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Let Tt be a measure preserving (m.p.) flow on a probability space (X,/~) and let r be a 

positive integrable function on X, Sxrdl~=f. We say that a flow T 7 is obtained from Tt 

by the time change r if 

:rT(x) = rw~x,,~(x) 

for g-almost every (a.e.) x EX and all t E R, where w(x, t) is defined by 

~I ~' ' )  r(T~ x) du = t. 

The flow T 7 preserves the probability measure g~ on X defined by 

dlu~(x) = (T/f) d~(x), x E X. 

We say that two integrable functions rl, r2: (X, g)---~R are homologous along Tt if 

there is a measurable o: X---}R such that 

f0 ' ( r l - r 9  (T~ x) o(T,x)-o(x) du 

for/~-a.e, x E X  and all tER. One can check that two time changes r! and rz are 

homologous via o if and only if (if0 the map ~Po: X---~X defined by 

~o(x) = Totx) x, 
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where S~ox)r2(T~x)du=v(x), is an invertible conjugacy between T; l and T: 2, i.e. 

wor?(x) = r? o(x) 
for a.e. x E X  and all tER.  If Tt is ergodic and r l ,  r2 are homologous along Tt via some 

measurable functions v~ and v2 then v2-vl  is equal to a constant a.e. 

Let G denote the group SL(2, R) equipped with a left invariant Riemannian metric 

and let T be the set of all discrete subgroups F of G such that the quotient space 

M=FIG= {Fg: g E G} has finite volume. The horocycle flow ht and the geodesic flow gt 
on M are defined by 

h'(rg) = rg( l  !) 

gt(Fg) Fg(~ '  e_t) 

g E G, t E R. The flows ht and gt preserve the normalized volume measure/x on M, are 

ergodic and mixing on (M,/x) and 

gt o h s = h s e2 , 0 gt 

for all s, t E R. 
In order to state our main theorem we shall need the following notations. Let 

{ = ( cos0  sin0~.  0E(- : r , : r ]}  
K =  K o k-sin0 cos0/" 

(*) 

be the rotation subgroup of G. We say that a real valued function ~0 on M=FIG, F E T is 

HOlder continuous in the direction of K with the HOlder exponent 6>0 if 

I o(x)- o(y)l C lel 

for some C~>0 and all x, y E M  with y=Ro(x), where Ro(Fg)=FgKo, gEO. It was 

shown in [2] that if q0EL2(M,/0 is HOlder continuous in the direction of K with 6>~ 

and q~=0 then 

[fMqJ(x)q~(h,x)d#(x)<<.D~lt,-~* (**) 

for some D, ,  a~0>0 and all t*0.  We shall denote by K(M) the set of all positive 

integrable functions r on M such that r and r -1 are bounded and r - f  satisfies (**) for 

some Dr, Ctr>0. 
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THEOREM 1. Let h~ ~ be the horocycle f low on (Mi=FilG, Iti), FifiT, i=I ,2  and let 

h~' be obtained from hl ~ by a time change r~f K(Mi), i= 1,2, with e,--e~. Suppose that 

there is a measure preseroing ~p: (Ml,lt~z)---)(M2,1t~z) such that 

= h  V,00 

for kt, -a.e. x f M1 and all t f R. Then there are C f G and a measurable o: M2--*R such 

that 
X - -  (2) C F  1 C -1 CZ F 2 and 7)( ) - ha~d~))(~Oc(X)) 

for lul-a.e, x f M 1 ,  where *pc(F~g)=F2Cg, g f G .  

The second conclusion of Theorem 1 says that z~ and rc  defined by 

rc(X)=r2(~Oc(X)), x f M 1 are homologous along h~ l) via v c defined by 

~ OW, c(x) ) 
Vc(X)= zc(h~l)x)du, x f M  I. 

dO 

Let us note that it follows from [1] that if ~p: (Ml,btr)--*(M2,/.zr) is an invertible 

measurable conjugacy between h~ t and h~ 2 then ~p is in fact measure preserving. The 

same is true when 7) is not invertible and M2 is compact. 

We assumed in Theorem 1 that f i=,2.  Suppose now that a=fl=l=f2=b and let 

1 a fl(x) =br | (g-sX) 'a  s = ~log b '  xEMt ,  fl = b. 

The commutation relation (*) shows that h~' and h~' are isomorphic via gs, i.e. 
31 f[ g oh t =h t og~, t f iR.  We get the following: 

COROLLARY 1. Let r;fK(Mi),  i=1,2  and f l=a ,  f2=b. Suppose that h~' is conju- 

gate to h~ 2 via a measure preserving ~p:(Ml,a~t)--->(M2,a~2). Then there are Cf iG 
_ ( 2 )  and a measurable o:M2--*R such that C FIC-1cF2 and ~p(x)-ho~Oc(g,x))V/c(g,x ) for 

/~t-a.e. xEM1, where ~/c is as in Theorem 1 and s=�89 

COROLLARY 2. Let riEK(Mi), i= l ,  2, f l=a ,  f2=b. Then h~' is isomorphic to h~ 2 i f  

and only i f  there is C E G  such that CFIC-I=F2 and r~(x) and (a/b)r2OPc(gsx)), 

x f M 1  are homologous along h~ 1), where s=�89 Every isomorphism between 

h~ l and h~ 2 has the form as in Corollary 1. 
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THEOREM 2. Let h~ ~ be the horocycle flow on (Mi=FilG, Izi), FiET and let h/ be 

obtained from hl 0 by a time change riEK(Mi), i=1,2. Suppose that h~ i is ergodic for 

some p~O, i= l ,  2 and there is a measure preserving ~: (Mi,g~,)-->(M2,g,2) such that 

V2h~'(x)= h~V2(x) 

for tz~-a.e, x E M  l. Then ,p is a conjugacy of  the flows h~' and h~ 2, i.e. 

31 3 2 ~oh, (x) = h, ~(x) 

for lu~-a.e, x E M  l and all tER. 

For FET let f '={CEG: CFC- '=F}  ET be the normalizer o f f  in G. Let KI(M) be 

the set of all rEK(M) with ~=1, M=F{ G. We say that r , , r2EK,(M) are homologous 

modulo f" if there is CEf" such that r, and rc=r20,Pc are homologous along hr. 
Corollary 2 says that there is a one-to-one correspondence between the isomorphism 

classes of hi, r E K,(M) and the homology classes of r E K,(M) mod f'. 

Let ft be a m.p. flow on a probability space (X,/z) and let W(ft) be the set of all 

isomorphisms v2:X---~X such that ,pft(x)=ft,p(x) for/~-a.e, x E X  and all tER, i.e. ,p 

commutes with every ft, tER.  We say that ~l,~2El-I-/(ft) are equivalent if ~32=fpo~) 1 

a.e. for some p E R. Let x(ft) denote the set of equivalence classes in W(ft). We define a 

group operation in ~r by [,pd.[,p2]=[~01o,p2], where [~0] denotes the equivalence 

class of ~0. The group ~(ft) is called the commutant off t  (see [6]). 

It follows from Corollary 2 that if r E K(M) and ,p E W(h~ then there are C 6 f" and a 

measurable oc: M--->M unique up to an additive constant such that r and rc=rO,pc  are 

homologous along h t and ~p=h~cO,pc a.e. This implies that 

~r {[h~c ~c]: CE ['}. 

The map :t: u(h,9---,r\t" defined by :t[h~c,PC] =FC, C E F is a group isomorphism from 

x(ht') onto a subgroup of F \ f ' .  The group F \ f "  is finite, since F E T. We get the 

following: 

COROLLARY 3 . / f r  E K(M) then the commutant x(ht r) is finite and is isomorphic to 

a subgroup o f F \ f ' . / f F = [ "  or r is not homologous to rcfor  any CEF different from 

the identity then the commutant u(h~ is trivial. 

In view of  [2] we get: 
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COROLLARY 4. All the above results hold for time changes H6lder continuous in 

the direction of  K with the HiJlder exponent greater than �89 (in particular, CLfunctions 

in the direction of  I0  and bounded together with their reciprocals. 

Summarizing, we conclude that if z" E K(M) then h i inherits all the rigid properties 

of ht found in [6]. 

Finally, let us note that for any F I, F 2 E T the horocycle flows h~ 1) and h~ 2) are 

Kakutani equivalent (see [4, 7]). This means that there is a time change 

rl:Ml--->R + such that hl 2) is isomorphic to h~ ~. It follows from [3] that rl can be 

assumed differentiable and bounded on M1, but some partial derivatives of rl may be 

unbounded. Our Corollary 4 shows that there is no such a r~ with bounded r~-i and 

bounded partial derivatives unless Fi and F2 are conjugate in G. 

I am grateful to C. Moore for proving [2] at my request. 

1. PreUnfmaries 

Let p: G - o M = F \ G ,  F E T be the covering projection p(g)=Fg, g E G. Let 

(e0) (: 
Gtg=g" and Hrg=g .  , gEG, t E R  

0 e -t 

be the geodesic and the horocycle flows on G, covering g~ and ht on M respectively. 

We shall also consider the flow H*g = g. (10 tl ) on G, covering the flow h~Fg)=FH*g 

on M. We have 

C, o H , = H  ~oC, 

G, oH*--/-ffs _~,o 6 , 
(1.1) 

t, s E R. We shall assume without loss of  generality that the Riemannian metric in G is 

such that the length of the orbit intervals [g, Gtg], [g, Ht g] and [g, H*g] is t, g E G. We 

shall denote by d the metric on G (or on M) induced by this Riemannian metric. 

For g E G and a, b, c>0 denote 

U(g; a, b, c) = {~ E G: ~ = HrH*Gp g for some Loi~<a, Izl <~ b, Irl <<. c} 

U(g; e) = U(g; e, e, e). 
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We have 

U(g; a, b, c) = g. U(e; a, b, c) 

where e denotes the identity element of G. It follows from (1.1) that 

G~U(g;a ,b , c )=  U(G~g;a, be-2~,ce2~), rER.  

Denote W(g) = {I-l~Gtg: t, s E R}. The set W(g) is called the stable leaf of g for the 

geodesic flow Gt. Let 

g = ( a  bd)EU(e;e), e>O. 

Suppose that for s>0 there is q(s)>0 such that 

Hq(~)gE W(Hse). 

The function q(s) is uniquely defined by s and g and 

Hs g = H,~s) H*(,) Gp(s)(Hs e) 

q(s) = s + r ( s )  

where 

One can compute that if 

then 

where 

e p(s) = ( d -  bs)-  1 

z(s) = b e a'(s) 

r(s) = -eV(S)(bs2 + L s - c )  

L = a - d .  

g = G p H * e  

Hqts) g = GaH~(GpH* Hse) 

lal-<Z,[q(s)zl, Lsl-<L21zal 

for some 0<Ll, L2~<2, if z and p are sufficiently small. 

For 0<~/<1 and 

(1.2) 

(1.3) 
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denote 

g = ( a  b) E U(e;e) 

E = E(e, g, r/) = {s E R+: Ibs2+Lsl <<. 4s1-r 

The set E consists of at most two connected components Eo=Eo(e, g, r/)=[0,10] and 

El=Ej(e,g, ri)=[ll, 12] for some li=l,(e, g, r/)>0 i=O, 1,2 and lo<~ll<~lz, where E1 might 

be empty. One can compute that 

/5 
Ibl <- ~-iW, ILl--< 1) 

"0 I~ 

for some /5>0 .  This implies via (1.2) that 

<~ D 
Iz(s)l , - i~ ,  ~(s)l -<~ 

"0 l~ 
(1.4) 

for some 0<D<100 and all O<~s<~lo, if e>0 is sufficiently small. 

For x, yEG,  yE U(x;e) denote lo(x,y,~)=lo(e,x-~y, rl) and for O<r<~lo(x,y,~l) 

denote 

B(x, y, ~i) = ( ( H , x ,  Hqr 0 ~ s ~ r). (1.5) 

The  set B(x, y, ~) will be called the (E, ~)-block of x, y of length r. Expression (1.4) 
shows that 

H~,yevfn, x;~, D ) 
\ q l~- '~ 

for all O~s~r. 

2. Dynamical properties of ht 

In this section we shall prove the following 

LEMMA 2.1 (Basic). Let ht be the horocycle f low on (M=FIG, p), FET.  Given 

0<~/<1, 0<to<l  and m > l ,  there are y=y(~/)>0, 0<0=0(~)<1, a compact Y= 

Y(y, to)~-M with I~(Y)> 1 - to  and O<e= e(Y, m)< 1 possessing the following property. Let  

uE Y, vE U(u;t), and a subset A c R  + satisfy the following conditions (i) 0EA, (ii) i f  

s E A  then hsuE Y and there is t(s)>0 increasing in s such that ht(s)vE U(hsu;e), (iii) 
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I(t(s')-t(s))-(s'-s)l<--.(s'-s) l-~ for  all s , s ' E A  with max{(s ' - s ) ,  (t(s')-t(s))}>lm. 

Then 

(1) i f  2 E A and l(A fl [0, ;t])/2> 1 -  0/8 then there is s~ E A N [0, ;t] such that 

( ~ 1 7 6  h~s~)vEU hs u; ~2y' 21+~y'e 

for some D>0, where l(C) denotes the length measure o f  C, 

(2) i f  An[O,2 l . f~  for  all 11>20 and l(An[0,21)/2>l-OI8 for all ~.EA with A~Ao 

then v=hpu for  some p ER. 

Let us introduce some notations. Let I be an interval in R and let Ji, Jj be disjoint 

subintervals of I, Ji=[xi, Yi], yi<xj if i<j. Denote d(Ji, Jj)=l[yi, xj] =xj-yi. 
We shall use the following lemma whose proof in [5] is due to R. Solovay. 

LEMMA 2.2. Given ~>0, there is 0<0=0(~,)<1 such that i f I  is an interval o f  length 

t (t is big) and a={J~ . . . . .  .In} is a partition o f l  into black and white intervals such that 

(1) d(Ji, Jj)~[min {l(Ji), l(Jj)}]l+~" for  any two black Ji, JjE a 

(2) l(J)<--.3tl4 for  any black J E a  

(3) l (J)~l  for  any white J E a  

then row(t, a)~O, where row(t, a) denotes the total relatwe measure o f  white intervals 

o f  a on I. 

For given 0<r /<l ,  0<to<l  and m > l  we shall now specify the choice of),, O, Yand 

e in Lemma 2.1. 

First we choose 0<y<r//2 satisfying 

2 
- - - l + r / >  l+2y.  (2.1) 
I+F 

The reason for this choice will be clear later. 

Let 0=00,) be as in Lemma 2.2. 

Since F is discrete, there are a compact KcM, / z (K)> 1-0.1 min {y, to} and 0 < A < I  

such that 

ifxEp-l(g) =/~, d(x , y )<A  and 

d(Htx, D H s y ) < A  for some e * D E F  

then max (Itl, Isl} ~> m.  

(2.2) 
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This implies that 

if xEl~,  d ( x , y ) < A  and d ( x , D . y ) < A  
(2.3) 

for some D E F, then D = e. 

Since the geodesic flow gt is ergodic on (M,/~), given to>0 there are a compact  

I 7= 17(to)cM,/~(17)>l-O.lto and to=to(17)>l such that 

if w E 17, t >I to then the relative length measure 
(2.4) 

of  K on [w, g-t.w] is greater than 1-0 .2y.  

Set Y=KN 17, /z(Y)>l-0.2w.  

Let  Q>I be such that 

�89 > t o and 1000 -~ < A/6. (2.5) 

Now we choose 0 < e < A  so small that if g E W,(e), g E G, then 

lo(e, g, r/) > max {Q, m}. (2.6) 

(See (1.4).) 
Thus 0<~, 0, e <  1 and Y c M  have been chosen. The reason for these choices will 

become.clear  later. 

Now let us describe a construction used in the proof  of  Lemma 2.3 below. 

Let  u E Y, o E W~(u). We say that (x, y) E G x G  cover (u, v) if y E W~(x) and p(x)=u, 

p(y)=v. Let  B(x, y, ~1) be the (e, r/)-block of  x, y of  length r defined in (1.5). The set 

B(u, v, ~1) = pB(x, y, r !) = { (hs u, hq~s) v): O <~ s <<- r} 

will be called the (e, r/)-block of  u, v of length r<~lo(x, y, rl)=io(u, v, 77). We shall write 

B(u, v, ~/) = {(u, v), (h, u, hq(r) o)}  = {(u, 13), (U, U)} 

emphasizing that (u, v) is the first and (a, 0) is the last pair of the block B(u,/3, 7). It 

follows from (1.4) that hq(s)v=h*~s)gp~,)(h~ u) where 

r l  D ho(s)l Iz(s)l (2.7) 101+, 

for all s E [0, r], where  lo=lo(u, v, ~1). 
Henceforth the symbol  D will always mean a positive constant which can be 

chosen less than 100 if e>O is sufficiently small. 
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Let  /5={B1 . . . . .  B,,}, Bi={(ui ,  vi),(ai, Oi)} i=1 . . . . .  n be a collection of  pairwise 

disjoint (e,r/)-blocks on the orbit intervals [ul,haul], [vl,ht(x)Vl] for some large 

2, t(2)>0, such that 

r F 
B i ~ B j  i f  (Ui, Vi) - -  (Uj, Dj) 

B, • Bj if (u~, v,) L (uj, v). 

We shall impose on fl the following conditions 

sj-s i  > lo(u~, vi, rl) 

1(6-ti)-(sj-si)l  <- 2(sj-s i )  l-~ 

[(6-t i)- f f j -si){  <<- 2($j-si)  1-~ 

if i < j  and B i ~ Bj, 

I ( t j -~) - (s i -$ i )[  <~ 2(sj-goi-~ 

r 
if i < j  and B i ~ Bj. 

(2.9) 

~,, = ha ul ,  O,,= ht~) vl 

u~, a~ E Y, v~E W~(ui), oiE w~(a~) 

Ui= h s u  p v i= h•vp ~i = h s u  t, Oi= hi v I 

for some si, ti, gi, t]->0, gi<sj~<2, t].<tj~t(2) if i<j, i, j =  1 . . . . .  n. 

Let  (xi, y i ) E G x G ,  yiE W~(xi) cover (ui, vi). Although v ie  W~(uj) it is not necessar- 

ily true that H,j_,,y~E W~(Hsf~x~), but there is a unique D E F  such that 

D.yj~ W,(xj) r 

where yj=Htj_t, yi, x j=HsF,  x i. We shall write 

(ui, vi) r (uj, vj) if D * e in (2.8) 

(ui, vi) L (uj, vj) if D = e in (2.8). 

This definition does not depend on the choice of  (xi, Yi)E G x G  covering (ui, o i l  For  Bi, 

Bj E fl, i<j  we write 

d(Bi, Bj) = s i f  u j=  h,a~ 
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Now let us construct  a new collection fly= {B1 . . . . .  Bk} by the following procedure.  

Take B1 Eft and consider the following two cases. Case (i). There is n o j E  {2 . . . . .  n} 

such that (ul, vOs vj). In this case we se t /~ l=Bl .  Case (ii). There is j E  {2 . . . . .  n} 

such that (ul,vOs vj). Let  (xl,yl)EGxG cover (ul,vO and let xj=H, xl, 
yj=Hqt,)yl, where s=sj-sl. We have tj-h=q(s) and (xj, yj) cover (uj, vj). Let  

E= E(x~,yt,rl)= [O, lo]lJ[lbl2], li= l~(xl,yl,rl), i = 0 ,  1,2 

be as in section I. Express ion (2.9) shows that s E [l~,/2]. Denote  

F(xl, Yl, rl) = {s E R+: Ibs2+Zsl <. 41~ -~} 
where 

,--x:y,-(0 :) 
and L=a-d  (see (1.2)). The set F(xl,yt, 7) consists of  at most two connected compo- 

nents Fo=[0,  II and FI=[[ ,  12] where  l>lo(xl,yl, tl), [<ll and 12-f=l if FlaU~. 
One can compute  as in section 1 that if Hq(s)yl=H*(~)Gp(~)(HsxO then 

Izfs)l -< l---T-, ~o(s)l ~ < - - ~  (2.10) 

for all s E [0, l]. To de f ine /~  for the case (ii) we consider the following two possibilities: 

(a) [-l>l l+r. In this case we set Bl=Bl. (b) [-l<~l l+y. Then 

i~< 12 ~< 31 l+r. 

This implies via (2.1), (2.10) and (1.2) that 

Iz(s)t<- D ho(s)l-< D 
ll+2r "~ l~- ~ (2.11) 

for all s E [0,/2]. We set in this case Bl = {(ul, vl), (uj t, vjt)}, where 

Jl = max { j r  {2 . . . . .  n}: B t L Bj}. 

Thus/~1 Efl~, has been constructed.  Suppose that JBmm((Ujra_l+i , Ojm_l+l), (IJjra, [Jjra)), 
jo=O has been constructed.  To define Bm+l we apply the above constrUction to 

Bjm+l E ft. Thus fly is completely defined. It follows from the construction that if i<j and 

Bi&Bj, Bi, BjEflr then 
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d(Bi, Bj)>O> 1 and d(lOi, Bj)>[l(lOi)] I+y. (2.12) 

It follows from (2.7), (2.11) and (2.6) that if 1~i-'~" {(U~, V;), (a~, 0[)} then 

v;EU(u~;.D ~ ) ~ , ,  ,0 

( ~ 1 7 6  O;E U ti[; ~ r '  r]+2v' 0 

(2.13) 

for some ri~>max {0, l(/~i)}, i= 1 .... , k. 
Let u;=h~u I, ft~=he, u l. Denote Ji=[ri, fi]=[0,2], i=l . . . . .  k. We shall call Ji the 

black interval induced by /~ .  The collection fir induces a partition a of I=[0,2] into 

black and white intervals. We shall denote 

mw(fly) = mw(a, 2). 

LEMMA 2.3. Let 0<~/<I, 0<to<l  and m > l  be given. Let y=y(r/)>0, O<O=O(y)<l, 
Y=Y(y,w)cM with p(Y)>l - to  and O<e=e(Y,m)<l be chosen as above. Let 

fl={B! ... . .  Bn}, Bi={(ui, vi), (ui, Oi)}, vi~ We(ui), Oi~ We(lli), i=l ..... n be a collection 
of pairwise disjoint (e, ~l)-blocks on the orbit intervals [ul, h~ ul], [vl, ht<~) vl] such that 
ui, ~iE Y, i=l . . . . .  n and (2.9) holds for ft. Suppose that mw(fl)<O. Then there is BEfly 
such that I(B)>3M4. 

Proof. First let us show that 

d(B', B'~ > [min {I(B'),/(B'~}] ~+y (2.14) 

for any B',B"Eflw Indeed, suppose on the contrary that there are B'~:B"Efly with 

l(B')<.l(B") such that 

d(B', B'~ <<. [I(B')]I+L (2.15) 

It follows then from (2.12) that B'rB  ". Let 

B' = ( (u' ,  v'),  (a', 0')} 

B"= {(u", v"), (a", o")} 

u'=hsa' ,  v'=htO'. 

We shall assume for simplicity that s, t>0. We have 
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s<.[l(B')] l+y, t<~3s (2.16) 

by (2.15) and (2.9). 

Let (x,y)EG• cover (u", v'9, (:f,y) E G•  cover (tY, 0') and x=Hss We have 

y = D . H t y  for some e ~ D E F  (2.17) 

since B'rB ". It follows from (2.13) that 

D D 
, r-Z~y, s )  and xE U(y ;  r2 ~ 

(2.18) ( o  o_t) 
D'yE  U x; r2y, rl+2(,, 

for some r~max {0,/(B')}. Also 

O<s,t~3r l+y by (2.16) (2.19) 

Let ro=�89 r l+l"sy, zo>t 0 by (2.5). Since u"E Y~ 17 it follows from the definition of 

fU o U tr~ 17 and to in (2.4) that the relative length measure of K on [ , g-r, ] is greater than 

1-0.2y. This implies that there is 1: satisfying 

(1-0.2y)~o< r ~  ~o 

such that g_~ u" E K and therefore 

z = G_,x Ep-  t(K) --- K. (2.20) 

We have using (2.18) and (1.1) 

( D De2~ s )  
z 6  U G_,y; r2-- 7 ,  r~+2 ~ , ~i, 

(2.21) ( o 
D.G_~yEU z; p.y, rl+2y, 

where 

r l + l . l y  < r(l+l.5y)(l-O.2y) < e 2r ~ e 2to = r l+l .5y.  

This implies via (2.21), (2.19) and (2.5) that 

d(G_~y,z)<A and d(D.G_,y,z)<A 
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and that 

D = e by (2.3) and (2.20) 

which contradicts (2.17). Thus we proved (2.14). It also follows from the proof that if 

B'LB", B', B"Eflr, then 

This and (2.12) imply that 

for all B' 4=B" E fl~,. 

d(B', B") > ~} > 1. 

d(B', B") > Q > 1 

Now let a be the partition of I=  [0, 2] into black and white intervals induced by fie" 

We have using (2.12) and (2.14) 

l(J) > 1 for every white J E a 

d(Ji, J2) > [min {/(J3, l(Jj)}] l+r 

for any two black Ji, Jj E a. 

Also 

row(a, 2) ~< mw(fl) < 0 

by the condition of the lemma. It follows then from Lemma 2.2 that there is a black 

JE a with/(J)>32/4. This says that there is B Efle such that l(B)>3M4. This completes 

the proof. Q.E.D. 

Proof of  basic Lemma 2.1. For given 0<r/<l ,  0<o9<1 and m > l  we choose 

y=y(r/)>0, O<O=O(y)<l, a compact Y= Y(y, w)cM,/RY)>l-o9 and 0<e=e(Y, m)<l  as 

above. 

Let uE Y, vE U(u;e) and let A,-R + satisfy (i)-(iii). For 2EA denote 

Ax = A N [0, 2] 

and assume that 

0 
l(AO/2> 1 8" (2.22) 

Let us construct a collection fl(2) of pairwise disjoint (e, r/)-blocks as in Lemma 2.3. 

To do this take u, v and set Ul=U, vl=v. Let (x l ,yOEG• cover  (Ul, u1) and let 
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$1 = sup {S EA2 N [0,/0(Xl, Yl, t/)]: Ht(s)Yl E U ( H s x l ,  e)}. 

Let B1 be the (t,r/)-block of  Ul,Vl of length $1, B l = { ( u l , v O ,  (al ,00},  

Ct I =hj~ u I E Y, since Y is compact. 

To define B2 we take 

s2 = i n f  { s E A x :  $ > $ 1 }  

t(s2) = inf {t(s): s EA~, s > gl} 

and apply the above procedure to 

It is clear that 

~(;O=(B~ . . . . .  B . }  

{(ui, vi), (ai, Oi)}, ui, ui E Y, i= 1 . . . . .  n. Let 

u i = h s U l ,  ( l i = h ~ i u  1 

D i = htl Ol, 0 i = h i v l, i = 1,2 . . . . .  n. 

Suppose that BirBj ,  i<j. Then 

max {sj-gi ,  t j - ~ }  >~ m 

by (2.2) and our choice of t. This implies via (iii) that 

I ( t j -~)- (s j -~i )[  <<. (Sj--~i) l-rl .  

Suppose that Bi~Bj ,  i<j. It follows from the construction of B i, Bj that 

sj-si>~ lo(ui, vi, q) > m 

and therefore 

by (iii). This implies that 

and that B i and Bj are disjoint. 

U2 = hs 2 u i, 02 = h t(s2) O l" 

u2E Y, since Y is compact. This process defines a collection 

of (e, r/)-blocks on the orbit intervals [ul ,haul],  [vl,ht(~)vl], Bi = 

Sj--Si  > lo(Ui, Oi, 1]) 

15 

where 

I( t j - t i ) - (s j -s i ) l  < (sj-si)  1-~ 

[([j-t i)-(sj-si)I  <~ (sj-si) 1-'1 
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Thus fl(A) satisfies all conditions of Lemma 2.4. We have 

mw(fl(A)) < 0 

by (2.22), since each s EAa belongs to a black interval induced by fl(2). This implies by 

Lemma 2.3 that there is BaEflr(A), Ba={(ua, va), (~ ,  0a)} such that 

l(B~) > 3~/4. 

It follows then from (2.13) that 

( D D ) 
v~ E U ua; A2 r, 2d+2 ~ , 0 . (2.23) 

This proves (1) with s~ such that hhu=u ~. 

Now let Aa~O for all A~2o and let 

0 
l(A~)l~. > 1 (2.24) 

8 

for all AEA with A~,lo. It follows from (2.24) that there are 2nEA, An~Ao, n = i , 2  ... . .  

2,~---~, n - - ~  such that 

A n < A~+ I < ~A n, n = l, 2 . . . . .  (2.25) 

Let B~, E flr0l~) be as above. "fie have 

l(Bx) > 3Aft4. 

This and (2.25) imply that 

and therefore 

This implies via (2.23) that 

BaNBa.+4:O, n = 1 , 2  .... 

Ba ~Ba.+I, n = 1 , 2  . . . . .  

~ 

for all A,,, n = l , 2  . . . . .  This says that v~l=u~andthereforev=hpu for some 

pER.  Q.E.D. 
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3. The class K(M) 

Let us recall that a positive measurable function r on M=F\G, F E T belongs to K(M), 

if r and 3-l are bounded and 

If (x) th, x)d,l <~D,t, -a. (3.1) 

for some D=D(r)>O, O<a=a(r)<l and all t*0,  where c p - r - f .  

LEMMA 3.1. Let q0: M---~R be measurable, bounded, q~=0 and let (3.1) hold for cp 
with some D(cp), a(f0)>0. Then given w>0 there are P=P(co)~-M with/~(P)>l-w and 
m=m(P)>O such that if xEP then 

]fo'qg(hux)du<.t'-~' 

for all t>~m, where a' =a'(q~)=a(cp)/8. 

Proof. Denote 

We claim that 

fO 
t 

st(x ) = q0(h,, x) du 

C(t) = f qg(x) q~(htx) dg. 
J~ 

fM 2 d/t <~/5 t 2- a (3.2) St(X) ] 

for some/9>0 and all t>0, where a=a(q0) is as in (3.1). Indeed, we have using (3.1) 

fM[St(X)]2 dl~ = ~M (fOt fotcP(hsx)q~(hux)ds du) dl~ 

<< 2D t2_a = l~t2_a. 
1 - a  

It follows from (3.2) that 

/t{x E M: Is,(x)l ~ t l-a/4} <~ 19t -~2" 

2-868282 Acta Mathematica 156. Imprim6 le 10 mars 1986 

(3.3) 
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Denote 

We have using (3.3) 

A t = {x E M: Is,(x)l < tl-a/4), t > 0 

Pn = n4/a, n = 1 , 2 ,  . . . .  

/~(Ap)~>l - / ~ ,  n = l , 2  ....  
n /i2 

Given w>0, let ko=ko(oJ) be such that 

and let P=P(o))=Nk>~koApk. We have 

and if x E P then 

for all k~>ko. 

/~(P) > 1 - w  

Isp~(x)l < p~-~/4 

Now let t>>-pko and let k>~k o be such that 

Pk < t ~<Pk+l. 

One can compute that 

P~+ l--Pk = Qp~-~14 

for some Q>0 and all k= I, 2 . . . . .  This implies that 

t = Pk+q 

where O<q<~Qp~-~a4. For x E P  we have using (3.2) 

~ P*+q Qplk_a/4 O t l-a/4 Is,(x)l ~ I%(x)l+ ~(h.x) du ~ < 
Pk 

for some 6>0 ,  since q0 is bounded. This completes the proof. Q.E.D. 
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4. Time changes and a conjugacy ~0 

In this section we shall prove Theorem 1. 

Let M~=Fi[G, F/E T and let ~i: Mi -'-~R+ be a time change for the horocycle flow h~ ~ 

on (M~, I~), i= 1,2. Suppose that ~i E K(M i) and let 

M i r i d l z i  ---- a :> 0 

~Pi ---- ~ i - - a  

sup (~,(x), r~-l(x)} <~ K (4.1) 
x ~ M  i 

for some K>I ,  i=1,2. 
We shall assume without loss of generality that a=  I. Let h~' be obtained from hl ~ 

by the time change r i and let ~p: (Mt,gr)--~,(M2,/~r2) he measure preserving and 

~Oh~'(x) = h~ofx) (4.2) 

for g,(a.e,  xfiMI and all tER,  where dla,,(x)=ri(x)dla~(x), i=1,2. 

Let 0<a~=a'(qg0<l be as in Lemma 3.1 for q~=r~-l,  i=1,2 and let 

t /= �89 rain {a~, a~}. 

Let y=y(r/)>0 and 0<0=0(7)<1 be chosen as in Lemma 2.1. 

Since V' is measure preserving and /~,, is equivalent 

0<ro<0/(200/~) such that 

0 
U~0p-~(A)) < 200K 4 

to #~., i=I ,2 ,  there is 

whenever p~(A)<ru. 

Let Pi=P~(w)mMi, / ~ P i ) > l - w  and mi=m,(Pi)>O be as in Lemma 3.1 for q)i, 
i=1,2. IfxEPi then 

for all t~>max {m~, m2}, i= 1,2. This implies that there is mo>~max (ml, m~} such that 
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I fotcPi(h~3x)du <~ 2 - ~  t ~-~ (4.3) 

for all xEPi and all t~mo, i=1,2. 

Set m=2K4m0 and let Y=Y(7, oJ)cM2, g2(Y)>l-~o and O<e=e(Y, m)<l  be as in 

Lemma 2.1 for h~ 2) on (M 2,/*2). 

Since ~p: Mr--~M2 is measurable, there is a compact A ~ M l , g l ( A ) > l - t o  such that 

~p is uniformly continuous on A. Let 0<6<e/2 be such that if u, u E A, d(u, v)<6 then 

d(~(u), ~l,(u))<e/2. Let now 0 < 6 ' < 6  be so small that i fxEG and yE W,~,(x) then 

Hq(t)y E W,sc2(Htx) and [q(t)-t[ <. ~t (4.4) 

for all O<~t<<.2K 2 (see section 1 for the definition of q(t) and W,0. 

Let X=PI NAN~p-I(p2 N I0. We have 

0 
#l(X) > I 50/(4 

For x E Mi and t E R denote 

~i(x, t) = (o ri(h u x) du, i =  1,2. 

For u E Ml and t E R let z(u, t) be defined by 

~l(u, 0 = ~2(~(u), z(u, t)). 

It follows from (4.2) that 

g, Lo)t, ~ _ t,(2) ~o(u) r I, u l  - -  ~ z ( u ,  t )  

for/~ra.e, u E MI and all t E R. Expression (4.1) implies that 

(4.5) 

! t <~ z(u, t) ~ K2t (4.6) 
K ~ 

for all u E MI, t~>0. 

Since h~ 1) is ergodic, there are VncM, la l (Vn)>l-2  -n and t~>l, t~/,oo, n~oo such 

that if u E Vn and Itl~tn/2 then 

Iz(u, t)-tl <<-Itl n -i (4.7) 

and 



R I G I D I T Y  O F  T I M E  C H A N G E S  F O R  H O R O C Y C L E  F L O W S  21 

the relative length measure of X on [u, h(Uul is at least 1 0 ' J - 4 0 - - - ~ "  ( 4 . 8 )  

We shall use (4.7) in the proof of Lemma 4.2 below and (4.8) in the proof of Lemma 4.1. 

Let  r,=�89 log tl, +~ and let V= f'l, g ~ ,  V,, #I(V)>0. 

LEMMA 4.1. Let u, oE V and" _,,(l)t,,(l), for some lal, lfll<6'. Then 

- (2) * ( 2 ) -  d(v,, ga h~ u,)--*O, n--~0o, 

- _(2)  ( 1 ) / / ,  .~ _ _ ~ ( 2 )  ~, .~(1)  where Un=g_r lpgr. t,,n--g_r tF~r, V. 

Proof. Denote 

= o (1) O n g~ln)U Un ar,, U, = 

t I _ _  u ,  = • ( u , ) .  v , -  q)(v . ) .  

We have using (4.4) and (1.3) We have using (4.4) and (1.3) 

O _ , , ( D / , , ( D ,  
. - s ~  "t~. " .  ( 4 . 9 )  

t.(l), ~ r7 {t.* ~t).~) hO) ,, . 4 4 
t l + 2 y '  } 

for all O~t<.2t., where fl.=flt~ "+r), n=  1,2 . . . . .  

For p fi R denote 

u . ( p )  = h~ ' )u . ,  o . ( p )  = ")  hp V n 

S(1) ) = Z(lgn, p ) ,  a(p)  = Z(Un, p ) .  

We have 

/4(2) ,n t - -  u ' . ( s ( p ) )  = , . .~ )  ~.. - ~; u . ( p )  

v ' . ( a ( p ) )  = 1.(2) , _ . . , , )  v .  - ~0v.(p).  

Let  

B,,= {p6[O,&]:u.(p)EX, v.(q(p))EX}, n= 1,2 . . . . .  

It follows from (4.8) and (4.9) that 

0 
n = 1 2 . . . .  (4.10) I(B.)/t.> 1 18K 4' 
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if 6 '>0  is sufficiently small. It follows from the definition of X that i fp  EBn then 

u,,(p), v,,(q(p)) E P I n  A 

u'(s(p)) ,  v'~(a(q(p))) E Y N P2 

and 

Suppose that 

v',,(a(q(p))) E U(u',,(s(p)); e/2), n = 1,2 . . . . .  

s ( p ' ) - s ( p )  >~ m 

for some p, p '  EBb, p < p ' .  It follows then from (4.6) and (4.9) that 

p ' - p  >I m / K  2 = 2K2mo 

q(p ' ) - -q(p)  >~ K2mo 

a (q (p ' ) ) -a (q (p ) )  >i mo 

and therefore 

(4.11) 

I (s(p ' ) -s(p))-(p ' -p)[  ~< O.Ol(s(p')-s(p)) ~-'1/K2 

j (a (q (p , ) )_a(q (p ) ) )_ (q (p , )_q(p ) )  I ~ O.Ol(q(p,)_q(p))l_,VK2 (4.12) 

by (4.3) and (4.6), since u,,(p), v , , (q(p))EPl  and u'(s(p)), v ' (a(q(p) ) )EP2.  

Denote 

Po =po(n) = infBn, p =p(n) = supBn 

So = So(n) = S(Po), S = S(n) = s(p), S -So  = ~.~ 

ao = ao(n) = a(q(po)), a = a(n) = a ( q ~ ) )  

B" = s(B~) ,-- [so, g], n = 1,2 . . . . .  

We can assume without loss of generality that Po,/~EBn. We have using (4.10) and 

(4.6) 

( 1 - 1 - 1 - ~  ) t~ <<. p - p o  <<. t~ 

1 0 

K 2 tn<~'n<~K2tn 

r I(B~)/2~ ~- i -  0 
18" 
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We have 
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A" = (So} O (B" N [so+m, g]). 

0 t I(A,,)/2 . ~.. 1 
15 

if n is sufficiently large. It follows from (4.12) that 

I(a(q(p))-ao)-(q(p)-q(po))l ~< 0.01(q(P)-q(Po)) 1 -~IK2 

for all p with s(p) E A ' .  

Denote 

We have 

x .  = u . (po) ,  Yn = v.(q(Po)) 
t _ _  

x .  - ~p(x.) = u ' ( so) ,  y "  = ~p(y.) = v'n(ao) 

y"  E U ( x ' ;  e/2). 

~o) h* a)y 
X n  = ~ c  n b n n 

for some bn, cn E R, n=  1,2 . . . . .  Denote 

W - -  ~  r 
n - -  ~ c .  "'b. : n  " W ~ ( r ' . ) .  

We have 

by (4.15). Let 

w,, E U(x"  ; e) 

A. = {S-So: s EA'}  = [O,A,,]. 

23 

(4.14) 

(4.15) 

We have 

0 ,2nEA n, l ( A n ) / 2 n > l - - ~ 5  and if s E An then hs(2),xn E Y. (4.16) 

Let  27: [0, 2K2tn]--,R be defined by 

Hx, ) ~b, E W6/2(H p Y'n) 

where (~,,,:',,)EGxG cover (w,,,y',,). The function • for w,,,y" is analogous to the 

function q for u,,, v,,. One can see that 
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z (q (P ' ) -q (P) )  = P ' - P  

for every p, P'>~Po. For s = s ( p ) - s o E A ,  let 

t( s ) = z (  a( q(p ) ) - ao) . 

We have using (4.11) 

h(2) (2) , h(2) U(hs(2)Xn ,,. �9 ",is) wn E W~t2(ha~) ) y,)  and ,,t~s) w, 6 e) (4.17) 

for all s EA,  with s=s(p) -So .  

Expressions (4.16) and (4.17) show that the subset A,,=[0,2,] satisfies conditions 

(i)--(ii) of Lemma 2.1 with x ' ,  w,, instead of  u, v respectively. We claim that A,  satisfies 

(iii), too. Indeed, let us show that i f  s, s' E A , ,  s<s '  and 

max { ( t ( s ' ) - t ( s ) ) ,  ( s ' - s )}  I> m 

then 

I ( t ( s ' ) - t ( s ) ) - ( s ' - s ) [  ~< ( s ' - s )  1-~. (4.18) 

So let s '=s(p ' ) ,  s=s(p) ,  s<s ' ,  s, s' E A ,  and suppose that 

$ ' - s  >~ m. 

Denote 

We have using (4.12) 

Also 

This implies that 

a' = a(q(p')),  a = a(q(p)). 

I(S'--S)--(p'--p)[ ~ 0.01(S'--s)l-rl/g 2 

I(a'--a)--(q(p')--q(p)) I <~ 0.01 (q(p')-q(p)) 1 - W K  2. 

t ( s ' ) -  t(s) = z ( a ' ) - z ( a )  

[ (a-ao)- (q(p)-q(po))[  <~ 0.01 (q(p)-q(po)) 1 - q / g  2. 

where [f[<~O.O2tl-q/K 2. Let  

(4.19) 

h(pl)poXn = g(1) / , , ( l ) th ( l )  . 
- c(p) '~b(p) ~, q(P)-q(Po) YnT" 

;t(a) = ( P - P o ) + f  (4.20) 
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It follows from (4.9), (1.3) and (4.20) that 

o(2) /~,(2)(/a(2) ~ t~. /,(2) Wn E U \~cq,) "b(,p) ~"~a .'V nY' �9 "x(a) 

This implies that 

0.02t~ ~ 0.02tin -~ \ 
K2 ; ~-~ , 0 ) .  

[(z(a ' ) -x(a))-(P ' -p) l  ~< 0.08(s '-s)  l-q 

by (4.19), (1.2) and (4.6). This and (4.19) show that 

I(r,(a')-z(a))-(s'-s)l ~< (s ' - s )  1-~ 

o r  

I(t(s')-t(s))-(s'-s) I <~ (s'-s) 1-~. 

Thus we have proved (4. I8) assuming that s'-s>~rn. Similarly, we can prove (4. I8) 

assuming that t(s')-t(s)>-m. 
Thus A , c  [0, 2,,] satisfies all conditions of Lemma 2.1. Using this lemma and (4.14) 

we conclude that there is s,,EA, with 

{h(2)r,. O D ,e~" 
h(2) , r U ~ k . . s , o  n,)~n t(sn) ~'un~ 2y' /11+2 Y } (4 .21)  

Let s,=s(pn)-So, a,=a(q(p,))-ao. We have via (4.9) 

hl~))Wn~U{h*(2)o(2) t.(2).,. 2K2 2K2 O) 
~k-3"s-a"a"J'n' fin 'tin +2y' 

This implies via (4.21) that if we denote s(pn)=g,,, a(q(p,))=a, then 

h(2),,, ~ tr{,,(2)l,,(2)~,(2), ,. DK2 DK2 ) 
fin vn "- ~ \| 'Sa "fin "| n ~n '  --'~Yn "' ~'n1+2)' ' e . (4.22) 

We have 

This implies that 

On = g(2~n vtn' an = g-rn-(2) u.; e2rn = ln'l+Y . 

d( On ' ..(2) t,.(2),~ 

by (4.22), (4.13) and (1.1), since 0<an~<2K2tn and 0<g,,~<G. This completes the 

proof. Q.E.D. 
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LEMMA 4.2. I f  u E V and v=h~Uu for some p E R then d(•., h~2)O,)--->0 when n---~oo, 

where an, O, are as in Lemma 4.1. 

Proof. Let p * 0  and let u,,, v,, u', v~, and s: R---~R be as in the proof of Lemma 4.1. 

We have 

u,,EV,, 

v, = h~i~+, U n 

, _ /.(2) u '  
O n - ..sO, tt+r) " . "  

It follows from (4.7) that 

,+ l+y ~ IP] tl. +rn- '  Is(re. r ) - P t n  [ 

i f  n is  so big that IP] t l . + r>~ t .  �9 This implies that 

d(o.. h 2) :,.) <. tol . - '  

if n is sufficiently large. This completes the proof. 

COROLLARY 4.1. There are an h~U-inoariant 

and a subsequence {nk;k=l,2 .... ) c { n : n = l , 2  .... } 

Q.E.D. 

subset s 1 with/zl(f~)=l 

such that i f  u Ef~ then 

By the Borel-Cantelli lemma 

Let 

We have 
o o  

F = {u EMt: u belongs to finitely many Fn}. 

/z(F) = 1. (4.~3) 

limk_.| a,k=~(u) E M 2 exists and ~(h~t)u)=h~Z)~(u) for  all p E R, u E ~ .  

Proof. Let M2=O~= 1K n, where K, are compact and/z2(M2-K,)<2 -", n = l ,  2 . . . . .  

Denote 

I(n= M 2 - K  n 

_ ~ (1 )  . i , -  1 ~ (2 )  # Fn-g-r~ ~v gr, n'n, n = l , 2 , . . . .  
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If u E F then a,, belongs to finitely many/~,, .  This implies that there is a subsequence 

nk(u), k= 1,2 . . . .  such that a~k(~ ) converges in M 2. 

Let  V~Ms, #I(V)>0 be as in Lemmas  4.1 and 4.2. In view of  (4.23) we can assume 

that VcF. Since/~I(V)>0, there is u ~ E V such that 

v(vn wa,(u~ > o 

where v denotes the Riemannian volume on the stable leaf W(u~ Since u~ F,  there is 

a subsequence nk=nk(u ~ such that t~ ~ converges in M 2. Let  
n k 

The set f~ 

then from 

= {h~Dw:pER, wE vn W~,(u~ 

is h~l)-invariant and/~l(f~)>0. Since hl 1) is ergodic, /~1(s It follows 

Lemmas  4.1 and 4.2 that limk_~| exists for every u E f l  and 

r162 for all p ER, u E Q. This completes the proof. Q.E.D. 

Proof of Theorem 1. Let  ~-~c"Ml, g l ( Q ) = l  and a subsequence {nk}c{n} be as in 

Corollary 4.1. We can assume without loss of  generality that f~=M1 and {nk}={n}. 

Thus 

exists for all u E M] and 

l i m a ,  = ~(u) 
i i . - .  | 

= 

for all p E R, u E M]. This says that the map 

~: ( M ]  ,~t l )  ---> (M2,f12)  

is a measurable conjugacy between h~ l) and hl 2). In fact, ~ is measure preserving (see 

[6]). It follows from the rigidity theorem [6] that there are C E G, a E R such that 

CF I C -1 c F 2 and ~j(u) = h(a2)~c(U) (4.24) 

for /z ra .e ,  uEMs, where ~c(Flg)=F2Cg, gEG. It follows from Lemma 4.1 that if u, 
vEV, v-g(S)h*(l)u for some lal, then - -  a fl 

~ ' (v )  = , , (2 )~ , , (2 )  ~.t, 
dia ,6fl b ~ ; .  
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This implies that a=O in (4.24) and therefore 

for/zl-a.e, u6M1. 
Now we have to show that 

r = Wc(u) 

W(u)= ~2) 
hot,) Vc(U) 

for some o(u) 6 R and/~t-a.e, u 6 MI. 

Let 0<r/, y, O, to, e< l ,  m~>l, Y, P2cM2 and Pt be chosen as above. 

Let ScM1, f l l ( S ) > l - t o  and no~>l be such that if u E S  and 

d(•,, ~(u))<e. 

Let n>~no be fixed. Denote 

n>~no then 

We have 

)( = gO~(P, n ~p-IP 2) n s n r 

0 /~,(X') > 1 
50" 

Let QcM2,/,tl(Q)=l be the generic set of X for h (1) This means that if u 6 Q then 
" ' t  " 

the relative length measure of X" on [u, hl~)u] tends to/h(X) when t--.oo. Denote 

O.=QnX, #I(Q)>O. 
Let u 6 Q and let 

We have 

when 2--->oo. Denote 

A = A(u) = {s E R+: h(~Du EX}.  

0 l(A A [0, 2])/2 --> 1 - - -  (4.25) 
50 

For s E R define t(s) by 

O(U) = Un E M2. 

h(2) v(u) = v(h~2)u). t(s) 

We have 
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h~2)r E Y 

h(2) v(u) E U(h~ 2) ~(u); e) (4.26) t(s) 

for all s E A .  Also 0EA. This and (4.26) show that A satisfies conditions (i)-(ii) of 

Lemma 2.1 with r and v(u) instead of u and v respectively. 

Let us show that A satisfies (iii), too. Indeed, let s, s' EA,  s<s '  and let 

max { s ' - s ,  t (s ' ) - t (s)  } >t m. 

Suppose for definiteness that 

s ' - s  I> m 

and show that 

Let 

and let z: R-->R be defined by 

I(t(s')-t(s))-(s'-s)l ~ (s ' -s)  l-~. 

Un($) = ~r n~(l)( h(I)u ) s  

z(p) = z(u.(s), p) 

where z(u,p) is defined in (4.5). We have 

un(s) E Pl,  ~p(u.(s)) E P2 

u.(s ' )  = h(') u.(s)  "t~+y(s,-s) 

W ( u . ( s ' ) )  = (z) hz(t~§ ~(u~(s)) 

t ( s ' ) -  t(s) = t~ 0 +r)z(tln+r(s ' - s)). 

It follows from (4.3) that 

and therefore 

iz(tl+r(s, s))_ tl+Y(s ,_s )  I ~< [tln+r(s,_s)] l~-q 

I(t(s')-t(s))-(s'-s)l ~ (s ' -s)  1-~. 

This proves (4.27) when s ' -s>~m. Similarly, we prove (4.27) when t ( s ' ) - t ( s )~m.  

(4.27) 
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Thus A=A(u), u E O_ satisfies all conditions of  Lemma 2.1. Using this lemma and 

(4.25) we conclude that 

v(u) = a n lies on the hll)-orbit of  ~(u) for every u E {). 

We have 

~(g~in)u ) = g~2n)~(U ) 

for # r a . e .  uEM1. This implies that if we denote 

Qn = _(i) ,~ St, Id, /~l(Qn) > 0 

then 

W(u) = h~2) ~(u) �9 

for some o(u) E R and all u E Q,,. The set 

(2 {uEMI:~O(u )_  (2) o(u)ER) = - ho~u) ~(u) for some 

is hl~)-invariant and contains Qn. This implies that 

gl(k~) = 1 

since h~ I) is ergodic and pl(Qn)>0. This completes the proof. Q.E.D.  

Proof o f  Theorem 2. We can assume without loss of  generality that p =  1 in the 

theorem. So let riE K(M i) and h~' be ergodic, i=1,2.  Let  ~o: (MI,t~)-->(M2,g~) be m.p. 

and 

,/,h~'fx) = h:~V, fx) 

for /~ca .e ,  x E M v 

Let  0<r/, ~,, O, oJ, r < l ,  m > l ,  Y, P2cM2 and P1cMI be as above. 

Since ~ is measurable,  there is A c M I ,  g l ( A ) > l - w  such that ~p is uniformly 

continuous on A. Let  c~>0 be such that if u, v E A, d(u, v)<6 then d(~(u), ~p(v))<r. Let  

Z =  A n P  ! fl ~p-I(P2 fl I0, •I(Z) > 1 - - - - ~ 0  
50K 2 

and let Q be the genetic set of Z for h~',/xl(Q)-'-1. Let Q=QnZ,/~(Q)>0. We claim 
that 
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if u, v E Q and v = h~l)u for some ~o[ < 6 

then ~p(v) = htq2)~p(u) for some Iql < e. 

Indeed, let ~(p), r(p), p E R be defined by 

f ~0,) f0,~) r2(h~2)~o(u)) ds = p = r2(h~)~p(v)) ds 
dO 

and let 

We have 

for all A>~2o. Also 

B =  {nEZ+:h~'u,h~n2vEZ} 

A = {~(n+p): n E B ,  O<~p << - 1}. 
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(4.28) 

for all ~(n) EA with n EB. For ~=~(n+p) EA define 

t(O = r(n +p). 

I f  ~=~(n) for some n EB then 

whenever 

h~) ~p(v) E U(h~ 2) ~o(u); e). (4.3 I) 

As in the proof of Theorem 1 we show that if ~=~(n)<~'=~(n') ,  n, n' EB then 

I(t(~')-t(O)-(~ ' -01  ~< ( ~ ' - O  1-7 (4.32) 

max {(t(~')-t(~)), (~ '-~))  ~> m. 

Arguing as in the proof of Lemma 2.1 we show that (4.29), (4.30), (4.31) and (4.32) 

imply that 

Ip(v) = h(q 2) lp(u)  

for some [ql<e. 

(2) h~(,,)g,(u) E Y (4.30) 

0 
l(A n [0, 2])/2 > 1 - - -  (4.29) 

5O 
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Thus we proved (4.28). We omit the rest  of  the proof,  since it is completely similar 

to the proof  of  Theorem 3 in [6]. Q.E.D.  
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