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Let T, be a measure preserving (m.p.) flow on a probability space (X, u) and let 7 be a
positive integrable function on X, {xtdu=%. We say that a flow T, is obtained from T,

by the time change 7 if
T/(x) =T, n(x)

for u-almost every (a.e.) x€X and all tER, where w(x, 1) is defined by

w(x, 1)
f (T, x)du=t.
0

The flow T; preserves the probability measure 4, on X defined by

du(x) = (t/H du(x), x€EX.

We say that two integrable functions 7, 75: (X, ©)—>R are homologous along T, if
there is a measurable v: X—R such that

f (r,—7) (T, x) du = v(T,x)—v(x)
0

for u-a.e. x€X and all tER. One can check that two time changes 7, and 7, are
homologous via v if and only if (iff) the map y,: X—X defined by

Yo(x) = T X,
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where [$% £(T, x) du=u(x), is an invertible conjugacy between T;' and T, i.e.
¥, T'0) = Ty, (x)

for a.e. x€X and all tER. If T, is ergodic and 7, 7, are homologous along 7, via some
measurable functions v, and v, then v,—uv, is equal to a constant a.e.

Let G denote the group SL(2, R) equipped with a left invariant Riemannian metric
and let T be the set of all discrete subgroups I' of G such that the quotient space
M=T|G={I'g: g € G} has finite volume. The horocycle flow A, and the geodesic flow g,

on M are defined by
. 1 0
h(lg)=Tg ( )

t 1
e 0
g(l'g)=Tg <0 e_,)

2€G, t€ER. The flows h, and g, preserve the normalized volume measure x4 on M, are
ergodic and mixing on (M, ) and

gr°hs=h”2:°g: *)

for all 5,1ER.
In order to state our main theorem we shall need the following notations. Let

cosf® sin6
K=3K,= : -7,
{ 6 (—sine cosO) o€( ﬂn]}

be the rotation subgroup of G. We say that a real valued function ¢ on M=T|G,CE€T is
Holder continuous in the direction of K with the Hélder exponent 6>0 if

lp@)— ()| < C,l0|°
for some C,>0 and all x,y€M with y = Ry(x), where Ro(I'g)=I'gKy, g€G. It was
shown in [2] that if @ € L,(M, u) is Holder continuous in the direction of K with 6>1
and =0 then

f @x) p(h,x) du(x) sD(pltl-aw (**)
M

for some D,, a,>0 and all t+0. We shall denote by K(M) the set of all positive
integrable functions 7 on M such that v and ™! are bounded and 7—7 satisfies (**) for
some D, a,>0.
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THEOREM 1. Let h? be the horocycle flow on (M=T |G, u), T;€T, i=1,2 and let
k' be obtained fromh® by a time change t;€ K(M), i=1,2, with ,=%,. Suppose that

there is a measure preserving . (M, . )>(My, 11, ) such that

Yh(x) = h2y(x)

Jor M -a.e. X €M, and all tER. Then there are C €G and a measurable 0: M,~>R such

that
CT,C'cT, and ¢ =A%y ) ®c®)

Jor ur-a.e. x€EM,, where yAI1g2)=T,Cg, g€G.

The second conclusion of Theorem 1 says that 7; and 7o defined by
T ) =7,((x)), x€E M, are homologous along 4" via v defined by

oy e(x)
Ulx) = f tc(hPx)du, x€EM,.
0

Let us note that it follows from [1] that if y:(M,, /t,l)—>(M2, ,u,z) is an invertible

measurable conjugacy between #;' and h;? then y is in fact measure preserving. The
same is true when  is not invertible and M, is compact.
We assumed in Theorem 1 that ¥,=7%,. Suppose now that a=%,#+7,=b and let

fl(x)=%t.(g_sx), s=%log%, x€EM,, #,=b.

The commutation relation (*) shows that hf‘ and hf‘ are isomorphic via g, i.e.
g,0h'=h'og, tER. We get the following:

COROLLARY 1. Let 1,€K(M), i=1,2 and ©,=a, i,=b. Suppose that h:‘ is conju-
gate to h;* via a measure preserving y:(M,, #.)—>(My,p.). Then there are CEG
and a measurable 0: M,—R such that CT,C'cIl, and w(x)=hf,2(1pc(g:x»tpc(gsx) for
u-a.e. x€EM,, where Yc is as in Theorem 1 and s=}log(a/b}.

COROLLARY 2. Let 7,€K(M), i=1,2, §,=a, T,=b. Then k' is isomorphic to h,'2 if
and only if there is CEG such that CT,C™'=T, and 1,(x) and (a/b) (¥ c(g; %)),
xEM, are homologous along h"®, where s=4{log(a/b). Every isomorphism between

h;' and K} has the form as in Corollary 1.
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THEOREM 2. Let h? be the horocycle flow on (M=T,|G, u), ;€T and let h be
obtained from K by a time change v,€K(M,), i=1,2. Suppose that h; is ergodic for
some p*0, i=1,2 and there is a measure preserving y: (M, u.)—>(M,, 1. ) such that

Wh)(x) = h}p(x)

for M. -a.e. x€EM,. Then y is a conjugacy of the flows h;' and h}?, i.e.

Yhi'() = b y(x)
foru, -a.e. x€M, and all tER.

For TET let '={CEG: CTC~'=I} €T be the normalizer of T in G. Let K;(M) be
the set of all rEK(M) with =1, M=T| G. We say that 1,,7, €K;(M) are homologous
modulo [ if there is CEI such that 7, and rc=1,09¢ are homologous along #,.
Corollary 2 says that there is a one-to-one correspondence between the isomorphism
classes of 4], T€K,;(M) and the homology classes of 7€ K(M) mod r.

Let f; be a m.p. flow on a probability space (X, ») and let W(f;) be the set of all
isomorphisms y: X—X such that yf(x)=f,y¥(x) for u-a.e. x€EX and all t€ER, i.e. p
commutes with every f;, t€ER. We say that y,, ¥, EW(f) are equivalent if y,=f,0y;
a.e. for some p ER. Let x(f;) denote the set of equivalence classes in W(f,). We define a
group operation in x#(f;) by [y,]-[y.]=[y,0y,], where [¢] denotes the equivalence
class of 1. The group x(f;) is called the commutant of f; (see [6]).

It follows from Corollary 2 that if 7 € K(M) and y € W(k}) then there are C€ Tanda
measurable o-: M— M unique up to an additive constant such that T and rc=7019( are
homologous along 4, and y=h; oy a.e. This implies that

x(h) = {[h;_vc]: CET}.

The map n: x(h)) —»I'\I" defined by Jt[h;c 1/)0]=I“C, C€T is a group isomorphism from
#(h?) onto a subgroup of I'\I'. The group I'\\[ is finite, since TET. We get the
following:

COROLLARY 3. If t€ K(M) then the commutant x(h}) is finite and is isomorphic to

a subgroup of T\I'. If T=T or t is not homologous to t¢ for any C €T different from
the identity then the commutant »(h}) is trivial.

In view of [2] we get:



RIGIDITY OF TIME CHANGES FOR HOROCYCLE FLOWS 5

COROLLARY 4. All the above results hold for time changes Holder continuous in
the direction of K with the Holder exponent greater than } (in particular, C Yfunctions

in the direction of K) and bounded together with their reciprocals.

Summarizing, we conclude that if € K(M) then 4] inherits all the rigid properties
of h, found in [6].

Finally, let us note that for any I',,[,ET the horocycle flows A" and 4® are
Kakutani equivalent (see [4, 7]). This means that there is a time change
7,: M;—R" such that #? is isomorphic to h;'. It follows from [3] that 7, can be
assumed differentiable and bounded on M;, but some partial derivatives of 7, may be
unbounded. Our Corollary 4 shows that there is no such a r; with bounded r,“ and

bounded partial derivatives unless I'; and T, are conjugate in G.
I am grateful to C. Moore for proving [2] at my request.

1. Preliminaries

Let p: G->M=I'\G, T €T be the covering projection p(g)=Ig, g€G. Let

t
; 2_,) and H,g=g-<: (1)), 2€G, tER

Gg=g (

be the geodesic and the horocycle flows on G, covering g, and k4, on M respectively.

. t .

We shall also consider the flow Hfg=g- ((1) 1 on G, covering the flow A}(I'g)=I'H}g
on M. We have

GoH =H ,0G,

1.1
G,oH}=H* _,0G, 4.

se

t, s€R. We shall assume without loss of generality that the Riemannian metric in G is
such that the length of the orbit intervals [g, G, g], [g, H,g] and [g, Hfglis t, g€EG. We
shall denote by d the metric on G (or on M) induced by this Riemannian metric.

For g€G and a, b, ¢c>0 denote

U(g;a, b,c)={g€G:g=H,H}G,g for some |p|<a, ||<b, |r|<c}

U(g;e) = Ulg;¢,¢,8).
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We have
U(g;a,b,c)=g-Ule;a, b,c)
where e denotes the identity element of G. It follows from (1.1) that
G.U(g;a,b,c)=U(G,g;a,be %, ce*), tER.

Denote W(g) = {HfG,g:t, sER}. The set W(g) is called the stable leaf of g for the
geodesic flow G,. Let

a b
g_(c d)EU(e,s), e>0.

Suppose that for s>0 there is g(s)>0 such that
Hq(s) 14 € W(Hs e).
The function ¢(s) is uniquely defined by s and g and

Hs 8= Hr(s) H;,‘(s) Gp(s)(Hs e)
q(s) = s+nr(s)

where

") = (d—bs)™!

2s)=beP®
Hs) = —ePO(bs?+Ls—c) (12)
L=a—d.
One can compute that if
g=G,H}e
then
H,, 8= G H{(G, Hf He)
where
la| < Lijg(s) 2], 18] < Lalzal (1.3)

for some 0<L,;, L,=<2, if z and p are sufficiently small.
For 0<n<1 and
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a b
g= (C d) €EU(e; ¢)
denote
E=E(e,g,n)={sER*:|bs’+Ls| <4s'" "},

The set E consists of at most two connected components Ey=E(e, g, 7)=[0, /] and
E,=E,(e, g, m)=[l;, ;] for some l;=I{e, g,7)>0 i=0,1,2 and ly<l,<l,, where E; might
be empty. One can compute that

D D
|b| < e IL| < u
for some D>0. This implies via (1.2) that
D D
=5 el<y (1.4)
o 0

for some 0<D<100 and all 0<<s<l,, if £>0 is sufficiently small.
For x,y€G, y€U(x;e) denote lo(x,y,n)=Ie,x 'y, n) and for O<r<iy(x,y,?)
denote

B(x)y: 77)= {(st; Hq(s)y): Ogssr}' (1'5)

The set B(x,y,n) will be called the (¢, 7)-block of x,y of length r. Expression (1.4)
shows that

D D
Hq(s)yE U(HSX;F,W, 0)
0 ‘o

for all O<s=<r.

2. Dynamical properties of A,

In this section we shall prove the following

LEMMA 2.1 (Basic). Let h, be the horocycle flow on (M=T|G,u), TET. Given
0<n<l, 0<w<l and m>1, there are y=y()>0, 0<0=6(y)<l, a compact Y=
Y(y, w)eM with u(Y)>1—w and 0<e=e(Y, m)<1 possessing the following property. Let
u€Y, v€U(u;e), and a subset AcR™ satisfy the following conditions (i) 0€ A, (i) if
S€A then hyu€Y and there is t(s)>0 increasing in s such that hysv € U(h,u;¢), (iii)
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I(t(s") = t(s))—(s'—s)|<(s'—$)'"" for all s5,5'€EA with max{(s'—s), (Hs")—t(s))}=m.
Then

(1) if A€EA and IAN[0,A])/A>1—6/8 then there is s; €AN[0,A] such that

h,(sl)UEU(hsu;D D e)

/! 127 ’ ll+2‘y ’

for some D>0, where I(C) denotes the length measure of C,
Q) if An[0,A1%D for all A=Ay and (AN[0,A])/A>1-0/8 for all A€EA with A=A
then v=h,u for some p ER.

Let us introduce some notations. Let I be an interval in R and let J;, J; be disjoint
subintervals of I, J;=[x;, yl, yi<x; if i<j. Denote d(J;, J)=lly;, x]=x;—y;.
We shall use the following lemma whose proof in [5] is due to R. Solovay.

LEMMA 2.2. Given y>0, there is 0<0=0(y)<1 such that if I is an interval of length
t (tis big) and a={J,, ...,J,,} is a partition of I into black and white intervals such that

(1) d(J;, J=[min {I(J), I(J,-)}]”" for any two black J, J;€a

2) I()=<<3t/4 for any black J€Ea

3) (=1 for any white JE€Ea

then m,(t, a)=0, where m,(t, @) denotes the total relative measure of white intervals
of aonl.

For given 0<7<1, 0<w<1 and m>1 we shall now specify the choice of y, 6, Y and
€in Lemma 2.1.
First we choose 0<y<n/2 satisfying

2
———1+7>1+2y.
Ty 1> 142y @1

The reason for this choice will be clear later.
Let 6=6(y) be as in Lemma 2.2.
Since I is discrete, there are a compact KcM, u(K)>1-0.1min {y, o} and 0<A<1
such that
if x€p~'(K)=K, d(x,y)<A and
d(H,x,DH,y) <A for some e+DET 2.2)

then max {|1, |s|} = m.
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This implies that
if x€K, d(x,y)<A and d(x,D-y)< A

for some DET, then D=e. 2.3)

Since the geodesic flow g, is ergodic on (M, u), given w>0 there are a compact
Y=Y(w)eM, u(Y)>1-0.10 and to=to(¥)>1 such that

if w€E Y, t =1, then the relative length measure

of K on [w, g_,w] is greater than 1—-0.2y. 2.4)
Set Y=KnY, u(Y)>1-0.20.
Let 0o>1 be such that
jlogo>1t, and 100p7""7 < A/6. 2.5)
Now we choose 0<e<A so small that if g € W,(e), g€ G, then
lo(e, g, 7) > max {p, m}. (2.6)

(See (1.4).)

Thus 0<y, 8, e<1 and YcM have been chosen. The reason for these choices will
become-clear later.

Now let us describe a construction used in the proof of Lemma 2.3 below.

Let u€Y, v€E W.(u). We say that (x,y) EGXG cover (4, v) if y € W,(x) and p(x)=u,
p(¥)=v. Let B(x,y, ) be the (g, 7)-block of x, y of length r defined in (1.5). The set

B(u,v,n)=pB(x,y,1) = {(hsu, hysv): 0<s<r}
will be called the (g, 77)-block of u, v of length r<ly(x,y, n)=Iy(u, v, 7). We shall write

B(u) v, ’7) = {(u: U), (hr u, hq(r) U)} = {(u’ U), (a; ﬁ)}

emphasizing that (u, v) is the first and (@, ©) is the last pair of the block B(u, v, 7). It
follows from (1.4) that h,, v="hj) gp(s(hs ) Where

D

lp(s)| s—ll%, |2(9)| S—l(,)+—,, Q.7

0
for all s €[0, r], where ly=Iy(u, v, 7).
Henceforth the symbol D will always mean a positive constant which can be
chosen less than 100 if £>0 is sufficiently small.
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Let f={By,...,B,}, B;i={(u;v), (@, 0)} i=1,...,n be a collection of pairwise
disjoint (g, 7)-blocks on the orbit intervals [u;, h;u,], [v1, hyzyvy] for some large

A, {A)>0, such that
an=hﬂ.ul’ ljn=ht(l.)vl

u, €Y, v,€EW.(u), U,EW(a)

uy=h,u,, v;=hv, a=hgu, v;=hyv

for some s;, t;, §;, >0, §;<s;<A, t;i<y=<t(d) if i<j, i, j=1,...,n.
Let (x;, y) €GXG, y;€ W(x;) cover (u;, v;). Although v;€ W.()) it is not necessar-
ily true that H, _, y,€ WE(H,j_si x), but there is a unique DET such that

D-y;E W (x) 2.8)

where y= =1,V xj=H:j_six,.. We shall write

@, v)~(w,v) if D+ein (2.8
u,v)~u,v) if D=ein (2.8).

This definition does not depend on the choice of (x;, y;) € GXG covering (i;, v;). For B;,
B;€B, i<j we write
d(B,', Bj) =5 if U= hs 11;

r ) r
B,~B; if (u,v)~(u,v)
B,~B; if (u,v)~(u;,v).

We shall impose on § the following conditions
§;—5:> lo(u;, v;, M)

(6~ ) —(s;—5)| < 2(s5;—5)* "

[ti—1)—(55—s)| < 2(5—s5,)' ™7

if i<j and B,~B, 2.9)

(6= 1) —(s;—5)| < 2(s5;—35)" "

if i<j and B,~ B;.
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Now let us construct a new collection 8,={B,, ..., B} by the following procedure.

Take B, €8 and consider the following two cases. Case (i). There is noj€ {2, ...,n}
such that (u;,v;)<(u;, v). In this case we set B,=B,. Case (ii). There is jE{2,...,n}
such that (uy,v)<(u,v). Let (x1,y))EGXG cover (uy,v,) and let x=Hx,,
¥i=Hys y1, where s=s5;,—s5,. We have t,—t,=¢(s) and (x;, y;) cover (u;, v;). Let

E=E(xl’yl’ﬂ)=[O’IO]U[llylZ]’ li=li(xlayl9ﬂ)9 l=0’112
be as in section 1. Expression (2.9) shows that s €{/,, ;). Denote

F(x;,y,,m) = {s ER*: |bs*+Ls| < 4l,""}

-1 a b
8=X = 0 d

and L=a—d (see (1.2)). The set F(x,,y;,”) consists of at most two connected compo-
nents Fo=[0,/] and F;=[[, l,] where I>ly(xy,y1,7), I<l; and L—[=l if F,+@.
One can compute as in section 1 that if H)y,=H%s) Gp)(Hsx;) then
D"
l

where

DIy
12

|z(s)) < , lp(s)| = (2.10)

for all s €[0, /]. To define B, for the case (ii) we consider the following two possibilities:
(a) [=I>1'*7, In this case we set B;=B,. (b) [-I<I'*?. Then
I<sL<3'tr,

This implies via (2.1), (2.10) and (1.2) that

D D
|2(5)] sW’ ()| S@ @.11)

for all s€[0,/]. We set in this case §1={(u,, vy, (fljl, 17j|)}, where
ji=max {j€{(2,...,n}: B, ~B}.

Thus B, € B, has been constructed. Suppose that Bm={(ui,.._1+l’ v s @, o)}
Jo=0 has been constructed. To define B,,, we apply the above construction to

B, .,€ B. Thus B, is completely defined. It follows from the construction that if i<j and
B,~B,, B, B,€p, then
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dB,B)>0>1 and d(B,B)>[B)I'". (2.12)

It follows from (2.7), (2.11) and (2.6) that if B;={(«/, v)), (i}, )} then

u;eu(u'-D D o)

P2y’ 142y’
Y Y
ﬁ r

» . D D
0;€ U(“i’_rg—y’ 143y’ 0)

(2.13)

for some r;2max {0, I(B)}, i=1, ..., k.
Let u;=h_u,, #;=h, u,. Denote J=[r, 7]<[0,4], i=1,....k. We shall call J; the

‘black interval induced by B;. The collection 8, induces a partition a of I=[0,4] into
black and white intervals. We shall denote

my(B,) = my(a, A).

LEMMA 2.3. Let 0<n<1, 0<w<1 and m>1 be given. Let y=y(n)>0, 0<0=6(y)<1,
Y=Y(y,w)cM with u(Y)>1—w and 0<e=e(Y,m)<l be chosen as above. Let
B={By,...,B,}, B={(u;v), (t; 0)}, v;€E Ww,), ;€ W.(iI;), i=1,...,n be a collection
of pairwise disjoint (¢, n)-blocks on the orbit intervals [uy, hy u,], [vy, hyayvy] such that
u;, 4;€Y, i=1,...,n and (2.9) holds for . Suppose that m,(8)<6. Then there is BEP,
such that I(B)>31/4.

Proof. First let us show that
d(B', B")> [min {{(B"), (B"}]'*” , (2.14)

for any B'+B"€p,. Indeed, suppose on the contrary that there are B'+B"€f, with
I(B")<I(B") such that

d(B',B") <[I(B"))'*". 2.15)
It follows then from (2.12) that B'LB". Let

B'={(@',v"), @', 0")}
B'= {(un, v, (@', 5:!)}

L

uw=hsa', vV =hv'.

We shall assume for simplicity that s, £>0. We have
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s<[IBHMY, t<3s (2.16)

by (2.15) and (2.9).
Let (x, yY) EGXG cover (u",v"), (%, ¥) E GXG cover (@', 0') and x=H,%. We have

y=D-H,y forsomee+DEl 2.17)

since B'~B". 1t follows from (2.13) that

D D
xEU(y,ﬁ-,?:z—y,s) and

2.18)
_ .D D
D-y€ U(x,w, E, —t>
for some r=max {g, I(B")}. Also
0<s,t<3r'*" by (2.16) (2.19)

Let 7,=}log r'*'%, 7,>1, by (2.5). Since «"€ Y< Y it follows from the definition of
Y and ¢, in (2.4) that the relative length measure of K on [u", 8., u”] is greater than
1-0.2y. This implies that there is v satisfying
(1-029)p<t<T1H
such that g_, 4" €K and therefore
z=G_.x€Ep~\(K)=K. (2.20)
We have using (2.18) and (1.1)

2r
zEU(G j; D De s)

P e B o

T rZy i+2y 27
T 2 ¢ @.21)
- .D De”* —¢

D-G_,ye U(Z,W,W,—e?)

where

— 2t
rl+l.ly< r(l+|.57)(l 0.2y)< les e = r1+1.5y.

This implies via (2.21), (2.19) and (2.5) that

dG_.y5,7)<A and dD-G_.3,z)<A
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and that
D=e by (2.3) and (2.20)

which contradicts (2.17). Thus we proved (2.14). It also follows from the proof that if
B'LB", B, B"€B,, then

dB',B")>p>1.
This and (2.12) imply that
dB',B")>p0>1

for all B'+B"€p,.
Now let a be the partition of I=[0, 1] into black and white intervals induced by 8,.
‘We have using (2.12) and (2.14)

I(J)> 1 for every white JEa
dJ;, Jp) > [min {I(J)), (T}
for any two black J;, J;€a.
Also
my(a, ) <m, (B <8
by the condition of the lemma. It follows then from Lemma 2.2 that there is a black

J€a with I(J)>3/4. This says that there is B€ S, such that I(B)>31/4. This completes
the proof. Q.E.D.

Proof of basic Lemma 2.1. For given 0<p<1, 0<w<1 and m>1 we choose
y=y(n7)>0, 0<6=0(y)<1, a compact Y= Y(y, w)cM, (Y)>1-w and 0<e=¢(Y, m)<l1 as
above.

Let u€Y, vEU(u;¢) and let AcR™ satisfy (i)-(iil). For 1€ A denote

Ay =AN[0,2]
and assume that
KA > 1——‘;-. 2.22)

Let us construct a collection S(4) of pairwise disjoint (g, #)-blocks as in Lemma 2.3.
To do this take u, v and set u;=u, vy=v. Let (x1,y,) EGXG cover (u,,v,) and let
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§1=sup {s€A; N[0, lo(xy,y1,M]: Hysyy1 € U(H, x,, )}

Let B, be the (g, 7)-block of uy,v, of length §;, By={(uy,vy), (&,0,)}, where
ay=h; u €Y, since Y is compact. ‘

To define B, we take
s>=Iinf{s€A;: s> 35}
t(sz) =inf {t(s): s€EA,, s> 5}

and apply the above procedure to
u=h,u, v;= h,(SZ)vl.

It is clear that u,€Y, since Y is compact. This process defines a collection
B()={By,...,B,} of (g n)-blocks on the orbit intervals (u;, hyu;l, [vy, hupyvil, Bi=
{(ui’ U,-), (’21’; 6,’)}, U;, 12,-6 Y, i=1, Y (N Let

w=h,u, a;=hgu
v =hv, U=hv, i=12,..,n
Suppose that B,LBJ-, i<j. Then
max {s;—$;, ;—t} =m
by (2.2) and our choice of ¢. This implies via (iii) that
(6= 1) —(s;—35)| < (Sj—S'i)l_A"-
Suppose that B,.ﬁ-Bj, i<j. It follows from the construction of B, B; that
si—s8: = lou, v, M) >m
and therefore
|(t;—t)—(s;—s)| < (Sj—si)l_”
[t~ 1)~ G—s)| < (§—s5)' 77
by (iii). This implies that
s5;—5:> lo(u;, v, 1)

and that B; and B; are disjoint.
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Thus S(2) satisfies all conditions of Lemma 2.4. We have

m,(B() <6

by (2.22), since each s € A; belongs to a black interval induced by (2). This implies by
Lemma 2.3 that there is B, €B,(4), B;={(u;, v3), (i#;, 03)} such that

I(B;) >3/4.
It follows then from (2.13) that
v, € U(ul;ED;y-, _,I‘%V—’ ) (2.23)
This proves (1) with s; such that h, u=u,.
Now let A;+@ for all A=1, and let
KA)A> 1—% (2.24)

for all A€EA with A=4,. It follows from (2.24) that there are 1,,€EA, 1,=4,, n=‘1,2, vees
A,—%®, n—o such that

Ay<A <3, n=12,... (2.25)
Let Bl"e ﬂy(/l,,) be as above. We have

(B, )>34,/4.
This and (2.25) imply that

Bl,.nBlm *@, n=1,2,...
and therefore

B,cB, , n=12,...

This implies via (2.23) that

for all 4, n=1,2,.... This says that v, =u,, and therefore v=h,u for some
PER. Q.E.D.
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3. The class K(M)

Let us recall that a positive measurable function 7 on M=I'\G, I' €T belongs to K(M),
if 7 and ! are bounded and

f @(x) p(h,x)du | <D|f™°. 3.1
M

for some D=D(7)>0, 0<a=a(r)<1 and all 40, where p=17-7.

LEMMA 3.1. Let ¢: M—R be measurable, bounded, =0 and let (3.1) hold for @
with some D(p), a(p)>0. Then given w>0 there are P=P(w)cM with W(P)>1-w and
m=m(P)>0 such that if x€P then

< tl~a

J @(h,x)du
0

for all t=m, where o'=a'(p)=a(@)/8.

Proof. Denote .
s(x) = f @(h, x)du
0

c@n= f o(x) p(h, x) du.
M

We claim that

j [s,(x)]zdy <D 3.2)
M

for some D>0 and all £>0, where a=a(@) is as in (3.1). Indeed, we have using (3.1)

f [s,(x)]zd;t=f ( j j tp(ksx)<p(hux)dsdu> du
M M 0 Jo
=I f C(u—s)dsduSZf <f |C(v)|dv) ds
o Jo o \Jo
2D

-2 P =D,
—Qa

It follows from (3.2) that
u{xEM:|s,(x)| = 1"} < D12 (3.3)

2-868282 Acta Mathematica 156. Imprimé le 10 mars 1986
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Denote
A= {xEM:|s(x)| <™}, >0
4/a

pr=n"" n=1,2,....

We have using (3.3)

D
uA)=1=5, n=12,...

Given w>0, let ky=ko(w) be such that

= 1
D —<w
kakokz

and let P=P(w)=nk?koApk. We have

upPy>1-w
and if x€ P then
|5, ()] < pi*

for all k=k,.
Now let z=p, and let k=k, be such that

Pe<Ut<Ppy1.
One can compute that
Pen—P= 0P
for some Q>0 and all k=1,2,.... This implies that
t=pitq

where 0<q<Qp)~**. For x€ P we have using (3.2)

Pr*+4q
f @(h,x)du
P,

k

s [ <s, ()| + < Qpi < Q-

for some 0>0, since ¢ is bounded. This completes the proof.

Q.E.D.



RIGIDITY OF TIME CHANGES FOR HOROCYCLE FLOWS 19

4. Time changes and a conjugacy ¢

In this section we shall prove Theorem 1.
Let M=T;|G, T,€T and let t: M,—>R"* be a time change for the horocycle flow h®

on (M, u), i=1,2. Suppose that 7,€ K(M) and let

J' T,du;=a>0
Ml'
pi=1—a
sup {7x), 7; '} <K @.1)

for some K>1,i=1,2.
We shall assume without loss of generality that a=1. Let k' be obtained from A%

by the time change 7, and let ¢: (M, u, )—>(M), u,) be measure preserving and

Yh'(x) = hp(x) 4.2)
for Yo 2. xEM, and all t€ER, where dy,i(x)=t,.(x) dufx), i=1,2.
Let 0<a/=a’(¢)<1 be as in Lemma 3.1 for ¢;=7,—1, i=1,2 and let
7 =4{min {a], a;}.

. Let y=y()>0 and 0<6=6(y)<1 be chosen as in Lemma 2.1.
Since v is measure preserving and u, is equivalent to u;, i=1,2, there is

0<w<6/(200K*) such that

A
w(p(A) < 00K

‘whenever u,(A)<w.
Let Pi=P{w)=M;, u{P)>1~w and m;=m{P)>0 be as in Lemma 3.1 for g,
i=1,2. If x€P; then

s tl-Zr;

t
J. @ h®x)du
0

for all £=max {m;, m,}, i=1,2. This implies that there is mo=max {m,, m>} such that
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L pon 4.3
200K4t 4.3)

t
f o h%x)du| <
0

for all x€P; and all t=m,, i=1,2.
Set m=2K*my and let Y=Y(y, w)cM,, u(Y)>1—w and 0<e=&(¥, m)<I be as in
Lemma 2.1 for A% on (M,, u,).

Since y: M;—M, is measurable, there is a compact AcM;, u1(A)>1-w such that
v is uniformly continuous on A. Let 0<d<e/2 be such that if u, vEA, d(u, v)<6 then
d(y(u), y(v))<e/2. Let now 0<d’<d be so small that if x€ G and y € W,.(x) then

Hyy€Wsp(H,x) and |q(t)—t| <ot 4.4

for all 0=<¢<2K? (see section 1 for the definition of g(¢) and Wa)
Let X=P,nAny~'(P,nY). We have

0
(X)) >1 SOk

For x€M; and tE€R denote

t
§ix, t)=j t(h%x)du, i=1,2.
0

For u€M, and t€R let z(u, t) be defined by
1w, ) = &x(y(w), 2(u, 1)). (4.5)
It follows from (4.2) that
Yhw) = A2, , ()
for u;-a.e. u€ M, and all 1t ER. Expression (4.1) implies that

—t<z(u, <Kt (4.6)

for all u€M,, 1=0.
Since A is ergodic, there are V,cM, u,(V,)>1-2"" and ¢,>1, ¢,/ ®, n—> such
that if u€V, and |f|=1,/2 then

|lz(u, )—t| <|t|n"! 4.7
and
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the relative length measure of X on [u, h{"u] is at least 1—26%. 4.8)

We shall use (4.7) in the proof of Lemma 4.2 below and (4.8) in the proof of Lemma 4.1.
Let r,=}log ;" and let V=N, ¢ V,, u,(V)>0.

LEMMA 4.1. Let u, v€EV and v=gP’ k5 Vu for some |al, |B|<d’. Then

d@, gff)h;(z’ﬁ")_,(), n—,
here =6, v, 5,4, v
Proof. Denote
u,=glu, v,=g'v
u,=yu,), v,=p,).
We have using (4.4) and (1.3)

1 1
v, = gfx)h:{f )u,,

4.9)
4 4
m,mpm,, .4 4
O 70)

for all 0<t<2t,, where 8,=8t,"*", n=1,2, ....

For p €R denote
u,p)=hPu,, v,@)=hv,
s(p) = z(u,, p), ap)=:z(v,, p).
We have
u(s(P)) = G u, = Yu,p)
vi(a(P)) = hel)y v, = yv ().
Let

B,= {pe[oa tn]: un(p)EX; Un(q(p))EX}, n=1,2,....

It follows from (4.8) and (4.9) that

IB/t,>1— 186K“ , n=1,2,.. (4.10)
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if 6'>0 is sufficiently small. It follows from the definition of X that if p €B,, then

un(p), v(qP)) EPLNA
un(s(p)), v (algP)) EYNP,

and
vnla(@(P) € Ulur(s());el2), n=1,2,.... 4.11)
Suppose that
s(p'y-s(p)=zm
for some p, p’ €B,, p<p’. It follows then from (4.6) and (4.9) that
p'—p=mlK?=2K>m,
9(p")—q() = K>mq
alg(p")—alg(p)) = me
and therefore
5" =) —(p’' —p)| < 0.01(s(p")—s(p))' /K>
(alq(p")~a(@@))~ (4 )-a(p))| <0.01(a()~q(p))' ~"IK

by (4.3) and (4.6), since u,(p), v,(q(p)) € P, and u,(s(p)), v,(alg(p))) E P,.
Denote

4.12)

po=po(n) =infB,, p=p(n)=supB,
so=So(n) =s(pg), §=35M)=3sp), 5—s0=4n
ao = ao(n) = a(g(po)), a=a(n)= a(q(P))
B, =s(B,) 50,5, n=1,2,....

We can assume without loss of generality that p,, p € B,. We have using (4.10) and
4.6)

18K* ) 4.13)
—T—In $ln =K t,
By, =1--2.

18
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Let
Ap = {so} U(BnNIso+m, ).
We have
IA)A, =1~ —165— 4.14)

if n is sufficiently large. It follows from (4.12) that

|(a(g(P)) —a0)—(g(®)—q(po)| < 0.01(g(P)— q(po))* ~"/K*
for all p with s(p) €EA,,.

Denote
Xn = un(p0)’ Yn= vn(q(p0))
Xn = Y&xn) = up(s0)s  Yn=90n) =v,(ao) 4.15)
vy, € U(x},; &l2).
We have
%= 800y,
for some b,, c,ER, n=1,2,.... Denote
w,=g? h} Py, € Wy,)).
We have

w,€U(x,;¢)
by (4.15). Let
A,={s—s0:5€A,} <[0,4,].
We have
0,1,€A,, U(A)/A,> l—li5 and if s€A, then h?’x:l €Y. (4.16)

Let y:[0,2K%t,]—R be defined by

H,,w,€Ws,(H,5,)

where (w,,¥,) EGXG cover (w,,y;). The function y for w,,y, is analogous to the
function q for u,, v,. One can see that
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x(q@)~q)=p'~p
for every p, p'=po. For s=s(p)—s,€EA,, let
1(s) = y(a(g(p))—ao)-
We have using (4.11)
he) w, € Wy (% ) and k3w, €EUMPx,;¢) 4.17)

for all s€A, with s=s(p)—s,.

Expressions (4.16) and (4.17) show that the subset A,c|0, A,] satisfies conditions
(i)~(ii) of Lemma 2.1 with x;,, w,, instead of u, v respectively. We claim that A, satisfies
(iii), too. Indeed, let us show that if s, s’ €A, s<s’ and

max {(#(s")—t(s)), (s'—s)} =m
then
[(t(s") = ()~ (5" —5)| < (s'—s)' 7". (4.18)
So let s'=s(p"), s=s(p), s<s’, 5, s' €A, and suppose that
s'—s=m.
Denote
a’'=alq(p")), a=alqp)).
We have using (4.12)

I(s"~5)—(p’—p)| <0.01(s’ —5)! ""/K>

(@' ) (") —a@)| < 0.01(a(p") @) /K>, @19
Also
1(s")—1(s) = y(a")—x(a)
((a—a0)—(@(p)— o] < 0.01(g(p)~a(po) /K>.
This implies that
x(@) = (@—po)+f (4.20)

where |f]<0.02:.77/K%. Let

m — o) DD
hp~p0 Xy = 8eip) Py (hq(p)—q@o) Y-
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It follows from (4.9), (1.3) and (4.20) that

W2 w,EU (g?&,, RO H2y); O'(Z; . 0'012(’25"" , 0) .
This implies that
[e(a”)—x(@)—(p' —p)| <0.08(s' —s5)' "
by (4.19), (1.2) and (4.6). This and (4.19) show that
[e(a")—x@)—(s"'—s)| < (s'—5)' "

or

[(t(s) = t(s)—(s' —s)| < (s'—s)' 7.

Thus we have proved (4.18) assuming that s’—s=m. Similarly, we can prove (4.18)
assuming that #(s")—t(s)=m.

Thus A, [0, 1,] satisfies all conditions of Lemma 2.1. Using this lemma and (4.14)
we conclude that there is s, €A, with

D D

2) (2) .

his)w, €U (h e P 8)- 4.21)
Let s,=s(p,)—so, an=a(q(p,))—aos. We have via (4.9)

hfi?)w €U<h*(2> @ p@yr. 2K 2K2 0)

8 ol Vs Ty
i y
et

This implies via (4.21) that if we denote s(p,)=5,, a(q(p,))=a, then

DK* DK*
2),, 2) Q) (2) ’.
hanv,,EU( hg DR Uy ——— 77 lmy 8)- (4.22)
We have
o,=8% v, @,=g% u, "=

This implies that
d@,, g(z)h*(z)u )—0, now

by (4.22), (4.13) and (1.1), since 0<a,<2K?t, and 0<§,<t,. This completes the
proof. Q.E.D.
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LEMMA 4.2. If u€V and v=hPu for some p ER then d(i,, h0,)—0 when n—,
where a,, 0, are as in Lemma 4.1.

Proof. Let p=0 and let u,, v,, u,, v, and s: R—R be as in the proof of Lemma 4.1.
We have

u, €V,
= pU
v, = hm):',,y u,
1 L) ’
v, = hs(ww) u,.

It follows from (4.7) that
s+ ~ptht7| < [p| 170
if n is'so big that |p|£**=¢,. This implies that
d@,, K a,)<|p|n”
if n is sufficiently large. This completes the proof. Q.E.D.

COROLLARY 4.1. There are an h{"-invariant subset QcM, with u,(Q)=1

and a subsequence {ni;k=1,2,..}c{n:n=1,2,...} such that if u€Q then
lim, & k=§(u) €M, exists and C(hl(,‘)u)=h;,2)§(u) for all pER, u€Q.

Proof. Let M,=U__, K,, where K, are compact and u,(M,—K)<2™", n=1,2,....
Denote

K =M,~K

n
F,=g% y7'¢?K,, n=12,....
We have

i,ul(Fn)< oo.

n=1
Let
F={u€M,: u belongs to finitely many F,}.

By the Borel-Cantelli lemma

uF)=1. (4.23)
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If u €F then i, belongs to finitely many K,. This implies that there is a subsequence
n(u), k=1,2,... such that 4, converges in M,.

Let VeM,, 4,(V)>0 be as in Lemmas 4.1 and 4.2. In view of (4.23) we can assume
that VcF. Since u,(V)>0, there is u° € V such that

WV N Ws(u®)>0

where v denotes the Riemannian volume on the stable leaf W(x°). Since u°® € F, there is
a subsequence n,=n, (1% such that ﬁgk converges in M,. Let

Q= {hPw:pER, WEVN Wy (u")}.

The set Q is AP-invariant and x,(Q)>0. Since A" is ergodic, x,(Q)=1. It follows

then from Lemmas 4.1 and 4.2 that lim,_,, ‘nk=§(u) exists for every u€Q and

S u)=hP¢(u) for all pER, u€Q. This completes the proof. Q.E.D.

Proof of Theorem 1. Let QcM,, u1(RQ)=1 and a subsequence {n,}c={n} be as in
Corollary 4.1. We can assume without loss of generality that Q=M, and {n,}={n}.
Thus

lim &, = £(u)

n—®

exists for all u €M, and
S u) = K tw)
for all pER, u € M,. This says that the map

C: My, 1) —> (Mo, 12)

is a measurable conjugacy between A" and h?. In fact, { is measure preserving (see
(6]). It follows from the rigidity theorem [6] that there are C € G, a €ER such that

CT,C'cT, and &) =hPypu) . 4.24)

for us-a.e. u€M,, where Y(T,2)=T,Cg, g€GQG. It follows from Lemma 4.1 that if u,
vEV, v=gPhVu for some |a], |f|<é’ then

Ew) = gPhFP ().
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This implies that a=0 in (4.24) and therefore

8w) = yAu)
for uy-a.e. u€EM,.
Now we have to show that

W) = hG, yw)

for some o(u) ER and u,-a.e. u€EM,.

Let 0<n, v, 6, 0w, e<1, m=1, Y, P,cM, and P, be chosen as above.

Let ScM,, u,(8)>1-w and ny=1 be such that if u€S and n=ny then
d(i,, S(u))<e.

Let n=n, be fixed. Denote

X=g% @ nyp 'PYnSNEI(D).

We have

5 7]
>1——-.
mX) 50

Let QcM,, u,(Q)=1 be the generic set of X for A". This means that if « € Q then
the relative length measure of X on [u, A{"u] tends to y,(X) when t—. Denote

0=0nX, 1, (0)>0.
Let u€Q and let

A=A@w)={sER": HPu€eX}.
We have

0
HAN[0,AD/A—1— 50 (4.25)

when A—®. Denote
| v(w) =i, EM,.
For s ER define #(s) by
B3 v(w) = v(hPu).

We have
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HPtw)EY
B2, v(w) € UhP E(u); €) (4.26)

for all s€A. Also 0€A. This and (4.26) show that A satisfies conditions (i)-(ii) of
Lemma 2.1 with &(«) and v(x) instead of « and v respectively.
Let us show that A satisfies (iii), too. Indeed, let s, s' €A, s<s’ and let

max {s'—s, t(s")—(s)} = m.
Suppose for definiteness that
s'—s=m
and show that
[(e(s)—t(s)—(s'—5)| < (s’ —s)i 7. “4.27)
Let
u,(s) =g (h u)
and let z: R—R be defined by
2(p) = 2ux(s), p)
where z(u, p) is defined in (4.5). We have
u(s)EP,, yuy s)€EP,
u(s')= hf;'lw_g u,(s)
PO = By W, (5))
1(s")—t(s) = £; IV z(e1*7 (s —s)).
It follows from (4.3) that
|Z(e1 ¥ (s"—s)— 117 (s'—s)| < [t},”(s’-—s)]""7
and therefore
[(t(s")—t(s))— (5" =s)| < (s'—5)' 7.

This proves (4.27) when s’ —s=m. Similarly, we prove (4.27) when #(s’)—t(s)=m.
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Thus A=A(u), u € Q satisfies all conditions of Lemma 2.1. Using this lemma and
(4.25) we conclude that

v(u) = i, lies on the A{"-orbit of &(u) for every u€ Q.

We have

teVu) = g2t ()
for u;-a.e. w€M,. This implies that if we denote

Qn = gﬁ:)Q-’ .ul(Qn) > 0

then

Y() = h3, L)
for some o(u) ER and all u€ Q,,. The set

Q = {u€M,: y(u) = h%, t(u) for some o(u) ER}
is AV-invariant and contains Q,. This implies that
m(Q)=1

since A{" is ergodic and x,(Q,)>0. This completes the proof. Q.E.D.

Proof of Theorem 2. We can assume without loss of generality that p=1 in the
theorem. So let 7,EK(M)) and h;' be ergodic, i=1,2. Let y:(M,,u,)—>(M,,u,) be m.p.

and
Whi'(x) = hyp(x)

for u -a.e. x€EM,.

Let 0<n, v, 0, w, e<1, m>1, Y, P,cM, and P,cM, be as above.
Since y is measurable, there is AcM,, u;(A)>1—w such that y is uniformly
continuous on A. Let 6>0 be such that if u, vE€ A, d(i, v)<d then d(y(u), y(v))<e. Let

Z=AnP,ny '(P,nY), >1-
Ny~ (PN Y), u(2) S0K2

and let Q be the generic set of Z for &', u,(Q)=1. Let 0=0nZ, u,(0)>0. We claim
that
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if u, v€EQ and v=h{"u for some |p| <

then y(v) = KPy(u) for some |q| <e. (4.28)
Indeed, let &(p), r(p), p ER be defined by
&p) rp)
f t,(hPp(u))ds =p = f (kD yY(v)) ds
0 0
and Jet
B={(n€Z*:h'u hvEZ)
A= {&n+p):n€B, 0sp=<1}.
We have
KANDO, AD/A > 1—?"0— (4.29)
for all A=4,. Also
QW EY (4.30)
for all £(n) € A with n€B. For §=E&(n+p) EA define
(&) = r(n+p).
If £&=&(n) for some n€B then
KR, v(v) € URY y(w); €). .31
As in the proof of Theorem 1 we show that if £=8(n)<&'=E&(n’), n, n’ €B then
(&N —1(E)— (&' —&)| < (& -&)'" 4.32)

whenever

max {({&")— (&), (§'-8)} =m.

Arguing as in the proof of Lemma 2.1 we show that (4.29), (4.30), (4.31) and (4.32)
imply that

¥(v) = K p(w)

for some |g|<e.
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Thus we proved (4.28). We omit the rest of the proof, since it is completely similar

to the proof of Theorem 3 in [6]. Q.E.D.
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