @’s such that to each 6 corresponds a c for which
i (n) >—cVn is of measure zero.

Let E. denote the set of Theorem 1.47. The set of this theorem is plainly
the sum of the sets %,, B,, H,,...; and so is of measure zero.

1.48. So far we have considered merely the occurrence of a particular
digit & in the decimal which represents 6. But our results are easily extended
so as to give analogous information concerning the occurrence of any combin-
ation of digits. The method by which this extension is effected is quite simple
in principle, and it will be sufficient to show its working in a special case.

Consider the succession 317 of digits, in the scale of ro. In the scale of
1000, the number 317 corresponds to a single digit z; and, if 6 is expressed in
the scale of 1000, it will, by theorem 1.451, be almost always true that the
number n, of occurrences of 7, among the first n figures, satisfies the relation

1000°

Now the combination 317, in the expression of # in the scale of 1o, will
occur when, and only when, the digit = occurs in the expression of one or other
of the three numbers

4, 108, 1000

in the scale of 1000. Hence it is almost always true that the number of occur-
rences of the combination 317, in the first n digits of the expression of # in the
scale of 10, is asymptotically equivalent to

n

1000°

We may now, without further preface, enunciate the following theorems.
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Theorem 1.48. It is almost always true that, when a number 6 is expressed
in any scale of notation, the number of occurrences of any digit, or any combination
of digits, is asymptotically equivalent to the average number which might be expected.

Theorem 1.481. It is almost always true that the deviation from the average,

in the first n places, is not of order exceeding Vn log n.
Theorem 1.482. It is almost always true that the deviation, in both directions,

is sometimes of order exceeding Vn.

Theorem 1.483. The number of the first n numbers (a*6) which fall inside
an interval of length & included in the interval (o, 1) is almost always asymptotically
equivalent to dn.

The last theorem is merely a translation of theorem 1.48 into different
language, and a corresponding form may of course be given to theorems 1.481
and 1.482.

1.49. Throughout this section (1.4) we have confined ourselves to results
concerning a single irrational 4. Some of our theorems, however, have obvious
many-dimensional analogues. It will be sufficient, for the present, to mention the
following, which are generalisations of Theorems 1.40 and 1.483 respectively.

The interval (o, 1) is now replaced by an m-dimensional ’square’.

Theorem 1.49. The set of values (0, 0, --- 0m), for which the points
(An 0y, An 0,4, 6,) are not everywhere dense in the square, 8 of measure zero.

Theorem 1.491. The number of the first n points (a*6,2a”0,, ---a*6y,), which
fall inside a portion of the square, of area 0, is almost always asymptotically equi-
valent to dn.

We leave the proofs to the reader. The first theorem may be proved by
an obvious adaptation of the proof of Theorem 1.40, and the second deduced
from Theorem 1.483 by a process of correlation very similar to that employed
n 1.48.
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